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This work aims at estimating inverse autocovariance matrices of long memory processes admitting a linear
representation. A modified Cholesky decomposition is used in conjunction with an increasing order autore-
gressive model to achieve this goal. The spectral norm consistency of the proposed estimate is established.
We then extend this result to linear regression models with long-memory time series errors. In particular,
we show that when the objective is to consistently estimate the inverse autocovariance matrix of the er-
ror process, the same approach still works well if the estimated (by least squares) errors are used in place
of the unobservable ones. Applications of this result to estimating unknown parameters in the aforemen-
tioned regression model are also given. Finally, a simulation study is performed to illustrate our theoretical
findings.
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1. Introduction

Statistical inference for dependent data often involves consistent estimates of the inverse autoco-
variance matrix of a stationary time series. For example, by making use of a consistent estimate
of the inverse autocovariance matrix of a short-memory time series (in the sense that its autoco-
variance function is absolutely summable), Wu and Pourahmadi [19] constructed estimates of the
finite-past predictor coefficients of the time series and derived their error bounds. Moreover, in
regression models with short-memory errors, Cheng, Ing and Yu [6] proposed feasible general-
ized least squares estimates (FGLSE) of the regression coefficients using a consistent estimate of
the inverse autocovariance matrix of the error process. They then established an asymptotically
efficient model averaging result based on the FGLSEs.

Having observed a realization u1, . . . , un of a zero-mean stationary time series {ut }, a natu-
ral estimate of its autocovariance function γk = cov(u0, uk) is the sample autocovariance func-
tion γ̂k = n−1 ∑n−|k|

i=1 uiui+|k|, k = 0,±1, . . . ,±(n − 1). Moreover, it is known that the kn-
dimensional sample autocovariance matrix �̆kn = (γ̂i−j )1≤i,j≤kn and its inverse �̆−1

kn
are consis-

tent estimates of their population counterparts �kn = (γi−j )1≤i,j≤kn and �−1
kn

, provided kn � n

and
∑∞

k=1 |γk| < ∞. See, for example, Berk [1], Shibata [15], Ing and Wei [9] and Wu and
Pourahmadi [19]. However, when the objective is to estimate the n-dimensional autocovariance
matrix �n, Wu and Pourahmadi [19] showed that �̆n is no longer consistent in the short-memory
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case. In addition, Palma and Pourahmadi [14] pointed out that this dilemma carries over to the
long-memory case, assuming

∑∞
k=1 |γk| = ∞. To circumvent this difficulty, Wu and Pourahmadi

[19] proposed a banded covariance matrix estimate �̆n,l = (γ̂i−j 1|i−j |≤l )1≤i,j≤n of �n, where
l ≥ 0 is an integer and called the banding parameter. When {ut } is a short-memory time series
satisfying some mild conditions and l = ln grows to infinity with n at a suitable rate, they es-
tablished consistency of �̆n,l and �̆−1

n,l under spectral norm. The result of Wu and Pourahmadi
[19] was subsequently improved by Xiao and Wu [20] to a better convergence rate, and extended
by McMurry and Politis [13] to tapered covariance matrix estimates. Alternatively, Bickel and
Gel [2] considered a banded covariance matrix estimate �̆pn,l of �pn , with pn = o(n). Assuming
that {ut } is a stationary short-memory AR(∞) process, they obtained �̆pn,l’s consistency under
the Frobenius norm, provided l = ln tends to infinity sufficiently slowly.

Although the banded and tapered covariance matrix estimates work well for the short-memory
time series, they are not necessarily suitable for the long-memory case because the autocovari-
ance function of the latter is not absolutely summable. As a result, the banded and tapered matrix
estimates may incur large truncation errors, which prevent them from achieving consistency.
A major repercussion of this inconsistency property is that a consistent estimate of �−1

n can no
longer be obtained by inverting �̆n,l or its tapered version. On the other hand, since the spectral
densities of most long-memory time series encountered in common practice are bounded away
from zero, it follows from Proposition 4.5.3 of Brockwell and Davis [4] that

sup
k≥1

∥∥�−1
k

∥∥
2 < ∞, (1.1)

where for a k-dimensional matrix A, ‖A‖2 = sup{x∈Rk : x′x=1}(x′A′Ax)1/2 denotes its spectral

norm. Motivated by (1.1), this paper aims to propose a direct estimate of �−1
n and establish its

consistency in the spectral norm sense, which is particularly relevant under the long-memory
setup.

To fix ideas, assume

ut =
∞∑

j=0

ψjwt−j , (1.2)

where ψ0 = 1 and {wt } is a martingale difference sequence with E(wt) = 0 and E(w2
t ) = σ 2 for

all t , and

ψj = O
(
j−1+d

)
, (1.3)

with d satisfying 0 < d < 1/2. We shall also assume that {ut } admits an AR(∞) representation,

ut =
∞∑
i=1

aiut−i + wt, (1.4)

where

ai = O
(
i−1−d

)
. (1.5)
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In view of (1.3), the autocovariance function of {ut } obeys

γk =
∞∑

j=0

ψjψj+|k|σ 2 = O
(|k|−1+2d

)
, (1.6)

which may not be absolutely summable. A well-known model satisfying (1.2)–(1.5) is the
FARIMA(p, d, q) processes,

φ(B)(1 − B)dut = θ(B)wt , (1.7)

where B is the backshift operator, φ(z) and θ(z) are polynomials of orders p and q , respectively,
|φ(z)θ(z)| 	= 0 for |z| ≤ 1, and |φ(z)| and |θ(z)| have no common zeros. Note that when (1.7) is
assumed, the spectral density of {ut }, fu(λ), satisfies

inf
λ∈[−π,π]fu(λ) > 0, (1.8)

from which (1.1) follows.
Let

σ 2
k = E(ut − ak,1ut−1 − · · · − ak,kut−k)

2, (1.9)

where k ≥ 1 and

(ak,1, . . . , ak,k) = arg min
(α1,...,αk)∈Rk

E(ut − α1ut−1 − · · · − αkut−k)
2. (1.10)

To directly estimate �−1
n , we start by defining the modified Cholesky decomposition (see, e.g.,

Berk [1] and Wu and Pourahmadi [18]) of �n:

Tn�nT′
n = Dn,

where

Dn = diag
(
γ0, σ

2
1 , σ 2

2 , . . . , σ 2
n−1

)
,

and Tn = (tij )1≤i,j≤n is a lower triangular matrix satisfying

tij =
⎧⎨
⎩

0, if i < j ;

1, if i = j ;

−ai−1,i−j , if 2 ≤ i ≤ n,1 ≤ j ≤ i − 1.

Hence,

�−1
n = T′

nD−1
n Tn. (1.11)

Because there are too many parameters in Tn and Dn, we are led to consider a banded Cholesky
decomposition of �−1

n ,

�−1
n (k) = T′

n(k)D−1
n (k)Tn(k), (1.12)
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where 1 ≤ k � n is referred to as the banding parameter and allowed to grow to infinity with n,

Dn(k) = diag
(
γ0, σ

2
1 , . . . , σ 2

k , . . . , σ 2
k

)
,

and Tn(k) = (tij (k))1≤i,j≤n with

tij (k) =

⎧⎪⎪⎨
⎪⎪⎩

0, if i < j or {k + 1 < i ≤ n,1 ≤ j ≤ i − k − 1};
1, if i = j ;

−ai−1,i−j , if 2 ≤ i ≤ k,1 ≤ j ≤ i − 1;

−ak,i−j , if k + 1 ≤ i ≤ n, i − k ≤ j ≤ i − 1.

We propose estimating �−1
n using the sample counterpart of (1.12),

�̂−1
n (k) := T̂′

n(k)D̂−1
n (k)T̂n(k), (1.13)

where T̂n(k) and D̂n(k) are obtained by plugging in the least squares estimates of the coefficients
in Tn(k) and the corresponding residual variances in Dn(k); see Section 3 for more details.

Under (1.2)–(1.5), this paper establishes∥∥�̂−1
n (k) − �−1

n

∥∥
2 = op(1), (1.14)

with k = Kn → ∞ satisfying (3.16). To appreciate the subtlety of (1.14), note that if m in-
dependent realizations U(1) = (u

(1)
1 , . . . , u

(1)
n )′, . . . ,U(m) = (u

(m)
1 , . . . , u

(m)
n )′ of {ut } are avail-

able, Bickel and Levina [3] introduced alternative estimates Ťn,m(k) and Ďn,m(k) of Tn(k)

and Dn(k) through a multivariate analysis approach, where k < m < n. More specifically, set
Ũj = (u

(1)
j , . . . , u

(m)
j )′ and denote the regression coefficients of Ũj on Ũj−1, . . . , Ũmax {j−k,1}

by ǎj . Then Ťn,m(k) and Ďn,m(k), respectively, are obtained by replacing the coefficients in the
ith row of Tn(k) with −ǎi , and ith diagonal element of Dn(k) with the corresponding resid-
ual variance, where i = 2, . . . , n. Bickel and Levina [3] also showed that the resultant estimate
�̌−1

n,m(k) = Ť′
n,m(k)Ď−1

n,m(k)Ťn,m(k) of �−1
n has the property

∥∥�̌−1
n,m(k) − �−1

n

∥∥
2 = op(1), (1.15)

under m → ∞, m−1 logn → 0, k = Kn,m � (m/ logn)θ for some 0 < θ < 1/2, (1.1), and

sup
k≥1

‖�k‖2 < ∞, (1.16)

where g(x) � h(x) means that there exists a constant 0 < C < ∞ such that C ≤
lim infx→∞ h(x)/g(x) ≤ lim supx→∞ h(x)/g(x) ≤ C−1. Since (1.16) fails to hold for long-
memory processes like (1.7) and m → ∞ is needed in (1.15), the most distinctive feature of
(1.14) is that it holds for one (m = 1) realization, without imposing (1.16). It is also noteworthy
that Cai, Ren and Zhou [5] have recently established the optimal rate of convergence for estimat-
ing the inverse of a Toeplitz covariance matrix under the spectral norm. However, the covariance
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matrix associated with (1.7) is still precluded by the class of matrices considered in their paper,
which needs to obey assumptions like (1.16) and (1.1).

The rest of the paper is organized as follows. In Section 2, we analyze the difference be-
tween �−1

n (k) and �−1
n . In particular, by deriving convergence rates of ‖Tn(k) − Tn‖2 and

‖Dn(k) − Dn‖2, we obtain a convergence rate of ‖�−1
n (k) − �−1

n ‖2, which plays an indispens-
able role in the proof of (1.14). Section 3 is devoted to proving (1.14). By establishing a number
of sharp bounds for the higher moments of the quadratic forms in ut , we obtain a convergence
rate of ‖�̂−1

n (k) − �−1
n (k)‖2, which, in conjunction with the results in Section 2, leads to a con-

vergence rate of ‖�̂−1
n (k) − �−1

n ‖2, and hence (1.14). In Section 4, the results in Section 3 are
extended to regression models with long-memory errors satisfying (1.2)–(1.5). Specifically, we
show that when the unobservable long-memory errors are replaced by the corresponding least
squares residuals, our estimate of �−1

n still has the same convergence rate, without imposing any
assumptions on the design matrices. Moreover, the estimated matrix is applied to construct an
estimate of the finite-past predictor coefficient vector of the error process, and an FGLSE of the
regression coefficient vector. Rates of convergence of the latter two estimates are also derived
in a somewhat intricate way. In Section 5, we present a Monte Carlo study of the finite-sample
performance of the proposed inverse matrix estimates.

2. Bias analysis of banded Cholesky factors

Our analysis of ‖�−1
n − �−1

n (k)‖2 is reliant on the following two conditions on am,i ’s defined
in (1.10).

(i) There exists C1 > 0 such that for any 1 ≤ i ≤ m < ∞,

∣∣∣∣am,i

ai

∣∣∣∣ ≤ C1

(
m

m − i + 1

)d

. (2.1)

(ii) There exist C2 > 0 and 0 < δ < 1 such that for any 1 ≤ i ≤ δm and 1 ≤ m < ∞,∣∣∣∣am,i

ai

− 1

∣∣∣∣ ≤ C2
i

m
. (2.2)

Some comments on (2.1) and (2.2) are in order. Note first that (2.1) and (2.2), together
with (1.5), immediately imply that there exists C > 0 such that for any k = 1,2, . . . ,

k∑
i=1

|ak,i | ≤ C, (2.3)

which will be used frequently in the sequel. Throughout the rest of the paper, C denotes a generic
positive constant independent of any unbounded index sets of positive integers. These two con-
ditions assert that the finite-past predictor coefficients am,i, i = 1, . . . ,m approach to the corre-
sponding infinite-past predictor coefficients a1, a2, . . . in a nonuniform way. More specifically,
they require that am,i/ai is very close to 1 when i = o(m), but has order of magnitude m(1−θ)d
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when m − i � mθ with 0 ≤ θ < 1. This does not seem to be counterintuitive because for a long-
memory process, the finite order truncation tends to create severer upward distortions in those
ai ’s with i near the truncation lag m + 1. In fact, when {ut } is an I(d) process with 0 < d < 1/2,
(2.1) and (2.2) follow directly from the proof of Theorem 13.2.1 of Brockwell and Davis [4]. In
the following, we shall show that (2.1) and (2.2) are satisfied by model (1.7). To this end, we
need an auxiliary lemma.

Lemma 2.1. Assume (1.2), (1.4),

ψi ∼ i−1+dL(i) (2.4)

and

ai ∼ i−1−dd sin(πd)

πL(i)
, (2.5)

where g(x) ∼ h(x) if limx→∞ g(x)/h(x) = 1 and L(x) is a positive slowly varying function,
namely, limx→∞ L(λx)/L(x) = 1 for all λ > 0. Then for all large m,

max
1≤i≤m

∣∣∣∣ m(am,i − ai)∑∞
j=i∧(m+1−i) |aj |

∣∣∣∣ ≤ C,

where u ∧ v = min{u,v}.

Proof. For h, j ∈ N ∪ {0}, we define

ds(h, j) =

⎧⎪⎨
⎪⎩

ξh+j , if s = 1;
∞∑

v=0

ξh+j+vds−1(h, v), if s = 2,3, . . . ,

where ξt = ∑∞
v=0 ψvav+t for t = 0,1, . . . . By Theorem 2.9 of Inoue and Kasahara [11], we

obtain

m
∣∣(am,i − ai)

∣∣
(2.6)

= m

∣∣∣∣∣
∞∑

s=1

∞∑
j=0

ai+j d2s(m + 1, j) +
∞∑

s=1

∞∑
j=0

am+1−i+j d2s−1(m + 1, j)

∣∣∣∣∣.
Let κ > 1 satisfy 0 < κ sin(πd) < 1. According to Proposition 3.2(i) of Inoue and Kasahara [11],
there exists N ∈ N such that

0 < ds(h, j) ≤ gs(0){κ sin(πd)}s
h

, j ∈ N ∪ {0}, s ∈ N, h ≥ N, (2.7)
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where

gs(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

π(1 + x)
, if s = 1;

1

π2

∫ ∞

0

dv1

(v1 + 1)(v1 + 1 + x)
, if s = 2;

1

πs

∫ ∞

0
· · ·

∫ ∞

0

1

vs−1 + 1

×
{

s−2∏
j=1

1

vj+1 + vj + 1

}
1

v1 + 1 + x
dvs−1 · · · dv1, if s = 3,4, . . . .

Thus, for m ≥ N and i = 1,2, . . . ,m,

m

∣∣∣∣∣
∞∑

s=1

∞∑
j=0

ai+j d2s(m + 1, j)

∣∣∣∣∣
≤ m

∞∑
j=0

|ai+j |
( ∞∑

s=1

g2s(0){κ sin(πd)}2s

m + 1

)
(2.8)

= m

m + 1

∞∑
j=i

|aj |
∞∑

s=1

g2s(0)
{
κ sin(πd)

}2s ≤ C

∞∑
j=i

|aj |,

where the first inequality is by (2.7) and the last one is by Lemma 3.1(i) of Inoue and Kasa-
hara [11]. Similarly, (2.7) and Lemma 3.1(ii) of Inoue and Kasahara [11] imply

m

∣∣∣∣∣
∞∑

s=1

∞∑
j=0

am+1−i+j d2s−1(m + 1, j)

∣∣∣∣∣ ≤ C

∞∑
j=m+1−i

|aj |. (2.9)

Combining (2.6), (2.8) and (2.9) yields the desired conclusion. �

Remark 2.1. Theorem 3.3 of Inoue and Kasahara [11] shows that for any fixed integer i,

lim
m→∞m(am,i − ai) = d2

∞∑
j=i

aj . (2.10)

Therefore, Lemma 2.1 can be viewed as a uniform extension of (2.10).

Remark 2.2. Note that (1.3) and (1.5) are fulfilled by (2.4) and (2.5) if

0 < inf
i
L(i) ≤ sup

i

L(i) < ∞. (2.11)
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By making use of Lemma 2.1, the next theorem shows that (2.1) and (2.2) are met by (2.4)
and (2.5) with L(i) obeying (2.11). Since the coefficients of the MA and AR representations of
(1.7) take the form of (2.4) and (2.5), respectively, for which L(i) is a constant function (see
Corollary 3.1 of Kokoszka and Taqqu [12] and Example 2.6 of Inoue and Kasahara [11]), this
theorem guarantees that (1.7) satisfies (2.1) and (2.2), confirming the flexibility of these two
conditions.

Theorem 2.1. Under the same assumptions as in Lemma 2.1 with L(i) satisfying (2.11), we
have (2.1) and (2.2).

Proof. It suffices to show that (2.1) and (2.2) hold for all sufficiently large m. By Lemma 2.1
and (2.11), it follows that for all 1 ≤ i ≤ m and all large m,∣∣m(am,i − ai)

∣∣ ≤ C max
{
i−d , (m − i + 1)−d

}
,

yielding

∣∣∣∣am,i

ai

∣∣∣∣ =
∣∣∣∣m(am,i − ai)

mai

+ 1

∣∣∣∣ ≤ C
max{i−d , (m − i + 1)−d}

mi−1−d
+ 1 ≤ C

(
m

m − i + 1

)d

.

Therefore, (2.1) follows. Similarly, for all 1 ≤ i ≤ δm with 0 < δ < 1 and all large m,

∣∣∣∣am,i − ai

ai

∣∣∣∣ ≤ C
max{i−d , (m − i + 1)−d}

mi−1−d
≤ C

i

m
,

which leads to (2.2). Thus the proof is complete. �

Throughout the rest of this paper, let Kn denote a sequence of numbers satisfying Kn → ∞
and Kn/n → 0 as n → ∞. We are now ready to provide upper bounds for ‖Tn − Tn(Kn)‖2 and
‖D−1

n − Dn(Kn)
−1‖2 in Propositions 2.1 and 2.2, which in turn lead to a rate of convergence of

‖�−1
n − �−1

n (Kn)‖2 in Theorem 2.2. Before proceeding, we need two technical lemmas.

Lemma 2.2. Assume (1.5), (2.1) and (2.2). Then

(i)
∑k

j=Kn+1 |ak,j | ≤ CK−d
n for any Kn + 1 ≤ k ≤ n − 1.

(ii)
∑Kn

j=1 |ak,j − aKn,j | ≤ CK−d
n for any Kn + 1 ≤ k ≤ n − 1.

(iii)
∑Kn

j=max(1,Kn+1−k) |aj+k,j − aKn,j | ≤ CK−d
n for any 1 ≤ k ≤ n − Kn − 1.

(iv)
∑n−k−1

j=1 |aj+k,j − aKn,j | ≤ CK−d
n for any n − Kn ≤ k ≤ n − 2.

Proof. The proof is straightforward, and thus omitted. �

Lemma 2.3. Assume (1.2)–(1.5). Then for any k ≥ 1, σ 2
k − σ 2 ≤ Ck−1, where σ 2

k is defined
in (1.9).
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Proof. In view of (1.4) and (1.10), it follows that for any k ≥ 1, σ 2
k −σ 2 ≤ E(

∑∞
j=k+1 ajut−j )

2.
In addition, by (1.6) (which is ensured by (1.2) and (1.3)), (1.5), and Theorem 2.1 of Ing and
Wei [10], one has for any k ≥ 1 and m ≥ k + 1, E(

∑m
j=k+1 ajut−j )

2 ≤ Ck−1, which, together
with the previous inequality, gives the desired conclusion. �

Proposition 2.1. Under the same assumptions as in Lemma 2.2,

(i) ‖Tn − Tn(Kn)‖2 = O((K−d
n logn)1/2).

(ii) ‖Tn(Kn)‖2 = O((logKn)
1/2).

Proof. Let ‖B‖k = max‖z‖k=1 ‖Bz‖k denote the k-norm of an h × h matrix B, where ‖z‖k =
(
∑h

i=1 |zi |k)1/k is the k-norm of the vector z = (z1, . . . , zh)
′. Then, by Lemma 2.2(i) and (ii),

∥∥Tn − Tn(Kn)
∥∥∞ = max

Kn+1≤i≤n−1

i∑
j=Kn+1

|ai,j | +
Kn∑
j=1

|aKn,j − ai,j | = O
(
K−d

n

)
.

Moreover, ‖Tn − Tn(Kn)‖1 is the maximum of

max
0≤k≤n−Kn−1

{
n−Kn−k−2∑

i=0

|aKn+1+i+k,Kn+1+i | +
Kn∑

j=max(1,Kn+1−k)

|aj+k,j − aKn,j |
}

and maxn−Kn≤k≤n−2
∑n−k−1

j=1 |aj+k,j − aKn,j |. By (2.1) and Lemma 2.2(iii) and (iv),

max
0≤k≤n−Kn−1

n−Kn−k−2∑
i=0

|aKn+1+i+k,Kn+1+i | = O(logn),

max
0≤k≤n−Kn−1

Kn∑
j=max(1,Kn+1−k)

|aj+k,j − aKn,j | = O
(
K−d

n

)

and

max
n−Kn≤k≤n−2

n−k−1∑
j=1

|aj+k,j − aKn,j | = O
(
K−d

n

)
.

Hence, ‖Tn − Tn(Kn)‖1 = O(logn). The proof of (i) is completed by

∥∥Tn − Tn(Kn)
∥∥

2 ≤ (∥∥Tn − Tn(Kn)
∥∥

1

∥∥Tn − Tn(Kn)
∥∥∞

)1/2
.

Similarly, it can be shown that ‖Tn(Kn)‖∞ = O(1) and ‖Tn(Kn)‖1 = O(logKn), yielding (ii). �

Proposition 2.2. Under the same assumptions as in Lemma 2.3,

(i) ‖D−1
n − D−1

n (Kn)‖2 = O(K−1
n ).
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(ii) ‖D−1
n (Kn)‖2 = O(1).

Proof. Equation (i) is an immediate consequence of Lemma 2.3. Equation (ii) follows from
‖D−1

n (Kn)‖2 = max0≤k≤Kn σ−2
k ≤ σ−2, where σ 2

0 = γ0. �

Theorem 2.2. Assume (1.2)–(1.5), (2.1) and (2.2). Suppose

logn logKn

Kd
n

= o(1). (2.12)

Then ∥∥�−1
n − �−1

n (Kn)
∥∥

2 = O
(
lognK−d

n logKn

)1/2 = o(1). (2.13)

Moreover, if (1.8) is assumed, ∥∥�−1
n (Kn)

∥∥
2 = O(1). (2.14)

Proof. Equation (2.13) follows directly from Propositions 2.1 and 2.2,∥∥�−1
n − �−1

n (Kn)
∥∥

2 ≤ ∥∥Tn − Tn(Kn)
∥∥

2

∥∥D−1
n

∥∥
2

(∥∥Tn − Tn(Kn)
∥∥

2 + ∥∥Tn(Kn)
∥∥

2

)
+ ∥∥Tn(Kn)

∥∥
2

∥∥D−1
n − D−1

n (Kn)
∥∥

2

(∥∥Tn − Tn(Kn)
∥∥

2 + ∥∥Tn(Kn)
∥∥

2

)
+ ∥∥Tn(Kn)

∥∥
2

∥∥D−1
n (Kn)

∥∥
2

∥∥Tn − Tn(Kn)
∥∥

2,

and (2.12). Equations (2.13) and (1.1) (which is ensured by (1.8)) further lead to (2.14). �

3. Main results

In the sequel, the following assumptions on the innovation process {wt } of (1.2) are frequently
used:

(M1) {wt,Ft } is a martingale difference sequence, where Ft is an increasing sequence of
σ -field generated by ws, s ≤ t .

(M2) E(w2
t |Ft−1) = σ 2 a.s.

(M3) For some q ≥ 1, there is a constant Cq > 0 such that

sup
−∞<t<∞

E
(|wt |4q |Ft−1

) ≤ Cq a.s.

As mentioned in Section 1, T̂n(Kn) is obtained by replacing a(k) = (ak,1, . . . , ak,k)
′ in Tn(Kn)

with the corresponding the least squares estimates â(k) = (âk,1, . . . , âk,k)
′, where k = 1, . . . ,Kn

and

(âk,1, . . . , âk,k) = arg min
(α1,...,αk)∈Rk

n∑
t=k+1

(ut − α1ut−1 − α2ut−2 − · · · − αkut−k)
2.
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Similarly, D̂n(Kn) is obtained by replacing σ 2
k in Dn(Kn) with σ̂ 2

k , where k = 0, . . . ,Kn and

σ̂ 2
0 = (n − 1)−1

n∑
t=1

(ut − ū)2, ū = n−1
n∑

t=1

ui,

σ̂ 2
k = (n − k)−1

n∑
t=k+1

(
ut −

k∑
j=1

âk,j ut−j

)2

.

Recall �̂−1
n (Kn) = T̂′

n(Kn)D̂−1
n (Kn)T̂n(Kn). The objective of this section is to show that

‖�̂−1
n (Kn) − �−1

n ‖2 = op(1) in Theorem 3.1. To this end, we develop rates of convergence
of ‖T̂n(Kn) − Tn(Kn)‖2 and ‖D̂−1

n (Kn) − D−1
n (Kn)‖2 in Propositions 3.1 and 3.2, respectively,

whose proofs are heavily reliant on the following four lemmas, Lemmas 3.1–3.4.

Lemma 3.1. Assume (1.2)–(1.5) and (M1)–(M3). Let Ut (k) = (ut , ut−1, . . . , ut−k+1)
′ and

wk,t+1 = ut+1 − a(k)′Ut (k). Then for any 1 ≤ k ≤ n − 1,

E

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)(wk,t+1 − wt+1)

∥∥∥∥∥
2q

2

≤ C

(
1

n − k

)q(1−2d)

(3.1)

and

E

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)wk,t+1

∥∥∥∥∥
2q

2

≤ C

{(
1

n − k

)q(1−2d)

+
(

k

n − k

)q}
. (3.2)

Moreover, for θ > 1/q ,

max
1≤k≤Kn

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)wk,t+1

∥∥∥∥∥
2

2

= Op

(
Kθ

n

n1−2d
+ K1+θ

n

n

)
. (3.3)

Proof. By (1.6), Lemma 2.3 and an argument similar to that used in Lemma 3 of Ing and Wei [9],
one has for any 1 ≤ k ≤ n − 1,

E

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)(wk,t+1 − wt+1)

∥∥∥∥∥
2q

2

≤ C(n − k)−qkq

{(
σ 2

k − σ 2) n−k−1∑
i=−(n−k)+1

|γi |
}q

≤ C

(
1

n − k

)q(1−2d)

,

which gives (3.1). Equation (3.2) follows from (3.1) and for any 1 ≤ k ≤ n − 1,

E

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)wt+1

∥∥∥∥∥
2q

2

≤ Ckq(n − k)−q, (3.4)
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whose proof is exactly same as that of Lemma 4 of Ing and Wei [9]. To show (3.3), note that by
(3.2) and Kn = o(n),

E max
1≤k≤Kn

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)wk,t+1

∥∥∥∥∥
2q

2

≤ C

Kn∑
k=1

{
n−q(1−2d) + kqn−q

} ≤ C
{
Knn

−q(1−2d) + K
q+1
n n−q

}
.

This, together with θ > 1/q , gives the desired conclusion (3.3). �

Remark 3.1. Lemma A.1 of Godet [8] establishes an inequality closely related to (3.1). In par-
ticular, the inequality yields

E

∥∥∥∥∥ 1√
n − k

n−1∑
t=k

Ut (k)(wk,t+1 − wt+1)

∥∥∥∥∥
2q

2

≤ C
{
k(n − k)2d

}q(
σ 2

k − σ 2)q
.

This bound together with Lemma 2.3 also leads to (3.1).

Lemma 3.2. Let

�̂k,n = 1

n − k

n−1∑
t=k

Ut (k)Ut (k)′.

Assume (1.2), (1.3), (1.8) and (M1)–(M3) with q = 1. Suppose

Kn =

⎧⎪⎨
⎪⎩

o
(
n1/2

)
, if 0 < d < 1/4;

o
(
(n/ logn)1/2

)
, if d = 1/4;

o
(
n1−2d

)
, if 1/4 < d < 1/2.

(3.5)

Then ∥∥�̂−1
Kn,n

∥∥
2 = Op(1). (3.6)

Proof. By the first moment bound theorem of Findley and Wei [7], (1.6) and an argument similar
to that used in Lemma 2 of Ing and Wei [9], it follows that

E‖�̂Kn,n − �Kn‖2
2 =

⎧⎪⎨
⎪⎩

O
(
K2

n(n − Kn)
−1

)
, if 0 < d < 1/4;

O
(
K2

n(n − Kn)
−1 log(n − Kn)

)
, if d = 1/4;

O
(
K2

n(n − Kn)
−2+4d

)
, if 1/4 < d < 1/2.

(3.7)

Combining this, (3.5) and (1.8) leads to (3.6). �
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Lemma 3.3. Under the same assumptions as in Theorem 2.2, one has for any k ≥ 1 and
m = 0,±1,±2, . . . , γτk

(m) = C(|m| + 1)−1+2d , where with τk,t = ut+1 − wt+1 − a′(k)Ut (k) =
wk,t+1 − wt+1, γτk

(m) = E(τk,1τk,m+1).

Proof. This result follows by a tedious but direct calculation. The details are omitted. �

Lemma 3.4. Assume that (2.1), (2.2), and the assumptions of Lemma 3.1 hold. Then, for any
1 ≤ k ≤ n − 1,

E

∣∣∣∣∣ 1

n − k

n−1∑
t=k

w2
k,t+1 − σ 2

k

∣∣∣∣∣
2q

≤
⎧⎨
⎩

C(n − k)−q, if 0 < d < 1/4,

C
({

(n − k)−1 log(n − k)
}q)

, if d = 1/4,

C(n − k)−2q+4qd , if 1/4 < d < 1/2.

(3.8)

Moreover, for θ > 1/(2q),

max
1≤k≤Kn

∣∣∣∣∣ 1

n − k

n−1∑
t=k

w2
k,t+1 − σ 2

k

∣∣∣∣∣ =

⎧⎪⎨
⎪⎩

Op

(
Kθ

nn−1/2
)
, if 0 < d < 1/4,

Op

(
Kθ

n(logn)1/2n−1/2
)
, if d = 1/4,

Op

(
Kθ

nn−1+2d
)
, if 1/4 < d < 1/2.

(3.9)

Proof. To show (3.8), note first that

E

∣∣∣∣∣ 1

n − k

n−1∑
t=k

w2
k,t+1 − σ 2

k

∣∣∣∣∣
2q

≤ C
(
E

∣∣(A1)
∣∣2q + E

∣∣(A2)
∣∣2q + E

∣∣(A3)
∣∣2q)

, (3.10)

where E|(A1)|2q = E| 1
n−k

∑n−1
t=k w2

t+1 − σ 2|2q , E|(A2)|2q = E| 2
n−k

∑n−1
t=k wt+1τk,t |2q , and

E|(A3)|2q = E| 1
n−k

∑n−1
t=k τ 2

k,t − (σ 2
k − σ 2)|2q . It is clear that for any 1 ≤ k ≤ n − 1,

E
∣∣(A1)

∣∣2q ≤ C(n − k)−q . (3.11)

In addition, the first moment bound theorem of Findley and Wei [7] implies that for any 1 ≤ k ≤
n − 1,

E
∣∣(A2)

∣∣2q ≤ C
(
(n − k)−1γτk

(0)
)q

,

E
∣∣(A3)

∣∣2q ≤ C

{
(n − k)−1

n−k−1∑
j=0

γ 2
τk

(j)

}q

,

which, together with Lemmas 2.3 and 3.3, (3.10) and (3.11), yield (3.8). Equation (3.9) follows
immediately from (3.8) and an argument similar to that used to prove (3.3). The details are
omitted. �

We are now ready to establish rates of convergence of ‖T̂n(Kn)− Tn(Kn)‖2 and ‖D̂−1
n (Kn)−

D−1
n (Kn)‖2.
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Proposition 3.1. Assume (1.2)–(1.5), (1.8) and (M1)–(M3). Suppose (3.5). Then for any θ >

1/q ,

∥∥T̂n(Kn) − Tn(Kn)
∥∥2

2 = Op

(
K1+θ

n

n1−2d
+ K2+θ

n

n

)
. (3.12)

Proof. Let Sn = (sij )1≤i,j≤n = T̂n(Kn) − Tn(Kn). Then

max
1≤i≤n

n∑
t=1

s2
it ≤ max

1≤k≤Kn

∥∥â(k) − a(k)
∥∥2

2,

and for each 1 ≤ j ≤ n, 
Bj ≤ 2Kn − 1, where Bj = {i: ∑n
t=1 sit sj t 	= 0}. These and some

algebraic manipulations yield

∥∥SnS′
n

∥∥
1 = max

1≤j≤n

∑
i∈Bj

∣∣∣∣∣
n∑

t=1

sit sj t

∣∣∣∣∣
≤ max

1≤j≤n

∑
i∈Bj

(
n∑

t=1

s2
it

)1/2( n∑
h=1

s2
jh

)1/2

≤ CKn max
1≤k≤Kn

∥∥â(k) − a(k)
∥∥2

2

≤ CKn

∥∥�̂−1
Kn,n

∥∥2
2 max

1≤k≤Kn

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)wk,t+1

∥∥∥∥∥
2

2

.

Now, the desired conclusion (3.12) follows from (3.3), (3.6) and ‖Sn‖2
2 ≤ ‖SnS′

n‖1. �

Proposition 3.2. Assume (2.1), (2.2), and the same assumptions as in Proposition 3.1. Sup-
pose (3.5). Then for any θ > 1/q ,

∥∥D̂−1
n (Kn) − D−1

n (Kn)
∥∥

2 =

⎧⎪⎨
⎪⎩

Op

(
n−1/2Kθ

n

)
, if 0 < d < 1/4,

Op

(
(logn/n)1/2Kθ

n

)
, if d = 1/4,

Op

(
n−1+2dKθ

n

)
, if 1/4 < d < 1/2.

(3.13)

Proof. Note first that ∥∥D̂n(Kn) − Dn(Kn)
∥∥

2 = max
0≤k≤Kn

∣∣σ̂ 2
k − σ 2

k

∣∣, (3.14)

recalling σ 2
0 = γ0. By (1.6) and an argument similar to that used to prove (3.7), it holds that

E
(
σ̂ 2

0 − σ 2
0

)2 =

⎧⎪⎨
⎪⎩

O
(
n−1

)
, if 0 < d < 1/4,

O(logn/n), if d = 1/4,

O
(
n−2+4d

)
, if 1/4 < d < 1/2.

(3.15)
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Straightforward calculations show

max
1≤k≤Kn

∣∣σ̂ 2
k − σ 2

k

∣∣ ≤ max
1≤k≤Kn

∣∣∣∣∣ 1

n − k

n−1∑
t=k

w2
k,t+1 − σ 2

k

∣∣∣∣∣
+ C

∥∥�̂−1
Kn,n

∥∥
2 max

1≤k≤Kn

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)wk,t+1

∥∥∥∥∥
2

2

,

which, in conjunction with (3.15), (3.14), (3.3), (3.6) and (3.9), results in (3.13). �

The main results of this section is given as follows.

Theorem 3.1. Assume the same assumptions as in Proposition 3.2. Suppose

logn logKn

Kd
n

+ K1+θ
n logKn

n1−2d
+ K2+θ

n logKn

n
= o(1), (3.16)

for some θ > 1/q . Then∥∥�̂−1
n (Kn) − �−1

n

∥∥
2

= Op

((
logn logKn

Kd
n

)1/2

+
(

K1+θ
n logKn

n1−2d
+ K2+θ

n logKn

n

)1/2)
(3.17)

= op(1)

and ∥∥�̂−1
n (Kn)

∥∥
2 = Op(1). (3.18)

Proof. By Propositions 3.1 and 3.2, (1.8), (ii) of Proposition 2.1, (ii) of Proposition 2.2 and∥∥�̂−1
n (Kn) − �−1

n (Kn)
∥∥

2

≤ ∥∥T̂n(Kn) − Tn(Kn)
∥∥

2

∥∥D̂−1
n (Kn)

∥∥
2

(∥∥T̂n(Kn) − Tn(Kn)
∥∥

2 + ∥∥Tn(Kn)
∥∥

2

)
+ ∥∥Tn(Kn)

∥∥
2

∥∥D̂−1
n (Kn) − D−1

n (Kn)
∥∥

2

(∥∥T̂n(Kn) − Tn(Kn)
∥∥

2 + ∥∥Tn(Kn)
∥∥

2

)
+ ∥∥Tn(Kn)

∥∥
2

∥∥D−1
n (Kn)

∥∥
2

∥∥T̂n(Kn) − Tn(Kn)
∥∥

2,

one obtains

∥∥�̂−1
n (Kn) − �−1

n (Kn)
∥∥

2 = Op

((
K1+θ

n logKn

n1−2d
+ K2+θ

n logKn

n

)1/2)
.

This, together with (3.16) and Theorem 2.2, leads to the desired conclusions (3.17) and (3.18). �
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Remark 3.2. It would be interesting to compare Theorem 3.1 with the moment bounds for �̂−1
Kn,n

given by Godet [8]. If {ut } is a Gaussian process satisfying (1.2)–(1.5) and (1.8), then Theo-
rem 2.1 of Godet [8] yields that for

Kn = O
(
nλ

)
with 0 < λ < min{1/2,1 − 2d}, (3.19)

E
∥∥�̂−1

Kn,n − �−1
Kn

∥∥
2 =

⎧⎪⎨
⎪⎩

O
(
n−1/2Kn

)
, if 0 < d < 1/4,

O
(
(logn/n)1/2Kn

)
, if d = 1/4,

O
(
n−1+2dKn

)
, if 1/4 < d < 1/2.

(3.20)

One major difference between �̂−1
n (Kn) and �̂−1

Kn,n is that the former aims at estimating the

inverse autocovariance matrix of all n observations, �−1
n , but the latter only focuses on that

of Kn consecutive observations, �−1
Kn

, with Kn � n. While (3.20) plays an important role in
analyzing the mean squared prediction error of the least squares predictor of un+1 based on
the AR(Kn) model, �̂−1

Kn,n cannot be used in situations where consistent estimates of �−1
n are

indispensable. See Section 4.2 for some examples. Moreover, the convergence rate of �̂−1
n (Kn) is

determined by not only the estimation error ‖�̂−1
n (Kn)−�−1

n (Kn)‖2, but also the approximation
error ‖�−1

n (Kn)−�−1
n ‖2. This latter type of error, however, is irrelevant to the convergence rate

of �̂−1
Kn,n. Finally, we note that (3.20) gives a stronger mode of convergence than (3.17), but at

the expense of more stringent assumptions on moments and distributions.

4. Some extensions

Consider a linear regression model with serially correlated errors,

yt = x′
tβ + ut =

p∑
i=1

xtiβi + ut , (4.1)

where β is an unknown coefficient vector, xt ’s are p-dimensional nonrandom input vectors and
ut ’s are unobservable random disturbances satisfying the long-memory conditions described pre-
viously. Having observed yn = (y1, . . . , yn)

′ and x̌nj = (x1j , . . . , xnj )
′, 1 ≤ j ≤ p, it is natural to

estimate un = (u1, . . . , un)
′ via the least squares residuals

ũn = (ũ1, . . . , ũn)
′ = (In − Mnp)yn = (In − Mnp)un,

where In is the n × n identity matrix, and Mnp is the orthogonal projection matrix of
sp{x̌n1, . . . , x̌np}, the closed span of {x̌n1, . . . , x̌np}. Note that ũn is also known as a detrended
time series, in particular when xt represents the trend or seasonal component of yt . Let {q̌ni =
(q1i , . . . ,qni)

′, i = 1, . . . , r}, 1 ≤ r ≤ p, be an orthonormal basis of sp{x̌n1, . . . , x̌np}. It is well
known that Mnp = ∑r

i=1 q̌ni q̌′
ni , and hence with vi = q̌′

niun,

ũn = un −
r∑

i=1

vi q̌ni . (4.2)
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In Section 4.1, we shall show that the inverse autocovariance matrix, �−1
n , of un can still

be consistently estimated by the modified Cholesky decomposition method proposed in Sec-
tion 3 with un replaced by ũn, which is denoted by �̃−1

n (Kn). We also show that �̃−1
n (Kn)

and �̂−1
n (Kn) share the same rate of convergence. Moreover, we propose an estimate of a(n) =

(an,1, . . . , an,n)
′, the n-dimensional finite predictor coefficient vector of {ut }, based on �̃−1

n (Kn),
and derive its convergence rate. These asymptotic results are obtained without imposing any as-
sumptions on the design matrix Xn = (x̌n1, . . . , x̌np). On the other hand, we assume that Xn has a
full rank in Section 4.2, and propose an FGLSE of β based on �̃−1

n (Kn). The rate of convergence
of the proposed FGLSE is also established in Section 4.2.

4.1. Consistent estimates of �−1
n and a(n) based on ũn

Define

�̃−1
n (Kn) := T̃n(Kn)

′D̃−1
n (Kn)T̃n(Kn)

where T̃n(Kn) and D̃n(Kn) are T̂n(Kn) and D̂n(Kn) with âij and σ̂ 2
i , respectively, replaced by

ãij and σ̃ 2
i defined as follows:

(ãk,1, . . . , ãk,k) = arg min
(α1,...,αk)∈Rk

n∑
t=k+1

(ũt − α1ũt−1 − α2ũt−2 − · · · − αkũt−k)
2,

σ̃ 2
0 = (n − 1)−1

n∑
t=1

(ũt − ¯̃u)2, ¯̃u = n−1
n∑

t=1

ũi ,

σ̃ 2
k = (n − k)−1

n∑
t=k+1

(
ũt −

k∑
j=1

ãk,j ũt−j

)2

.

By establishing probability bounds for ‖T̃n(Kn) − Tn(Kn)‖2 and ‖D̃−1
n (Kn) − D−1

n (Kn)‖2 in
Proposition 4.1, we obtain the convergence rate of ‖�̃−1

n (Kn) − �−1
n ‖2 in Theorem 4.1. Ac-

cording to (4.2), un and ũn differ by the vector
∑r

i=1 vi q̌ni , whose entries are weighted sums
of u1, u2, . . . , un with weights qt1,iqt2,j for some 1 ≤ t1, t2 ≤ n and 1 ≤ i, j ≤ r . To explore
the contributions of

∑r
i=1 vi q̌ni to ‖T̃n(k) − Tn(k)‖2 and ‖D̃−1

n (k) − D−1
n (k)‖2, we need mo-

ment bounds for the linear combinations of ui ’s and τk,i ’s, which are introduced in the following
lemma.

Lemma 4.1. Let c1, . . . , cm be any real numbers. Under the same assumptions as in Lemma 3.1,

E

(
m∑

i=1

ciui

)4q

≤ C

(
m∑

i=1

c2
i

)2q

m4qd . (4.3)
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Moreover, if (2.1) and (2.2) also hold true, then

E

(
m∑

i=1

ciτk,i

)4q

≤ C

(
m∑

i=1

c2
i

)2q

m4qd . (4.4)

Proof. By Lemma 2 of Wei [16], we have E(
∑m

i=1 ciui)
4q ≤ C{E(

∑m
i=1 ciui)

2}2q .
Theorem 2.1 of Ing and Wei [10] and Jensen’s inequality further yield E(

∑m
i=1 ciui)

2 ≤
C(

∑m
i=1 |ci |2/(1+2d))1+2d ≤ Cm2d(

∑m
i=1 c2

i ). Hence, (4.3) follows. Equation (4.4) is ensured
by Lemma 3.3 and an argument similar to that used to prove (4.3). �

Equipped with Lemma 4.1, we can prove another auxiliary lemma, which plays a key role
in establishing Proposition 4.1. First, some notation: w̃k,t+1 = ũt+1 − a(k)′Ũt (k), Ũt (k) =
(ũt , ũt−1, . . . , ũt−k+1)

′, �̃k,n = 1
n−k

∑n−1
t=k Ũt (k)Ũt (k)′, qt = (qt,1,qt,2, . . . ,qt,r )

′, Qt (k) =
(qt ,qt−1, . . . ,qt−k+1)

′ and Vn = (v1, . . . , vr )
′.

Lemma 4.2.

(i) Assume that the same assumptions as in Lemma 3.4 hold. Then for Kn = o(n) and θ >

1/q ,

max
1≤k≤Kn

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ũt (k)w̃k,t+1

∥∥∥∥∥
2

2

= Op

(
Kθ

n

n1−2d
+ K1+θ

n

n

)
.

(ii) Assume that the same assumptions as in Lemma 3.2 hold. Then for Kn satisfying (3.5),
‖�̃−1

Kn,n‖2 = Op(1).
(iii) Assume that the same assumptions as in Lemma 3.4 hold. Then for Kn = o(n) and θ >

1/(2q),

max
1≤k≤Kn

∣∣∣∣∣ 1

n − k

n−1∑
t=k

w̃2
k,t+1 − σ 2

k

∣∣∣∣∣ =

⎧⎪⎨
⎪⎩

Op

(
Kθ

nn−1/2
)
, if 0 < d < 1/4;

Op

(
Kθ

n(logn)1/2n−1/2
)
, if d = 1/4;

Op

(
Kθ

nn−1+2d
)
, if 1/4 < d < 1/2.

Proof. We begin by proving (i). Define (B1) = ‖ 1
n−k

∑n−1
t=k Ũt (k)(w̃k,t+1 − wt+1)‖2q

2 and

(B2) = ‖ 1
n−k

∑n−1
t=k Ũt (k)wt+1‖2q

2 . Straightforward calculations yield

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ũt (k)w̃k,t+1

∥∥∥∥∥
2q

2

≤ C
{
(B1) + (B2)

}
, (4.5)

E(B1) ≤ Cn−2qkq−1
k∑

j=1

{
E

∣∣(B3)
∣∣2q + E

∣∣(B4)
∣∣2q + E

∣∣(B5)
∣∣2q + E

∣∣(B6)
∣∣2q}

(4.6)
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and

E(B2) ≤ C

{
E

∥∥∥∥∥ 1

n − k

n−1∑
t=k

Ut (k)wt+1

∥∥∥∥∥
2q

2

+ E(B7)

}
, (4.7)

where

(B3) =
n−1∑
t=k

ut+1−j τk,t , (B4) = V′
n

n−1∑
t=k

qt+1−j τk,t ,

(B5) = V′
n

n−1∑
t=k

(
qt+1 − Q′

t (k)a(k)
)
ut+1−j ,

(B6) = V′
n

{
n−1∑
t=k

qt+1−j

(
q′

t+1 − a(k)′Qt (k)
)}

Vn,

(B7) =
∥∥∥∥∥
{

1

n − k

n−1∑
t=k

Qt (k)wt+1

}
Vn

∥∥∥∥∥
2q

2

.

An argument similar to that used to prove (3.1) implies E|(B3)|2q = O(k−q(n − k)q+2qd). In
addition, by (4.3), (4.4), (2.3) and

∑n
t=1 q2

t,i = 1 for i = 1,2, . . . , r , one obtains

E
∣∣(B4)

∣∣2q ≤ r2q−1
r∑

i=1

[
E

(
v

4q
i

)]1/2

[
E

(
n−1∑
t=k

qt+1−j,iτk,t

)4q]1/2

≤ Cn4qd ,

E|(B5)|2q ≤ Cn4qd , E|(B6)|2q ≤ Cn4qd , and E(B7) ≤ Ckqn2qd/n2q . With the help of these
moment inequalities, (3.4) and (4.5)–(4.7), the proof of (i) can be completed in the same way
as the proof of (3.3). Moreover, by modifying the proofs of (3.6) and (3.9) accordingly, we can
establish (ii) and (iii). The details, however, are not presented here. �

Proposition 4.1. Assume the same assumptions as in Proposition 3.2. Suppose (3.5). Then for
any θ > 1/q ,

(i) ‖T̃n(Kn) − Tn(Kn)‖2
2 = Op((K1+θ

n /n1−2d) + (K2+θ
n /n)).

(ii)

∥∥D̃−1
n (Kn) − D−1

n (Kn)
∥∥

2 =

⎧⎪⎨
⎪⎩

Op

(
n−1/2Kθ

n

)
, if 0 < d < 1/4;

Op

(
(logn/n)1/2Kθ

n

)
, if d = 1/4;

Op

(
n−1+2dKθ

n

)
, if 1/4 < d < 1/2.

Proof. In view of the proof of Proposition 3.1, (i) follows directly from (i) and (ii) of Lemma 4.1.
To show (ii), note first that (3.15) still holds with σ̂ 2

0 replaced by σ̃ 2
0 . This, in conjunction with

(i)–(iii) of Lemma 4.1 and the argument used in the proof of Proposition 3.2, yields (ii). �
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We are now in a position to introduce Theorem 4.1.

Theorem 4.1. Consider the regression model (4.1). With the same assumptions as in Proposi-
tion 3.2, suppose that (3.16) holds for some θ > 1/q . Then∥∥�̃−1

n (Kn) − �−1
n

∥∥
2

(4.8)

= Op

((
logn logKn

Kd
n

)1/2

+
(

K1+θ
n logKn

n1−2d
+ K2+θ

n logKn

n

)1/2)
= op(1)

and ∥∥�̃−1
n (Kn)

∥∥
2 = Op(1). (4.9)

Proof. In view of the proof of Theorem 3.1, (4.8) and (4.9) are immediate consequences of
Proposition 4.1 and Theorem 2.2. �

Remark 4.1. Since no assumptions are imposed on the design matrix Xn, one of the most in-
triguing implications of Theorem 4.1 is that �−1

n can be consistently estimated by �̃−1
n (Kn)

even when Xn is singular. Moreover, according to (4.8) and (3.17), it is interesting to point out
that �̃−1

n (Kn) and �̂−1
n (Kn) share the same rate of convergence.

Next, we consider the problem of estimating a(n) under model (4.1). Recall Yule–Walker
equations a(n) = �−1

n γ n, where γ n = (γ1, . . . , γn)
′. A truncated version of �−1

n γ n is given
by ǎ(n) = �−1

n (Kn)γ̌ n, where γ̌ n = (γ1, . . . , γKn,0, . . . ,0)′ is an n-dimensional vector. A nat-
ural estimate of ǎ(n) is a∗(n) = �̃−1

n (Kn)γ̃ n, where γ̃ n = (γ̃1, . . . , γ̃Kn,0, . . . ,0)′ is an n-
dimensional vector with γ̃j denoting the (1, j + 1)th entry of �̃Kn+1,n. We shall show that when
Kn is suitably chosen, a∗(n) is a consistent estimate of a(n).

Corollary 4.1. Assume the same assumptions as in Theorem 4.1. Suppose that (3.16) holds and
K

1+2d/3
n

n1−2d = o(1). Then for any θ > 1/q ,

∥∥a∗(n) − a(n)
∥∥

2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Op

((
1

K1−2d
n

+ logn

Kd
n

+ K1+θ
n

n1−2d
+ K2+θ

n

n

)1/2)
, if 0 < d ≤ 1/4,

Op

((
1

K1−2d
n

+ logn

Kd
n

+ K1+θ
n

n1−2d
+ K3+2d

n

n3−6d

)1/2)
, if 1/4 < d < 1/2

= op(1).

Proof. Note first that∥∥a∗(n) − a(n)
∥∥

2 ≤ ∥∥ǎ(n) − a(n)
∥∥

2 + ∥∥a∗(n) − ǎ(n)
∥∥

2, (4.10)∥∥ǎ(n) − a(n)
∥∥

2 ≤ ∥∥�−1
n (γ̌ n − γ n)

∥∥
2 + ∥∥(

�−1
n (Kn) − �−1

n

)
γ̌ n

∥∥
2, (4.11)∥∥a∗(n) − ǎ(n)

∥∥
2 ≤ ∥∥�̃−1

n (Kn)(γ̃ n − γ̌ n)
∥∥

2 + ∥∥(
�̃−1

n (Kn) − �−1
n (Kn)

)
γ̌ n

∥∥
2. (4.12)
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Moreover, ∥∥�−1
n (γ̌ n − γ n)

∥∥
2 ≤ ∥∥T′

nD−1
n

∥∥
2

∥∥Tn(γ̌ n − γ n)
∥∥

2 ≤ C
∥∥Tn(γ̌ n − γ n)

∥∥
2 (4.13)

and

�−1
n − �−1

n (Kn) = (
Tn − Tn(Kn)

)′D−1
n

((
Tn − Tn(Kn)

) + Tn(Kn)
)

+ T′
n(Kn)

(
D−1

n − D−1
n (Kn)

)((
Tn − Tn(Kn)

) + Tn(Kn)
)

(4.14)

+ T′
n(Kn)D−1

n (Kn)
(
Tn − Tn(Kn)

)
.

By (1.5), (1.6), (2.1), (2.2), it follows that ‖Tn(γ̌ n − γ n)‖2 = O(K
−1/2+d
n ), ‖Tn(Kn)γ̌ n‖2 =

O(1), and ‖(Tn − Tn(Kn))γ̌ n‖2 = O(K
−1/2+d
n ). These bounds, together with (4.11), (4.13) and

(4.14), yield ∥∥ǎ(n) − a(n)
∥∥

2 = O
(
K

−1/2+d
n + (

K−d
n logn

)1/2)
. (4.15)

By the first moment bound theorem of Findley and Wei [7], Cauchy–Schwarz inequality, Propo-
sition 4.1, (4.7), Lemma 4.2(ii), (4.9) and (4.12), it can be shown that

∥∥a∗(n) − ǎ(n)
∥∥

2 =
{

Op

((
n−1+2dK1+θ

n + n−1K2+θ
n

)1/2)
, if 0 < d ≤ 1/4,

Op

((
n−1+2dK1+θ

n + n−3+6dK3+2d
n

)1/2)
, if 1/4 < d < 1/2,

(4.16)

for any θ > 1/q . Now, the desired conclusion follows from (4.10), (4.15) and (4.16). �

Remark 4.2. When u1, . . . , un are observable, Wu and Pourahmadi [19] constructed an esti-
mate, �̆−1

n,Kn
γ̆n, of a(n), where �̆n,Kn = (γ̂i−j 1|i−j |≤Kn)1≤i,j≤n and γ̆ n = (γ̆1, . . . , γ̆n)

′ with
γ̆i = γ̂i1{i≤Kn}. By assuming

∑∞
j=1 |γj | < ∞, they obtained a convergence rate of the proposed

estimate in terms of Kn, the moment restriction on wt , and
∑∞

j=Kn
|γk|; see Corollary 2 of Wu

and Pourahmadi [19]. However, their proof, relying heavily on
∑∞

j=1 |γj | < ∞, is no longer
applicable here.

4.2. The rate of convergence of the FGLSE

In this section, we assume that Xn is nonsingular, and hence β is uniquely defined. We estimate
β using the FGLSE,

β̂FGLS = (
X′

n�̃
−1
n (Kn)Xn

)−1X′
n�̃

−1
n (Kn)yn.

The main objective of this section is to investigate the convergence rate of β̂FGLS. To simplify the
exposition, we shall focus on polynomial regression models and impose the following conditions
on ai :

aj ∼ C0j
−1−d and

∞∑
j=0

aj eijλ = 0 if and only if λ = 0, (4.17)
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where a0 = −1 and C0 	= 0. As mentioned in Section 2, (4.17) is fulfilled by the FARIMA
model defined in (1.7). When Kn diverges to infinity at a suitable rate, we derive the rate of
convergence of β̂FGLS in the next corollary. It is important to be aware that our proof is not a
direct application of Theorem 4.1. Instead, it relies on a very careful analysis of the joint effects
between the Cholesky factors and the regressors.

Corollary 4.2. Consider the regression model (4.1) with xti = t i−1 for i = 1, . . . , p. Assume the
same assumptions as in Theorem 4.1 with (1.5) replaced by (4.17). Suppose that (3.5) holds and
n−1+2dK1+2d

n + n−1K2+2d
n = o(1). Then

(i) ‖Ln(βFGLS − β)‖2 = Op(1),
(ii) ‖Ln(β̂FGLS − β)‖2 = Op(1),

where Ln = n−d diag(n1/2, n3/2, . . . , np−1/2) and βFGLS is β̂FGLS with �̃−1
n (Kn) replaced by

�−1
n (Kn).

Proof. We only prove Corollary 4.2 for p = 2. The proof for p 	= 2 is analogous. We begin by
showing (i). Let L̃n = K−d

n diag(n1/2, n3/2). Then straightforward calculations yield∥∥Ln(βFGLS − β)
∥∥

2
(4.18)

≤ n−dKd
n

∥∥L̃n

(
X′

n�
−1
n (Kn)Xn

)−1L̃n

∥∥
2

∥∥L̃−1
n X′

n�
−1
n (Kn)un

∥∥
2.

Moreover, by (4.17),

n−dKd
n

∥∥L̃−1
n X′

n�
−1
n (Kn)un

∥∥
2 = Op(1), (4.19)

∥∥L̃n

(
X′

n�
−1
n (Kn)Xn

)−1L̃n

∥∥
2 ≤

(
n−1

κn∑
t=0

λmin(A�κn�+t + An−t )

)−1

= O(1), (4.20)

where λmin(A) denotes the minimum eigenvalue of matrix A, 0 < κ < 1 and At = η′
t ηt , with ηt

denoting the t th row of n1/2D−1/2
n (Kn)Tn(Kn)XnL̃−1

n . Combining (4.18)–(4.20) yields (i). To
show (ii), note first that∥∥Ln(β̂FGLS − β)

∥∥
2 ≤ ∥∥Ln(βFGLS − β)

∥∥
2 + ∥∥Ln(β̂FGLS − βFGLS)

∥∥
2, (4.21)∥∥Ln(β̂FGLS − βFGLS)

∥∥
2 ≤ ∥∥(D1)

∥∥
2 + ∥∥(D2)

∥∥
2, (4.22)

where (D1) = Ln((X′
n�̃

−1
n (Kn)Xn)

−1 − (X′
n�

−1
n (Kn)Xn)

−1)X′
n�

−1
n (Kn)un, and (D2) =

Ln(X′
n�̃

−1
n (Kn)Xn)

−1X′
n(�̃

−1
n (Kn) − �−1

n (Kn))un. In addition,∥∥(D5)
∥∥

2 ≤ (∥∥(D5)
∥∥

2 + ∥∥(D3)
∥∥

2

)∥∥(D4)
∥∥

2

∥∥(D3)
∥∥

2 (4.23)

where (D3) = L̃n(X′
n�

−1
n (Kn)X−1

n )L̃n, (D4) = L̃−1
n X′

n(�̃
−1
n (Kn) − �−1

n (Kn))XnL̃−1
n , and

(D5) = L̃n((X′
n�̃

−1
n (Kn)X−1

n ) − (X′
n�

−1
n (Kn)X−1

n ))L̃n. By (4.17) and some algebraic manipu-
lations, one obtains ‖(D3)‖2 = O(1) and ‖(D4)‖2 = op(1). Thus, by (4.23), ‖(D5)‖2 = op(1).
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The bounds for ‖(D3)‖2 and ‖(D5)‖2, together with (4.17) and (4.19), imply

∥∥(D1)
∥∥

2 ≤ n−dKd
n

∥∥(D5)
∥∥

2

∥∥L̃−1
n X′

n�
−1n(Kn)un

∥∥
2 = op(1), (4.24)∥∥(D2)

∥∥
2 ≤ n−dKd

n

(∥∥(D5)
∥∥

2 + ∥∥(D3)
∥∥

2

)∥∥L̃−1
n X′

n

(
�̃−1

n (Kn) − �−1
n (Kn)

)
un

∥∥
2

(4.25)
= op(1).

Now, the desired conclusion (ii) follows from (4.24), (4.25), (4.21) and (4.22) and (i). �

Remark 4.3. Under assumptions similar to those of Corollary 4.2, Theorems 2.2 and 2.3 of
Yajima [21] show that the best linear unbiased estimate (BLUE) β̂BLUE = (X′

n�
−1
n Xn)

−1X′
n ×

�−1
n yn, and the LSE, β̂LS = (X′

nXn)
−1X′

nyn, of β have the same rate of convergence, and this
rate is, in turn, the same as that of β̂FGLS.

We close this section with a subtle example showing that the convergence rate of β̂FGLS is
faster than that of β̂LS, but slower than that of β̂BLUE. Consider model (4.1), with p = 1, xt1 =
1 + cos(θt), and θ 	= 0. Assume the same assumptions as in Corollary 4.2. Then, by an argument
similar to that used in the proof of Corollary 4.2, it can be shown that the rate of convergence of
β̂FGLS is n−1/2+dK−d

n . On the other hand, Theorems 2.1 and 2.2 and Example 2.1(ii) of Yajima
[22] yield that the convergence rates of β̂BLUE and β̂LS are n−1/2 and n−1/2+d , respectively. This
example gives a warning that the convergence rate of β̂BLUE is not necessarily maintained by its
feasible counterpart, even if the consistency of �̃−1

n (Kn) holds true.

5. Simulation study

In Section 5.1, we introduce a data-driven method for choosing the banding parameter Kn. With
this Kn, we demonstrate the finite sample performance of the inverse autocovariance estimator
proposed in Section 3 under FARIMA(p,d, q) processes, and that proposed in Section 4 under
polynomial regression models with I(d) errors. The details are given in Sections 5.2 and 5.3,
respectively.

5.1. Selection of Kn

Our approach for choosing Kn is based on the idea of subsampling and risk-minimization (SAR)
introduced by Bickel and Levina [3] and Wu and Pourahmadi [19]. We first split the time series
data {ui}ni=1 into �n/b� nonoverlapping subseries {uj }vb

j=(v−1)b+1 of equal length b, where b

is a prescribed integer and v = 1,2, . . . , �n/b� with �a� denoting the largest integer ≤ a. Let
1 ≤ L < H < b be another prescribed integers. For a given banding parameter L ≤ k < H , let
�̂−1

H,k,v represent our inverse autocovariance matrix estimator of �H
−1 based on the vth subseries
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{uj }vb
j=(v−1)b+1. Define the average risk

R̂(O)(k) = 1

�n/b�
�n/b�∑
v=1

∥∥�̂−1
H,k,v − �−1

H

∥∥
2.

Our goal is to find a banding parameter such that R̂(O)(k) is minimized. However, since �−1
H is

unknown, we use �̂−1
H,n, the H -dimensional inverse sample autocovariance matrix, as its surro-

gate, and replace R̂(O)(k) by

R̂(k) = 1

�n/b�
�n/b�∑
v=1

∥∥�̂−1
H,k,v − �̂−1

H,n

∥∥
2,

noting that when H � n, �̂−1
H,n is a consistent estimator of �−1

H . Now the banding parameter Kn

is chosen to minimize R̂(k) over the interval [L,H). In our simulation study, b is set to �n/5�. In
addition, inspired by Theorem 3.1, we choose L = �logn� and H = �n0.4�, where �a� denotes
the smallest integer ≥ a. The banding parameter for the detrended time series is also chosen in
the same manner.

5.2. Finite sample performance of �̂−1
n (Kn)

We explore the finite sample performance of �̂−1
n (Kn), with Kn determined by the SAR method,

under the following four data generating processes (DGPs):

DGP 1: (1 − B)dut = wt ; DGP 2: (1 − 0.7B)(1 − B)dut = wt ;
DGP 3: (1 − B)dut = (1 − 0.4B)wt ; DGP 4: (1 + 0.4B)(1 − B)dut = (1 − 0.3B)wt ,

where the wt ’s are i.i.d. N(0,1) innovations. To improve the speed and accuracy, we adopt the
method of Wu, Michailidis and Zhang [17] to generate the long memory data {u1, . . . , un}. The
performance of �̂−1

n (Kn) is evaluated by l̂2(d), the average value of ‖�̂−1
n (Kn) − �−1

n ‖2 over
1000 replications, with n = 250,500,1000,2000,4000. The results are summarized in Table 1.
Note first that for each combination of d and DGP, l̂2(d) shows an obvious downward trend
as n increases. Moreover, when n = 4000, all l̂2(d) are less than 0.65 except for d = 0.1 and
DGP = DGP 3 or DGP 4. In the latter two cases, l̂2(d), lying between 0.93 and 1.34, are still
reasonably small. These findings suggest that �̂−1

n (Kn) is a reliable estimate of �−1
n , particularly

when n is large enough.
On the other hand, the decreasing rate of l̂2(d) apparently changes over d and DGP. To provide

a better understanding of this phenomenon, we first consider the fastest possible convergence rate
that can be derived from Theorem 3.1:∥∥�̂−1

n

(
K∗

n

) − �−1
n

∥∥
2

(5.1)

=
{

Op

(
n−d/(4+2d+2θ)(logn)(4+d+2θ)/(4+2d+2θ)

)
, if 0 < d ≤ d̃ ,

Op

(
n−d(1−2d)/(2+2d+2θ)(logn)(2+d+2θ)/(2+2d+2θ)

)
, if d̃ < d < 1/2,
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Table 1. The values of l̂2(d) under DGPs 1–4

n \ d 0.01 0.1 0.25 0.4 0.49 0.01 0.1 0.25 0.4 0.49

DGP 1 DGP 2
250 0.501 0.546 0.603 0.699 0.758 0.936 1.040 1.250 1.512 1.676
500 0.389 0.443 0.455 0.527 0.595 0.759 0.837 0.981 1.192 1.309

1000 0.276 0.366 0.335 0.396 0.444 0.537 0.595 0.734 0.867 0.977
2000 0.217 0.344 0.274 0.334 0.367 0.441 0.498 0.597 0.732 0.814
4000 0.173 0.344 0.216 0.257 0.298 0.345 0.389 0.481 0.573 0.647

DGP 3 DGP 4
250 0.767 1.007 0.775 0.642 0.660 1.141 1.495 1.129 0.836 0.839
500 0.642 0.952 0.652 0.514 0.529 0.923 1.373 0.942 0.725 0.688

1000 0.512 0.953 0.579 0.420 0.443 0.724 1.366 0.839 0.604 0.594
2000 0.435 0.928 0.495 0.358 0.376 0.625 1.339 0.714 0.518 0.497
4000 0.373 0.931 0.430 0.299 0.320 0.550 1.337 0.614 0.434 0.416

where d̃ = {(3 + 2θ)/2 + θ2/4}1/2 − (1 + θ/2), and

K∗
n =

{
(n logn)1/(2+d+θ), if 0 < d ≤ d̃,

(logn)1/(1+d+θ)n(1−2d)/(1+θ+d), if d̃ < d < 1/2.

Because wt ’s are normally distributed, in view of Theorem 3.1, θ can be any positive number,
and hence d̃ is arbitrarily close to

√
1.5 − 1 (which, rounded to the nearest thousandth, is 0.225).

We then measure the relative performance of ‖�̂−1
n (Kn)−�−1

n ‖2 and ‖�̂−1
n (K∗

n)−�−1
n ‖2 using

the ratio l̂2(d)/OP(d), where

OP(d) =
{

0.05n−d/(4+2d)(logn)(4+d)/(4+2d), if 0 < d ≤ 0.225,

0.05n−d(1−2d)/(2+2d)(logn)(2+d)/(2+2d), if 0.225 < d < 1/2,
(5.2)

which is obtained from the bound in (5.1) with θ set to 0 and constants set to 0.05. The values
of l̂2(d)/OP(d) under DGPs 1–4 are summarized in Table 2. Note that while the exact constants
are not reported in (5.1), setting them to 0.05 helps us to better interpret some numerical results
in Table 1 through Table 2.

For n ≥ 1000, all values of l̂2(d)/OP(d) fall in a reasonable range of (0.4,5.0), suggest-
ing that the rate of convergence of ‖�̂−1

n (Kn) − �−1
n ‖2 is comparable to the optimal rate ob-

tained from Theorem 3.1. Moreover, the asymptotic behaviors of l̂2(d) can be well explained
by OP(d) when DGP = DGP 1 and d ≥ 0.1. In particular, when n = 4000, the rankings of
{l̂2(0.1), l̂2(0.25), l̂2(0.4), l̂2(0.49)} coincide exactly with those of {OP(0.1),OP(0.25),OP(0.4),

OP(0.49)}, and OP(0.25) = mind∈{0.1,0.25,0.4,0.49} OP(d). This gives reasons for explaining why
d = 0.25 often provides better results than d = 0.1,0.4 or 0.49. The behavior of l̂2(0.01), how-
ever, is apparently inconsistent with that of OP(0.01). Specifically, for n ≥ 250, l̂2(0.01) <

mind∈{0.1,0.25,0.4,0.49} l̂2(d), whereas OP(0.01) > maxd∈{0.1,0.25,0.4,0.49} OP(d). One possible ex-
planation of this discrepancy is that when d is extremely small, the constant associated with the
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Table 2. The values of l̂2(d)/OP(d) under the DGPs 1–4

n \ d 0.01 0.1 0.25 0.4 0.49 0.01 0.1 0.25 0.4 0.49

DGP 1 DGP 2
250 1.849 2.349 3.414 3.782 3.704 3.453 4.476 7.081 8.187 8.187
500 1.278 1.728 2.399 2.629 2.640 2.493 3.264 5.172 5.950 5.804

1000 0.817 1.309 1.661 1.842 1.805 1.589 2.127 3.644 4.030 3.976
2000 0.585 1.138 1.291 1.460 1.380 1.188 1.647 2.814 3.198 3.064
4000 0.428 1.062 0.973 1.062 1.045 0.854 1.200 2.171 2.370 2.272

DGP 3 DGP 4
250 2.829 4.333 4.388 3.476 3.226 4.207 6.433 6.392 4.528 4.096
500 2.108 3.710 3.434 2.565 2.345 3.032 5.352 4.965 3.618 3.052

1000 1.514 3.405 2.873 1.951 1.802 2.143 4.880 4.162 2.807 2.418
2000 1.172 3.072 2.333 1.564 1.415 1.685 4.431 3.366 2.263 1.873
4000 0.922 2.875 1.939 1.237 1.122 1.361 4.130 2.772 1.795 1.461

convergence rate of ‖�̂−1
n (Kn) − �−1

n ‖2 can also be very small, and the constant, 0.05, assigned
to OP(d) fails to do a good job in this extremal case.

It is relatively difficult to understand the behaviors of l̂2(d) through OP(d) when short-memory
AR or MA components are added into the I(d) model. However, using the l̂2(d) in DGP 1 as the
basis for comparison, it seems fair to comment that the AR component tends to increase l̂2(d)

with d ≥ 0.25 and d = 0.01, whereas the MA component tends to increase l̂2(d) with d ≤ 0.25.
When both components are included, the values of l̂2(d) are uniformly larger than those in the
I(d) case. We leave a further investigation of the impact of the AR and MA components on the
finite sample performance of �̂−1

n (Kn) as a future work.
In the following, we shall perform a sensitivity analysis of the SAR method by perturbing the

parameter c in cKn. We define the sensitivity function

SF(c) = ‖�̂−1
n (cKn) − �−1

n ‖2 − ‖�̂−1
n (Kn) − �−1

n ‖2

‖�̂−1
n (Kn) − �−1

n ‖2
.

For each c = 0.8,1.2, d = 0.1,0.25,0.45, DGP = DGP 1–4, and n = 250,500,1000,2000,

4000, we compute the average of SF(c), denoted by SF(c), based on 1000 replications, and
the five-number summaries of SF(c) for each n are presented in Table 3. Table 3 shows that the
maximum values of SF(c) are all positive and decrease as n increases. In contrast, the minimum
values of SF(c) are all negative and start to increase when n ≥ 1000. When n = 4000, the maxi-
mum SF(c) and minimum SF(c) are 0.152 and −0.194, respectively, yielding that the average of
‖�̂−1

n (cKn) − �−1
n ‖2 falls between 0.806–1.152 times the average of ‖�̂−1

n (Kn) − �−1
n ‖2, for

all c’s, d’s and DGPs under consideration. Our analysis reveals that a small perturbation of Kn

will not lead to a drastic change on estimation errors.
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Table 3. 5-number summaries of SF(c)

n Minimum 1st quartile Median 3rd quartile Maximum

250 −0.173 −0.109 0.050 0.087 0.289
500 −0.229 −0.074 0.044 0.150 0.228

1000 −0.250 −0.022 0.029 0.160 0.210
2000 −0.210 −0.025 −0.005 0.134 0.156
4000 −0.194 −0.029 −0.014 0.112 0.152

5.3. Finite sample performance of �̃−1
n (Kn)

We consider three polynomial regression models:

Model 1: yt = 1 + ut , t = 1,2, . . . , n,
Model 2: yt = 1 + 2t + ut , t = 1,2, . . . , n,
Model 3: yt = 5 + t + 2t4 + ut , t = 1,2, . . . , n,

where ut ’s are generated by DGP 1. The performance of �̃−1
n (Kn) (with Kn determined by the

SAR method) is investigated with polynomial degree known or unknown. In the latter situation,
we perform best subset selection in the following fifth-order model,

yt = β0 + β1t + β2t
2 + β3t

3 + β4t
4 + β5t

5 + ut , t = 1,2, . . . , n,

using the selection criterion,

Ln(M) = log σ̂ 2
n (M) + #M/ log(n), (5.3)

suggested by Ing and Wei [10], where M = {M: M ⊆ {1, t, t2, t3, t4, t5}} and σ̂ 2
n (M) is the

residual mean square error of model M . Note that according to Theorem 4.1 of Ing and Wei
[10], Ln(M) is a consistent criterion in regression models with long-memory errors. The perfor-
mance of �̃−1

n (Kn) is evaluated by l̃2(d), which is l̂2(d) with ut ’s replaced by the corresponding
detrended series. The values of l̃2(d) are documented in Table 4, in which d ∈ {0.1,0.25,0.4},
n ∈ {250,500,1000,2000,4000} and models are known or selected by Ln(M). Table 4 also
reports the correct selection frequencies (in 1000 simulations), which is denoted by q̂i (d) for
model i and long-memory parameter d .

All q̂3(d)’s are larger than 0.9. However, q̂1(0.45) and q̂2(0.45) only fall in the interval (0.44,
0.63) and the intercept (constant time trend) is often excluded by Ln(M) in these cases. In fact,
identifying the intercept is a notoriously challenging problem when d is large and the intercept
parameter is not far enough away from 0. Fortunately, Table 4 shows that the l̃2(d) values ob-
tained with or without model selection procedure are similar, even when q̂i (d) is much smaller
than 1. This result may be due to the fact that under models 1 and 2, the performance of �̃−1

n (Kn)

is insensitive to misspecification of the intercept, provided d is large enough. Another interesting
finding is that for each regression model considered in this section and each (n, d) combination,
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Table 4. l̃2(d) with (in parentheses) or without model selection and q̂i (d)

Model 1

l̃2(d) q̂1(d)

n \ d 0.1 0.25 0.45 0.1 0.25 0.45

250 0.566 (0.566) 0.592 (0.593) 0.702 (0.693) 0.992 0.867 0.558
500 0.461 (0.461) 0.456 (0.454) 0.535 (0.533) 0.999 0.918 0.593

1000 0.385 (0.385) 0.333 (0.332) 0.404 (0.400) 1.000 0.962 0.622
2000 0.358 (0.358) 0.271 (0.271) 0.334 (0.331) 1.000 0.984 0.620
4000 0.353 (0.353) 0.216 (0.216) 0.267 (0.264) 1.000 0.996 0.609

Model 2

l̃2(d) q̂2(d)

n \ d 0.1 0.25 0.45 0.1 0.25 0.45

250 0.585 (0.574) 0.602 (0.604) 0.690 (0.691) 0.688 0.487 0.455
500 0.477 (0.470) 0.457 (0.455) 0.533 (0.532) 0.839 0.552 0.454

1000 0.399 (0.397) 0.336 (0.336) 0.400 (0.398) 0.947 0.657 0.475
2000 0.368 (0.368) 0.273 (0.275) 0.331 (0.331) 0.995 0.735 0.444
4000 0.359 (0.359) 0.218 (0.218) 0.263 (0.264) 1.000 0.809 0.458

Model 3

l̃2(d) q̂3(d)

n \ d 0.1 0.25 0.45 0.1 0.25 0.45

250 0.611 (0.611) 0.617 (0.618) 0.687 (0.686) 1.000 0.995 0.904
500 0.493 (0.493) 0.463 (0.463) 0.532 (0.530) 1.000 0.999 0.912

1000 0.411 (0.411) 0.339 (0.339) 0.396 (0.395) 1.000 1.000 0.916
2000 0.376 (0.376) 0.275 (0.275) 0.329 (0.328) 1.000 1.000 0.942
4000 0.318 (0.318) 0.218 (0.218) 0.262 (0.261) 1.000 1.000 0.967

the behavior of l̃2(d) coincides with that of l̂2(d) with DGP = DGP 1. Putting these character-
istics together suggests that �̃−1

n (Kn) is a reliable surrogate for �̂−1
n (Kn). This conclusion is

particularly relevant in situations where the latter matrix becomes infeasible.
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