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We consider the minimal super-solution of a backward stochastic differential equation with constraint on
the gains-process. The terminal condition is given by a function of the terminal value of a forward stochastic
differential equation. Under boundedness assumptions on the coefficients, we show that the first component
of the solution is Lipschitz in space and 1

2 -Hölder in time with respect to the initial data of the forward
process. Its path is continuous before the time horizon at which its left-limit is given by a face-lifted version
of its natural boundary condition. This first component is actually equal to its own face-lift. We only use
probabilistic arguments. In particular, our results can be extended to certain non-Markovian settings.
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1. Introduction

The aim of this paper is to establish new stability and regularity results for the minimal super-
solution (Ŷζ , Ẑζ ) of a backward differential equation of the form

Ut = g
(
X

ζ
T

) +
∫ T

t

f
(
Xζ

s ,Us,Vs

)
ds −

∫ T

t

Vs dWs, t ≤ T ,

satisfying the constraint

V σ
(
Xζ

)−1 ∈ K dt ⊗ dP-a.e.

In the above, W is a d-dimensional Brownian motion and Xζ solves a forward stochastic dif-
ferential equation with volatility parameter σ , indexed by the initial conditions ζ = (t, x) ∈
[0, T ] ×Rd : X

ζ
t = x.

The study of its regularity has many motivations. Let us mention two of them. The first one
concerns stochastic target games. The analysis of [2] requires the use of a family of controlled
BSDEs and their regularity plays a crucial role in their study. Adding constraints on the controls
in their framework requires to consider BSDEs with constraints of the form studied here. The
results of this paper can be combined to [2] in order to add constraints to their setting. The
second one concerns the application of BSDEs with constraints to risk management problems,
see, for example, [6]. In practice, they need to be solved numerically. Obviously, estimates on
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their regularity will be crucial to establish a speed of convergence, see, for example, [3,13] for
discrete time approximation schemes in the unconstrained case. Our results are one step towards
the design of probabilistic numerical schemes which, to the best of our knowledge, are missing
for such constrained backward differential equations.

When K = Rd , that is, there is no constraint, and the coefficients are Lipschitz continuous,
it is well known that Ŷζ has continuous path and that the (deterministic) map (t, x) �→ Ŷ(t,x)

t is
1/2-Hölder in time and Lipschitz in space:

∣∣Ŷ(t,x)
t − Ŷ(t ′,x′)

t ′
∣∣ ≤ C

(∣∣t − t ′
∣∣ 1

2 + ∣∣x − x′∣∣). (1.1)

See, for example, [10]. This basically follows from standard estimates using Itô’s and Gronwall’s
lemma.

In the general case, such a minimal super-solution solves an equation of the form

Ŷζ
t = g

(
X

ζ
T

) +
∫ T

t

f
(
Xζ

s , Ŷζ
s , Ẑζ

s

)
ds −

∫ T

t

Ẑζ
s dWs + K̂ζ

T − K̂ζ
t , t ≤ T ,

in which K̂ζ is an adapted non-decreasing process, see [7,11]. Because little is known on the
regularity of this process, the technics used in the unconstrained case can not be reproduced.

Nevertheless, it is well known that such a minimal super-solution can be approximated by a
sequence of penalized unconstrained stochastic backward differential equations, see [7,11]. It is
therefore tempting to use the estimates associated to each element of the approximating sequence
and to pass to the limit. Unfortunately, the Lipschitz continuity coefficients of the approximating
sequence blow-up.

Another way to proceed consists in using the dual formulation of [6,7]. In their representa-
tion, the component Ŷζ is identified to the value of the optimal control problem of a family of
backward stochastic differential equations written under a suitable set of equivalent probabil-
ity measures, see Section 4.1. The main difficulty is that it is singular: each of the controls is
bounded, but the bound is not uniform.

In this paper, we essentially make use of this dual formulation, but we use a strong version:
the controls are directly incorporated in the dynamics rather than through changes of measures.
See Section 3. Space stability is essentially obvious for this strong version, while it is not in its
original ‘weak’ form. Still, the singularity of the optimal control problem makes estimates on the
stability in time quite delicate a-priori.

The key idea of this paper is to use the fact that the solution is automatically ‘face-lifted’ in
the sense of Proposition 3.3 below. This ‘face-lifting’ phenomenon is well known as far as the
terminal condition is concerned, this goes back to [5] in the specific setting of mathematical
finance, see also [4,8] and the references therein. We use probabilistic arguments to show that
it holds also in the parabolic interior [0, T ) × Rd of the domain, which can be guessed in the
setting of [4,8] from their pde characterization. This ‘face-lifting’ phenomenon allows to absorb
the singular control, and to extend (1.1) to the constrained case. See Theorem 2.1.

The paper is organized as follows. The setting and the main results are stated in Section 2.
Comments on our assumptions and possible extensions are discussed at the end in Section 5.
Section 3 is dedicated to the strong version of the dual formulation for which our estimates are
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established. This part contains the main ideas of this paper. In Section 4, we show that the strong
dual formulation coincides with its weak version, and that the latter actually provides (as well
known when the driver is convex) the first component Ŷζ of the constrained backward stochastic
differential equation.

Notations: All over this paper, we let � = C([0, T ],Rd), d ≥ 1, T > 0, be the canonical
space of continuous d-dimensional functions ω on [0, T ] such that ω0 = 0. It is endowed with
the Wiener measure P. We let W be the coordinate process, Wt(ω) = ωt , and we denote by
F = (Ft )t≤T the augmentation of its raw filtration under P. Random variables are defined on
(�,FT ,P). For the expectation under P, we simply use the symbol E, while we write EQ if
it is taken under a different measure Q. Given a probability measure Q, G ⊂ FT , p ≥ 1 and
A ⊂ Rn, we denote by Lp(A,Q,G) the set of G-measurable A-valued random variables whose
p-moment under Q is finite. We let S2(Q) (resp. H2(Q)) be the set of Rn-valued progressively
measurable processes V such that EQ[supt≤T |Vt |2] < ∞ (resp. EQ[∫ T

t
|Vt |2 dt] < ∞), in which

|v| denotes the Euclydian norm of v ∈ Rn and n is given by the context. The set of stopping times
with values in [0, T ] is T , while Tτ is the set of stopping times a.s. greater than τ ∈ T . Finally,
D2(Q) denotes the set of couples (τ, ξ) ∈ T × L2(Q,Rd ,FT ) such that ξ is Fτ -measurable. For
ζ ∈ D2, we write (τζ , ξζ ) = ζ . In all these definitions, we omit the arguments that can be clearly
identified by the context. When nothing else is specified, inequalities between random variables
or convergence of sequences of random variables hold in the P-a.s. sense.

2. Main regularity and stability results

As a first step of analysis, we concentrate on a Markovian setting with rather stringent bounded-
ness assumptions. Possible extensions will be discussed in Section 5 at the end of this paper. They
include another type of constraint, certain non-Markovian settings and optimal control problems.

The forward component is the unique strong solution Xζ on [0, T ] of the stochastic differential
equation

X
ζ
t∨τζ

= ξζ +
∫ t∨τζ

τζ

bs

(
Xζ

s

)
ds +

∫ t∨τζ

τζ

σs

(
Xζ

s

)
dWs, (2.1)

in which the initial data ζ ∈ D2, and the parameters (b, σ ) : [0, T ] ×Rd �→ Rd ×Rd×d are mea-
surable maps. They are assumed to be bounded, and Lipschitz in their space variable, uniformly
in their time argument. We also assume that σ is invertible with bounded inverse. Namely, there
exists L > 0 such that∣∣(bt , σt )(x) − (bt , σt )

(
x′)∣∣ ≤ L

∣∣x − x′∣∣ and
(|bt | + |σt | +

∣∣σ−1
t

∣∣)(x) ≤ L, (2.2)

for all (t, x, x′) ∈ [0, T ] ×Rd ×Rd .
The backward equation is defined by two measurable maps f : [0, T ] × Rd × R × Rd �→ R

and g : Rd �→ R such that, for all (t, x, θ), (t, x′, θ ′) ∈ [0, T ] ×Rd × (R×Rd),∣∣ft (x, θ) − ft

(
x′, θ ′)∣∣ ≤ L

(∣∣x − x′∣∣ + ∣∣θ − θ ′∣∣), ∣∣ft (x, θ)
∣∣ ≤ L

(
1 + |θ |), (2.3)∣∣g(x)

∣∣ ≤ L, and g is lower-semicontinuous. (2.4)
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A supersolution of BSDE(f, g, ζ ) is a process (U,V ) ∈ S2 × H2 satisfying

Ut∨τζ ≥ Ut ′∨τζ
+

∫ t ′∨τζ

t∨τζ

fs

(
Xζ

s ,Us,Vs

)
ds −

∫ t ′∨τζ

t∨τζ

Vs dWs, t ≤ t ′ ≤ T .

UT = g
(
X

ζ
T

)
.

(2.5)

The constraint on the V coordinate is associated to a family (Kt )t≤T of closed convex sets of
Rd :

V σ
(
Xζ

)−1 ∈ K dt ⊗ dP-a.e on �τζ , T �. (2.6)

When it is satisfied, we say that (U,V ) is a super-solution of BSDEK(f,g, ζ ). This super-
solution is said to be minimal if U ′

s∨τζ
≥ Us∨τζ for all s ≤ T and any other super-solution

(U ′,V ′) ∈ S2 × H2 of BSDEK(f,g, ζ ).
We require that

0 ∈ Kt for all t ≤ T , (2.7)⋃
t≤T

Kt is bounded, (2.8)

and that, for all u ∈ Rd ,

t ∈ [0, T ] �→ δt (u) := sup
{
k�u, k ∈ Kt

}
is left-continuous at T , (2.9)

and non-increasing. (2.10)

Remark 2.1. The conditions (2.8)–(2.10) are equivalent to: the family (Kt )t≤T is non-increasing
and K0 is bounded.

Note that our standing assumptions (2.3)–(2.4)–(2.7) ensure that BSDEK(f,g, ζ ) admits a
trivial super-solution

(yt , zt ) = ((
1 + L(T − t)

)
L,0

)
, (2.11)

which is bounded. In particular, [11], Theorem 4.2, implies that BSDEK(f,g, ζ ) admits a mini-
mal super-solution. We denote it by (Ŷζ , Ẑζ ), and let K̂ζ be the non-decreasing process defined
on [0, T ] by

K̂ζ
τζ

= 0 and Ŷζ
·∨τζ

= g
(
X

ζ
T

) +
∫ T

·∨τζ

fs

(
Xζ

s , Ŷζ
s , Ẑζ

s

)
ds −

∫ T

·∨τζ

Ẑζ
s dWs + K̂ζ

T − K̂ζ
·∨τζ

.

We do not impose any Lipschitz continuity assumption on g, although it is used in the un-
constrained case K = Rd to obtain the Lipschitz continuity of the map ξ �→ Ŷ(τ,ξ)

τ . Instead, we
assume that the map

ĝ : x ∈Rd �→ sup
u∈Rd

(
g(x + u) − δT (u)

)
, x ∈Rd is L-Lipschitz continuous. (2.12)
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This map is usually referred to as the ‘face-lift’ of g for the constraint KT , compare with for
example, [4,5,8]. We shall see below that it provides the correct time-T boundary condition for
our constrained backward differential equation. Intuitively, this means that assuming that g is
Lipschitz is useless, whenever ĝ is, which is a weaker condition.1

Our main result shows that the map ζ ∈ D2 �→ Ŷζ
τζ satisfies similar regularity properties in

time and space as in the unconstrained case. It also shows that the non-decreasing process K̂ζ

is continuous on [0, T ) with a final jump of size (ĝ − g)(X
ζ
T ). In particular, Ŷζ

T − = ĝ(X
ζ
T ) on

{τζ < T }.
From now on, we denote by CL a generic constant which depends only on L, and may change

from line to line.

Theorem 2.1. The following holds for all ζ, ζ ′ ∈ D2:

(a) If τζ ≤ τζ ′< T , then

∣∣Ŷζ
τζ

−Eτζ

[
Ŷζ ′

τζ ′
]∣∣ ≤ CL

(
Eτζ

[|τζ ′ − τζ |
] 1

2 +Eτζ

[|ξζ ′ − ξζ |
])

. (2.13)

(b) If τ := τζ = τζ ′< T , then

−δτ (ξζ ′ − ξζ ) ≤ Ŷζ
τ − Ŷζ ′

τ ≤ δτ (ξζ − ξζ ′). (2.14)

(c) If τζ < T , then K̂ζ
·∧ϑ has continuous path for each stopping time ϑ < T . Moreover, if

(ϑn)n≥1 is a sequence of stopping times with values in [τζ , T ) such that ϑn → T , then

Ŷζ
ϑn

→ ĝ(X
ζ
T ).

Sections 3 and 4 are devoted to the proof of these results. In view of Proposition 4.1 and
Theorem 4.1: (a) is a consequence of Corollary 3.1 and Proposition 3.4, (b) follows from Propo-
sition 3.3, and Proposition 3.5 implies (c).

3. Estimates via the strong dual formulation

As explained in the introduction, the constrained backward differential equation BSDEK(f,g, ζ )

admits a dual representation which is formulated as an optimal control problem on a family
of unconstrained backward stochastic differential equations written under a suitable family of
equivalent laws, see Section 4 for a precise formulation. Although, each unconstrained backward
stochastic differential equation satisfies the usual Hölder and Lipschitz regularity properties, this
does not seem to allow one to obtain the estimates of Theorem 2.1. The reason is that the optimal
control problem is of singular type: constants may blow up when passing to the supremum.

The main idea of this paper is to start with a strong version of this dual optimal control prob-
lem. Strong meaning that the probability measure is fixed, but we incorporate the control directly

1The fact that ĝ inherits the Lipschitz–continuity property from g is by construction, whereas the converse is not valid:
for d = 1, K = [0,1] and g : x ∈ R+ �−→ 1{x<1} , we have ĝ : x ∈ R+ �−→ 1.
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in the dynamics. It turns out to be much more flexible. In particular, space stability is essentially
trivial in this setting, see Corollary 3.1. More importantly, we can show that the corresponding
value process is itself automatically ‘face-lifted’, see Proposition 3.3 below. This will be the key
result to obtain the time regularity estimates of Proposition 3.4.

3.1. The strong dual formulation

Let U denote the collection of Rd -valued bounded predictable processes. Note that δ(ν) is
bounded for each ν ∈ U , see (2.8). To each (ζ, ν) ∈ D2 × U , we associate the stochastic driver

f ζ,ν : (t, y, z) ∈ [0, T ] ×R×Rd �→ (
ft

(
X

ζ,ν
t , y, z

) − δt (νt )
)
1�τζ ,T �(t),

where Xζ,ν is the solution of

Xζ,ν = ξζ +
∫ ·∨τζ

τζ

(
bs

(
Xζ,ν

s

) + νs

)
ds +

∫ ·∨τζ

τζ

σs

(
Xζ,ν

s

)
dWs. (3.1)

Given τ ∈ Tτζ , ϑ ∈ Tτ and G ∈ L2(Fϑ), we set

Eζ,ν
τ,ϑ [G] := Uτ ,

where (U,V ) ∈ S2 × H2 is the solution of

U = G +
∫ ϑ

·∨τζ

f ζ,ν
s (Us,Vs) ds −

∫ ϑ

·∨τζ

Vs dWs on [0, T ]. (3.2)

In the special case where ϑ ≡ T and G = g(X
ζ,ν
T ), the solution of (3.2) is denoted by

(Y ζ,ν,Zζ,ν). In particular,

Y ζ,ν· = Eζ,ν
·,T

[
g
(
X

ζ,ν
T

)]
.

We next define our optimal control problem

Yζ
τ = ess sup

{
Y ζ,ν

τ , ν ∈ U , ν1�0,τ � ≡ 0
}
, ζ ∈ D2, τ ∈ Tτζ . (3.3)

Note that Yζ
τ = Y(τ,X

ζ
τ )

τ since Xζ,0 = Xζ .

Remark 3.1. The conditions (2.2)–(2.3)–(2.4) imply that Y ζ,ν is bounded in L∞ uniformly in
ζ ∈ D2, for all ν ∈ U , see Lemma A.1. Moreover, Y ζ,ν ≤ y defined in (2.11), for all ν ∈ U , see
Lemma A.2. In particular, Y ζ,0 ≤ Yζ ≤ y, so that Yζ is bounded in L∞ uniformly in ζ ∈ D2.
The bound depends only on L.
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3.2. Terminal face-lift and space stability

The first result of this section concerns the face-lift of the terminal condition. It shows that g can
be replaced by ĝ in (3.3). Apart from being of self-interest, this property will be used latter on
in the proof of the space stability in our setting where ĝ is assumed to be Lipschitz while g may
not be. It will also be used to characterize the limit limt↑T Yζ

t .

Proposition 3.1. Yζ
τζ = ess sup{Eζ,ν

τζ ,T [ĝ(X
ζ,ν
T )], ν ∈ U} on {τζ < T }, for all ζ ∈ D2.

Proof. Since ĝ ≥ g by construction, one inequality is trivially deduced from Lemma A.2. We
therefore concentrate on the difficult inequality. Fix ζ := (τ, ξ) ∈ D2. For sake of simplicity, we
assume that τ < T a.s., the general case is handled by using the fact that2 {τ < T } = ⋃

n≥1{τ ≤
T − n−1}. For ν ∈ U , and u ∈ L∞(FT −ε◦), for some ε◦ > 0, we then define

τε := (T − ε) ∨ τ, νε := ν1�τ,τε � + u

T − τε

1�τε,T �, 0 < ε < ε◦.

Then, (3.3) combined with the tower property for non linear expectations imply that

Yζ
τ ≥ Eζ,ν

τ,τε

[
Y ζ,νε

τε

]
.

We claim that, after possibly considering a subsequence,

lim inf
ε→0

Eζ,ν
τ,τε

[
Y ζ,νε

τε

] ≥ Eζ,ν
τ,T

[
g
(
X

ζ,ν
T + u

) − δT (u)
]
. (3.4)

By arbitrariness of ε◦ > 0 and u ∈ L∞(FT −ε◦), this implies that

Yζ
τ ≥ ess sup

u∈L∞(FT −)

Eζ,ν
τ,T

[
g
(
X

ζ,ν
T + u

) − δT (u)
]
. (3.5)

Since the map (x,u) ∈ Rd × Rd �→ g(x + u) − δT (u) is Borel, it follows from [1], Proposi-
tion 7.40, page 184, that, for each ι > 0, we can find a universally measurable map x ∈ Rd �→
ũι(x) such that ĝ(x) = sup{g(x + u) − δT (u), u ∈ Rd} ≤ g(x + ũι(x)) − δT (ũι(x)) + ι for all
x ∈ Rd . By [1], Lemma 7.27, page 173, we can find a Borel measurable map x ∈ Rd �→ ûι(x)

such that ûι(X
ζ,ν
T ) = ũι(X

ζ,ν
T ) a.s. Since X

ζ,ν
T ∈ L2(FT −) by left-continuity of its path, this im-

plies that

u := ûι

(
X

ζ,ν
T

)
1{|ûι(X

ζ,ν
T )|≤n} + 0 × 1{|ûι(X

ζ,ν
T )|>n} ∈ L∞(FT −),

and therefore, by (3.5),

Yζ
τ ≥ Eζ,ν

τ,T

[
ĝ
(
X

ζ,ν
T

)
1{|ûι(X

ζ,ν
T )|≤n} − ι + g

(
X

ζ,ν
T

)
1{|ûι(X

ζ,ν
T )|>n}

]
,

2Note that Yζ
τ = Yζ

τ∧(T −n−1)
on {τ ≤ T − n−1}, so that it suffices to show the result for each Yζ

τ∧(T −n−1)
.
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for each n ≥ 1 and ι ∈ (0,1). The required result then follows from the stability principle, see
Lemma A.2, by sending first n → ∞ and then ι → 0.

It remains to prove our claim (3.4). We first deduce from Lemma 3.1 stated at the end of this
section that, after possibly passing to a subsequence,

X
ζ,νε

T → X
ζ,ν
T + u a.s. as ε → 0,

and therefore

lim inf
ε→0

g
(
X

ζ,νε

T

) ≥ g
(
X

ζ,ν
T + u

)
,

by lower-semicontinuity of g. Moreover, if (Hε)ε>0 is a sequence of positive processes such that
sup[τε,T ] Hε → 1 a.s. as ε → 0, then

lim inf
ε→0

∫ T

τε

Hε
s

(
fs

(
Xζ,νε

s ,0
) − δs

(
νε
s

))
ds ≥ − lim

ε→0
(T − τε)

−1
∫ T

τε

Hε
s δs(u) ds

≥ −δT (u)

since t �→ δt (u) is left-continuous at T and f (·,0) is bounded. We can then combine Lemma A.1
and Lemma A.3 to obtain

lim inf
ε→0

Y ζ,νε

τε
≥ g

(
X

ζ,ν
T + u

) − δT (u) =: G,

after possibly passing to a subsequence. Now observe that Eζ,ν·,τε [Y ζ,νε

τε ] coincides with the first
component of the backward differential equation which driver is f ζ,ν1�0,τε � and which terminal

condition is Y
ζ,νε

τε at T . It is constant on �τε, T �. Then, by the stability and comparison principles
in Lemma A.2, we obtain

Eζ,ν
τ,τε

[
Y ζ,νε

τε

] ≥ Eζ,ν
τ,T

[
Y ζ,νε

τε

] − C1Eτ

[∫ T

τε

∣∣f ζ,ν
s

(
Y ζ,νε

τε
,0

)∣∣2
ds

] 1
2

≥ Eζ,ν
τ,T [G] − C2

(
Eτ

[∫ T

τε

∣∣f ζ,ν
s

(
Y ζ,νε

τε
,0

)∣∣2
ds

] 1
2 +Eτ

[{(
Y ζ,νε

τε
− G

)−}2] 1
2

)
,

in which the constants C1 and C2 do not depend on (u, ε), see Remark 3.1. Since ν ∈ U , it follows
from Lemma A.1 together with (2.2) and (2.3) that (Y

ζ,νε

τε , f ζ,ν(Y
ζ,νε

τε ,0)1�τε,T �) is bounded in
L2 × S2 uniformly in ε > 0. Then, combining the above shows that, along a subsequence if
necessary, the right-hand side term in the last inequality converges to 0 as ε ↓ 0. Hence, the
claim (3.4) holds, which completes the proof. �

Since ĝ is assumed to be Lipschitz continuous, the stability in space is now an easy conse-
quence of the representation given in Proposition 3.1.

Corollary 3.1. |Yζ1
τ −Yζ2

τ | ≤ CL|ξζ1 − ξζ2 |, for all ζ1, ζ2 ∈ D2 with τ := τζ1 = τζ2< T .
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Proof. We simply use the fact that∣∣Yζ1
τ −Yζ2

τ

∣∣ ≤ ess sup
ν∈U

∣∣Eζ1,ν
τ,T

[
ĝ
(
X

ζ1,ν
T

)] − Eζ2,ν
τ,T

[
ĝ
(
X

ζ2,ν
T

)]∣∣
by Proposition 3.1. The right-hand side is bounded by |ξζ1 − ξζ2 | up to a multiplicative constant
under our Lipschitz continuity assumptions (2.2)–(2.3)–(2.12), see Lemma A.2. �

We conclude this section with the technical lemma that was used in the proof of Proposi-
tion 3.1. The proof is trivial under (2.2) and we omit it. It is not difficult to see that it remains
correct without the boundedness assumption on (b, σ ), they only need to be Lipschitz continuous
in space, uniformly in time (but then the constant appearing in the bound depends on (u, ζ ) as
well).

Lemma 3.1. Fix ζ ∈ D2, ϑ ∈ Tτζ and u ∈ L∞(Rd ,Fτζ ). Set ν := ε−1u1{ε>0}1�τζ ,ϑ �, with ε :=
ϑ − τζ . Then,

sup
t≤T

Eτζ

[∣∣Xζ,ν

(t∨τζ )∧ϑ − ξζ − ε−1u
(
(t ∨ τζ ) ∧ ϑ − τζ

)
1{ε>0}

∣∣2] ≤ CLEτζ [ε].

3.3. Dynamic programming and face-lifting on [0,T )

We first recall the dynamic programming principle for the optimal control problem (3.3). It will
be used later on in this section to prove that the value process is automatically face-lifted, see
Proposition 3.3.

Proposition 3.2. For all ζ ∈ D2 and ϑ ∈ Tτζ ,

Yζ
τζ

= ess sup
ν∈U

Eζ,ν
τζ ,ϑ

[
Y(ϑ,X

ζ,ν
ϑ )

ϑ

]
.

Proof. The proof is standard. Since Y
ζ,ν
τζ = Eζ,ν

τζ [Y (ϑ,X
ζ,ν
ϑ ),ν

ϑ ] ≤ Eζ,ν
τζ [Y(ϑ,X

ζ,ν
ϑ )

ϑ ] by the tower prop-
erty for non-linear expectations and by the comparison principle, see Lemma A.2, one inequality

is trivial. As for the reverse inequality, we observe that the family {Y (ϑ,X
ζ,ν
ϑ ),ν′

ϑ , ν′ ∈ U} is directed
upward. Then [9], Proposition VI.1.1, ensures that we can find a sequence (ν′

n)n≥1 ⊂ U such that

Yn
ϑ := Y

(ϑ,X
ζ,ν
ϑ ),ν′

n

ϑ ↑ Y(ϑ,X
ζ,ν
ϑ )

ϑ =: Yϑ a.s. as n → ∞. Since, Y 1
ϑ and Yϑ are bounded in L2, see

Remark 3.1, the convergence holds in L2 as well. Moreover, we can find a constant C > 0 which
does not depend on n and such that

Eζ,ν
τζ ,ϑ

[
Yn

ϑ

] ≥ Eζ,ν
τζ ,ϑ [Yϑ ] − CEτζ

[∣∣Yn
ϑ −Yϑ

∣∣2] 1
2 ,

see Lemma A.2. The latter combined with (3.3) implies that

Yζ
τζ

≥ Eζ,ν
τζ ,ϑ [Yϑ ] − lim

n→∞CEτζ

[∣∣Yn
ϑ −Yϑ

∣∣2] 1
2 = Eζ,ν

τζ ,ϑ [Yϑ ],
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and we conclude by arbitrariness of ν ∈ U . �

We can now show that ξ ∈ L2(Fτ ) �→ Y(τ,ξ)
τ is itself automatically face-lifted in the following

sense.

Proposition 3.3. For all ζ ∈ D2,

Yζ
τζ

= ess sup
u∈L∞(Rd ,Fτζ

)

(
Y(τζ ,ξζ +u)

τζ − δτζ (u)
)

a.s. on {τζ < T }. (3.6)

Proof. Take ζ := (τ, ξ) ∈ D2. One inequality follows from the fact that δτ (0) = 0. Fix u ∈
L∞(Fτ ), ε > 0, and set τε := (τ + ε) ∧ T and νε := ε−1u1�τ,τε �. It follows from Lemma 3.1
that

Eτ

[∣∣Xζ,νε

τε
− ξ − u

∣∣2] 1
2 ≤ CLε

1
2 . (3.7)

Then, by appealing to Proposition 3.2, Lemma A.1, (2.3) and Corollary 3.1 successively, we
can find a family of non-negative continuous processes (Hε)ε>0, uniformly bounded in S2 by a
constant CL, such that Hε

τε
→ 1 in L1 as ε → 0 and

Yζ
τ ≥ Eτ

[
Hε

τε
Y(τε,X

ζ,νε

τε )
τε +

∫ τε

τ

Hε
s f ζ,νε

s (0) ds

]

≥ Eτ

[
Hε

τε
Y(τε,X

ζ,νε

τε )
τε −

∫ τε

τ

Hε
s δs

(
νε
s

)
ds

]
− CLε

≥ Eτ

[
Hε

τε
Y(τε,ξ+u)

τε
− ε−1

∫ τε

τ

Hε
s δs(u) ds

]
− CLε

1
2 ,

where the last inequality follows from the definition of νε as well as Corollary 3.1 together with
(3.7) and the Cauchy–Schwarz inequality. Since Hε ≥ 0, we can use (2.10) and Remark 3.1 to
obtain

Yζ
τ ≥ Eτ

[
Hε

τε
Y(τε,ξ+u)

τε
− δτ (u)ε−1

∫ τε

τ

Hε
s ds

]
− CLε

1
2

≥ Eτ

[
Y(τε,ξ+u)

τε
− δτ (u)ε−1

∫ τε

τ

Hε
s ds

]
− CL

(
ε

1
2 +Eτ

[∣∣Hε
τε

− 1
∣∣]),

where ε−1
∫ τε

τ
Hε

s ds and Hε
τε

converge to 1 in L1, so that

Yζ
τ ≥ lim inf

ε→0
Eτ

[
Y(τε,ξ+u)

τε

] − δτ (u).

It remains to show that

lim inf
ε→0

Eτ

[
Y(τε,ξ+u)

τε

] ≥ E (τ,ξ+u),ν
τ,T

[
ĝ
(
X

(τ,ξ+u),ν
T

)]
. (3.8)
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Then, the arbitrariness of ν ∈ U will allow one to conclude by appealing to Proposition 3.1.
In order to alleviate notations, we set Ŷ

τ1,ξ1
τ2 := E (τ1,ξ1),ν

τ2,T
[ĝ(X

(τ1,ξ1),ν
T )] for any τ1, τ2 ∈ T and

ξ1 ∈ L2(Fτ1). By Proposition 3.1,

Eτ

[
Y(τε,ξ+u)

τε

] ≥ Eτ

[
Ŷ τε,ξ+u

τε

] = Ŷ τ,ξ+u
τ +Eτ

[
Ŷ τε,ξ+u

τε

] − Ŷ τ,ξ+u
τ .

We now observe that

Eτ

[
Ŷ τε,ξ+u

τε

] − Ŷ τ,ξ+u
τ = Eτ

[
Ŷ τε,ξ+u

τε
− Ŷ

τε,X
(τ,ξ+u),ν
τε

τε

]
+Eτ

[
Ŷ

τε,X
(τ,ξ+u),ν
τε

τε

] − E (τ,ξ+u),ν
τ,τε

[
Ŷ

τε,X
(τ,ξ+u),ν
τε

τε

]
in which, by Lemma A.2 combined with (2.2)–(2.3)–(2.12),

lim
ε→0

Eτ

[
Ŷ τε,ξ+u

τε
− Ŷ

τε,X
(τ,ξ+u),ν
τε

τε

] = 0.

By the same assumptions combined with Lemma A.1,

lim
ε→0

Eτ

[
Ŷ

τε,X
(τ,ξ+u),ν
τε

τε

] − E (τ,ξ+u),ν
τ,τε

[
Ŷ

τε,X
(τ,ξ+u),ν
τε

τε

] = 0.

This proves (3.8) and completes the proof. �

3.4. Stability in time

We now turn to the proof of the stability in time. The lower estimate trivially follows from the
dynamic programming principle of Proposition 3.2. The second one is much more delicate. It is
obtained by a suitable use of the face-lifting phenomenon observed in Proposition 3.3. It allows
one to absorb the singularity due to the control when passing to the supremum over U , see (3.10)
below.

Proposition 3.4. For all ζ ∈ D2 and ϑ ∈ Tτζ

∣∣Yζ
τζ

−Eτζ

[
Y(ϑ,ξζ )

ϑ

]∣∣ ≤ CLEτζ [ϑ − τζ ] 1
2 .

Proof. 1. By Proposition 3.2, Remark 3.1, (2.3) and Lemma A.1

Yζ
τζ

≥ Eζ,0
τζ ,ϑ

[
Y(ϑ,X

ζ,0
ϑ )

ϑ

] ≥ Eτζ

[
Y(ϑ,X

ζ,0
ϑ )

ϑ

] − CLEτζ [ϑ − τζ ] 1
2 ,

while Corollary 3.1 and (2.2) imply

Eτζ

[
Y(ϑ,X

ζ,0
ϑ )

ϑ

] ≥ Eτζ

[
Y(ϑ,ξζ )

ϑ

] − CLEτζ [ϑ − τζ ] 1
2 .
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2. We now turn to the reverse inequality. Set ζ = (τ, ξ) and let Uζ,ν := βY
ζ,ν
·∨τ −∫ ·∨τ

τ
βsδs(νs) ds, where βs := eL(s−τ)+ , recall (2.3). Then,

U
ζ,ν
t1

= U
ζ,ν
t2

+
∫ τ∨t2

τ∨t1

βs

(
fs

(
Xζ,ν

s , Y ζ,ν
s ,Zζ,ν

s

) − LYζ,ν
s

)
ds −

∫ τ∨t2

τ∨t1

βsZ
ζ,ν
s dWs

for t2 ≥ t1. Since y ∈ R �→ f (·, y, ·) − Ly is non-increasing by (2.3), and δ ≥ 0 by (2.7), it
follows that

U
ζ,ν
t1

≤ U
ζ,ν
t2

+
∫ τ∨t2

τ∨t1

(
βsfs

(
Xζ,ν

s , β−1
s Uζ,ν

s ,Zζ,ν
s

) − LUζ,ν
s

)
ds −

∫ τ∨t2

τ∨t1

βsZ
ζ,ν
s dWs. (3.9)

On the other hand, we can use (3.3), the fact that δ ≥ 0 is sublinear and β ≥ 1, (2.10), Remark 3.1
and Proposition 3.3 to deduce that

U
ζ,ν
ϑ ≤ βϑY

(ϑ,X
ζ,ν
ϑ )

ϑ −
∫ ϑ

τ

βsδs(νs) ds

≤ CL(βϑ − 1) +Y(ϑ,X
ζ,ν
ϑ )

ϑ − δϑ

(∫ ϑ

τ

νs ds

)
(3.10)

≤ CL(βϑ − 1) +Y(ϑ,X
ζ,ν
ϑ −∫ ϑ

τ νs ds)

ϑ .

The last inequality combined with (3.9), Lemma A.1 and (2.3) leads to

Y ζ,ν
τ = Uζ,ν

τ ≤ Eτ

[
Ĥ τ

ϑ

(
CL(βϑ − 1) +Y(ϑ,X

ζ,ν
ϑ −∫ ϑ

τ νs ds)

ϑ + CL(ϑ − τ)
)]

in which

Ĥ τ
ϑ := sup

[τ,ϑ]
e
∫ ·
τ (κ1

s −2−1|κ2
s |2) ds+∫ ·

τ κ2
s dWs

for some predictable processes κ1, κ2 that are uniformly bounded by a constant which only
depends on L. We next use Corollary 3.1 together with standard estimates, recall (2.2), to deduce
from the above that

Y ζ,ν
τ −Eτ

[
Ĥ τ

ϑY
(ϑ,ξ)
ϑ

] ≤ CL

(
Eτ

[
Ĥ τ

ϑ

∣∣∣∣Xζ,ν
ϑ −

∫ ϑ

τ

νs ds − ξ

∣∣∣∣
]

+Eτ

[
(ϑ − τ)

] 1
2

)

≤ CLEτ

[
(ϑ − τ)

] 1
2 .

Then, Remark 3.1 implies that

Eτ

[
Ĥ τ

ϑY
(ϑ,ξ)
ϑ

] −Eτ

[
Y(ϑ,ξ)

ϑ

] ≤ CLEτ

[∣∣Ĥ τ
ϑ − 1

∣∣] ≤ CLEτ

[
(ϑ − τ)

] 1
2 .

Combining the two last inequalities and using the arbitrariness of ν ∈ U leads to the required
result. �
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For later use, we state the following corollary of Proposition 3.4 and Corollary 3.1, recall (2.2).

Corollary 3.2. For all ζ ∈ D2 and ϑ ∈ Tτζ

∣∣Yζ
τζ

−Eτζ

[
Y(ϑ,X

ζ
ϑ )

ϑ

]∣∣ ≤ CLEτζ [ϑ − τζ ] 1
2 .

3.5. Path continuity and boundary limit

The following is deduced from Proposition 3.1 and Corollary 3.2.

Proposition 3.5. Fix ζ ∈ D2 such that τζ < T . Then, Yζ is continuous on [0, T ) and satisfies

Yζ
T − := lim

s↑T ,s<T
Yζ

s = ĝ
(
X

ζ
T

)
.

In particular, the process Yζ 1[0,T ) + ĝ(X
ζ
T )1{T } is continuous.

Proof. 1. We first show that Yζ is right-continuous. Fix ϑ ∈ Tτζ and let (ϑn)n≥1 ⊂ Tϑ be such

that ϑn ↓ ϑ . Since Yζ
ϑ = Y(ϑ,X

ζ
ϑ )

ϑ , Yζ
ϑn

= Y(ϑn,X
ζ
ϑn

)

ϑn
, and X

ζ
ϑn

= X
(ϑ,X

ζ
ϑ )

ϑn
, it follows from Corol-

lary 3.2 applied to the time intervalle [ϑ,ϑn] that

Yζ
ϑ = lim

n→∞Eϑ

[
Yζ

ϑn

]
. (3.11)

We claim that lim supn→∞ Yζ
ϑn

= lim infn→∞ Yζ
ϑn

a.s. Then, the above combined with Re-
mark 3.1 and the dominated converge theorem implies that

Yζ
ϑ = lim

n→∞Yζ
ϑn

.

It remains to prove our claim. Let us first define

η̄ := lim sup
n→∞

Yζ
ϑn

and η := lim inf
n→∞ Yζ

ϑn
.

Assume on the contrary that the set

A := {η̄ > η} has positive probability.

Note that A ∈Fϑ , by right-continuity of the filtration. Then, define k̄1 = k1 = 1 and

k̄n+1 := min
{
k > k̄n : Yζ

ϑk
≥ 2η̄/3 + η/3

}
,

kn+1 := min
{
k > kn : Yζ

ϑk
≤ η̄/3 + 2η/3

}
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for k ≥ 1, and set ϑ̄n := ϑk̄n
1A + ϑn1Ac and ϑn := ϑkn

1A + ϑn1Ac for n ≥ 1. It follows from
the definition of A that ϑ̄n, ϑn are well-defined. They decrease to ϑ . Applying (3.11) to the two
sequences (ϑ̄n)n≥1 and (ϑn)n≥1 and recalling the uniform bound of Remark 3.1 leads to

(2η̄/3 + η/3)1A ≤ lim
n→∞Eϑ

[
Yζ

ϑ̄n

]
1A = Yζ

ϑ1A = lim
n→∞Eϑ

[
Yζ

ϑn

]
1A ≤ (η̄/3 + 2η/3)1A,

a contradiction.
2. It follows from Proposition 3.2 that Yζ is a f ζ,0-supermartingale in the strong sense in the

terminology of [11]. Since it is right-continuous, it follows from [11], Theorem 3.3, that it admits
left-limits. It is clear from Corollary 3.2 that it can not have jumps on [0, T ).

3. We finally prove the limit behavior at T . It follows from Proposition 3.1 and Lemma A.1
that Yζ

T − ≥ ĝ(X
ζ
T ). On the other hand, since g(X

ζ
T ) ≤ ĝ(X

ζ
T ) and ĝ(X

ζ
T + u) − δT (u) ≤ ĝ(X

ζ
T )

by construction and the fact that δT is sub-linear, we can follow the arguments of the proof of
Proposition 3.4 to deduce that

Yζ

τζ ∨(T −ε) ≤ Eτζ ∨(T −ε)

[
ĝ
(
X

ζ
T

)] + CLε
1
2 .

By continuity of the filtration, this implies that Yζ
T − ≤ ĝ(X

ζ
T ). �

4. Weak versus strong formulation of the dual problem

The aim of this section is to prove that Yζ as defined in (3.3) actually provides the minimal super-
solution of BSDEK(f,g, ζ ). Then, the statements of Theorem 2.1 will be a consequence of the
results obtained in Section 3. To this purpose, we first introduce the weak formulation associated
to the optimal control problem (3.3) and show that the value coincides. Then, we use standard
arguments to show that this weak formulation actually provides the minimal super-solution of
our constrained backward stochastic differential equation.

4.1. Weak formulation

Given ν ∈ U and ζ ∈ D2, we define the equivalent probability measure Pζ,ν by

dPζ,ν

dP
= e

− 1
2

∫ T
τζ

|σ−1
s (X

ζ
s )νs |2 ds+∫ T

τζ
σ−1

s (X
ζ
s )νs dWs

.

Recall that σ−1 is bounded by assumption. Then,

Wζ,ν := W −
∫ τζ ∨·

τζ

σ−1
s

(
Xζ

s

)
νs ds (4.1)

is a Pζ,ν -Brownian motion.
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Given ϑ ∈ Tτζ and G ∈ L2(P
ζ,ν,Fϑ), we set

Ẽζ,ν
t,ϑ [G] := Ut

in which (U,V ) ∈ S2(P
ζ,ν) × H2(P

ζ,ν) satisfies

Ut∨τζ = G +
∫ ϑ

t∨τζ

[
fs

(
Xζ

s ,Us,Vs

) − δs(νs)
]
ds −

∫ ϑ

t∨τζ

Vs dWζ,ν
s , t ≤ T . (4.2)

We finally define for τ ∈ Tτζ

Ỹζ
τ := ess sup

{
Ẽζ,ν

τ,T

[
g
(
X

ζ
T

)] : ν ∈ U , ν1�0,τ � ≡ 0
}
. (4.3)

4.2. Equivalence of the strong and weak formulations

Proposition 4.1. Ỹζ
τζ = Yζ

τζ , for each ζ ∈ D2.

Proof. We write ζ = (τ, ξ). For sake of simplicity, we restrict to the situation τ = 0 so that
x0 := ξ ∈ Rd . The general case is obtained by a conditioning argument. Let U simple denote the
set of processes ν ∈ U of the form

ν = σ
(
Xζ,ν

) n−1∑
i=0

φi1(ti ,ti+1] (4.4)

in which 0 = t0 < · · · < tn = T and φi ∈ L∞(Fti ) for i ≤ n. Note that (ν,Xζ,ν) is well-defined
for any (φi)i≤n ⊂ L∞ satisfying the previous measurability condition. This follows from (2.2).

We define accordingly Ũ simple as the set of processes ν ∈ U of the form

ν = σ
(
Xζ

) n−1∑
i=0

φi1(ti ,ti+1] (4.5)

in which 0 = t0 < · · · < tn = T and φi ∈ L∞(Fti ) for i ≤ n.
1. We first show that for each ν ∈ U simple we can find ν̃ ∈ U such that

Eζ,ν
τ,T

[
g
(
X

ζ,ν
T

)] = Ẽζ,ν̃
τ,T

[
g
(
X

ζ
T

)]
.

Let ν ∈ U simple be as in (4.4) and note that we can identify φi to a Borel measurable map ω ∈
� �→ φi(ω) = φi(ω·∧ti ), up to P-null sets. Let us define ν̃ by

ν̃(ω) = σ
(
Xζ

)
φi

(
ω

φ
·∧ti

)
on (ti , ti+1],
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where ωφ is defined recursively by

ωφ
s := ωs −

j−1∑
k=0

(tk+1 − tk)φk

(
ω

φ
·∧tk

) − (s − tj )φj

(
ω

φ
·∧tj

)
for s ∈ (tj , tj+1],

with ω
φ
0 = 0. Then, for t ∈ (ti , ti+1],

X
ζ,ν
t = X

ζ,ν
ti

+
∫ t

ti

(
bs

(
Xζ,ν

s

) + σs

(
Xζ,ν

s

)
φi(W·∧ti )

)
ds +

∫ t

ti

σs

(
Xζ,ν

s

)
dWs,

where W is a Brownian motion under P, while

X
ζ
t = X

ζ
ti

+
∫ t

ti

(
bs

(
Xζ

s

) + σs

(
Xζ

s

)
φi

(
Wν̃·∧ti

))
ds +

∫ t

ti

σs

(
Xζ

s

)
dWν̃

s ,

where Wν̃ is a Brownian motion under Pζ,ν̃ . This implies that the law of (W,Xζ,ν, ν) under
P is the same as the law of (W ν̃,Xζ , ν̃) under Pζ,ν̃ . In view of Lemma A.4, Eζ,ν

0,T [g(X
ζ,ν
T )] and

Ẽζ,ν̃
0,T [g(X

ζ
T )] can be approximated by the same sequence of real numbers and are therefore equal.

2. The fact that for each ν̃ ∈ Ũ simple we can find ν ∈ U such that

Eζ,ν
τ,T

[
g
(
X

ζ,ν
T

)] = Ẽζ,ν̃
τ,T

[
g
(
X

ζ
T

)]
follows from similar arguments.

3. To conclude the proof, it remains to show that

Yζ
τ = sup

{
Eζ,ν

τ,T

[
g
(
X

ζ,ν
T

)]
, ν ∈ U simple} and Ỹζ

τζ
= sup

{
Ẽζ,ν̃

τ,T

[
g
(
X

ζ
T

)]
, ν̃ ∈ Ũ simple}.

We only prove the first identity, the second one being derived similarly. One inequality is trivial.
Conversely, given any predictable and bounded process φ, we can find a bounded sequence of
simple adapted processes (φn)n≥1 such that E[∫ T

0 |φn
s − φs |2 ds] → 0. By (2.2)–(2.8), νn :=

σ(Xζ,νn
)φn ∈ U . In particular, it follows from (2.2) that Xζ,νn converges in S2 to Xζ,ν in which

ν := σ(Xζ,ν)φ. Hence, after possibly passing to a subsequence,

lim inf
n→∞ g

(
X

ζ,νn

T

) ≥ g
(
X

ζ,ν
T

)
since g is assumed to be lower-semicontinuous. By the comparison principle, Lemma A.2, we
have

Eζ,νn

τ,T

[
g
(
X

ζ,νn

T

)] ≥ Eζ,νn

τ,T

[
g
(
X

ζ,ν
T

) ∧ g
(
X

ζ,νn

T

)]
in which g(X

ζ,ν
T ) ∧ g(X

ζ,νn

T ) → g(X
ζ,ν
T ) a.s. and in L2 by dominated convergence, recall (2.4).

We also have

E

[∫ T

τ

∣∣δs(νs) − δs

(
νn
s

)∣∣2
ds

]
→ 0
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since (δt )t≤T is equi-Lipschitz by (2.8). Then, Lemma A.2 implies that

lim inf
n→∞ Eζ,νn

τ,T

[
g
(
X

ζ,νn

T

)] ≥ lim
n→∞Eζ,νn

τ,T

[
g
(
X

ζ,ν
T

) ∧ g
(
X

ζ,νn

T

)] = Eζ,ν
τ,T

[
g
(
X

ζ,ν
T

)]
. �

4.3. Connection with the reflected backward stochastic differential
equation

We now show that Ỹζ identifies as the first component of the minimal super-solution of the
backward stochastic differential equation with constraint BSDEK(f,g, ζ ).

Theorem 4.1. For all ζ ∈ D2, there exists Z̃ζ ∈ H2 such that (Ỹζ , Z̃ζ ) is the minimal superso-
lution of BSDEK(f,g, ζ ).

Proof. The proof is standard and written in the spirit of [7], Proof of Proposition 2.5.
1. Similar arguments as in the proof of Proposition 3.2 show that Ỹ satisfies a dynamic pro-

gramming principle: for all ϑ1 ≤ ϑ2 ∈ T , such that τζ ≤ ϑ1, we have

Ỹζ
ϑ1

= ess sup
ν∈U

Ẽζ,ν
ϑ1,ϑ2

[
Ỹζ

ϑ2

]
. (4.6)

We also observe that Ỹζ is càd. This follows from Proposition 4.1 and Proposition 3.5. Then,
the nonlinear Doob-Meyer decomposition of [11], Theorem 3.3, implies the existence of Z̃ζ,ν ∈
H2(P

ν,ζ ) and of a càdlàg non-decreasing adapted process K̃ζ,ν such that

Ỹζ
ϑ = g

(
X

ζ
T

) +
∫ T

ϑ

(
fs

(
Xζ

s , Ỹζ
s , Z̃ζ,ν

s

) − δs(νs)
)
ds −

∫ T

ϑ

Z̃ζ,ν
s dWζ,ν

s + K̃ζ,ν
T − K̃ζ,ν

ϑ ,ϑ ≥ τζ .

By identification of the Itô decomposition under each Pζ,ν , we obtain Z̃ζ,ν = Z̃ζ,0 =: Z̃ζ . More-
over, (4.1) implies that for any ν ∈ U and ϑ ∈ Tτζ

K̃ζ,0
T − K̃ζ,0

ϑ = K̃ζ,ν
T − K̃ζ,ν

ϑ +
∫ T

ϑ

(
Z̃ζ

s σ−1(Xζ
s

)
νs − δs(νs)

)
ds

≥
∫ T

ϑ

(
Z̃ζ

s σ−1(Xζ
s

)
νs − δs(νs)

)
ds,

since K̃ζ,ν is non-decreasing. By using a similar measurable selection argument as in the proof
of Proposition 3.1, this shows that

inf|u|=1

(
δ(u) − Z̃ζ σ−1(Xζ

)
u
) ≥ 0 dt ⊗ dP-a.e. ⇔ Z̃ζ σ−1(Xζ

) ∈ K dt ⊗ dP-a.e.,

see e.g. [12]. Since K̃ζ,0 is non-decreasing, writing the above for ν = 0 implies that (Ỹζ , Z̃ζ ) is
a super-solution of BSDEK(f,g, ζ ).
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2. We now prove the minimality property. If (U,V ) is a super-solution of BSDEK(f,g, ζ ),
then it follows from the definition of δ and (4.1) that it is also a super-solution of (4.2) with
G = g(X

ζ
T ), for each ν ∈ U . In particular, U ≥ Ẽζ,ν

·,T [g(X
ζ
T )], and we conclude by arbitrariness

of ν ∈ U . �

5. Possible extensions

In order to focus on the main ideas, we have restricted ourselves to a rather stringent framework.
Some of the conditions used in this paper can certainly be weakened on a case by case basis. We
discuss here some straightforward extensions or variations.

5.1. Invertibility condition

We have assumed that σ is invertible but all our arguments go through if we add a component
Xo to X which has a dynamic of the form

dXo
t = bo

t

(
Xo

t ,Xt

)
dt

with bo Lipschitz and bounded in space, uniformly in time. Then Xζ,ν has to be replaced by
X̄ζ,ν = (Xo,ζ,ν,Xζ,ν) with dynamics

dX̄
ζ,ν
t =

(
bo
t

(
X̄

ζ,ν
t

)
bt

(
X̄

ζ,ν
t

) + νt

)
dt +

(
0

σt

(
X̄

ζ,ν
t

))
dWt .

The face-lift of g is defined accordingly

ĝ
(
xo, x

) := sup
u∈Rd

(
g
(
xo, x + u

) − δT (u)
)
,

and so on.
The case of a general non-invertible coefficient σ can be treated along the lines of [4], in which

it is explained how the face-lift should then be performed.

5.2. Direct constraint on the gains-process

The constraint (2.6) is motivated by financial applications in which the component V can be
interpreted as the number of risky assets X held in an hedging portfolio for the contingent claim
g(X

ζ
T ), see [5]. It can be replaced by

V ∈ K dt ⊗ dP-a.e on �τζ , T �, (5.1)

when σ does not depend on x.
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In this case, Xζ,ν must be taken of the form

dX
ζ,ν
t = (

bt

(
X

ζ,ν
t

) + σtνt

)
dt + σt dWt .

If one assumes that t �→ σt is right-continuous on [0, T ) and left-continuous at T , then (2.12)–
(3.6) become

ĝ(x) = sup
u∈Rd

(
g(x + σT u) − δT (u)

)
,

Yζ
τζ

= ess sup
u∈L∞(Rd ,Fτζ

)

(
Y

(τζ ,ξζ +στζ
u)

τζ − δτζ (u)
)

a.s. on {τζ < T }.

The change of measure for the weak formulation is

dPζ,ν

dP
= e

− 1
2

∫ T
τζ

|νs |2 ds+∫ T
τζ

νs dWs
.

In particular, we do not need σ to be invertible anymore.
The results of Theorem 2.1 are obtained by following step by step the arguments used in this

paper up to the modifications described above.
Moreover, the boundedness condition (2.8) can then be weakened. Indeed, it can be avoided

by using (2.9)–(2.10) in all our proofs, except in the proof of Proposition 4.1 in which it is used
twice. First to ensure that the controls ν constructed from the families (φi)i≤n satisfy δ(ν) <

∞. But in the case (5.1), the ν’s are of the form
∑n−1

i=0 φi1(ti ,ti+1]. Taking δti (φi) < ∞ is then
enough. It is also used in the approximation argument of Step 3, as it implies that (δt )t≤T is
equi-Lipschitz, but for the constraint (5.1), it suffices to assume, for instance, that the domain of
δt does not depend on t , which means that the directions in which Kt is bounded do not depend
on t . This is not enough when ν is of the form used in the proof of Proposition 4.1 because of
the transformation through the matrix σ , unless additional assumptions are made on it.

Our arguments are not valid if σ depends on x because the coefficients driving Xζ,ν are no
more Lipschitz uniformly in the control. This is crucial for Corollary 3.1.

5.3. Optimal control of constrained BSDEs

One can allow the coefficients b, σ and f to depend on an additional control α in a set A of
predictable processes with values in a compact set A ⊂ Rd . Then, all our proofs go through
whenever the conditions (2.2)–(2.3) are uniform with respect to this additional control, and the
coefficients are continuous in this additional variable. The arguments used in Section 3 do not
change. It is the same for Section 4.3, for α ∈ A given. However, a continuity assumption on
the coefficients with respect to the control will be required to prove the counterpart of Proposi-
tion 4.1: the approximation by step constant processes has to be applied to (ν,α) in place of ν.
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5.4. Random coefficients with delay

One can also assume that the coefficients b, σ and f are random, satisfying the usual predictabil-
ity condition, whenever the conditions (2.2)–(2.3) are uniform in ω. Again, the arguments of Sec-
tion 3 and Section 4.3 do not change. However, the proof of Proposition 4.1 can not be adapted
unless the dependence holds with a fixed delay: there exists ι > 0 such that, for all t ≤ T , bt ,
σt , ft , δt depend on ω only through (ωs)s≤t−ι. With this condition, Steps 1 and 2 remain correct
for simple processes associated to a time grid {ti , i ≤ n} such that max{ti+1 − ti , i ≤ n − 1} ≤ ι.
As in the optimal control case, Step 3 also requires some continuity of the coefficient in ω, for
example, uniform continuity for the usual sup-norm topology.

Appendix: Auxiliary results

We collect here some standard results that have been used all over this paper.
In this section, we denote by Db the set of measurable maps ψ : � × [0, T ] × R×Rd �→ R

such that (ψt (y, z))t≤T is progressively measurable for all (y, z) ∈R×Rd �→ R and∣∣ψ(y, z) − ψ(0)
∣∣ ≤ Lψ

(|y| + |z|) for all (y, z) ∈R×Rd, dt ⊗ dP-a.e.

for some constant Lψ > 0. Given (ϑ,G) ∈ D2 and τ ∈ T such that τ ≤ ϑ , we set Eψ
τ,ϑ (G) := Uτ

where (U,V ) ∈ S2 × H2 is the solution of

Ut∨τ = G +
∫ ϑ

t∨τ

ψs(Us,Vs) ds −
∫ ϑ

t∨τ

Vs dWs, t ∈ [0, T ]. (A.1)

Lemma A.1. Fix ψ ∈Db and (ϑ,G) ∈ D2. Then, for all τ ∈ T such that τ ≤ ϑ :

(a) We have

Eψ
τ,ϑ (G) = Eτ

[
Hτ

ϑ G +
∫ ϑ

τ

Hτ
s ψs(0) ds

]
,

where Hτ solves

Hτ = 1 +
∫ ·

τ

κY
t Hτ

t dt +
∫ ·

τ

κZ
t Hτ

t dWt

for some predictable processes κY and κZ that are bounded by a constant which only
depends on Lψ .

In particular, if there exists a constant c > 0 such that E[|G|2] ≤ c and |ψ(0)| ≤ c

dt ⊗ dP, then

∣∣Eψ
τ,ϑ (G) −Eτ [G]∣∣ ≤ CEτ [ϑ − τ ] 1

2 ,

for some C > 0 which depends only on c and Lψ .
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(b) If (U,V ) ∈ S2 × H2 satisfies

Ut∨τ ≤ G +
∫ ϑ

t∨τ

ψs(Us,Vs) ds −
∫ ϑ

t∨τ

Vs dWs, t ∈ [0, T ],

then

Uτ ≤ Eτ

[
Hτ

ϑ G +
∫ ϑ

τ

Hτ
s ψs(0) ds

]
,

where Hτ is defined as in (a). In particular Uϑ− ≤ G.

Proof. This follows from a standard linearization argument, see, for example, [10], Proof of
Theorem 1.6. �

Lemma A.2. Fix ψ1,ψ2 ∈Db and (ϑ,G1), (ϑ,G2) ∈ D2.

(a) Assume that there exists a square integrable process κ such that∣∣ψ1 − ψ2
∣∣(θ) ≤ κ dt ⊗ dP

for all θ ∈ R×Rd . Then, for all τ ∈ T such that τ ≤ ϑ ,

∣∣Eψ1

τ,ϑ (G1) − Eψ2

τ,ϑ (G2)
∣∣ ≤ CEτ

[
|G1 − G2|2 +

∫ T

τ

|κs |2 ds

] 1
2

,

where C > 0 is a constant which depends only on Lψ1 and Lψ2 .

(b) Assume that G1 ≤ G2 and ψ1(θ) ≤ ψ2(θ) dt ⊗ dP for all θ ∈ R×Rd . Then, Eψ1

τ,ϑ (G1) ≤
Eψ2

τ,ϑ (G2) for all τ ∈ T such that τ ≤ ϑ .

Proof. The first assertion follows from [10], Theorem 1.5. The second one is [10], Theo-
rem 1.6. �

Lemma A.3. Let (Gε)ε>0 be a family of random variable, uniformly bounded in L1, and let
G ∈ L1 be such that lim infε→0 Gε ≥ G. Let (τε)ε>0 be a sequence of stopping times such that
limε→0 τε = τ ∈ T . Then, there exists a sequence (εn)n≥1 ⊂ (0,1) such that

lim inf
n→∞ Eτεn

[Gεn ] ≥ Eτ [G] and lim
n→∞ εn = 0.

Proof. We write

Eτε [Gε] = Eτε [G] +Eτε [Gε − G] ≥ Eτε [G] −Eτε

[
(Gε − G)−

]
.

The first term on the right-hand side converges a.s. to Eτ [G] by the continuity of the martin-
gales in a Brownian filtration. The second term converges in L1 to 0, and therefore a.s. along a
subsequence. �
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Lemma A.4. Fix ψ ∈ Db , G ∈ L2(FT ). Set tni := iT /n for i ≤ n, n ≥ 1, and define recursively
for i = n − 1, . . . ,0

Un
tni

= Etni

[
Un

tni+1
+

∫ tni+1

tni

ψs

(
Un

tni
, V n

tni

)
ds

]
, V n

tni
= (

tni+1 − tni
)−1

Etni

[
Un

tni+1
(Wtni+1

− Wtni
)
]

in which Un
T := G. Then, Un

0 → Eψ

0,T [G] as n → ∞.

Proof. It suffices to repeat the argument of [3], Proof of Theorem 3.1, and observe that their
estimate contained in [3], Lemma 3.2, is not needed if we are not interested by the speed of
convergence. Indeed, one can simply use the fact that, if (U,V ) denotes the solution of (A.1)
with τ = 0, then

max
1≤i≤n

E

[
sup

tni−1≤t≤tni

|Ut − Utni−1
|2

]
+

n∑
i=1

E

[∫ tni

tni−1

∣∣Vt − V̄ n
tni−1

∣∣2
dt

]
→ 0,

in which

V̄ n
tni−1

:= (
tni − tni−1

)−1
Etni−1

[∫ tni

tni−1

Vt dt

]
.

The convergence of the left-hand side term is standard, it follows from the continuity of the path
of U which belongs to S2. The convergence of the second term is also clear since V̄ n provides
the best approximation of V in L2(dt ⊗ dP) by a step constant process on {tni , i ≤ n}. �
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