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Instead of defining goodness of fit (GOF) tests in terms of their test statistics, we present an alternative
method by introducing the concept of local levels, which indicate high or low local sensitivity of a test.
Local levels can act as a starting point for the construction of new GOF tests. We study the behavior of
local levels when applied to some well-known GOF tests such as Kolmogorov–Smirnov (KS) tests, higher
criticism (HC) tests and tests based on phi-divergences. The main focus is on a rigorous characterization of
the asymptotic behavior of local levels of the original HC tests which leads to several further asymptotic
results for local levels of other GOF tests including GOF tests with equal local levels. While local levels
of KS tests, which are related to the central range, are asymptotically strictly larger than zero, all local
levels of HC tests converge to zero as the sample size increases. Consequently, there exists no asymptotic
level α GOF test such that all local levels are asymptotically bounded away from zero. Finally, by means of
numerical computations we compare classical KS and HC tests to a GOF test with equal local levels.

Keywords: higher criticism statistic; Kolmogorov–Smirnov test; local levels; minimum p-value test;
Normal and Poisson approximation; order statistics

1. Introduction

Let X1, . . . ,Xn be real-valued independently identically distributed (i.i.d.) random variables with
continuous cumulative distribution function (c.d.f.) F . We are interested in testing the null hy-
pothesis

H
≤
0 : F(x) ≤ F0(x) or H=

0 : F(x) = F0(x) for all x ∈R, (1.1)

for a prespecified continuous c.d.f. F0. Since F0(Xi), i = 1, . . . , n, are i.i.d. uniformly distributed
on [0,1] if F = F0, we restrict our attention to the case where

F0(x) = x for all x ∈ [0,1].
Consequently, we assume that Xi , i = 1, . . . , n, take values in [0,1]. We focus on the following
class of goodness of fit (GOF) tests in terms of order statistics X1:n, . . . ,Xn:n related to the
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underlying sample X1, . . . ,Xn. For testing H
≤
0 we consider a one-sided test ϕ : [0,1] → {0,1}

based on critical values 0 ≤ c1,n < · · · < cn,n < 1 such that

ϕ = 1 iff Xi:n ≤ ci,n for at least one i = 1, . . . , n. (1.2)

A two-sided test ϕ̃ : [0,1] → {0,1} for testing H=
0 is defined by

ϕ̃ = 1 iff Xi:n ≤ ci,n or Xi:n ≥ c̃i,n for at least one i = 1, . . . , n, (1.3)

where 0 ≤ c1,n < · · · < cn,n < 1 and 0 < c̃1,n < · · · < c̃n,n ≤ 1 are the corresponding critical
values fulfilling ci,n < c̃i,n, i = 1, . . . , n. Thereby, H

≤
0 is rejected if ϕ = 1, while H=

0 is rejected
if ϕ̃ = 1. The global level of the test ϕ and/or ϕ̃ is given by E0(ϕ) ≡ P(ϕ = 1|H=

0 ) and/or
E0(ϕ̃) ≡ P(ϕ̃ = 1|H=

0 ), respectively.
We restrict attention to non-parametric tests only. Among the most famous non-parametric

GOF tests we find the Kolmogorov–Smirnov (KS), Anderson–Darling (AD), Cramér–von Mises
and Berk–Jones (BJ) tests, where KS and BJ tests and the supremum form of AD tests can be
rewritten in the form (1.2) and/or (1.3). In addition, recently proposed GOF tests based on the
so-called phi-divergences introduced in [19] are non-parametric tests and can also be represented
in the desired form.

In Section 1.1, we briefly discuss the union-intersection principle in relation to GOF tests
and local levels. Section 1.2 is concerned with the behavior of local levels of the Kolmogorov–
Smirnov test. Some further brief remarks concerning GOF tests in terms of local levels are given
in Section 1.3. In Section 1.4, we discuss the idea of GOF tests with equal local levels, related
ideas and relations to recent work. In Section 1.5, we switch to higher criticism (HC) tests and
some further tests based on phi-divergences and provide some figures which roughly illustrate the
behavior of the local levels of these tests. An outline of the remaining part of the paper the focus
of which is on the asymptotics of local levels of the original HC statistic is given in Section 1.6.

1.1. The union-intersection principle and local levels

In multiple hypotheses testing local levels appear in a natural way, especially in the case of
multiple test procedures based on the union-intersection principle. Such tests accept the global
null hypothesis, that is, the intersection of a suitable set of elementary hypotheses Hi , if and only
if all elementary hypotheses are accepted. Roughly speaking, a local level αi for Hi denotes the
probability to reject Hi if it is true. Local levels tell us which amount of the overall level α is
attributed to each Hi . Often multiple test procedures based on the union-intersection principle
have equal local levels. Prominent examples are the classical Bonferroni test, Tukey’s multiple
range test for pairwise comparisons, Dunnett’s test for multiple comparisons with a control or
Scheffe’s multiple contrast test. A further general example is the minimum p-value test which
corresponds to the minimum level attained test studied in [3]. The weighted Bonferroni test may
serve as an example with different local levels.

GOF tests of the form (1.2) and (1.3) are related to the union-intersection principle in the fol-
lowing way. Let U1, . . . ,Un be i.i.d. uniformly distributed random variables and U1:n, . . . ,Un:n
be the corresponding order statistics. For each i = 1, . . . , n consider null hypotheses H

≤
i and H=

i
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on the distribution of a single order statistic Xi:n such that H
≤
i is true if P(Xi:n ≤ x) ≤ P(Ui:n ≤

x) for x ∈ [0,1], that is, if Xi:n is stochastically larger than or equal to Ui:n and H=
i is true if

Xi:n is equal to Ui:n in distribution. Define tests for H
≤
i by

ϕi = 1 iff Xi:n < ci,n

and tests for H=
i by

ϕ̃i = 1 iff Xi:n ≤ ci,n or Xi:n ≥ c̃i,n.

Then H
≤
0 ⊆ ⋂n

i=1 H
≤
i , H=

0 ⊆ ⋂n
i=1 H=

i , {ϕ = 1} = ⋃n
i=1{ϕi = 1} and {ϕ̃ = 1} = ⋃n

i=1{ϕ̃i = 1}
so that the GOF tests ϕ and ϕ̃ can be seen as union intersection tests. We define local levels of a
GOF test by

αi,n = P
(
ϕi = 1|H=

0

) = P(Ui:n ≤ ci,n) (1.4)

in the one-sided case and

α=
i,n = P

(
ϕ̃i = 1|H=

0

) = P(Ui:n ≤ ci,n) + P(Ui:n ≥ c̃i,n) (1.5)

in the two-sided case. Noting that Ui:n is beta-distributed with parameters i and n − i + 1 and
denoting the related c.d.f. by Fi,n−i+1, we get P(Ui:n ≤ x) = Fi,n−i+1(x).

Local levels can be viewed as an interesting characteristic of a GOF test and may be interpreted
as weights for testing the family of null hypotheses H

≤
i or H=

i , i = 1, . . . , n. The larger a local
level αi,n or α=

i,n, the higher the chance to reject the null hypothesis corresponding to the ith
smallest order statistic Xi:n at least under the null hypothesis. In other words, local levels can be
regarded as a tool to signify areas of high/low sensitivity of a test. For example, if deviations from
H

≤
0 and/or H=

0 are expected in the tails, one would prefer a GOF test with larger local levels for
indices i close to 1 and/or close to n. However, we have to take into account that order statistics
are dependent, see, for example, [7] and [31]. This may influence the probability to reject null
hypotheses corresponding to a set of ith order statistics with indices i in several ranges.

1.2. Local levels of the Kolmogorov–Smirnov test

One of the most widely-used GOF tests, which can be written in terms of (1.2) and/or (1.3), is
the well-known Kolmogorov–Smirnov (KS) test. We consider a one-sided asymptotic level α KS
test, which rejects H

≤
0 if the KS test statistic

KS+ = max
1≤i≤n

√
n(i/n − Xi:n)

is larger than the asymptotic critical value cα = √− log(α)/2 with α ∈ (0,1). It holds
limn→∞ P(KS+ > cα|H=

0 ) = α, cf., for example, [31], page 11. Even for n ≥ 40, the probability
P(KS+ > cα|H=

0 ) is approximately α. The one-sided KS test can be represented in the form (1.2)
with critical values cKS

i,n = max(0, i/n − cα/
√

n), i = 1, . . . , n. In accordance with (1.4), the cor-

responding local levels are given by αKS
i,n = Fi,n−i+1(c

KS
i,n ), i = 1, . . . , n. Note that αKS

i,n = 0 for
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Figure 1. Local levels αKS
i,n

as a function of i/n for one-sided KS tests with α = 0.05 and n = 100,

500,1000 together with the corresponding asymptotic local levels (from top to bottom in i/n = 0.8).

i ≤ cα

√
n. For a finite n, the remaining αKS

i,n can be calculated numerically. Moreover, using the
normal approximation, we get for i ≡ in satisfying in/n → ζ ∈ (0,1) that

lim
n→∞αKS

in,n = 1 − �
(√− log(α)/

(
2ζ(1 − ζ )

))
,

where �(·) is the standard normal cumulative distribution function. The largest asymptotic local
level is attained at ζ = 1/2 and equals 1−�(

√−2 logα). Figure 1 shows asymptotic and exactly
calculated local levels αKS

i,n as a function of i/n for various n-values. For in/n in a central range
of [0,1], the limiting local levels are bounded away from zero, whereas for in/n → ζ ∈ {0,1} we
get limn→∞ αKS

in,n = 0. This coincides with the well-known fact that KS tests have higher power
for alternatives that differ from the null distribution in the central range and low power against
alternative distributions which mainly deviate from the null in the tails. Alternatives of this kind,
however, are common in many applications, for example, in genome-wide association studies, in
which we face a very large number of hypotheses to test with only a small number of them being
non-null. For more practical applications see, for example, [6,15] and [16].

Various modifications of the KS test have been proposed in the past. For example, Révész
[30] constructed a test based on a statistic which combines the advantages of the classical and
normalized KS statistics with regard to their sensitivity ranges. Mason and Schuenemeyer [26]
introduced a modified KS test by combining the classical KS with Rényi-type statistics and
investigated the finite sample and asymptotic distribution of this modification. Test statistics that
are determined by order statistics, in particular tail order statistics, are studied by Lockhart in
[24] with respect to asymptotic relative efficiency against a certain class of alternatives. Bahadur
efficiencies for a lot of non-parametric GOF tests are extensively studied by Nikitin in [28]. More
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recently, Jager and Wellner [19] proposed GOF tests based on phi-divergences. Their supremum-
and integral-type statistics cover various forms of Anderson–Darling and Berk–Jones statistics.

1.3. GOF tests in terms of local levels

For many (non-parametric) GOF tests, there is a class of alternatives against which this test
is the most powerful. Hence, if we have some information about the range, where the alterna-
tive distribution mainly deviates from the null distribution, it seems worthwhile to apply such
an appropriately tailored GOF test. However, from the viewpoint of test statistics it is difficult
to determine whether the corresponding GOF test is sensitive for a predefined range of devia-
tions. Fortunately, the construction of tailored GOF tests is much easier by means of local levels.
Thereby, the aim is to construct a GOF test with larger local levels in the crucial area. For exam-
ple, assuming sparse signals, a GOF test with larger local levels for indices close to 1 and smaller
local levels for the remaining indices seems to be a reasonable choice.

In general, for a given suitable set of local levels αi,n, i = 1, . . . , n, we are able to con-
struct a corresponding GOF test of the form (1.2) and/or (1.3). In the one-sided case the re-
lated critical values are given by ci,n = F−1

i,n−i+1(αi,n), i = 1, . . . , n, where F−1
i,n−i+1 denotes

the inverse function of the c.d.f. Fi,n−i+1. For a two-sided GOF test ϕ̃ we have to decide
how to split α=

i,n into two non-negative terms α
(1)
i,n and α

(2)
i,n such that α

(1)
i,n + α

(2)
i,n = α=

i,n and

P(Ui:n ≤ ci,n) = α
(1)
i,n , P(Ui:n ≥ c̃i,n) = α

(2)
i,n . One possibility may be α

(1)
i,n = α

(2)
i,n = α=

i,n/2, which

leads to ci,n = F−1
i,n−i+1(α

=
i,n/2) and c̃i,n = F−1

i,n−i+1(1 − α=
i,n/2). The latter can be calculated at

least numerically.

1.4. GOF tests with equal local levels

If we do not have any idea on alternatives, it seems natural to choose a GOF test with equal local
levels, that is,

α1,n = · · · = αn,n = αloc
n and/or α=

1,n = · · · = α=
n,n = αloc

n

for some suitable αloc
n ∈ (0,1). The idea behind this proposal is similar to the idea behind the

KS test, where the distance between the empirical c.d.f. F̂n(x) and the underlying c.d.f. F0(x),
that is, F̂n(x) − F0(x) for the one-sided test case and |F̂n(x) − F0(x)| for the two-sided case, is
compared to the same critical value for each x. That is, the KS test can be seen as a GOF test with
equal distances for all feasible x-values. Considering other measures of the distance between the
theoretical and the corresponding empirical distributions, one may construct various GOF tests
with some quantities being equal. For example, a family of GOF tests introduced in [19] can
be seen as tests with equal phi-divergences. A prominent example here is the Berk–Jones test
which corresponds to equal Kullback-Leibler divergences. Altogether, the idea of considering
equal quantities such as equal distances, critical values, test statistics and also local levels, is a
natural approach when constructing GOF tests.
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GOF tests with local levels equal to some αloc
n ∈ (0,1) are given as follows. The one-sided ver-

sion of the test ϕ(αloc
n ) (say) is defined by (1.2) with ci,n = F−1

i,n−i+1(α
loc
n ), i = 1, . . . , n. The two-

sided test ϕ̃(αloc
n ) is given by (1.3) with ci,n = F−1

i,n−i+1(α
loc
n /2) and c̃i,n = 1 − F−1

i,n−i+1(α
loc
n /2),

i = 1, . . . , n. In order to get a level α test we have to choose αloc
n such that E0(ϕ(αloc

n )) = α and/or
E0(ϕ̃(αloc

n )) = α. Unfortunately, it seems there does not exist any analytically manageable for-
mula for αloc

n as a function of n and α so that αloc
n has to be calculated numerically. Nevertheless,

we are able to provide some bounds for αloc
n . For example, the Bonferroni inequality implies

α/n < αloc
n < α, n ∈ N.

Moreover, it can easily be seen that αloc
n lies between the smallest and largest local levels for

any (exact) level α GOF test of type (1.2) and (1.3), respectively. Thus, knowledge of local
levels corresponding to suitable GOF tests leads at least to upper and lower bounds for αloc

n . For
example, by means of the asymptotic KS local levels, we get for the one-sided case

0 < αloc
n ≤ �

(√−2 log(α)
) + o(1), n ∈N,

which is, unfortunately, a very wide range. Thus, we have to study local levels related to other
level α GOF tests.

Once we have αloc
n , one may redefine the corresponding GOF tests with equal local levels as

minimum p-value (minP) tests based on the one-sided p-values pi,n = Fi,n(Xi:n), i = 1, . . . , n.
Setting M+

n = min1≤i≤n pi,n and Mn = min1≤i≤n{pi,n,1 − pi,n}, we get ϕ(αloc
n ) = 1 iff M+

n ≤
αloc

n and ϕ̃(αloc
n ) = 1 iff Mn ≤ αloc

n /2.
The minP statistics M+

n and Mn were already introduced by Berk and Jones in 1979 (cf. [4])
and they referred to these statistics as minimum level attained statistics. Implicitly, Berk and
Jones were the first proposing the construction of equal local level GOF tests (even though they
did not use the term local levels). Among others, they extensively studied M+

n and Mn with
respect to optimality and Bahadur efficiency, see also [3]. A further representation of GOF tests
with equal local levels was provided in the unpublished manuscript [5] in 2006. Moreover, such
tests were recently provided by several authors. At the 7th International Conference on Multiple
Comparison Procedures (MCP) 2011 we introduced the concept of local levels and proposed
GOF tests with equal local levels as an improvement of the higher criticism (HC) tests. At the
MCP 2013 we presented asymptotic as well as finite properties of GOF tests with equal local
levels, cf. [14]. In contrast to the formulation via local levels, the GOF test in [5] is formulated
in terms of bounding functions. This representation of the test is elaborated on in [1]. What is
more, the same test is provided in [25] in the HC framework. Finally, the test is also considered
in the preprints [20], [21] and [27].

1.5. Higher criticism and phi-divergence

In connection with high dimensional data and associated multiple testing issues, the so-called
higher criticism (HC) tests generated considerable interest during the last decade, cf. for example,
[8–10] and [16]. For example, Donoho and Jin proposed the use of HC tests when testing the
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global null hypothesis in high-dimensional models with sparse signals against some specific
alternatives. Studying the HC test statistic they showed in [8] that, asymptotically, HC related
tests are successful throughout the same region of amplitude sparsity where the corresponding
oracle likelihood ratio test would succeed. This means that a further specification of an alternative
is not necessary. Note that HC tests can also be seen as GOF tests of the type (1.2) and/or (1.3).
What is more, it appears that studying local levels corresponding to HC tests is essential in order
to construct new GOF tests, which have a high power against alternative distributions that mainly
deviate from the null distribution in the considered range.

Alternatively, instead of HC tests one may consider other GOF tests which are based on the
phi-divergences introduced in [19]. Thereby, the family of these tests is parametrized by s ∈
[−1,2] so that the HC test corresponds to s = 2, the Berk–Jones test to s = 1, the reversed
Berk–Jones test to s = 0 and the studentized version of the HC test to s = −1. As suggested
by a referee, we compare local levels for some selected s-values. Figure 2 shows two-sided
local levels of the exact level α tests based on the phi-divergences for α = 0.05, n = 1000 and
s = 2,1.5,1,0.5,0,−0.5,−1. What these local levels have in common is that they are large in
the tails and small and approximately equal in the central range. However, the range of the local
level values is largest for the HC test and smallest for the Berk–Jones test. Therefore, it looks
that the Berk–Jones test leads to the narrowest bounds for αloc

n while the HC test to the widest
ones. Due to the fact that under the null hypothesis statistics based on phi-divergences have the
same asymptotic behavior in a specific range relevant for the asymptotics, any of these tests will
lead to the same asymptotic results for most local levels. Therefore, it does not matter which
test we consider. Since the tests with s = 2 (HC tests) and s = −1 (studentized HC tests) have
the simplest representation of the form (1.2) and/or (1.3), we prefer to restrict attention to the
original HC test, which has received a lot of attention during the past decade.

Figure 2. Two-sided local levels of level α GOF tests based on phi-divergences with s = 2,1.5,1,0.5,0,

−0.5,−1 (from left to right) together with αloc
n = 0.001075 related to the two-sided level α test ϕ̃(αloc

n ) for
α = 0.05 and n = 1000.



1338 V. Gontscharuk, S. Landwehr and H. Finner

1.6. Outlook of the remaining part of the paper

In this paper, we calculate local levels of asymptotic level α HC tests and show that these local
levels converge to zero as n → ∞, which differs drastically from the KS case, cf. Figure 1. This
implies for local levels of any asymptotic level α GOF test of the form (1.2) and/or (1.3) that

lim
n→∞ min

1≤i≤n
αi,n = 0,

that is, there are no level α tests for which the local levels are all asymptotically bounded away
from zero. Finally, by a careful study of asymptotic HC local levels we get for ϕ ≡ ϕ(αloc

n ) and/or
ϕ ≡ ϕ̃(αloc

n ) that

lim
n→∞E0(ϕ) = α iff lim

n→∞αloc
n · 2 log(log(n)) log(n)

− log(1 − α)
= 1.

This result seems to be the most precise result concerning the asymptotics of the one- and two-
sided GOF tests with equal local levels. In general, there are only few other works, in which
asymptotics is investigated, cf. [20,21] and [27]. Due to a long revision process, some highlights
of this paper have been already summarized in [14], where the focus lies on the sensitivity range
of the HC tests statistic, extremely slow HC asymptotics, relations to the Ornstein–Uhlenbeck
process, and power comparisons of the test with equal local levels and the original HC test. The
remaining part of the paper is organized as follows. In Section 2, we study local levels of the HC
test. We further derive the critical value and rejection curves corresponding to asymptotic level α

HC tests and provide a result on the asymptotic behavior of the HC critical values. As zones of
normal and Poisson convergence play a crucial role in the derivation of asymptotic results, we
provide some basic results on these approximations for HC local levels in Section 3. Section 4
contains explicit asymptotic expressions of the local levels αi,n of the one-sided HC test. They
are derived for various growth rates of i utilizing the approximation results from Section 3. In
Section 5, we investigate the asymptotic monotonicity of the local levels of one-sided HC tests
and provide some results concerning the asymptotic behavior of local levels related to general
level α GOF tests and tests with equal local levels. In Section 6, we compare classical KS and
HC tests to GOF tests with equal local levels by means of numerical computations. Future inves-
tigations and open questions are discussed in Section 7. All proofs mostly of technical nature are
deferred to Appendices A, B and C.

2. Higher criticism tests and local levels

First, we introduce the version of the higher criticism GOF tests that we are dealing with. Let

Gi,n(u) = √
n

i/n − u√
u(1 − u)

and G̃i,n(u) = √
n
u − (i − 1)/n√

u(1 − u)
, u ∈ (0,1).

A class of one-sided and two-sided HC test statistics can be expressed as

HC+ = max
1≤i≤n

Gi,n(Xi:n) and HC= = max
1≤i≤n

{
Gi,n(Xi:n), G̃i,n(Xi:n)

}
,
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respectively. A one-sided HC test based on a critical value d rejects H
≤
0 iff HC+ > d and a two-

sided HC test with the same critical value rejects H=
0 iff HC= > d . In accordance with (1.4),

local levels of a one-sided HC test based on a critical value d > 0 are given by

αi,n = P
(
Gi,n(Ui:n) > d

)
, i = 1, . . . , n. (2.1)

Analogously, local levels of the corresponding two-sided HC test are given by

α=
i,n = P

({
Gi,n(Ui:n) > d

} ∪ {
G̃i,n(Ui:n) > d

})
, i = 1, . . . , n. (2.2)

Setting un = log(log(n)) and

dn(t) = (
t + 2un + (

log(un) − log(π)
)
/2

)
/
√

2un, (2.3)

the asymptotic distributions of HC+ and HC= are given by

lim
n→∞P

(
HC+ ≤ dn(t)|H=

0

) = exp
(− exp(−t)

)
(2.4)

and

lim
n→∞P

(
HC= ≤ dn(t)|H=

0

) = exp
(−2 exp(−t)

)
, (2.5)

respectively, cf. [11] and [18]. For t = tα or t = t=α with

tα = − log
(− log(1 − α)

)
and t=α = − log

(− log(1 − α)/2
)

we get a one-sided or two-sided asymptotic level α HC test, respectively. Note that{
Gi,n(Ui:n) > d

} = {
Ui:n < hi,n(d)

}
and

{
G̃i,n(Ui:n) > d

} = {
Ui:n > h̃i,n(d)

}
,

where

hi,n(d) = d2 + 2i − d
√

d2 + 4i − 4i2/n

2(d2 + n)
(2.6)

and

h̃i,n(d) = d2 + 2(i − 1) + d
√

d2 + 4(i − 1) − 4(i − 1)2/n

2(d2 + n)
. (2.7)

Thereby, h̃i,n(d) > hi,n(d), i = 1, . . . , n, for d large enough. Below, let d ≥ 1, which guarantees
h̃i,n(d) > hi,n(d) for all i = 1, . . . , n and {Ui:n < hi,n(d)} ∩ {Ui:n > h̃i,n(d)} = ∅. Thus, local
levels can be expressed as

αi,n = P
(
Ui:n < hi,n

(
dn(t)

))
, i = 1, . . . , n,

for one-sided HC tests and

α=
i,n = P

(
Ui:n < hi,n

(
dn(t)

)) + P
(
Ui:n > h̃i,n

(
dn(t)

))
, i = 1, . . . , n,
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for two-sided HC tests. Assuming that Zn (Z̃n) is a binomially distributed random variable
with parameters n and hi,n(dn(t)) (h̃i,n(dn(t))), that is, Zn ∼ B(n,hi,n(dn(t))), and Z̃n ∼
B(n, h̃i,n(dn(t))), we get

αi,n = P(Zn ≥ i) and α=
i,n = P(Zn ≥ i) + P(Z̃n < i). (2.8)

Since h̃i,n(d) = 1 − hn,n−i+1(d) for i = 1, . . . , n and n ∈ N, we obtain

α=
i,n = αi,n + αn−i+1,n, i = 1, . . . , n.

Hence, two-sided local levels are symmetric in the sense α=
i,n = α=

n−i+1,n for i = 1, . . . , n, and
can be easily calculated if one-sided local levels are known.

Note that the considered HC tests (and a lot of multiple tests) can be alternatively defined in
terms of a rejection curve, which is a general inverse of the corresponding critical value curve,
cf. [13]. Critical value curves related to (2.6) and (2.7) are given by

ρn(x, d) = d2 + 2xn − d
√

d2 + 4xn − 4x2n

2(d2 + n)
(2.9)

and

ρ̃n(x, d) = d2 + 2(xn − 1) + d
√

d2 + 4(xn − 1) − 4(xn − 1)2/n

2(d2 + n)
, (2.10)

respectively, that is, hi,n(d) = ρn(i/n, d) and h̃i,n(d) = ρ̃n(i/n, d). The corresponding rejection
curves are given by

rn(x, d) = x + d

√
x(1 − x)

n
and r̃n(x, d) = x + 1

n
− d

√
x(1 − x)

n
,

respectively. It holds ρn(x, d) = 1 − ρ̃n(1 − x + 1/n, d) and rn(x, d) = 1 − r̃n(1 − x, d) + 1/n.
Figure 3 shows critical value curves ρn, ρ̃n and the corresponding rejection curves rn, r̃n for
n = 1000 and d = 10. For increasing n and/or decreasing d , the corresponding curves tend to the
diagonal.

The following lemma shows the asymptotic behavior of the critical values hin,n ≡ hin,n(dn(t))

for different ranks i.

Lemma 2.1. Let n ∈N and in ∈ N with in ≤ n. It holds:

(i) if in = o(un) as n → ∞, then

nhin,n

in
= in

2un

(
1 − log(un) + 2t − log(π)

2un

− in

un

)
(2.11)

+ O

(
in log(un)

2 + i3
n

u3
n

)
;
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Figure 3. For n = 1000 and d = 10 the critical value curve ρn(x, d) and the corresponding rejection curve
rn(x, d) are given by the lowest and highest curves in x = 0.8, respectively; ρ̃n(x, d) and r̃n(x, d) are given
by the highest and lowest curves in x = 0.2, respectively. The straight line is the diagonal.

(ii) if cn ≡ un/in → c for some c > 0 we obtain

nhin,n

in
= δ(cn)

(
1 − log(un) + 2t − log(π)

2in
√

c2
n + 2cn

)
+ O

(
log(un)

2

u2
n

)
, (2.12)

where δ(cn) = 1 + cn − √
c2
n + 2cn ∈ (0,1);

(iii) if in(1 − in/n)/un → ∞, that is, in/un → ∞ and (n − in)/un → ∞, then

nhin,n

in
= 1 −

√
2un

in

(
1 − in

n

)
− log(un) + 2t − log(π)

2
√

2inun

√
1 − in

n
(2.13)

+
(

1 − 2in

n

)
un

in
+ o

(
un

in
+ 1√

inun

√
1 − in

n

)
;

(iv) if cn ≡ (n − in)/un → c for some c ≥ 0 we obtain

nhin,n

in
= 1 − un

in
(1 + √

1 + 2cn) − log(un) + 2t − log(π)

2in
(2.14)

×
(

1 + 1 + cn√
1 + 2cn

)
+ O

(
log(un)

2

inun

)
.
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In the next sections, we provide asymptotics of local levels αi,n of HC tests for all growth rates
of i. To be precise, we are considering so-called extreme ranks i, where i or n − i are fixed, and
increasing ranks i = in → ∞ as n → ∞. We split the latter into central ranks, which are such
that in/n → ζ ∈ (0,1) as n → ∞, and intermediate ranks, which are such that in/n → ζ ∈ {0,1}.
For these concepts see, for example, [23].

3. Normal and Poisson approximations for local levels

Due to representation (2.8), we can approximate local levels of a HC test by applying Poisson
and/or normal approximations for the binomial distribution. Below, let Yn ∼P(nhin,n) and Ỹn ∼
P(n(1 − hin,n)), where P(λ) denotes the Poisson distribution with parameter λ > 0. Thereby,
hin,n = hin,n(dn(t)) is given in Lemma 2.1.

The following theorem shows that for large values of n local levels αin,n of HC tests based on
critical values hin,n, can be calculated by means of Poisson approximations for a wide range of
ranks in.

Theorem 3.1 (Poisson approximation of local levels). Let in ∈ N, in ≤ n, be a sequence of
non-decreasing numbers. For in such that in = o(un) we obtain

αin,n = P(Yn = in)
[
1 + o(1)

]
, (3.1)

for in such that un/in → c for some c > 0

αin,n = 1/
(√

c2 + 2c − c
)
P(Yn = in)

[
1 + o(1)

]
(3.2)

and for in such that in/un → ∞ and in = o(
√

n/un)

αin,n = √
in/(2un)P(Yn = in)

[
1 + o(1)

]
. (3.3)

Analogously, for in with n − in = o(un), we get

αin,n = P(Ỹn = n − in)
[
1 + o(1)

]
, (3.4)

for in fulfilling (n − in)/un → c for some c > 0 we obtain

αin,n = (
1 + c/(1 + √

1 + 2c)
)
P(Ỹn = n − in)

[
1 + o(1)

]
(3.5)

and if (n − in)/un → ∞ and n − in = o(
√

n/un), then

αin,n = √
(n − in)/(2un)P(Ỹn = n − in)

[
1 + o(1)

]
. (3.6)

The following theorem shows that local levels of HC tests corresponding to central ranks and
to intermediate ranks close to central ones can be calculated in terms of the density of the standard
normal distribution φ.
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Theorem 3.2 (Normal approximation of local levels). Let in ∈ N be such that in(1 −
in/n)/u3

n → ∞, σn = √
nhin,n(1 − hin,n) with hin,n given in (2.13) and xn = (in − nhin,n)/σn.

Then xn → ∞, x3
n/σn → 0 as n → ∞ and

αin,n = φ(xn)/xn

[
1 + O

(
x3
n/σn + 1/x2

n

)]
. (3.7)

Proof. We can derive (3.7) by following the proof in [32], where he considered the case
pn ≡ p. Since αin,n = P(Zn ≥ in), where Zn ∼ B(n,hin,n), it suffices to show x3

n/σn → 0
if in(1 − in/n)/u3

n → ∞. This can easily be proved by applying (2.13), which implies σn =√
in(1 − in/n)[1 + o(1)] and xn = √

2un[1 + o(1)]. �

Remark 3.1. Note that for in satisfying in(1 − in/n)/u3
n → ∞ as n → ∞ and in(1 − in/n) =

o(
√

n/un), Theorems 3.1 and 3.2 provide two alternative approximations for local levels of HC
tests.

4. Asymptotic expressions of local levels of HC tests

By means of Theorem 3.1 and the Stirling formula

i! = √
2πii+1/2 exp(−i)

[
1 + O(1/i)

]
(4.1)

as well as Theorem 3.2, we are now able to calculate local levels αi,n for various ranks i. Local
levels αi,n of HC tests with critical values hi,n(dn(t)) are given in Lemmas 4.1–4.5. For the sake
of simplicity, we introduce the following notation for the different growth rates of in. We define
the following sets of ranks in ≤ n, n ∈N,

Ac =̂ in/un → c as n → ∞,

B0 =̂ in/un → ∞ and in/u
3
n → 0 as n → ∞,

Bc =̂ in/u
3
n → c > 0 as n → ∞,

C =̂ in(1 − in/n)/u3
n → ∞ as n → ∞, (4.2)

B̄c =̂ (n − in)/u
3
n → c > 0 as n → ∞,

B̄0 =̂ (n − in)/un → ∞ and (n − in)/u
3
n → 0 as n → ∞,

Āc =̂ (n − in)/un → c as n → ∞.

For example, for a sequence of ranks in, n ∈ N, corresponding to Ac with c = 0 we write in ∈ A0.
Figure 4 summarizes which ranks in correspond to each lemma. In the next two lemmas, we state
local levels of HC tests for extreme ranks and intermediate ranks close to extreme ones, that is,
in ∈ A0 ∪ Ā0.
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Figure 4. Diagram of the sets of ranks as defined in (4.2) and the corresponding lemmas in Section 4 which
provide expressions for the local levels αin,n for the different growth rates of in.

Lemma 4.1. For in ∈ A0, we obtain

αin,n = 1√
2πin

(
γ

in

un

)in

exp(−invn)

[
1 + O

(
1

in

)
+ o(1)

]
, (4.3)

where γ = exp(1)/2 and

vn = (
log(un) + 2t − log(π) + 3in

)
/(2un)

[
1 + o(1)

]
. (4.4)

Alternatively, for in ∈ A0 such that in = o(
√

un) we get

αin,n =
(

i2
n

2un

)in 1

in!
[
1 + o(1)

]
. (4.5)

Lemma 4.2. For in ∈ Ā0 we obtain

αin,n =
√

π exp(−2t)√
2(n − in)

1

un log(n)2

(
un

γ (n − in)

)n−in

exp
(
(n − in)wn

)
(4.6)

× [
1 + O

(
1/(n − in)

) + o(1)
]
,

where γ = exp(1)/2 and

wn = (
log(un) + 2t − log(π) + 3(n − in)

)
/(2un)

[
1 + o(1)

]
. (4.7)

Moreover, for in ∈ Ā0 such that n − in = o(
√

un) we get

αin,n = π exp(−2t)

un log(n)2

(
2un

exp(2)

)n−in 1

(n − in)!
[
1 + o(1)

]
. (4.8)

The following lemma contains an expression for local levels of HC tests for central ranks and
intermediates close to central ranks, that is, in ∈ C.

Lemma 4.3. Let in ∈ C. Then

αin,n = exp(−t)

2un log(n)

[
1 + O

(
log(un)

un

+ u
3/2
n√

in(1 − in/n)

)]
, (4.9)
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that is, local levels αin,n with aforementioned in-values are asymptotically equal. Moreover, for a
sequence kn ∈ {1, . . . , n} such that kn(1−kn/n)/u3

n → ∞ as n → ∞ and all in = kn, . . . , n−kn,
local levels αin,n converge uniformly.

The next lemma provides local levels of HC tests corresponding to intermediate ranks in ∈
B0 ∪ Bc, B̄0 ∪ B̄c.

Lemma 4.4. Let in ∈ B0 ∪ Bc or in ∈ B̄0 ∪ B̄c . Then

αin,n = exp(−t)

2un log(n)
exp

(√
2ζn

3

(
un + o(un)

))
, (4.10)

where ζn = √
un/in if in ∈ B0 ∪ Bc and ζn = −√

un/(n − in) if in ∈ B̄0 ∪ B̄c.

Finally, we give representations for local levels of HC tests for the remaining intermediate
ranks in ∈ Ac and in ∈ Āc.

Lemma 4.5. Let in ∈ Ac for a c > 0 and set cn ≡ un/in. Then

αin,n =
√

cn

(1 − δ(cn))
√

2πun

[
δ(cn) exp(1)

exp(δ(cn))

]un/cn

(4.11)

× [√
π exp(−t)/

√
un

](1−δ(cn))/
√

c2
n+2cn

[
1 + o(1)

]
with δ(c) = 1 + c − √

c2 + 2c. If in ∈ Āc, c > 0, and cn ≡ (n − in)/un, then

αin,n =
(

1 + cn

1 + √
1 + 2cn

)
1√

2πcnun

(
1 + cn + √

1 + 2cn

cn

)cnun

× (√
π exp(−t)/

√
un

)1+1/
√

1+2cn log(n)−(1+√
1+2cn) (4.12)

× [
1 + o(1)

]
.

5. Monotonicity of HC local levels and related results

First, we briefly illustrate the behavior of one-sided local levels of HC tests for finite n-values.
Figure 5 provides exactly calculated local levels αi,n = P(Ui:n < hi,n(d)) of HC tests ϕHC (say)
with critical values hi,n(d), i = 1, . . . , n, for n = 1000 and d = 1.5,2.5,3.5,4.736. For d =
1.5,2.5,3.5,4.736 we get E0(ϕ

HC) = 0.803,0.322,0.111,0.05, respectively. That is, the HC
test based on d = 4.736 is a level α GOF test for α = 0.05. Figure 5 illustrates that local levels
are decreasing for larger d-values. Noting that our asymptotic investigations are given for d ≡ dn

tending to infinity, it seems that asymptotic results related to HC tests should be in accordance
with the corresponding finite results for larger values of d .
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Figure 5. The left graph: exact local levels curves calculated for one-sided HC-tests with n = 1000 and
d = 1.5,2.5,3.5,4.736 (from top to bottom). The right graph is zoomed.

Indeed, the following theorem shows that local levels αi,n of a HC test with critical val-
ues hi,n(dn(t)), i = 1, . . . , n, are asymptotically (n → ∞) non-increasing in i in the follow-
ing sense. For non-decreasing sequences i

(1)
n and i

(2)
n fulfilling i

(1)
n < i

(2)
n for all n ∈ N, we get

limn→∞ α
i
(2)
n ,n

/α
i
(1)
n ,n

≤ 1. More precisely, α
i
(2)
n ,n

/α
i
(1)
n ,n

depends on the difference i
(2)
n − i

(1)
n

and/or the ratio i
(1)
n /i

(2)
n . Typically, the larger the difference i

(2)
n − i

(1)
n , the smaller the ratio

α
i
(2)
n ,n

/α
i
(1)
n ,n

.

Theorem 5.1 (Asymptotic monotonicity of HC local levels). Let i
(1)
n and i

(2)
n be non-

decreasing sequences that satisfy i
(1)
n < i

(2)
n for all n ∈ N. Let αi,n denote the ith local level

corresponding to a HC test with critical values hi,n(dn(t)), i = 1, . . . , n. Then

lim
n→∞α

i
(2)
n ,n

/α
i
(1)
n ,n

= 1 (5.1)

if the tuple (i
(1)
n , i

(2)
n ) satisfies:

(i) (i
(1)
n , i

(2)
n ) ∈ C × C,

(ii) (i
(1)
n , i

(2)
n ) ∈ Bc × Bc ,

(iii) (i
(1)
n , i

(2)
n ) ∈ B̄c × B̄c ,

(iv) (i
(1)
n , i

(2)
n ) ∈ B0 × B0 and i

(1)
n /i

(2)
n = 1 + o(

√
i
(1)
n /u3

n),

(v) (i
(1)
n , i

(2)
n ) ∈ B̄0 × B̄0 and (n − i

(2)
n )/(n − i

(1)
n ) = 1 + o(

√
(n − i

(2)
n )/u3

n).

Moreover, we have

0 < lim
n→∞α

i
(2)
n ,n

/α
i
(1)
n ,n

< 1 (5.2)
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if one of the following conditions is satisfied:

(vi) (i
(1)
n , i

(2)
n ) ∈ Bc1 × (Bc2 ∪ C ∪ B̄c) with c1 < c2,

(vii) (i
(1)
n , i

(2)
n ) ∈ (C ∪ B̄c1) × B̄c2 with c2 < c1,

(vi) (i
(1)
n , i

(2)
n ) ∈ Bc1 × (Bc2 ∪ C ∪ B̄c) with c1 < c2,

(vii) (i
(1)
n , i

(2)
n ) ∈ (C ∪ B̄c1) × B̄c2 with c2 < c1,

(viii) (i
(1)
n , i

(2)
n ) ∈ B0 × B0 and i

(1)
n /i

(2)
n = 1 − cn

√
i
(1)
n /u3

n with cn → c > 0,

(ix) (i
(1)
n , i

(2)
n ) ∈ B̄0 × B̄0 and (n − i

(2)
n )/(n − i

(1)
n ) = 1 − cn

√
n − i

(2)
n /u3

n, with cn → c > 0,

(x) (i
(1)
n , i

(2)
n ) ∈ Ac × Ac with c > 0 and i

(2)
n − i

(1)
n ≡ m for an m ∈ N,

(xi) (i
(1)
n , i

(2)
n ) ∈ Āc × Āc with c > 0 and i

(2)
n − i

(1)
n ≡ m for an m ∈ N.

Finally,

lim
n→∞α

i
(2)
n ,n

/α
i
(1)
n ,n

= 0 (5.3)

for all other tuples with i
(1)
n < i

(2)
n when this limit exists.

Figure 6 illustrates the regions of validity of (i)−(xi) in Theorem 5.1. Since α1,n → 0 as
n → ∞, cf. (4.5), and local levels αi,n, i = 2, . . . , n are smaller than α1,n for n large enough, cf.
Theorem 5.1, the following result is obvious.

Theorem 5.2. For the local levels of the HC test it holds that

lim
n→∞ max

1≤i≤n
αi,n = 0.

Theorem 5.2 implies that local levels corresponding to a HC test show a completely different
limiting behavior than the local levels corresponding to KS tests, cf. Figure 1. Moreover, the
statement of Theorem 5.2 on the local levels of HC tests vanishing asymptotically allows us to

Figure 6. Diagram of the sets of ranks as defined in (4.2) and the corresponding regions covered by Theo-
rem 5.1.
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deduce a result on the more general case of asymptotic level α GOF tests with prespecified local
levels αi,n, i = 1, . . . , n.

Remark 5.1. For a level α GOF test with αi,n satisfying (1.4) or (1.5), we get

lim
n→∞ min

1≤i≤n
αi,n = 0 or lim

n→∞ min
1≤i≤n

α=
i,n = 0,

respectively. Thus, it is impossible to construct an asymptotic level α GOF test with local levels
which are all asymptotically bounded away from zero.

Lemmas 4.1–4.5 and Theorem 5.1 lead to the next lemma that provides the asymptotics of
level α GOF tests with equal local levels.

Lemma 5.1. For one- or two-sided GOF tests with local levels equal to αloc
n , n ∈ N, we obtain

an asymptotic level α test iff

lim
n→∞αloc

n · 2 log(log(n)) log(n)

− log(1 − α)
= 1.

The rather technical and straightforward proof will be presented in a forthcoming paper.

Remark 5.2. Lemma 5.1 is up to now the most precise result concerning the asymptotics of the
test with equal local levels. For example, adapting Theorem 4.1 in the third version of [27] leads
to an asymptotic interval for αloc

n . Moreover, results in [20] and [21] can be seen as a very rough
approximation for the rate given in Lemma 5.1.

6. Comparison of GOF tests in the finite case

In this section, we compare one-sided versions of KS tests ϕKS, HC tests ϕHC and GOF tests
ϕ(αloc

n ) with equal local levels for a finite sample size n. In order to compare these tests in a
fair way, all considered tests will be of exact level α. That is, for fixed n ∈ N and α ∈ (0,1) we
determine parameters of the considered tests, that is, find c for the KS test with critical values
i/n − c/

√
n, i = 1, . . . , n, a parameter d for the HC test based on hi,n(d), i = 1, . . . , n, given

in (2.6) and αloc
n for the GOF test with equal local levels, so that

E0
(
ϕKS) = E0

(
ϕHC) = E0

(
ϕ
(
αloc

n

)) = α.

Clearly, such parameters can be found numerically, for example, via some search algorithm,
whenever the probability to reject the true null hypothesis can be numerically calculated.
Thereby, the computation of the joint c.d.f. of the order statistics U1:n, . . . ,Un:n, that is, P(Ui:n ≤
ci, i = 1, . . . , n), plays the key role in the one-sided case, while the computation of P(ci < Ui:n <

c̃i, i = 1, . . . , n) is crucial in the two-sided case. Probabilities of the first type can be calculated
by Noe’s, Bolshev’s, Steck’s or Khmaladze’s recursions, P(ci < Ui:n < c̃i, i = 1, . . . , n) can be
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Figure 7. Local levels curves corresponding to HC tests ϕHC based on hi,n(d) with d = 4.725,

4.734,4.736 (curves from top to bottom) for n = 100,500,1000, respectively, leading to E0(ϕHC) = 0.05,
and the corresponding local levels αloc

n = 0.00246,0.00145,0.00122 (straight lines from top to bottom)
that imply E0(ϕ(αloc

n )) = 0.05 for GOF tests with local levels equal αloc
n . The right graph is zoomed.

calculated by Noe’s, Ruben’s or Khmaladze’s recursions, for example, cf. [22] and pages 357–
370 in [31]. If the sample size n is so large that exact computations are no longer possible, that is,
n  104, the parameters d and αloc

n can approximately be calculated via numerical simulations.
For example, for α = 0.05 and n = 100, 500, 1000 we get by numerical calculations

E0(ϕ
HC) = α for d = 4.725, 4.734, 4.736, respectively, E0(ϕ

KS) = α for c = 1.22387 and
E0(ϕ(αloc

n )) = α for αloc
n = 0.00246,0.00145,0.00122, respectively. The asymptotic local level

in Lemma 5.1 is equal to 0.00365,0.00226, 0.00192 for α = 0.05 and n = 100,500,1000, re-
spectively, so that the asymptotic local level seems to be larger than the finite counterpart αloc

n .
Figure 7 shows local levels curves of the level α HC tests together with equal local levels αloc

n

(straight lines) for n = 100,500,1000. Local levels of the corresponding KS tests are given in
Figure 1. Note that almost all local levels of the HC tests are smaller than the corresponding
αloc

n and only the first ones are larger, for example, for n = 100,500,1000 we get αi,n ≥ αloc
n if

i ≤ 3,4,5, respectively, and αi,n < αloc
n else. This indicates higher sensitivity of the GOF test

with equal local levels in a specific intermediate range than by the HC tests.
Now we consider the aforementioned level α GOF tests in terms of their rejection curves.

Figure 8 shows rejection curves for n = 100. Here, critical values induced by ϕ(αloc
n ) are larger

than the corresponding HC critical values for i ≥ 4 and only slightly smaller than the KS critical
values in a specific central range, while the latter are considerably smaller in tails. Moreover,
although all considered tests are level α tests, almost all of the HC critical values are considerably
smaller than the corresponding critical values of the GOF test ϕ(αloc

n ) with equal local levels. It
indicates that the smallest critical values have the biggest impact on E0(ϕ) for any GOF test ϕ
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Figure 8. Rejection curves of the level α GOF tests ϕHC, ϕ(αloc
n ) and ϕKS together with the diagonal

(from top to bottom in 0.5, respectively) for n = 100, α = 0.05, ϕHC based on hi,n(d), i = 1, . . . , n, with
d = 4.725, ϕ(αloc

n ) based on αloc
n = 0.00246 and ϕKS based on i/n−c/

√
n, i = 1, . . . , n with c = 1.22387.

The right graph is zoomed.

while other critical values influence E0(ϕ) only slightly. Further exact calculation showed that a
similar picture is observed for various n-values.

Altogether, it seems that the level α GOF tests with equal local levels offer a good alternative to
the classical GOF tests especially if it is not clear what kind of deviation from the null hypothesis
may occur. For power comparisons between GOF tests with equal local levels and other GOF
tests see [1,14] and [21].

7. Concluding remarks

In this paper, we introduced the concept of local levels αi,n for a certain class of GOF tests. These
quantities serve as an indicator of regions of high/low local sensitivity of a test and thus provide
a method to compare tests with respect to areas of sensitivity. For example, the classical KS test
has higher power for alternatives that differ from the null distribution in the central range. This
coincides with the fact that local levels of the KS tests are considerably larger in the central range
and are even equal to zero for extremes and smaller intermediates. In high-dimensional data with
only sparse signals that are to be detected, it would be advisable to perform a GOF test (or related
multiple tests) which is sensitive in the tails. In such situations performing HC tests, which are
asymptotically sensitive only in the moderate tails, would be an advantage. Due to the fact that
the number of local levels corresponding to central ranks is considerably higher than the number
of local levels corresponding to intermediate ranks, one may guess that the HC local levels αin,n

for central ranks are much smaller than their counterparts in the moderate tails. Therefore, it is a
rather striking result that central local levels are indeed asymptotically as large as the ones in the
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moderate tails. The reason for this may be hidden in the complex dependence structure of order
statistics, so that a further investigation in this direction is needed. In general, it seems to be an
interesting issue to analyze local levels of other multiple testing related GOF tests, thus gaining
deeper insight into their nature. Figure 2 suggests that the Berk–Jones test comes close to the
equal local levels test. It might be of interest to compare the asymptotic local levels of these tests
as outlined in this paper for the HC test. An additional difficulty is that explicit critical values
needed in (1.2) and (1.3) are hard to obtain for the Berk–Jones test as well as for most of the
other phi-divergence tests.

Furthermore, the concept of local levels may be used to construct new tailored GOF tests if one
has an idea in which region, that is, for which kinds of alternatives, a test needs to be sensitive.
Given a set of suitable local levels we illustrated a way how to construct the corresponding GOF
test. Moreover, by means of results related to the HC tests we showed that there is no level α

GOF tests with local levels asymptotically uniformly bounded away from zero. In view of the
fact that most of the HC local levels are asymptotically equal and that the first HC local levels are
much too large so that the remaining ones are too small in the finite case, the GOF test with equal
local levels αi,n ≡ αloc

n seems to be a good alternative for the classical HC test, which is known
for its extremely slow asymptotics. Although we do not have any explicit formula for the local
level αloc

n as a function of the sample size n and predefined level α, we provide an asymptotic
rate for αloc

n leading to the asymptotic level α test.

Appendix A: Proofs of Sections 2 and 3

Proof of Lemma 2.1. Setting An = 4(d2
n + n)i2

n/(n(d2
n + 2in)

2), a critical value hin,n ≡
hin,n(dn(t)) can be represented as

hin,n = (
d2
n + 2in

)
(1 − √

1 − An)/
(
2
(
d2
n + n

))
. (A.1)

(i) Let in be such that in = o(un). Since An = O(i2
n/u2

n), An → 0 as n → ∞. Applying the
Taylor series 1 − √

1 − x = x/2 + O(x2) for x ∈ (0,1), we get

hin,n = (
d2
n + 2in

)
/
(
2
(
d2
n + n

))[
2
(
d2
n + n

)
i2
n/n/

(
d2
n + 2in

)2 + O
(
i4
n/u4

n

)]
= i2

n/
(
n
(
d2
n + 2in

)) + O
(
i4
n/

(
nu3

n

))
and hence nunhin,n/i2

n = un/(d
2
n + 2in) + O(i2

n/u2
n). Noting that

d2
n = 2un + log(un) + 2t − log(π) + O

(
log(un)

2/un

)
(A.2)

and 1/(2 + x) = 1/2 − x/4 + O(x2) for x ∈ (0,1), we get

un

d2
n + 2in

= 1

2
− log(un) + 2t − log(π) + 2in

4un

+ O

(
log(un)

2 + i2
n

u2
n

)
and consequently (2.11) follows.
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(ii) Let cn ≡ un/in → c as n → ∞ for some fixed c > 0. Obviously, An = [(d2
n +

2in)/(2in)]−2(1 + O(un/n)). Since (1 + x)−2 = 1 − 2x + O(x2) for x ∈ (0,1), (A.2) leads to[
d2
n + 2in

2in

]−2

=
[
(1 + cn) + log(un) + 2t − log(π)

2in
+ O

(
log(un)

2

u2
n

)]−2

= 1

(1 + cn)2

[
1 − log(un) + 2t − log(π)

in(1 + cn)
+ O

(
log(un)

2

u2
n

)]
.

Since 1 − √
1 − a(1 − x) = 1 − √

1 − a − ax/(2
√

1 − a) + O(x2) for a > 0 and x ∈ (0,1), we
get

1 − √
1 − An = 1 −

√
c2
n + 2cn

1 + cn

− log(un) + 2t − log(π)

2in(1 + cn)2
√

c2
n + 2cn

+ O

(
log(un)

2

u2
n

)
.

Furthermore,

d2
n + 2in

2(d2
n + n)

= (
d2
n + 2in

)
/(2n)

[
1 + O

(
d2
n/n

)] = (in/n)
[
1 + d2

n/(2in) + O(un/n)
]

= (in/n)

[
1 + cn + log(un) + 2t − log(π)

2in
+ O

(
log(un)

2/u2
n

)]
.

Formula (A.1) immediately leads to

hin,n = in

(
1 + cn −

√
c2
n + 2cn

)/
n

×
[
1 + O

(
log(un)

2/u2
n

) − (
log(un) + 2t − log(π)

)/(
2in

√
c2
n + 2cn

)]
and hence, we get (2.12).

(iii), (iv) Now, let un = o(in). Due to 1/(1+x)2 = 1−2x +3x2 +O(x3) for x ∈ (0,1), we get

An = (
d2
n + n

)
/n

[(
d2
n + 2in

)
/(2in)

]−2 =
(

1 + d2
n

n

)[
1 − d2

n

in
+ 3d4

n

4i2
n

+ O

(
d6
n

i3
n

)]

= 1 − d2
n

in

(
1 − in

n

)
+ d4

n

i2
n

(
3

4
− in

n

)
+ O

(
d6
n

i3
n

)
.

Hence, for in such that un = o(in(1 − in/n)) we arrive at

An = 1 − 2un(1 − in/n)/in − (
log(un) + 2t − log(π)

)
(1 − in/n)/in

+ O
(
u2

n/i2
n + log(un)

2(1 − in/n)/(inun)
)

and for in such that n − in = O(un) we obtain

An = 1 − u2
n

(
1 + 2(n − in)/un

)
/i2

n − un

(
log(un) + 2t − log(π)

)
/i2

n

× (
1 + (n − in)/un

) + O
(
log(un)

2/i2
n

)
.



Goodness of fit tests in terms of local levels 1353

Then

1 − √
1 − An = 1 −

√
2un

in

(
1 − in

n

)
− log(un) + 2t − log(π)

2
√

2inun

√
1 − in/n

+ O

(
u

3/2
n

i
3/2
n

√
1 − in/n

+ log(un)
2

√
inu

3/2
n

√
1 − in/n

)
for in such that un = o(in(1 − in/n)) and

1 − √
1 − An = 1 − un

in

√
1 + 2

n − in

un

− log(un) + 2t − log(π)

2in

× 1 + (n − in)/un√
1 + 2(n − in)/un

+ O

(
log(un)

2

inun

)
if n − in = O(un). Since

d2
n + 2in

2(d2
n + n)

=
(

in

n
+ d2

n

2n

)[
1 − d2

n

n
+ O

(
u2

n

n2

)]
= in

n

[
1 +

(
1 − 2in

n

)
2un + log(un) + 2t − log(π)

2in

+ O
(
u2

n/(nin) + (1 − 2in/n) log(un)
2/(unin)

)]
for all in ≤ n, we get for in such that un = o(in(1 − in/n))

hin,n = in

n

[
1 −

√
2un

in

(
1 − in

n

)
− log(un) + 2t − log(π)

2
√

2inun

√
1 − in

n

+ (1 − 2in/n)
(
2un + log(un) + 2t − log(π)

)
/(2in) (A.3)

+ O

(
u

3/2
n

i
3/2
n

√
1 − in/n

+ log(un)
2

√
inu

3/2
n

√
1 − in

n

)]
and

hin,n = in

n

[
1 − un

in

(
1 + √

1 + 2(n − in)/un

) − log(un) + 2t − log(π)

2in

×
(

1 + 1 + (n − in)/un√
1 + 2(n − in)/un

)
+ O

(
log(un)

2

inun

)]
for in with n − in = O(un). �
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Proof of Theorem 3.1. We only prove (3.1)–(3.3). The cases (3.4)–(3.6) can be handled analo-
gously. For n ≥ 4, hin,n ≤ 1/4 and |in − nhin,n| ≤ √

n/2 we obtain

P(Xn = in)

P(Yn = in)
= 1 − (in − nhin,n)

2

2n(1 − hin,n)
+ in

2n
+ O

(
(in − nhin,n)

3

n2
+ i2

n

n2

)
,

cf. formula (17) in [29]. Therefore, (2.11)–(2.13) in Lemma 2.1 lead to

αin,n = P(Yn ≥ in)
[
1 + o(1)

]
at least for in = o(

√
n/un). (A.4)

Moreover, for in = o(
√

n/un) we get

αin,n = P(Yn = in)

(
1 +

∞∑
k=1

k∏
j=1

nhin,n

in + j

)[
1 + o(1)

]
,

cf. [31], page 485. Since nhin,n/in < 1 for larger n-values, we get

1 < 1 +
∞∑

k=1

k∏
j=1

nhin,n

in + j
≤

∞∑
k=0

(
nhin,n

in + 1

)k

= in + 1

in − nhin,n + 1

for in = o(
√

n/un). Hence, limn→∞(in + 1)/(in − nhin,n + 1) = 1 in case in = o(un), that is,
(3.1) follows. For in such that un/in → c > 0, n → ∞,

lim
n→∞

in + 1

in − nhin,n + 1
= 1√

c2 + 2c − c

and for a fixed k ∈N

lim
n→∞

(
k∏

j=1

nhin,n

in + j

)/(
nhin,n

in + 1

)k

= 1,

which implies (3.2). Furthermore, from known asymptotic decompositions for the incomplete
gamma function (e.g., cf. [12,17] and [2], page 140) and from the fact that for in = o(

√
n/un)

such that un = o(in) it holds in → ∞, nhin,n → ∞ and (in − nhin,n)/
√

nhin,n → ∞, n → ∞,
we obtain

P(Yn ≥ in) = in/(in − nhin,n − 1)P(Yn = in)
[
1 + o(1)

]
.

This together with (2.13) and (A.4) imply (3.3). �

Appendix B: Proofs of Section 4

Proof of Lemma 4.1. With respect to Theorem 3.1, it suffices to calculate P(Yn = in), where
Yn ∼P(nhin,n). Obviously,

P(Yn = in) = (
iinn /in!

)[
(nhin,n/in) exp(−nhin,n/in)

]in .
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Since (2.11) implies nhin,n/in = o(1) and x exp(−x) = x − x2 + O(x3) for x ∈ (0,1), we obtain

P(Yn = in) = (
iinn /in!

)[
(nhin,n/in) − (nhin,n/in)

2 + O(nhin,n/in)
3]in .

Setting representation (2.11) for a critical value hin,n in the equation above, we get

P(Yn = in) = (Bn/in!)
(
i2
n/2un

)in , (B.1)

where

Bn =
(

1 − log(un) + 2t − log(π) + 3in

2un

+ O

(
log(un)

2 + i2
n

u2
n

))in

= exp
(
in log

(
1 − (

log(un) + 2t − log(π) + 3in
)
/(2un) + O

((
log(un)

2 + i2
n

)
/u2

n

)))
.

Since in/un → 0 as n → ∞ and log(1 − x) = −x + O(x2) as x → 0, it follows

Bn = exp

(
−in

[
log(un) + 2t − log(π) + 3in

2un

+ O

(
log(un)

2 + i2
n

u2
n

)])
. (B.2)

Particularly, for in = o(
√

un) we get Bn = 1 + o(1), so that (B.1) immediately leads to (4.5).
Finally, the Stirling formula (4.1), (B.1) and (B.2) imply (4.3). �

Proof of Lemma 4.2. Due to Theorem 3.1, we have to calculate

P(Ỹn = n − in) = (n − nhin,n)
n−in exp(−n + nhin,n)/(n − in)!.

Setting cn ≡ (n − in)/un, we get cn → 0 as n → ∞. In order to simplify (2.14), we obtain
1 + √

1 + 2cn = 2 + cn − c2
n/2 + O(c3

n) and 1 + (1 + cn)/
√

1 + 2cn = 2 + O(c2
n). Then

nhin,n = in − un

(
2 + cn − c2

n/2
) − log(un) − 2t + log(π)

+ O
(
unc

3
n + log(un)c

2
n + log(un)

2/un

)
,

exp(−n + nhin,n) = π exp(−2t)

un log(n)2 exp(2(n − in))

[
1 + O

(
log(un)

2/un

)]
(B.3)

× exp
(
(n − in)

[
cn/2 + O

(
c2
n + cn log(un)/un

)])
and

(n − nhin,n)
n−in

= (2un)
n−in exp

(
(n − in) log

(
(n − nhin,n)/(2un)

))
= (2un)

n−in exp

(
(n − in) log

(
1 + cn + log(un) + 2t − log(π)

2un

+ O
(
c2
n + log(un)

2/u2
n

)))
.
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Taylor’s series log(1 + x) = x + O(x2) for x ∈ (0,1) leads to

(n − nhin,n)
n−in

= (2un)
n−in exp

(
(n − in)

(
cn + log(un) + 2t − log(π)

2un

+ O
(
c2
n + log(un)

2/u2
n

)))
.

Combining (3.4), (B.3) and the last expression we get (4.8) in case n− in = o(
√

un) and applying
Stirling’s formula (4.1) to (n − in)! we get (4.6). �

Proof of Lemma 4.3. Formula (3.7) in Theorem 3.2 implies

αin,n = exp
(−x2

n/2
)
/(

√
2πxn)

[
1 + O

(
1/x2

n + x3
n/

√
nhin,n(1 − hin,n)

)]
. (B.4)

First, we have to calculate xn. From (2.13), we get

nhin,n(1 − hin,n) = in(1 − in/n)
[
1 + O

(√
un/

(
in(1 − in/n)

))]
and hence √

nhin,n(1 − hin,n) = √
in(1 − in/n)

[
1 + O

(√
un/

(
in(1 − in/n)

))]
.

Regarding to (A.3), we arrive at

in − nhin,n = √
2in(1 − in/n)un

[
1 + (

log(un) + 2t − log(π)
)
/(4un) + O

(
εn(in)

)]
,

where εn(in) = √
un/(in(1 − in)) + log(un)

2/u2
n. Hence,

xn =
√

2in(1 − in/n)un[1 + (log(un) + 2t − log(π))/(4un) + O(εn(in))]√
in(1 − in/n)[1 + O(

√
un/(in(1 − in/n)))]

= √
2un

[
1 + (

log(un) + 2t − log(π)
)
/(4un) + O

(
εn(in)

)]
and

x2
n = 2un + log(un) + 2t − log(π) + O

(
unεn(in)

)
.

This, the fact that 1/xn = 1/
√

2un[1 + O(log(un)/un)] and (B.4) lead to

αin,n = 1/(2
√

πun) exp
(−un − log(un)/2 − t + log(π)/2

)
× [

1 + O
(
log(un)/un + u

3/2
n /

√
in(1 − in/n)

)]
and hence (4.9) follows. �

Proof of Lemma 4.4. We restrict our attention to in ∈ B0 ∪ Bc . The other case can be proved
similarly. Combining (3.3) and (4.1), we get

αin,n = Cn/(2
√

πun)
[
1 + o(1)

]
(B.5)
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with Cn ≡ [(nhin,n/in) exp(1 − nhin,n/in)]in . It holds

Cn = exp
(
in log

(
(nhin,n/in) exp(1 − nhin,n/in)

))
.

From (2.13), we get 1 − nhin,n/in = O(
√

un/in). Applying log((1 − x) exp(x)) = −x2/2 −
x3/3 + O(x4) for x ∈ (0,1), we arrive at

Cn = exp
(
in

{−(1 − nhin,n/in)
2/2 − (1 − nhin,n/in)

3/3 + O
(
(un/in)

2)}).
Lemma 2.1 leads to

1 − nhin,n/in = √
2un/in + log(un) + 2t − log(π)

2
√

2inun

− un

in
+ o(un/in),

(1 − nhin,n/in)
2 = 2un

in
+ log(un) + 2t − log(π)

in
− 2

√
2u

3/2
n

i
3/2
n

+ o
(
u

3/2
n /i

3/2
n

)
and

(1 − nhin,n/in)
3 = 2

√
2u

3/2
n /i

3/2
n + o

(
u

3/2
n /i

3/2
n

)
.

Then

Cn = exp

(
−un − log(un) + 2t − log(π)

2
+

√
2u

3/2
n

3
√

in
+ o

(
u

3/2
n√
in

))
= exp(−t)

√
π/

(
log(n)

√
un

)
exp

(√
2u

3/2
n /(3

√
in)

(
1 + o(1)

))
and hence (B.5) yields (4.10) for in fulfilling un = o(in) and in = O(u3

n). �

Proof of Lemma 4.5. Formulas (3.2) and (3.5) provide that in order to find αin,n we have to
calculate P(Yn = in) and P(Ỹn = n − in).

We start with the case cn ≡ un/in → c > 0. Noting that (1 − x)k = exp(−kx + O(kx2)) for
x ∈ (0,1) and k ∈ N, formula (2.12) implies(

nhin,n

in

)in

= (
δ(cn)

)in exp

(
− log(un) + 2t − log(π)

2
√

c2
n + 2cn

+ O

(
log(un)

2

un

))
.

Applying the Stirling formula (4.1) and (2.12), we arrive at

P(Yn = in) = (nhin,n/in)
in/

√
2πin exp(in − nhin,n)

= [
δ(cn) exp

(
1 − δ(cn)

)]in/√2πin
(√

π exp(−t)/
√

un

)(1−δ(cn))/
√

c2
n+2cn

× (
1 + O

(
log(un)

2/un

))
.

Therefore, (3.2) implies (4.11).
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Now let in be such that cn ≡ (n − in)/un → c > 0. Similarly as above, (2.14) implies(
n − nhin,n

n − in

)n−in

= [
(1 + cn + √

1 + 2cn)/cn

]n−in

× exp
(
cn/

√
1 + 2cn

(
log(un) + 2t − log(π)

)
/2 + O

(
log(un)

2/un

))
.

Then

P(Ỹn = n − in) =
[

n − nhin,n

n − in

]n−in/√
2π(n − in) exp(nhin,n − in)

= [
(1 + cn + √

1 + 2cn)/cn

]n−in/
√

2π(n − in)

× (√
π exp(−t)/

√
un

)1+1/
√

1+2cn log(n)−(1+√
1+2cn)

× (
1 + O

(
log(un)

2/un

))
and (3.5) lead to (4.12). �

Appendix C: Proofs of Section 5

Proof of Theorems 5.1. Formula (5.1) for the case (i) immediately follows from Lemma 4.3.

Here we prove (5.1) for (ii)–(v), (5.2) for (vi)–(ix), (5.3) for (i
(1)
n , i

(2)
n ) ∈ B0 × B0 such that

(iv), (viii) are not fulfilled and (5.3) for (i
(1)
n , i

(2)
n ) ∈ B̄0 × B̄0 such that (v), (ix) are not fulfilled.

Lemma C.2 shows (5.2) for (x), (xi), (5.3) for (i
(1)
n , i

(2)
n ) ∈ Ac × Ac , c > 0, such that (x) is not

fulfilled and (5.3) for (i
(1)
n , i

(2)
n ) ∈ Āc × Āc , c > 0 such that (xi) is not fulfilled. The remaining

cases for (5.3) are proved in Lemmas C.1, C.3, C.4, C.5 and C.6.
For (i

(1)
n , i

(2)
n ) ∈ (B0 ∪ Bc) × (B0 ∪ Bc) Lemma 4.4 yields

α
i
(2)
n ,n

/α
i
(1)
n ,n

= exp
(
−√

2u
3/2
n

/(
3
√

i
(1)
n

)(
1 −

√
i
(1)
n /i

(2)
n

)[
1 + o(1)

])
.

This implies (5.1) for (ii) and (5.2) for (i
(1)
n , i

(2)
n ) ∈ Bc1 × Bc2 with c1 < c2, that is, (5.2) for a

partial case of (vi). Moreover, Lemmas 4.3 and 4.4 immediately yield the remaining cases of (vi).

For i
(1)
n ∈ B0 define bn ≡ u

3/2
n /

√
i
(1)
n (1 −

√
i
(1)
n /i

(2)
n ). Clearly, we get (5.1) if bn → 0, (5.2) if

bn → c > 0 and (5.3) in case bn → ∞. Note that

i(1)
n /i(2)

n = 1 − bn

√
i
(1)
n /u

3/2
n

(
2 + bn

√
i
(1)
n /u

3/2
n

)
.

If bn → 0 as n → ∞, that is, i(1)
n /i

(2)
n = 1+o(

√
i
(1)
n /u

3/2
n ), then we get (5.1) for (iv). We get (5.2)

for (viii), when bn → b for some b > 0 and (5.3) in case bn → ∞.
Finally, (iii), (v), (vii) and (ix) can be proved in a similar way. �
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Lemma C.1. Let {i(1)
n }n∈N and {i(2)

n }n∈N be such that i
(1)
n < i

(2)
n , n ∈ N, and either (i

(1)
n , i

(2)
n ) ∈

A0 × A0 or (i
(1)
n , i

(2)
n ) ∈ Ā0 × Ā0. Then (5.3) is fulfilled.

Proof. First, let i
(j)
n ∈ A0, j = 1,2. If i

(2)
n ≡ i2 ∈ N for all n ∈ N and n is large enough, repre-

sentation (4.5) immediately yields αi2,n/αi1,n = O((2un)
i1−i2), and hence (5.3) follows. Further-

more, let i
(2)
n → ∞ as n → ∞. Since 1/

√
2πi and exp(−ivn) in representation (4.3) decrease as

i increases for a fixed larger n, in order to prove (5.3) it suffices to show that

Bn ≡ log
((

γ i(2)
n /un

)i
(2)
n /

(
γ i(1)

n /un

)i
(1)
n

)
converges to −∞ as n → ∞. Setting xn ≡ i

(2)
n − i

(1)
n , we obtain

Bn = i(1)
n

[(−xn/i(1)
n

)
log(un/γ ) + (

1 + xn/i(1)
n

)
log

(
i(2)
n

) − log
(
i(1)
n

)]
.

If dn ≡ xn/i
(1)
n → d for a d > 0 or d = ∞, we get Bn = −i

(1)
n dn log(un/γ )(1 + o(1)), that is,

Bn → −∞ as n → ∞. Hence, (5.3) is fulfilled.
For i

(j)
n , j = 1,2, such that xn/i

(1)
n = o(1) we get

Bn = −xn log(un/γ ) + xn log
(
i(2)
n

) + i(1)
n log

(
1 + xn/i(1)

n

)
.

Applying log(1 + x) = x + O(x2) for x ∈ (0,1) and the fact that i
(2)
n = o(un), we obtain Bn =

−xn log(un/γ )(1 + o(1)), and hence (5.3) follows.
Now, let i

(j)
n ∈ Ā0, j = 1,2. For i

(1)
n < i

(2)
n such that n − i

(1)
n is fixed, formula (4.8) in

Lemma 4.2 immediately leads to the assertion. For the case n − i
(1)
n → ∞ as n → ∞, due

to (4.6) it suffices to consider

Dn ≡ (
un/

(
γ (n − in)

))n−in/
√

n − in exp
(
(n − in)wn

)
.

Since

Dn = exp
(
(n − in)

[− log(n − in)/
(
2(n − in)

) + log
(
un/

(
γ (n − in)

)) + wn

])
,

log(un/(γ (n − in))) → ∞ as n → ∞, log(x)/x < 1 for x ≥ 1 and wn = o(1), we arrive at
Dn = exp((n − in) log(un/(γ (n − in)))[1 + o(1)]). Thus, it suffices to show that

log
((

un/
(
γ
(
n − i(2)

n

)))n−i
(2)
n /

(
un/

(
γ
(
n − i(1)

n

)))n−i
(1)
n

)
converges to −∞ for n → ∞. This can be proved similarly as before. �

Lemma C.2. Let {i(1)
n }n∈N and {i(2)

n }n∈N be such that i
(1)
n < i

(2)
n for n ∈ N. We suppose that

either limn→∞ un/i
(j)
n = cj , j = 1,2, or limn→∞(n − i

(j)
n ) = cj , j = 1,2, for arbitrary but

fixed cj > 0. Moreover, let mn ≡ i
(2)
n − i

(1)
n , n ∈ N. If mn = m for some fixed m ∈ N and all

n ∈N, (5.2) is fulfilled and if mn → ∞ as n → ∞, (5.3) is fulfilled.
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Proof. First, let cj,n ≡ un/i
(j)
n → cj > 0, j = 1,2. For in such that cn ≡ un/in → c > 0 for-

mula (4.11) in Lemma 4.5 implies

αin,n = exp
(
f1(cn)un + f2(cn) log(un) + f3(cn) + o(1)

)
,

where

f1(c) = (1/c) log
(
δ(c)/ exp

(
δ(c) − 1

))
, f2(c) = −1 + c/

(
2
√

c2 + 2c
)
,

f3(c) = log
(√

c/
((

1 − δ(c)
)√

2π
)) + (

1 − δ(c)
)
/
√

c2 + 2c log
(√

π exp(−t)
)
.

It follows

α
i
(2)
n ,n

/α
i
(1)
n ,n

= exp
((

f1(c2,n) − f1(c1,n)
)
un + (

f2(c2,n) − f2(c1,n)
)

log(un)

+ f3(c2,n) − f3(c1,n) + o(1)
)
.

Since f1(·) is strictly increasing, (5.3) is fulfilled in case c1 > c2. Now, let c1 = c2. Hence,

α
i
(2)
n ,n

α
i
(1)
n ,n

= exp
((

f1(c2,n) − f1(c1,n)
)
un + (

f2(c2,n) − f2(c1,n)
)

log(un) + o(1)
)
.

Setting xn ≡ i
(2)
n − i

(1)
n and noting that xn = o(un), we get

c1,n = c2,n/
(
1 − xn/i(2)

n

) = c2,n

[
1 + c2,nxn/un + O

(
x2
n/u2

n

)]
,

f1(c1,n) = f1(c2,n) + c2,n

[
c2,n/

√
c2

2,n + 2c2,n − 1 − f1(c2,n)
]
xn/un + O

(
x2
n/u2

n

)
and f2(c1,n) = f2(c2,n) + O(xn/un). Therefore,

α
i
(2)
n ,n

/α
i
(1)
n ,n

= exp
(
xnc2,n

[
1 + f1(c2,n) − c2,n

/√
c2

2,n + 2c2,n + o(1)
])

.

Since 1+f1(c)−c/
√

c2 + 2c < 0 for c ∈ (0,∞), we get (5.2) if xn = x for some x ∈ N and (5.3)
if xn → ∞ as n → ∞.

The case cj,n ≡ (n − i
(j)
n )/un → cj , j = 1,2, can be proved similarly. �

Lemma C.3. Let {i(1)
n }n∈N and {i(2)

n }n∈N be such that i
(1)
n = o(un) and cn ≡ un/i

(2)
n → c,

n → ∞, for some c > 0. Then (5.3) is fulfilled.

Proof. Formulas (4.3) and (4.11) yield

log

(α
i
(2)
n ,n

α
i
(1)
n ,n

)
= un

[
−

(
1

2
+ 1 − δ(cn)

2
√

c2
n + 2cn

)
log(un)

un

+ log(i
(1)
n )

2un

+ i
(1)
n

un

vn

+ 1

cn

log

(
δ(cn)

exp(δ(cn) − 1)

)
− i

(1)
n

un

log

(
γ

i
(1)
n

un

)
+ o(1)

]
.
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Since i
(1)
n /un = o(1) and limx→0 x log(x) = 0 and log(δ(c)/ exp(δ(c) − 1)) < 0 for all c ∈

(0,∞), we obtain log(α
i
(2)
n ,n

/α
i
(1)
n ,n

) → −∞ as n → ∞ and hence (5.3) follows. �

Lemma C.4. Let {i(1)
n }n∈N and {i(2)

n }n∈N be such that cn ≡ un/i
(1)
n → c, n → ∞, for some

c > 0, i
(2)
n = O(u3

n) and un = o(i
(2)
n ). Then (5.3) is fulfilled.

Proof. Formulas (4.10) and (4.11) imply

log(α
i
(2)
n ,n

/α
i
(1)
n ,n

) = −[
1 + (1/cn) log

(
δ(cn)/ exp

(
δ(cn) − 1

))]
un + o(un).

Since cn → c > 0 as n → ∞ and log(δ(c)/ exp(δ(c) − 1))/c > −1 for all c ∈ (0,∞), we imme-
diately obtain (5.3). �

Lemma C.5. Let {i(1)
n }n∈N and {i(2)

n }n∈N be such that n − i
(1)
n = O(u3

n), un = o(n − i
(1)
n ) and

cn ≡ (n − i
(2)
n )/un → c, n → ∞, for some c > 0. Then (5.3) is fulfilled.

Proof. Formulas (4.10) and (4.12) lead to

log

(α
i
(2)
n ,n

α
i
(1)
n ,n

)
= −

[√
1 + 2cn − cn log

(
1 + cn + √

1 + 2cn

cn

)]
un + o(un).

Noting that
√

1 + 2c − c log((1 + c + √
1 + 2c)/c) > 0 for all c ∈ (0,∞), we get (5.3). �

Lemma C.6. Let {i(1)
n }n∈N and {i(2)

n }n∈N satisfy cn ≡ (n− i
(1)
n )/un → c, n → ∞, for some c > 0

and n − i
(2)
n = o(un). Then (5.3) is fulfilled.

Proof. Formulas (4.6) and (4.12) lead to

log

(α
i
(2)
n ,n

α
i
(1)
n ,n

)
=

[
−1 + √

1 + 2cn − cn log

(
1 + cn + √

1 + 2cn

cn

)]
un + o(un).

Since −1 + √
1 + 2c − c log((1 + c + √

1 + 2c)/c) < 0 for all c ∈ (0,∞), (5.3) is fulfilled. �
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