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In risk management, often the probability must be estimated that a random vector falls into an extreme
failure set. In the framework of bivariate extreme value theory, we construct an estimator for such failure
probabilities and analyze its asymptotic properties under natural conditions. It turns out that the estimation
error is mainly determined by the accuracy of the statistical analysis of the marginal distributions if the
extreme value approximation to the dependence structure is at least as accurate as the generalized Pareto
approximation to the marginal distributions. Moreover, we establish confidence intervals and briefly discuss
generalizations to higher dimensions and issues arising in practical applications as well.
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1. Introduction

1.1. Motivation

Suppose an insurance company has contracts in two related lines of business with all customers
of an insurance portfolio (e.g., fire insurance and business interruption insurance for industrial
customers). On top of quota reinsurances for both lines of business (possibly with different quo-
tas) the remaining total loss from each incidence is covered by an excess of loss reinsurance
(CAT-XL) that pays for the part of the total loss which exceeds a given high retention level R. If
X and Y denote the original losses from a fire in both lines of business and 1 − αX and 1 − αY

the corresponding quotas, then a claim occurs in the XL-reinsurance if αXX + αY Y exceeds R.
For the purpose of risk management, the reinsurer might be interested in the probability that
the insurance company will file a claim in case of a fire. If the retention level is high, then the
claim probability cannot be estimated using simple empirical estimates, because in the past the
retention has rarely (or never) been exceeded.

In this paper, a more general setting is considered. We are interested in estimating the prob-
ability that a pair of random variables (X,Y ) will take on a value in some given “extreme” set.
Similar problems arise naturally in many fields. For example, a coastal dike may fail if the vec-
tor build from the still water level and the wave heights lie in a certain failure set D (cf. Coles
and Tawn [7], Bruun and Tawn [4], and de Haan and de Ronde [8]). A financial option (like a
down-and-out-put) may become worthless if the price vector of underlyings enters such a “fail-
ure set”. Finally, (part of) the principal of a catastrophe bond gets lost for the investors if a vector
of triggers becomes too extreme.
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As there are insufficiently many observations available in the extreme failure set D to use
standard statistical methods, extreme value theory is needed to estimate the failure probability
P {(X,Y ) ∈ D}.

1.2. Extreme value approximations

The basic idea of multivariate extreme value theory is to assume that the suitably standardized
componentwise maxima of the observed random vectors converge to a non-degenerate limit dis-
tribution. This assumption is equivalent to the convergence of suitably standardized quantile
functions of all marginal distributions and a condition on the dependence structure in extreme
regions.

To be more precise, denote the marginal distribution functions of X and Y by F1 and F2,
respectively, and let Ui(t) := F←

i (1 − 1/t) with H←(s) := inf{x ∈ R | H(x) ≥ s} denoting the
generalized inverse of an increasing function H . We assume that there exist real constants γi ,
positive functions ai and real functions bi such that for x > 0 and i ∈ {1,2}

lim
t→∞

Ui(tx) − bi(t)

ai(t)
= xγi − 1

γi

. (1.1)

For γi = 0 read the right-hand side as logx. Note that the right-hand side is the U -function
of the generalized Pareto distribution (GPD) with distribution function 1 − (1 + γix)−1/γi for
1 + γix > 0, that is to be interpreted as the standard exponential distribution function for γi = 0.
The parameter γi is the so-called extreme value index of the ith marginal. If it is positive, then
the support of Fi is unbounded from above and 1−Fi(t) roughly decays like the power function
with exponent 1/γi , while for γi < 0 the right endpoint x∗

i := F←
i (1) of the support is finite and

1 − Fi(x) roughly behaves like a multiple of (x∗
i − x)−1/γi as x ↑ x∗

i .
The aforementioned extremal dependence condition can be given in terms of the standardized

random variables 1−F1(X) and 1−F2(Y ), that are uniformly distributed on [0,1] if the marginal
distributions are continuous. More precisely, we assume the existence of a measure ν such that
for ν-continuous Borel sets B ⊂ [0,∞)2 bounded away from the origin

lim
t→∞ tP

{
(X,Y ) ∈ U(tB)

}= ν(B). (1.2)

Here and in what follows, for functions h1, h2 which are defined on subsets of the reals, we define
a function h on a subset of R2 by h(x1, x2) := (h1(x1), h2(x2)). The so-called exponent measure
ν describes the asymptotic dependence structure between extreme observations X and Y . Its
homogeneity property

ν(tB) = t−1ν(B), (1.3)

which holds for all Borel sets B ⊂ [0,∞)2 and all t > 0, will be pivotal for the construction of
our estimator of the failure probability. (Seen from a different angle, we assume an approximate
scaling law for the joint distribution of U←(X,Y ); cf. Anderson [1].) In addition, we need certain
smoothness assumptions to ensure that ν does not have mass on the coordinate axes and not too
much mass in their neighborhoods (cf. condition (D2) in Section 2.2). Further details about the
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extreme value assumptions can be found in de Haan and Ferreira [9], Sections 1.2 and 6.1, or
Beirlant et al. [2], Chapters 2 and 8.

1.3. Construction of estimators of extreme failure probabilities

We are interested in the situation that at most a few observations lie in the extreme failure set D

which implies that in our mathematical framework the failure set D = Dn must depend on the
sample size n such that the failure probability

pn := P
{
(X,Y ) ∈ Dn

}

tends to 0. To motivate an estimator of pn based on independent copies (Xi, Yi), 1 ≤ i ≤ n, of
(X,Y ) first note that from (1.2) we obtain the approximation

n

k
P

{
k

n
U←(X,Y ) ∈ B

}
≈ ν(B) (1.4)

for any sequence k = kn →∞ such that k/n → 0. To estimate pn using this approximation, we
must replace U← and ν with suitable estimators.

According to (1.1), we may approximate Ui((n/k)x) for sufficiently large n by

Tn,i(x) := ai(n/k)
xγi − 1

γi

+ bi(n/k) (1.5)

and estimate it by

T̂n,i(x) := âi (n/k)
xγ̂i − 1

γ̂i

+ b̂i (n/k), (1.6)

where âi (n/k), b̂i(n/k) and γ̂i are suitable estimators for ai(n/k), bi(n/k) and γi , respectively.
Likewise, the generalized inverse functions (k/n)U←

i (x) can be estimated by

T̂ ←
n,i (x) :=

(
1 + γ̂i

x − b̂i (n/k)

âi(n/k)

)1/γ̂i

. (1.7)

Here and in the sequel, (1 + γy)1/γ is defined as ey if γ = 0. For 1 + γy < 0 (or 1 + γy = 0
and γ < 0) the term (1 + γy)1/γ is not well defined. If γ is positive and y < −1/γ , then it may
be interpreted as 0, while for γ < 0 and y > −1/γ it may be defined to be ∞. However, we will
see that the precise definition of (1 + γy)1/γ for very small and for negative values of 1 + γy is
not important in the present setting (provided it is taken to be a non-decreasing function of y),
because the sets on which T̂ ←

n,i , i ∈ {1,2}, are not well defined are asymptotically negligible.

If, in (1.4), we substitute T̂ ←
n (x1, x2) := (T̂ ←

n,1(x1), T̂
←
n,2(x2)) for the marginal transformation

(k/n)U← and replace the probability in the left-hand side of (1.4) by its empirical counterpart,
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we arrive at the following estimator of ν

ν̂n(B) := 1

k

n∑
i=1

ε
T̂ ←

n (Xi,Yi )
(B), (1.8)

with εx denoting the Dirac measure with mass 1 at x.
Now, again interpreting convergence (1.2) (for t = en) as an approximation, we may estimate

the failure probability as follows:

pn = P
{
(X,Y ) ∈ Dn

}
= P

{
(X,Y ) ∈ U

(
en · e−1

n U←(Dn)
)}

≈ 1

en

ν
(
e−1
n U←(Dn)

)
(1.9)

≈ 1

en

ν

(
n

ken

T̂ ←
n (Dn)

)

≈ 1

en

ν̂n

(
n

ken

T̂ ←
n (Dn)

)

=: p̂n. (1.10)

The basic idea of this estimator is to blow up the failure set, after a standardization of the
marginals, such that it contains sufficiently many observations to allow the estimation of its
probability by an empirical probability. Note that, for given marginal transformations, the esti-
mator p̂n depends on the tuning parameters k and en only via their product ken, which controls
the factor by which the transformed failure set is blown up; see Section 2.5 for a detailed dis-
cussion. This factor should be chosen by the statistician such that two contrary effects are bal-
anced. On the one hand, ken must not be too small, such that the inflated standardized failure set
n/(ken)T̂

←
n (Dn) contains sufficiently many marginally transformed observations T̂ ←

n (Xi, Yi),
and thus the empirical probability ν̂n(n/(ken)T̂

←
n (Dn)) is an accurate estimate of its expecta-

tion. On the other hand, the set e−1
n U←(Dn) must be sufficiently extreme to justify approxima-

tion (1.9). In Section 2.5, we discuss a heuristic tool to ensure this balance.

1.4. Alternative approaches

An estimator related to p̂n has been suggested and analyzed by de Haan and Sinha [11] in a
much more restrictive framework. In particular, specific estimators for the marginal parameters
have been considered which use the same number kn of largest order statistics for both marginal
fits, which is inefficient if the GPD approximation (cf. (2.6) below) is less accurate for one of the
marginal distributions. Likewise, the flexibility of the estimator is increased in the present paper
by allowing that the blow-up factor en deviates from the unknown model constant dn defined
below, while de Haan and Sinha [11] used a consistent estimator of dn that was made identifiable
in a quite arbitrary way by fixing some point on the boundary of some set S, which together with
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the factor dn determines the failure set Dn (see (2.1)). In our simulation study, it turns out that
the inferior performance of the estimator proposed by de Haan and Sinha is mainly caused by
this often inappropriate choice of en.

Moreover, the shape of the failure set considered by de Haan and Sinha is restricted. For
example, the case q(∞) = 0 (in our notation; cf. condition (Q2) below) is ruled out by condition
(2.9) of that paper. The model assumption

Dn := {
(s, t) | f (s/xn, t/yn) ≥ 1

}
for some function f and sequences of normalizing constants xn and yn seems quite restrictive
and unnatural, because it allows the failure set to tend towards the “north-east” only by a linear
scaling of both marginals. This parametrization does not fit well to extreme value theory if the
extreme value indices are not positive, which is usually the case in environmetrics, one of the
most important fields of application of our theory besides financial risk management.

Even more troublesome is the fact that by assumption (1.5) of de Haan and Sinha [11] the
failure set is described in terms of the number kn of largest order statistics that is picked by
the statistician. Hence, the model parametrization depends on the statistical procedure used to
analyze the model, which makes it extremely difficult to interpret.

Finally, while the influence of each marginal transformation is clearly separated in the de-
scription of the limiting distribution in our main Theorem 2.1, in Theorem 4.1 of de Haan and
Sinha [11] the marginal parameters are seemingly intermingled. Therefore, the generalization of
the present results to higher dimension is much more straightforward than those of de Haan and
Sinha (see the discussion in Section 2.6).

An alternative to our genuinely multivariate estimator can be constructed by the so-called
structural variable approach if the failure set is of the form Dn = {(s, t) | h(s, t) ≥ tn} for some
known function h and threshold tn. Then one may apply techniques from univariate extreme
value theory to the pseudo-observations h(Xi,Yi), 1 ≤ i ≤ n (cf. Coles [6], Chapter 8.2.4 and
page 156, or Bruun and Tawn [4]). However, even for this class of failure sets, an analysis of the
dependence structure between the two components of the observed vectors is of independent in-
terest, and it seems more natural to use the same approach for model fitting and for the estimation
of quantities like failure probabilities. Moreover, often one wants to estimate the failure proba-
bility for several different sets (e.g., to find the cheapest construction to ensure a certain level
of safety); in this case it is both more efficient and more natural to use estimators in a unified
framework as considered in the present paper.

In the multivariate approach, Coles and Tawn [7] and Bruun and Tawn [4] used parametric
models for the dependence structure in the closely related problem to estimate a parameter defin-
ing a failure set such that the corresponding failure probability equals a given value. However,
usually there is no physical reason for such parametric models. By using them nevertheless, one
trades a modeling error, which is difficult to assess, for an estimation error, which can be quanti-
fied at least asymptotically (see Theorem 2.1 below). Having said this, it may be sensible to use a
parametric estimator of the failure probability if experience strongly suggest that a simple model
describes the data well. In that case, our approach may be used as a countercheck of the model
assumptions.

Note that our assumptions rule out that the exponent measure ν puts mass on the coordinate
axes. In particular, X and Y are assumed asymptotically dependent in the sense of multivariate
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extreme value theory in that limt→∞ P(X > U1(t) | Y > U2(t)) > 0. In the case of asymptotic
independent coordinates X and Y , consistency of an analogous estimator for the failure probabil-
ity was proved by Draisma et al. [13], while its asymptotic normality was established by Müller
[17].

1.5. Outline

The paper is organized as follows: In Section 2, we first introduce and discuss in detail the frame-
work in which we then prove asymptotic normality of our estimator of the failure probability.
Moreover, we propose a consistent estimator of the limiting variance, derive an asymptotic con-
fidence interval, discuss the role of ken and propose a heuristic approach for choosing this factor.
In Section 3, we apply the theory to the motivating example given at the beginning, while the
finite sample performance of the estimator is investigated in Section 4. All proofs are collected
in Section 5.

2. Main results

2.1. Analysis of the estimation error

The main goal of the present paper is to establish the asymptotic normality of the estimator p̂n

under conditions on the underlying distribution and the failure set which are easy to interpret
and relatively simple to verify. To achieve this objective, we first decompose the estimation error
into 6 parts. Loosely speaking, the one that usually dominates the others (term IV in equation
(2.5) below) is due to the marginal fitting, two terms (II and III) are related to the bias and
the random error of the estimator of the exponent measure, respectively, term VI stems from
the approximation error in (1.4), while the remaining two are related to a technical truncation
argument.

To derive this decomposition, recall that, in our asymptotic framework, the failure set Dn

must become more extreme in the sense that it moves in the north-east direction as the sample
size n increases to ensure that it contains at most a few observations. To make both coordinates
comparable, we standardize the marginals using U← and assume that U←(Dn) is essentially an
increasing multiple of a fixed set S. That way we ensure that none of the coordinates dominates
the other. More precisely, we assume that for different sample sizes the failure sets are of the type

Dn = U(dnS) ∩R
2 = {(

U1(dnx),U2(dny)
) | (x, y) ∈ S

}∩R
2 (2.1)

for a fixed set S ⊂ [0,∞)2 and constants dn > 0 tending to ∞. Note that from the analog to (1.9)
where en is replaced with dn one obtains dn ≈ ν(S)/pn (see Lemma 5.9 for a precise proof of
the assertion pndn → ν(S)). Hence, the model constants dn determine at which rate the failure
probabilities tend to 0.

The crucial idea in the analysis of the asymptotic behavior of p̂n is to approximate the estima-
tor by the empirical measure of a random transformation Hn(S) of the set S (with Hn defined in
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(2.2) below) under the following analog to ν̂n (defined in (1.8)) with the fitted GPDs replaced by
the “true” ones:

νn(B) := 1

k

n∑
i=1

εT ←
n (Xi,Yi )(B).

Since the GPD approximation of the marginals is accurate only in the upper tail (and to avoid
the aforementioned problem with the definition of T ←

n ), we must first show that asymptotically
it does not matter if we replace S with a suitably defined subset S∗

n that is bounded away from
the coordinate axes. For this set, we may use the approximation

p̂n ≈ 1

en

νn

(
dn

en

Hn

(
S∗

n

))
,

where the random transformation Hn of the marginals is defined by

Hn(x) := en

dn

T ←
n ◦ T̂n ◦ (T̂ (c)

n

)← ◦U(dnx) (2.2)

with

c = cn := k

n
en (2.3)

and

T̂ (c)
n (x, y) = T̂n(cnx, cny). (2.4)

Check that by (1.1) one has Hn(x) ≈ (en/dn)(T
(c)
n )← ◦ U(dnx) ≈ (en/dn)(T

(c)
n )← ◦ Tn((k/

n)dnx) ≈ x (cf. Lemma 5.1).
Now, using the homogeneity of ν, we may break the estimation error into 6 parts as follows:

p̂n − pn = p̂n − 1

en

νn

(
dn

en

Hn

(
S∗

n

))

+ 1

en

(
νn(B) −Eνn(B)

)|B=(dn/en)Hn(S∗
n)

+ 1

en

(
Eνn(B) − ν(B)

)|B=(dn/en)Hn(S∗
n)

+ 1

dn

(
ν
(
Hn

(
S∗

n

))− ν
(
S∗

n

))
(2.5)

+ 1

dn

(
ν
(
S∗

n

)− ν(S)
)

+ ν(dnS) − pn

=: I + II + III + IV + V + VI.
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It will turn out that, under suitable conditions, part IV dominates all the other terms. Its asymp-
totic behavior is largely determined by the asymptotics of the marginal estimators if ν is suffi-
ciently smooth.

Under very weak conditions on the set S, we will show that the terms I and V are negligible,
if S∗

n is defined suitably. If dn/en is bounded and bounded away from 0, then using methods from
empirical process theory the second term can be shown to be asymptotically negligible. Part VI
is a bias term which is negligible if dn is sufficiently large (depending on the rate of convergence
in (1.2)). Similarly, the term III, which equals ((n/k)P {T ←

n (X,Y ) ∈ B̃} − ν(B̃))/dn for B̃ =
Hn(S

∗
n), describes a bias term which is asymptotically negligible if both the approximation (1.4)

and the marginal approximation U((n/k)B) ≈ Tn(B) are sufficiently accurate.

2.2. Conditions for asymptotic normality

We will make the following assumptions about the marginal distributions and the estimators of
the marginal parameters:

(M1) There exist constants x0
i < F←

i (1) such that Fi is continuous and strictly increasing on
[x0

i , F←
i (1)] ∩R for i ∈ {1,2}.

(M2) For all i ∈ {1,2}, there exist normalizing functions ai > 0, bi ∈ R and Ai �= 0 and
constants ρi < 0 such that for all x > 0

lim
t→∞

(Ui(tx) − bi(t))/ai(t) − (xγi − 1)/γi

Ai(t)
= ψ̄γi ,ρi

(x) :=
⎧⎨
⎩

xγi+ρi

γi + ρi

, γi + ρi �= 0,

logx, γi + ρi = 0.

(M3)

k1/2
(

âi (n/k)

ai(n/k)
− 1,

b̂i (n/k) − bi(n/k)

ai(n/k)
, γ̂i − γi

)
1≤i≤2

−→ (αi, βi,	i)1≤i≤2

weakly.

Condition (M1) is not crucial, but it is assumed to simplify the proofs and the formulation of
some technical results (cf. de Haan and Ferreira [9], Theorem B.3.13).

(M2) is the usual second order condition with the additional restriction that the second order
parameters ρi are negative. Again, one may drop the latter assumption at the cost of additional
technical complications. According to Corollary 2.3.7 of de Haan and Ferreira [9] we may and
will assume that the normalizing constants are chosen such that the following uniform version
holds: For all ε, δ > 0 there exists t0 such that

∣∣∣∣ (Ui(tx) − bi(t))/ai(t) − (xγi − 1)/γi

Ai(t)
− ψ̄γi ,ρi

(x)

∣∣∣∣ ≤ δxγi+ρi max
(
xε, x−ε

)
(2.6)

=: δxγi+ρi±ε
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provided t, tx > t0. In fact, the main results hold under the following weaker assumption:∣∣∣∣Ui(tx) − bi(t)

ai(t)
− xγi − 1

γi

∣∣∣∣= O
(
Ai(t)x

γi+ρi±ε
)

(2.7)

as t →∞ uniformly for x ≥ t0/t . Under condition (M2), Ai is regularly varying with index ρi .
Condition (M3) gives a lower bound on the rate at which the marginal estimators converge.

Here some of the limiting random variables may be equal to 0 almost surely. In particular, this
will usually be the case, if the ith marginal estimators use ki largest order statistics and k = o(ki).
However, typically at least some of the limiting random variables are non-degenerate and jointly
normally distributed. In the sequel, we will choose versions such that the convergence in (M3)
holds in probability.

The failure set Dn has to satisfy the following conditions.

(Q1) There exists a set

S = {
(x, y) ⊂ [0,∞)2 | y ≥ q(x) ∀x ∈ [0,∞)

}⊂ [0,∞)2

and constants dn > 0 tending to ∞ such that

Dn = U(dnS) ∩R
2 = {(

U1(dnx),U2(dny)
) | (x, y) ∈ S

}∩R
2.

Here the function q : [0,∞) →[0,∞], which describes the boundary of the “archetypal
failure set” S, is assumed monotonically decreasing and continuous from the right with
q(0) > 0.

(Q2)

x(1−γ1)/2| logx| = O
(
q(x)

)
as x ↓ xl := inf

{
x ≥ 0 | q(x) < ∞}

,

y(1−γ2)/2| logy| = O
(
q←(y)

)
as y ↓ q(∞) := lim

x→∞q(x).

In particular, condition (Q1) ensures that one may define the generalized (right-continuous) in-
verse function (of a decreasing function) in the usual way:

q←(v) := inf
{
x > 0 | q(x) ≤ v

}
with the convention inf∅=∞. Roughly speaking, the conditions (Q2) ensure that the archetypal
failure set S does not have too much mass in a neighborhood of the axes where the estimated
marginal transformation often perform poorly. It is always fulfilled if γ1 ≤ 1 or xl > 0, resp., if
γ2 ≤ 1 or q(∞) > 0.

Moreover, we need some conditions on the extremal dependence between X and Y which is
asymptotically described by the exponent measure ν defined in (1.2). In view of (1.1), one may
replace the standardization by U with a standardization using Tn. To bound the bias terms III
and VI in (2.5), we must specify the rate of the resulting convergence towards ν:

(D1) There exist an exponent measure ν on [0,∞)2 and a function A0(t) > 0 converging to 0
as t tends to ∞ such that

tnP

{((
1 + γ1

X − b1(tn)

a1(tn)

)1/γ1

,

(
1 + γ2

Y − b2(tn)

a2(tn)

)1/γ2
)
∈ B

}
− ν(B) = O

(
A0(tn)

)
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uniformly for all sets B ∈ Btn,M for tn = n/k and for tn = dn and arbitrary M > 0.
Here, Btn,M consists of all sets of the form {(H̃ (n,i)

ϑi ,χi ,ξi
(xi))i∈{1,2} | (x1, x2) ∈ C} with C =

S ∩ [u,∞) × [v,∞) or C = [xl, u) × [q(u−),∞) or C = [q←(v),∞) × [q(∞), v) for some
u,v > 0 and some ϑi,χi, ξi ∈ [−M,M] if tn = n/k, and Btn,M comprises all sets of the form
{((1 + γi(Ui(dnxi) − bi(dn))/ai(dn))

1/γi )i∈{1,2} | (x1, x2) ∈ C} with C = [xl, u) × [q(u−),∞)

or C = [q←(v),∞) × [q(∞), v) for some u,v > 0 if tn = dn. Here, for i ∈ {1,2},

H̃
(n,i)
ϑi ,χi ,ξi

(x) :=
[

1 + γi

(
c
−(γi−k−1/2ϑi)
n − 1

γi − k−1/2ϑi

(
1 + k−1/2ξi

)
(2.8)

+ c
−(γi+k−1/2χi)
n

Ui(dnx)− bi(n/k)

ai(n/k)

)]1/γi

.

In (D1) the rectangles can also be replaced with the subsets S ∩ ((0, u) × (0,∞)), resp. S ∩
((0,∞) × (0, v)). It is easy to see that condition (D1) is met if (X,Y ) has a density f and ν a
density η which satisfy the following approximation

sup
(x,y)∈(0,∞)2,x∨y≥1

1

w(x,y)

∣∣∣∣ta1(t)a2(t)x
γ1−1yγ2−1

× f

(
a1(t)

xγ1 − 1

γ1
+ b1(t), a2(t)

yγ2 − 1

γ1
+ b2(t)

)
− η(x, y)

∣∣∣∣
= O

(
A0(t)

)

for some weight function w which is Lebesgue-integrable on {(x, y) ∈ (0,∞)2, x ∨ y ≥ 1}. This
sufficient condition applies, for example, to the bivariate Cauchy distribution restricted to (0,∞)2

and to densities of the form f (x, y) = 1/(1 + xα + yβ) with α,β > 1 such that 1/α + 1/β < 1.
The dependence may also be described by the pertaining spectral measure � on [0,π/2]

defined by

�
([0, ϑ])= ν

{
(x, y) ∈ [0,∞)2 | x2 + y2 > 1, arctan

y

x
≤ ϑ

}
, ϑ ∈ [0,π/2].

(D2) The spectral measure has a continuous Lebesgue density ϕ on [0,π/2] such that
infδ≤t≤π/2−δ ϕ(t) > 0 for all δ > 0 and

lim
λ→1

lim sup
t↓0

∣∣∣∣ϕ(λt)

ϕ(t)
− 1

∣∣∣∣+
∣∣∣∣ϕ(π/2 − λt)

ϕ(π/2 − t)
− 1

∣∣∣∣= 0. (2.9)

This assumption rules out that the spectral measure (and hence the exponent measure) puts mass
on the coordinate axes. In particular, X and Y must not be asymptotically independent (in the
sense of multivariate extreme value theory), because then the spectral measure is concentrated
on {0,π/2}. Condition (2.9) is satisfied if ϕ is extended regularly varying at 0 and at π/2 (cf.
Bingham et al., [3], Section 2.0) or if the function log◦ϕ ◦ exp has a bounded derivative.
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Condition (D2) is somewhat restrictive in that it requires the spectral density to be bounded.
Thus, the exponent measure has a Lebesgue density η given by

η(x, y) = (
x2 + y2)−3/2

ϕ

(
arctan

y

x

)
, x, y > 0, (2.10)

which tends to 0 at the rate (|x| + |y|)−3 as |x| →∞ or |y| →∞.
Finally, we impose the following conditions on the sequences dn, en and k = kn:

(S1) k → ∞, n = O(en) (so that k = O(cn) with cn = enk/n → ∞), dn � en (i.e., 0 <

lim infdn/en ≤ lim supn→∞ dn/en < ∞), and wn(γi) = o(k1/2) for i ∈ {1,2} with

wn(γi) :=
⎧⎨
⎩

log cn, γi > 0,
1
2 log2 cn, γi = 0,

(dnk/n)−γi , γi < 0.

(S2) Ai(n/k) = o(k−1/2wn(γi)) for i ∈ {1,2} and A0(n/k) = o(k−1/2 max(wn(γ1),wn(γ2)))

(S3)

k1/2 = O
(
cn ∨ c

γi
n

)
if γi ≥ 0 for i ∈ {1,2},

k1/2 = o
(
c

1−γ1
n

)
if γ1 < 0 and xl = 0, and

k1/2 = o
(
c

1−γ2
n

)
if γ2 < 0 and q(∞) = 0.

Recall that dn is a constant determined by the model, which describes the rate at which the
failure probability pn tends to 0, while en is chosen by the statistician such that the inflated failure
set contains sufficiently many observations. It seems natural to choose en of the same order as
dn, because this way one compensates for the shrinkage of Dn. More precisely, dn � en if and
only if the expected number of transformed observations in the inflated transformed failure set
is of the same order as k, which can easily be checked in practical applications. To see this, note
that by (1.4), (1.3) and (2.1) this expected number equals

nP

{
T̂ ←

n (X,Y ) ∈ n

ken

T̂ ←
n (Dn)

}
≈ nP

{
k

n
U←(X,Y ) ∈ 1

en

U←(Dn)

}
(2.11)

≈ kν

(
dn

en

S

)
= k

en

dn

ν(S).

However, the condition dn � en can be substantially weakened at the price that one needs differ-
ent conditions for different combinations of signs of γ1 and γ2.

The first condition of (S1) ensures that the expected number of marginally standardized ob-
servations in the inflated standardized failure region tends to ∞, whereas the second condition
means that the expected number of observations in the failure region remains bounded as n →∞.
The last condition of (S1) is needed to ensure consistency of the estimator in the sense that
p̂n/pn → 1. It can only be satisfied if min(γ1, γ2) > −1/2. This restriction on the extreme value
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indices usually arises if one wants to prove asymptotic normality for estimators of tail probabili-
ties; cf., for example, de Haan and Ferreira [9], Remark 4.4.3, or Drees et al. [14], Remark 2.2.

From (S2) it follows that the bias is asymptotically negligible, while (S3) will imply that the
part of the set S near the axes (corresponding to observations where one of the coordinates is
much larger than the other) does not play an important role asymptotically. Similarly as above,
these conditions may also be substantially weakened at the price of much more complicated
conditions on the behavior of q depending on γ1, γ2 and η.

2.3. Asymptotic approximation of the estimator p̂n

Under the above condition, we establish the following approximation to the estimation error of
p̂n in terms of the limiting random variables of the marginal estimators.

Theorem 2.1. If the conditions (M1)–(M3), (D1), (D2), (Q1), (Q2) and (S1)–(S3) are fulfilled,
then

k1/2dn(p̂n − pn)

= wn(γ1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−	1

γ1

∫ ∞

q(∞)

q←(v)η
(
q←(v), v

)
dv, γ1 > 0,(

α1

γ1
− β1 − 	1

γ 2
1

)∫ ∞

q(∞)

(
q←(v)

)1−γ1η
(
q←(v), v

)
dv, γ1 < 0,

−	1

∫ ∞

q(∞)

q←(v)η
(
q←(v), v

)
dv, γ1 = 0,

(2.12)

+wn(γ2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−	2

γ2

∫ ∞

xl

q(u)η
(
u,q(u)

)
du, γ2 > 0,(

α2

γ2
− β2 − 	2

γ 2
2

)∫ ∞

xl

(
q(u)

)1−γ2η
(
u,q(u)

)
du, γ2 < 0,

−	2

∫ ∞

xl

q(u)η
(
u,q(u)

)
du, γ2 = 0,

+ oP

(
wn(γ1)∨wn(γ2)

)
.

Since pndn → ν(S), Theorem 2.1 remains true when the left-hand side of (2.12) is replaced
with k1/2ν(S)(p̂n/pn − 1).

The weights wn(γ1) and wn(γ2) on the right-hand side of (2.12) may be different, and then
they converge to ∞ at different rates. More precisely, wn(γ ) is a non-increasing function of
γ , and it is strictly decreasing on (−∞,0]. Therefore, the smaller of both marginal extreme
value indices γ1 and γ2 determines the rate of convergence of p̂n towards pn. If at least one of
the indices is non-positive and the indices are not equal, then the summand corresponding to the
larger index is negligible. (In that case, it may happen that one cannot prove asymptotic normality
using Theorem 2.1, because the limiting random variables αi,βi and 	i pertaining to the smaller
extreme value index are equal to 0; cf. the above discussion of condition (M3).)
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If both extreme value indices are positive, then both main terms on the right-hand side of (2.12)
are of the same order. In that case, (k1/2dn/ log cn)(p̂n − pn) converge to a limit distribution
which typically will be non-degenerate if at least one of the limiting random variables 	1 and
	2 in (M3) is non-degenerate. If they are jointly normal, then we may derive the asymptotic
normality of the estimator for the failure probability pn.

However, if the fit of the marginal tails by GPDs is much more accurate than the approximation
of the dependence structure by the extreme value dependence structure described by the exponent
measure, then all limiting random variables in condition (M3) may be equal to 0, because the
marginal estimators are based on the largest ki � k order statistics and converge at the rate
k
−1/2
i = o(k−1/2). In that case, Theorem 2.1 merely specifies an upper bound on the estimation

error but not which of the terms I–VI dominates the others.

2.4. Asymptotic confidence intervals

Theorem 2.1 can be used to construct asymptotic confidence intervals. To this end, it is advisable
to reformulate the assertion as a convergence result on k1/2en(p̂n −pn), because dn is unknown.
Then one needs consistent estimators for the variance of the random variables occurring on the
right-hand side of (2.12) which usually are asymptotically normal, and consistent estimators for
en/dn times the integral there.

We will outline how to estimate the term I2 := (en/dn)
∫∞
xl

q(u)η(u, q(u))du, that is needed
in the case γ2 ≥ 0. To avoid the estimation of the density η of ν, we approximate the integral by
the ν-measure of a shrinking set as follows. Because η is continuous, for small �n one has

en

dn

∫ ∞

xl

q(u)η
(
u,q(u)

)
du ≈ en

dn

∫ ∞

xl

1

2�n

∫ (1+�n)q(u)

(1−�n)q(u)

η(u, v)dv du

= 1

2�n

(
ν
(
S−

n,2

)− ν
(
S+

n,2

))

with

S±
n,2 :=

{
dn

en

(
u, (1 ± �n)v

) ∣∣∣ (u, v) ∈ S

}
.

Now one can proceed similarly as in (1.9) (using (1.4) and (2.1)) to construct an estimator of
(en/dn)

∫∞
xl

q(u)η(u, q(u))du:

Corollary 2.2. Let

Ŝ±
n,2 :=

{(
u, (1 ± �n)v

) ∣∣∣ (u, v) ∈ n

ken

T̂ ←
n (Dn)

}

for some sequence �n ↓ 0 such that k−1/2(wn(γ1)∨wn(γ2)) = o(�n). Suppose that all conditions
of Theorem 2.1 are fulfilled and, in addition, that an analog to condition (D1) holds where cn is
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replaced with cn/(1 ± �n). Then

În,2 := ν̂n(Ŝ
−
n,2)− ν̂n(Ŝ

+
n,2)

2�n

= en

dn

∫ ∞

xl

q(u)η
(
u,q(u)

)
du
(
1 + oP (1)

)
.

In a completely analogous way one can estimate I1 := (en/dn)
∫∞
q(∞)

q←(v)η(q←(v), v)dv by

În,1 := (ν̂n(Ŝ
−
n,1)− ν̂n(Ŝ

+
n,1))/(2�n) with

Ŝ±
n,1 :=

{(
(1 ± �n)u, v

) ∣∣∣ (u, v) ∈ n

ken

T̂ ←
n (Dn)

}
.

Now suppose that both extreme value indices γi are positive and that we estimate them by
the Hill estimator, that is, γ̂1 = k−1

1

∑k1
i=1 log(Xn−i+1:n/Xn−k1:n) with Xn−i+1:n denoting the ith

largest order statistic among X1, . . . ,Xn, and likewise γ̂2 = k−1
2

∑k2
i=1 log(Yn−i+1:n/Yn−k2:n). It

is well known that k
1/2
i (γ̂i − γi) → N(0,γ 2

i ) if condition (M2) holds and k
1/2
i Ai(n/ki) → 0. In

particular, 	i = 0 if k = o(ki). However, if ki/k → κi ∈ (0,∞) for both i = 1 and i = 2, then
the joint distribution of 	1 and 	2 is needed for the construction of confidence intervals.

In the case k1 = k2 = k, de Haan and Resnick [10] derived a representation of 	i in terms of
a Gaussian process under slightly different conditions than used in the present paper. One may
mimic their approach to show that under our conditions, (	i/γi)i∈{1,2} has the same distribution
as ((

∫∞
1 t−1Wi(t/κi)dt − Wi(1/κi))/κi)i∈{1,2} where (W1,W2) is a bivariate centered Gaus-

sian process with covariance function given by Cov(W1(s),W1(t)) = ν((s ∨ t,∞) × (0,∞)),
Cov(W2(s),W2(t)) = ν((0,∞) × (s ∨ t,∞)) and Cov(W1(s),W2(t)) = ν((s,∞) × (t,∞)).
Direct calculations show that thus (	i/γi)i∈{1,2} is a centered Gaussian vector with marginal
variances 1/κi and covariance ν((κ2,∞) × (κ1,∞)). Hence, with z1−α/2 denoting the standard
normal (1 − α/2)-quantile and σ̂ 2 := Î 2

n,1/κ1 + Î 2
n,2/κ2 + 2ν̂n((κ2,∞)× (κ1,∞))În,1În,2,

[
p̂n − k−1/2e−1

n log cnσ̂ z1−α/2, p̂n + k−1/2e−1
n log cnσ̂ z1−α/2

]
(2.13)

is a two-sided confidence interval for pn with asymptotic confidence level 1 − α. (This formula
is also applicable if one of the κi equals ∞.)

As an alternative to the above approach, one may estimate the density of the spectral measure
� (cf. Cai et al. [5]) and construct both an estimator for the integrals and for the joint distribution
of the limiting random variables on the right-hand side of (2.12) from it.

2.5. Choice of the blow-up factor

Our estimation procedure consists of two steps. First the marginal parameters are estimated using
a certain fraction of largest order statistics, and both the observations and the failure set are
marginally standardized accordingly. In the second step the transformed failure set is blown up
by a factor chosen by the statistician, and the failure probability is estimated by a suitable fraction
of the empirical probability of the inflated set. As the choice of a suitable sample fraction used
in the marginal fitting has been extensively discussed in literature (see, e.g., Beirlant et al. [2],
Section 5.8), here we discuss how to choose the blow-up factor in the second step. For simplicity,
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in the concrete calculations we focus on the case that both extreme value indices are positive, but
the general remarks apply to the other cases as well.

The estimation of the marginal parameters γi, ai(n/k) and bi(n/k) yield approximations of
the marginal distribution functions of the type

F̂i(x) := 1 −
(

1 + γ̂i

x − μ̂i

σ̂i

)−1/γ̂i

, i = 1,2, (2.14)

which are sufficiently accurate for x satisfying 1 − Fi(x) ≤ ki/n. The corresponding estimator
Û←

i := 1/(1 − F̂i) can also be interpreted as an estimator (n/k)T ←
n,i for different values of k.

However, if one starts with a given approximation of the marginal tails as in (2.14), then the num-
ber k does not have any operational meaning. In that case it seems more natural to reformulate our
estimator p̂n, the main result (2.12) and the resulting confidence interval (2.13) in terms of Û←

i .
For a fixed estimator Û of U , the estimator of the failure probability

p̂n = 1

en

ν̂n

(
n

ken

T̂ ←
n (Dn)

)
= 1

ken

n∑
i=1

ε
Û←(Xi ,Yi )

(
n

ken

Û←(Dn)

)

depends on the constants k and en only via their product ken. At first glance, this seems peculiar,
because in Theorem 2.1 the estimation error seemingly depends on k and en in completely dif-
ferent ways. However, according to the discussion in Section 2.4, for γ1, γ2 > 0, approximation
(2.12) can be rewritten as

p̂n − pn = (ken)
−1/2 log

ken

n
N
(
1 + oP (1)

)
(2.15)

for a centered Gaussian random variable N with variance

σ 2
N = 1

en

(
k

k1
I 2

1 + k

k2
I 2

2 + 2ν

((
k2

k
,∞

)
×
(

k1

k
,∞

))
I1I2

)

= ken

k1

(
I1

en

)2

+ ken

k2

(
I2

en

)2

+ 2ν

((
k2

ken

,∞
)
×
(

k1

ken

,∞
))

I1

en

I2

en

,

where I1 := (en/dn)
∫∞
q(∞)

q←(v)η(q←(v), v)dv and I2 := (en/dn)
∫∞
xl

q(u)η(u, q(u))du. Thus
Ii/en does not depend on en, and the distribution of the approximating Gaussian random variable
on the right-hand side of (2.15) depends on k and en only via their product.

Moreover, also the estimators

În,1

en

= ν̂n(Ŝ
−
n,1)− ν̂n(Ŝ

+
n,1)

2�nen

= 1

2�n

· 1

ken

n∑
i=1

ε
Û←(Xi ,Yi )

({(
(1 − �n)u, v

) | (u, v) ∈ n

ken

Û←(Dn)

}

∖ {(
(1 + �n)u, v

) | (u, v) ∈ n

ken

Û←(Dn)

})
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and likewise În,2/en depend on the product ken only. Finally, the covariance term ν((k2/(ken),

∞)× (k1/(ken),∞)) = k2en/(λk1k2)ν((k/(λk1),∞)× (k/(λk2),∞)) can be estimated by

k2en

λk1k2
ν̂n

((
k

λk1
,∞

)
×
(

k

λk2
,∞

))
= ken

λk1k2

n∑
i=1

ε
Û←(Xi ,Yi )

((
n

λk1
,∞

)
×
(

n

λk2
,∞

))
.

Here the choice λ ∈ (0,1] ensures that Û← is used only on the range where it is a sufficiently
accurate estimator of the true function U←.

To sum up, all estimates only depend on ken, but not on the numbers k and en separately.
This product should be chosen as large as possible under the constraints that both marginal
approximations of U←

i by Û←
i and the approximation of the joint distribution of the stan-

dardized vector (cf. (1.2)) are reliable. To ensure the former constraint, for the vast majority
of the observations (Xi, Yi), the indicator of the set {Û←(Xi, Yi) ∈ n/(ken)Û

←(Dn)} should
not depend on the particular values of Û←

1 (Xi) or Û←
2 (Yi) if these are smaller than n/k1 or

n/k2 (either because the other component of the vector is so large that the observations lie in
the failure set anyway, or because the other component is so small so that the indicator is 0
even if the maximal value n/ki is attained). For instance, if we consider failure sets of the type
Dn := {(x, y) | α1x+α2y > R}, then ken should be smaller than mini=1,2 kiÛ

←
i (R/αi), because

otherwise for sure Û←(x, y) ∈ (n/ken)Û
←(Dn) for some values (x, y) for which Û←(x, y) is

not a reliable estimate of U←(x, y).
However, the above crude upper bound for ken is not sufficient to ensure that p̂n is a reliable

estimate of pn, because the dependence structure must be accurately described by the exponent
measure ν, too. To determine a range of reasonable values for ken, we propose (in analogy to
the well-known Hill plot used for selecting a reasonable sample fraction in the marginal fitting),
to plot p̂n versus ken and then to choose ken in a range where this curve seems stable. In the
data example discussed in Section 3, this approach seems to work pretty well. (Motivated by the
discussion by Drees et al. [15], it might also be worthwhile to use a log-scale for ken in order to
get a clearer picture about a good choice for this factor, but (unlike for the so-called AltHill plot)
a sound theoretical justification for this modification is yet lacking.)

2.6. Generalization to higher dimensions

We conclude this section by indicating how to generalize the main result to R
d -valued vectors

Xi = (Xi,1, . . . ,Xi,d) of arbitrary dimension d ≥ 2, albeit a detailed discussion is beyond the
scope of this paper. An inspection of the proof of Lemma 5.3 reveals that the generalized inverse
q← of the function q is used to describe the boundary of the set S as a function of the second
coordinate. If d > 2 (and hence the generalized inverse is not defined), then an analogous de-
scription is needed for all coordinates, that is, we need d different representations of the set S of
the form

S = {
x ∈ [0,∞)d | xi ≥ qi(x−i )

}
, 1 ≤ i ≤ d, (2.16)

where x−i ∈ [0,∞)d−1 denotes the vector x with ith coordinate removed and qi are suitable
[0,∞]-valued functions that are decreasing in each argument. Then one may proceed as in the
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case d = 2 by separately examining the influence of the transformation of each marginal on the ν-
measure of the (suitably restricted) set S. Under suitable integrability conditions on the functions
qi and obvious generalizations of the conditions (M1)–(M3), (D1), (D2) and (S1)–(S3), it can be
shown that

k1/2dn(p̂n − pn)

=
d∑

i=1

wn(γi)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−	i

γi

∫
qi(v)η

(
q̃i (v)

)
1(0,∞)

(
qi(v)

)
λλd−1(dv), γi > 0,(

αi

γi

− β−
	i

γ 2
i

)

×
∫ (

qi(v)
)1−γ1η

(
q̃i (v)

)
1(0,∞)

(
qi(v)

)
λλd−1(dv), γi < 0,

−	i

∫
qi(v)η

(
q̃i (v)

)
1(0,∞)

(
qi(v)

)
λλd−1(dv), γi = 0

(2.17)

+ oP

(
wn(γi)

)
.

Here λλd−1 denotes the Lebesgue measure on [0,∞)d−1 and q̃i (v) is the vector in [0,∞)d whose
ith coordinate equals qi(v) and the other d − 1 coordinates are those of v.

If the boundary ∂S of the set S is sufficiently smooth, then the integrals on the right-hand side
of (2.17) can be represented more naturally as integrals w.r.t. certain differential forms (see, e.g.,
Schreiber [19], for an informal introduction to differential forms). More precisely, assume that
there exists a set D ⊂ [0,∞)d−1 and a continuously differentiable function q :D →[0,∞), such
that ∂S = {�(u) := (u, q(u)) | u ∈ D}. Then the right-hand side of (2.17) equals

d∑
i=1

wn(γi)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−	i

γi

∫
�

pri · η dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd, γi > 0,(
αi

γi

− β−
	i

γ 2
i

)

×
∫

�

(pri )
1−γi · η dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd, γi < 0,

−	i

∫
�

pri · η dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd, γi = 0

+ oP

(
wn(γi)

)
with pri denoting the projection to the ith coordinate, which is the integral of a (d −1)-form over
δS. This representation reflects most clearly the fact that the ith term results from the change of
the boundary surface of S by the marginal transformation Hn,i . Such a representation can be
derived for more general differentiable manifolds ∂S.

3. Analysis of insurance claims

In this section, we discuss issues arising in the analysis of a well-known data set of claims to
Danish fire insurances. The data set contains losses to building(s), losses to contents and losses to
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profits (caused by the same fire) observed in the period 01/1980–12/2002, discounted to 07/1985.
The claims are recorded only if the sum of all components exceeds 1 million Danish Kroner
(DKK). Due to this recording method, there is an artificial negative dependence between the
components, since if one component is smaller than 1 million DKK, the sum of the others must
be accordingly larger. To avoid this effect, we therefore consider only those claims for which at
least one component exceeds 1 million DKK, which leads to a sample of 3976 claims. Moreover,
we focus on the losses to buildings, denoted by Xi as a multiple of one million DKK, and the
losses to contents Yi . A more detailed description of the data can be found in Müller [17] and
Drees and Müller [16].

As described in the Introduction, we assume that a quota reinsurance pays (1 − αX)Xi for
each loss Xi to the building and (1−αY )Yi for each loss Yi of content, while an XL-reinsurance
pays if the remaining costs αXXi + αY Yi exceed a retention level R. We want to estimate the
probability pn := P(Dn) with Dn := {αXXi + αY Yi > R} that a fire results in a claim to the
XL-reinsurance for αX = 1, αY = 0.5 and R = 100. (More precisely, we estimate the conditional
probability given that max(Xi, Yi) > 1.)

Müller [17], Section 5.1.2, fitted GPD’s to the marginal distributions using the Hill estimators
based on the k1 = 900 and k2 = 600 largest observations to obtain a tail approximation of the type
(2.14) with parameters γ̂1 = 0.57, σ̂1 = 0.54, μ̂1 = 0.91, γ̂2 = 0.72, σ̂2 = 0.47 and μ̂2 = 0.15.
Moreover, he showed that the components of the claim vector are apparently asymptotically
dependent.

As suggested in Section 2.5, in Figure 1 we plot the estimate of the failure probability versus
ken for values of ken ranging from 104 to 5 · 105. In the present situation, the crude upper
bound on ken discussed in Section 2.5 is about 1.7 · 106, but the curve of probability estimates
shows a clear downward trend for ken > 2 · 105, which is most likely due to a deviation of the
dependence structure from its limit. On the other hand, for values smaller than 5 · 104 the curve
is very unstable, too, because the random error is too large as just a few observations fall into the
inflated failure set (e.g., about 25 if ken ≈ 3 ·104). This lower bound on ken reflects the condition
in the asymptotic framework that n is of smaller order than ken (see condition (S1)). In view of
this plot, the choice ken = 2 · 105 seems reasonable.

In addition, Figure 1 shows a two-sided confidence interval with nominal size 0.95, again as
a function of ken. Here we have chosen �n = 0.1 and λ = 1 in the estimator of the variance σ 2

N

described above; other values of λ between 1/2 and 1 yield approximately the same estimates,
while smaller values of �n lead to larger fluctuations in the confidence bounds, that however are
still of a similar size.

For ken = 2 ·105 one obtains a point estimate for pn of about 8.8 ·10−4 and a confidence inter-
val [2.2 · 10−4,1.54 · 10−3]. At first glance, this confidence interval seems rather wide. However,
here we estimate the probability of a very rare event which has occurred only twice in the ob-
servational period of more than 20 years. Indeed the empirical probability of the event is about
5 · 10−4, and the Clopper–Pearson confidence interval [6 · 10−5,1.8 · 10−3] (again with nominal
size 0.95) is even wider. It is worth mentioning that both the empirical point estimate and the
Clopper–Pearson confidence interval are exactly the same if one wants to estimate the proba-
bility that a claim occurs to the XL-reinsurance for any retention level R between 77 and 145
million DKK! Moreover, for retention level above 152 million DKK the point estimate would be
0 and thus useless for purposes of risk management.
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Figure 1. p̂n (solid line) and confidence intervals (dashed line) versus ken for Danish fire insurance claims.

4. Simulation study

In a small simulation study, we examine the finite sample behavior of our estimator of a failure
probability. In particular, we want to compare its performance with that of the estimator pro-
posed by de Haan and Sinha [11]. Moreover, we demonstrate that often the fit of the marginal
distributions is the main source of the random error, as indicated by the main Theorem 2.1.

We consider two different models for the dependence structure of (X,Y ).

• For the first model class we assume that (X,Y ) has a Gumbel copula, that is, for some
ϑ ∈ (1,∞)

F
(
F←

1 (u),F←
2 (v)

)= CGum
ϑ (u, v) = exp

(−(| logu|ϑ + | logv|ϑ)1/ϑ)
, 0 < u,v ≤ 1.

Note that CGum
ϑ is the Copula of a bivariate extreme value distribution. The corresponding

exponent measure is given by

νGum
ϑ

(
(u,∞)× (v,∞)

)= 1

u
+ 1

v
+ (

u−ϑ + v−ϑ
)1/ϑ

, u, v > 0,

and the spectral density by

ϕGum
ϑ (arctan t) = (ϑ − 1)

(
1 + t2)3/2

t−(ϑ+1)
(
1 + t−ϑ

)1/ϑ−2
.

Hence,

ϕGum
ϑ (t) ∼ (ϑ − 1)tϑ−2 and ϕGum

ϑ (π/2 − t) ∼ (ϑ − 1)tϑ−2 as t ↓ 0,
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and condition (D2) is obviously fulfilled for ϑ ≥ 2, whereas for ϑ ∈ (1,2) the spectral
density is not bounded and thus (D2) is not satisfied.

In the simulation results presented below, the Gumbel copula with ϑ = 5 is com-
bined with generalized extreme value (GEV) marginals Fi(x) = exp(−(1 + γix)−1/γi ) for
1 + γix > 0 with extreme value index γ1 = γ2 ∈ {−1/4,0,1/4}. (Simulations with GPD
marginals yielded very similar results which are thus not presented here.)

• The second model class is related to the model suggested by Schlather [18]. Similarly
as in Example 3.8 of Segers [20], we define (X,Y ) = √

2π(SZ,T Z) where Z is a unit
Fréchet random variable (i.e., P {Z ≤ x} = exp(−1/x) for x > 0) independent from the
vector (S,T ) which has the distribution of a centered normal vector with variances 1 and
covariance � ∈ (−1,1) conditioned on both coordinates being positive. By Lemma 3.1 of
Segers [20], the distribution of (X,Y ) belongs to the max domain of attraction of an extreme
value distribution with unit Fréchet marginals. Direct calculations show that the stable tail
dependence function is given by

�(x, y) := ν

((
1

x
,∞

)
×
(

1

y
,∞

))

= 1

1 + ρ

(
ρ(x + y)+ (

x2 + y2 − 2ρxy
)1/2)

, x, y ≥ 0.

Hence, the exponent measure has the density

η(u, v) = 1 − �2

1 + ρ

(
u2 + v2 − 2�uv

)−3/2
,

and the pertaining spectral density

ϕ(t) = 1 − �2

1 + ρ

(
1 − 2�

tan t

1 + tan2 t

)

is strictly positive and continuous on [0,π/2], so that condition (D2) is fulfilled. We have
simulated data sets with correlation � ∈ {−0.8,0.2,0.8}, but for briefness sake will report
results only for the last value, because they look similar in all three cases.

Direct calculations show that the marginal distributions are symmetric with

1 − Fi(x) = 1/2 − exp
(
πx−2)(1 −�

(√
2πx−1)), x > 0.

We want to estimate failure probabilities of linear half spaces of the form D = {(x, y) | x +
y/2 > R} where R has been chosen such that the failure probability pn (which is determined by
simulations) lies between 2 · 10−4 and 5 · 10−4 for each of the above models.

For each setting, we have simulated 1000 data sets of size n = 500. As npn � 1 (with a value
of about 0.1 in most settings), the estimation of pn is a challenging task. In particular, one cannot
use empirical probabilities, because in most simulations the failure set will not contain any data
point.
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To make a comparison with the estimator p̂
(HS)
n proposed by de Haan and Sinha [11] easier,

we use their marginal estimators:

γ̂1 := M1(X)+ 1 − 1

2

/(
1 − M2

1 (X)

M2(X)

)
,

â1(n/k) := Xn−k:n
(
3M2

1 (X) −M2(X)
)1/2

×
(

3

(1 − γ̂1 ∨ 0)2
− 2

(1 − γ̂1 ∨ 0)(1 − 2γ̂1 ∨ 0)

)−1/2

,

b̂1(n/k) := Xn−k:n

with

Mr(X) = 1

k

k∑
i=1

(
log

Xn−i+1:n
Xn−k:n

)r

.

For small values of k it happens (in at most a few percents of the simulations) that the scale
estimate â1(n/k) is not defined. In these simulations, instead we use the moment estimator

â1(n/k) := 1

2
Xn−k:nM1(X)

/(
1 − M2

1 (X)

M2(X)

)

proposed by Dekkers et al. [12]. The estimators of the parameters of the second marginal distri-
bution are defined likewise with Xi replaced with Yi .

We now discuss our findings for the model with Gumbel copula CGum
5 and Gumbel margins

(i.e., GEV margins with γ = 0) in detail. The results for the other distributions of (X,Y ) are
then presented more briefly. In this model, the true failure probability pn is about 2.25 · 10−4 for
R = 12.

Figure 2 displays the empirical root mean squared error (RMSE) of our estimator p̂n as a
function of the number k of largest order statistics used for marginal fitting and the product ken

which determines the blow-up factor. As expected, if either of these values is small, then the
RMSE is high due to a large standard error, while for too large a value the bias leads to a large
RMSE; in particular the first effect is much more pronounced for the blow-up factor. It can be
most clearly seen from the contour lines shown in the left plot of Figure 3 that values of k in the
range 50–150 and values of ken around 1.5 · 106 yield most accurate estimates.

Next we compare the performance of p̂n with that of the estimator p̂
(HS)
n suggested by de Haan

and Sinha [11]. Recall from Section 1.4 that the main difference between these estimators is that
the latter uses a data-driven value ĉn instead of ken/n, which is constructed as an estimator of
the (quite arbitrarily fixed) factor dn; see formula (1.6) of de Haan and Sinha [11]. The graph on
the right-hand side of Figure 3 shows a contour plot of the ratio of the RMSE of p̂

(HS)
n and of the

RMSE of p̂n again as a function of k and ken. Obviously, the RMSE of p̂
(HS)
n is much larger than

that of our estimator for almost all values of k and en. Indeed, for the most reasonable choices of
k the former is usually as least double as large as the latter.
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Figure 2. Empirical RMSE of p̂n for (X,Y ) with Gumbel ϑ = 5 copula and Gumbel marginals.

The reason for the inferiority of p̂
(HS)
n can be seen from Figure 4 which shows empirical

quantiles of nĉn (corresponding to ken) as a function of k for the levels 0.1, 0.25, 0.5, 0.75 and
0.9. For k < 200, in more than half of the simulations nĉn is clearly smaller than 106, whereas a
good choice of ken would be in the range 106 − 2 · 106. Moreover, the variation of nĉn is huge
with more than 10% of the estimates exceeding 107 for k ≥ 50. This figure indicates that the
estimator employed is rather inaccurate. However, even if the theoretical value of cn = kdn/n

was known, in general the resulting estimator of the failure probability would not perform well,
because dn is arbitrarily defined by the requirement that (1,1) lies on the boundary of S. In
particular, this choice of dn is not at all related to the accuracy of the approximation (1.4) which
strongly influences the part of the bias not resulting from the fitting of the marginal distributions.
For example, in the present situation dn = U←(R/1.5) = eR/1.5 ≈ 3000, which leads to much
too small values of ken if one chooses en = dn.

In the situation of Theorem 2.1, asymptotically the main source of random error is the fitting
of the marginal distributions. To check whether this bears out for moderate sample sizes, we have
calculated an analog to our estimator of the failure probability where the marginal estimator T ←

n,i
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Figure 3. Contour lines of 104×RMSE of p̂n (left) and of the ratio between the RMSE of p̂
(HS)
n and p̂n

(right).

is replaced with the true function (k/n)U←:

p̂(tm)
n := 1

ken

n∑
i=1

εU←(Xi ,Yi )

(
n

ken

U←(D)

)
.

The left-hand plot in Figure 5 displays contour lines of the ratio between the standard errors of
p̂n and of p̂

(tm)
n as a function of k and ken. For almost all values of these tuning parameters, the

standard error of the estimator p̂n with estimated marginals is at least 5 times larger than that
of p̂

(tm)
n , and it is more than 100 times larger if ken > 1.5 · 106. However, if one considers the

RMSE, then the picture is less dramatic. While the total error of p̂n is still at least about 25%
higher than that of p̂

(tm)
n , for the most reasonable choices of k and en it is less than three times as

large (middle plot in Figure 5). The reason for this different behavior of the RMSE is of course
the bias, which is at least 5 times higher in absolute value than the standard error for p̂

(tm)
n with

ken > 0.5 · 106 and is thus the dominating part of the total error. At first glance one might expect
that using the true marginal distributions should also reduce the bias. However, in general this is
not true, since the bias resulting from the marginal fit may partly cancel out with the bias caused
by the error in approximation (1.4). Indeed, for moderate values of ken the absolute bias of p̂n is
often smaller than that of p̂

(tm)
n as it can be seen from the contour plot of the ratio of these values

in the right-hand plot of Figure 5.
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Figure 4. Empirical quantiles of nĉn to the levels 0.1, 0.25, 0.5, 0.75 and 0.9.

Figure 5. Contour plots of the ratio of the standard errors of p̂n and of p̂
(tm)
n (left), of the corresponding

ratios of RMSE (middle) and of the ratio of absolute bias (right).
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Table 1. Failure probabilities for different models and thresholds R

Model

Copula CGum
5 Schlather type

model � = 0.8γ = 0.25 γ =−0.25

R 40 5 5000
104×failure probab. 2.21 5.00 3.40

Table 1 lists the true failure probabilities for the four remaining settings not discussed so far.
Figure 6 shows contour lines of the RMSE of p̂n and of the ratio of the RMSE of p̂

(HS)
n and

p̂n in the two left-hand columns (corresponding to the plots in Figure 3) and the ratios of the
standard error and the RMSE of p̂n and p̂

(tm)
n (corresponding to the first two plots in Figure 5)

in the two right-hand columns. The four models are displayed in the four rows in the same order
as in Table 1.

While in most cases the results are qualitatively the same as for the Gumbel model discussed
above, there are two remarkable exceptions. First, in the model with Gumbel copula and GEV
marginals with γ =−0.25 the estimator suggested by de Haan and Sinha [11] works pretty well
with an RMSE which is at most 25% larger than that of p̂n for most combinations of k and en.
(For some not very reasonable combinations it is even smaller.)

Second, in the Schlather type model with � = 0.8, due to its rather large bias, the RMSE of
the estimator p̂

(tm)
n which uses the true marginal distributions is clearly larger than the one of

p̂n if k ≥ 50 and ken is about 8 · 105. However, as the first plot for this distribution shows, these
combinations of values for k and ken are not good choices for p̂n, because its RMSE is more
than 4 times as large as the minimal value. Indeed, for all simulated distributions the bias of p̂

(tm)
n

was more stable than that of p̂n (in particular for small value of k), thus indicating again that one
should be particularly careful with the estimation of the marginal distributions.

5. Proofs

The proof of Theorem 2.1 is based on the decomposition (2.5) of the estimation error. The asymp-
totic behavior of the leading term IV +V is established in Corollary 5.5. As a preparation for this
result, first we establish an approximation of the random transformation of the marginals defined
in (2.2). Thereby we must restrict ourselves to arguments that are neither too small nor too large,
which defines a certain subset S∗

n of S. In Lemma 5.2 an upper bound on the difference between
the ν-measures of S and S∗

n is derived, while the Lemmas 5.3 and 5.4 analyze the influence of
the marginal transformations on the ν-measure of S∗

n .
In Lemma 5.6 an upper bound on the term II of decomposition (2.5) is proved using empir-

ical process theory. Finally, Lemma 5.8 establishes upper bounds on the terms I and III, while
Lemma 5.9 takes care of VI.

Lemma 5.1. Assume that the conditions (M1)–(M3) and (S1) are fulfilled. For i ∈ {1,2}, let
λn,i > 0 be a decreasing and τn,i < ∞ an increasing sequence, such that the following conditions
are met:
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Figure 6. From left to right: contour plots of 104×RMSE, the ratio of RMSE of p̂
(HS)
n and p̂n, the ratio

of standard errors of p̂n and p̂
(tm)
n , and the ratio of RMSE of p̂n and p̂

(tm)
n ; from top to bottom: Gumbel

ϑ = 5 copula with GEV marginals with γ = 0.25 resp. γ =−0.25, Schlather type model with � = 0.8.
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(i) Ai(n/k)(λn,idnk/n)ρi±ε = o(k−1/2wn(γi)) for some ε > 0.
(ii) If γi > 0, then k−1/2 = o((λn,idn/en)

γi ).
(iii) If γi < 0, then k−1/2 = o((τn,idnk/n)γi ) and log(dn/en) = o((dnk/n)−γi ).
(iv) If γi = 0, then k−1/2 log τn,i → 0 and log(dn/en) = o(log cn).

Then, for i ∈ {1,2},
dn

en

Hn,i(x) = T ←
n,i ◦ T̂n,i ◦ T̂

(c)←
n,i ◦Ui(dnx)

= dn

en

x

⎛
⎜⎜⎝1

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−k−1/2 log cn

(
	i

γi

+ oP (1)

)
+ OP

(
k−1/2(xdn/en)

−γi
)
, γi > 0,

k−1/2(dnk/n)−γi

× ((
αi/γi − βi − 	i/γ

2
i + oP (1)

)
x−γi + oP (1)

)
, γi < 0,

−k−1/2 log2 cn

(
	i/2 + oP (1)

)+ OP

(
k−1/2 log cn logx

)
, γi = 0

⎞
⎟⎟⎟⎟⎠

uniformly for x ∈ [λn,i , τn,i].

Proof. For notational simplicity, we omit all indices and arguments of the marginal parameters
and normalizing functions and their estimators; for example, we use â as a short form of âi (n/k).
Moreover, we drop all indices referring to the ith marginal, that is, we write U instead of Ui , Tn

instead of Tn,i and so on.
By (2.7), for all 0 < ε < |ρ|,

�1(x) := U(dnx)− b

a
− (xdnk/n)γ − 1

γ
(5.1)

= O
(
A(n/k)(xdnk/n)γ+ρ±ε

)= o
(
k−1/2wn(γ )(xdnk/n)γ

)

uniformly for all x ≥ λn, where in the last step we have used condition (i). Now one can conclude
that U(dnx) ∈ T̂n((0,∞)) for all x ∈ [λn, τn] with probability tending to 1. For example, if γ > 0,
then we have to show that U(dnx) > b̂ − â/γ̂ for all x ≥ λn or, equivalently, (using (M3)) that
�1(λn) is larger than

b̂ − b

a
− â

aγ̂
− (λndnk/n)γ − 1

γ
=− 1

γ

(
dnk

n
λn

)γ

+ O
(
k−1/2)

which follows immediately from (5.1), (S1) and (ii).
Hence

T ←
n ◦ T̂n ◦ T̂ (c)←

n ◦ U(dnx)
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=
[

1 + γ

a

(
â
(c−1

n (1 + γ̂ ((U(dnx)− b̂)/â))1/γ̂ )γ̂ − 1

γ̂
+ b̂ − b

)]1/γ

=: H̃ (x)

if the expression in brackets is strictly positive, which will indeed follow from the calculations
below.

Now direct calculations show that

H̃ (x) =
[

1 + γ

(
c
−γ̂
n

U(dnx)− b

a
+ c

−γ̂
n − 1

γ̂

(
â

a
− b̂ − b

a
γ̂

))]1/γ

. (5.2)

By assumption (M3)

�2 := â

a
− b̂ − b

a
γ̂ − 1 = k−1/2(α − γβ + oP (1)

)
. (5.3)

If γ > 0, then the Taylor expansion

c
−γ̂ /γ
n = c−1

n

(
1 − k−1/2 	

γ
log cn + oP

(
k−1/2 log cn

))

together with (5.1), (5.3) and (S1) implies

H̃ (x) =
[
c
−γ̂
n

((
dnk

n
x

)γ

− 1 + γ�1(x) + γ

γ̂
(1 +�2)

)
+ 1 − γ

γ̂
− γ

γ̂
�2

]1/γ

= c
−γ̂ /γ
n

dnk

n
x

×
[

1 + OP

((∣∣�1(x)
∣∣+ k−1/2)(dnk

n
x

)−γ)
+ OP

(
k−1/2c

γ̂
n

(
dnk

n
x

)−γ)]1/γ

= dn

en

x

(
1 − k−1/2 	

γ
log cn + oP

(
k−1/2 log cn

))

×
[

1 + oP

(
k−1/2 log cn

)+ OP

(
k−1/2

(
dn

en

x

)−γ)]
,

from which the assertion follows readily.
If γ < 0, then similar arguments prove

H̃ (x) = dn

en

x
(
1 + OP

(
k−1/2 log cn

))

×
[

1 + k−1/2 1

γ

(
α − γβ − 	

γ
+ oP (1)

)(
dnk

n
x

)−γ

+ oP

(
k−1/2wn(γ )

)]

and hence the assertion, because the assumption (iii) ensures that log cn = o(wn(γ )).
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Finally, for γ = 0, the Taylor expansion

c
−γ̂
n = 1 − γ̂ log cn + 1

2 γ̂ 2 log2 cn + OP

(
γ̂ 3 log3 cn

)
yields

H̃ (x) = exp

[(
1 − γ̂ log cn + OP

(
k−1 log2 cn

))(
log

(
dnk

n
x

)
+�1(x)

)

+
(
− log cn + 1

2
γ̂ log2 cn + OP

(
k−1 log3 cn

))
(1 +�2)

]

= dnk

cnn
x exp

[
−γ̂ log cn

(
log cn + log

(
dn

en

x

))
+ oP

(
k−1/2 log2 cn

)+ 1

2
γ̂ log2 cn

]

= dn

en

x

[
1 − 1

2

(
	 + oP (1)

)
k−1/2 log2 cn + OP

(
k−1/2 log cn logx

)]
,

which concludes the proof. �

In what follows we denote by λn,1 ↘ xl , λn,2 ↘ q(∞) := limx→∞ q(x) and τn,i ↑ ∞,
i ∈ {1,2}, sequences which satisfy the conditions of Lemma 5.1. (These sequences will be spec-
ified in the proof of Corollary 5.5.) Note that in particular constant sequences λn,i , τn,i ∈ (0,∞)

satisfy the conditions of Lemma 5.1, provided

Ai(n/k)cρi+ε
n = o

(
k
−1/2
n wn(γi)

)
for i ∈ {1,2} and some ε > 0 (5.4)

and (S1) holds. Therefore, we may and will choose

λn,1 = xl if xl := inf
{
x ≥ 0 | q(x) < ∞}

> 0,

λn,2 = q(∞) if q(∞) > 0.
(5.5)

We want to apply the approximations just established to points (x, y) on the boundary of S.
To ensure that x ∈ [λn,1, τn,1] and y ∈ [λn,2, τn,2], we consider a subset S∗

n of S that is bounded
away from the coordinate axes. More precisely, we define

S∗
n := S ∩ ([

u∗
n,∞

)× [
v∗
n,∞))

with

u∗
n := λn,1 ∨ q←(τn,2), v∗

n := λn,2 ∨ q(τn,1).

The following lemma implies that the ν-measure of the set S \ S∗
n is asymptotically negligible.

Lemma 5.2.

ν(S) − ν
(
S∗

n

)= O

(
λn,1 − xl

q2(λn,1−)
+ q(τn,1)− q(∞)

τ 2
n,1

+ λn,2 − q(∞)

(q←(λn,2))2
+ q←(τn,2)− xl

τ 2
n,2

)

with q(x−) := limt↑x q(t).
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Proof. First, note that S ⊂ [xl,∞)× [q(∞),∞) implies

ν(S) − ν
(
S ∩ ([

0, u∗
n

)× [0,∞)
)) ≤ ν

([xl, λn,1)×
[
q(λn,1−),∞))

+ ν
([

xl, q
←(τn,2)

)× [τn,2,∞)
)
.

The spectral density ϕ is assumed continuous and hence it is bounded. From (2.10), we conclude
that for arbitrary 0 ≤ u0 ≤ u1 and v0 > 0

ν
([u0, u1)× [v0,∞)

)= O

(∫ u1

u0

∫ ∞

v0

(
u2 + v2)−3/2 dv du

)
= O

(
u1 − u0

v2
0

)

and thus

ν(S) − ν
(
S ∩ ([

0, u∗
n

)× [0,∞)
))= O

(
λn,1 − xl

q2(λn,1−)
+ q←(τn,2)− xl

τ 2
n,2

)
.

Likewise, one can show that

ν
(
S ∩ ([

0, u∗
n

)× [0,∞)
))− ν

(
S∗

n

)= O

(
q(τn,1)− q(∞)

τ 2
n,1

+ λn,2 − q(∞)

(q←(λn,2))2

)
.

A combination of these two bounds yields the assertion. �

On the set S∗
n we can now use the approximation from Lemma 5.1 to first examine the influence

of the transformation Hn,2 of the second coordinate on the ν-measure of S∗
n . In a second step, we

then similarly determine how the ν-measure of this transformed set is altered by the transforma-
tion Hn,1 of the first coordinate. Hereby, note that by Lemma 5.1 the marginal transformations
are invertible with probability tending to 1. The sets which are relevant for the comparison after
the first marginal transformation are depicted in Figure 7.

Lemma 5.3. Let Hn(x, y) := (Hn,1(x),Hn,2(y)) := en

dn
T ←

n ◦ T̂n ◦ T̂
(c)←
n ◦U(dnx, dny). Suppose

that the conditions (D2) and (Q1) are met.
Then one has with qn(u) := q(u) ∨ v∗

n and q̃←
n (v) := q←(H←

n,2(v)) ∨ u∗
n∣∣∣∣ν(Hn

(
S∗

n

))− ν
(
S∗

n

)+
∫ ∞

u∗
n

(
Hn,2

(
qn(u)

)− qn(u)
)
η
(
u,qn(u)

)
du

+
∫ ∞

Hn,2(v
∗
n)

(
Hn,1

(
q̃←
n (v)

)− q̃←
n (v)

)
η
(
q̃←
n (v), v

)
dv

∣∣∣∣
(5.6)

= o

(∫ ∞

u∗
n

∣∣Hn,2
(
qn(u)

)− qn(u)
∣∣η(u,qn(u)

)
du

+
∫ ∞

Hn,2(v
∗
n)

∣∣Hn,1
(
q̃←
n (v)

)− q̃←
n (v)

∣∣η(q̃←
n (v), v

)
dv

)

with probability tending to 1.
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Figure 7. The light and mid grey regions show the approximation S∗
n of the set S, the mid and the dark

grey regions the symmetric difference between {(x,Hn,2(y)) | (x, y) ∈ S∗
n} and S∗

n , where the dark grey
region is counted with a positive sign, the mid grey region with a negative sign. (Here it is assumed that
u∗
n = q←(τn,2).)

Proof. According to the proof of Lemma 5.1, for all δ ∈ (0,1), on the set [λn,i(1−δ), τn,i(1+δ)]
the transformation Hn,i is continuous and strictly increasing and Hn,i(x) = x(1 + o(1)) with
probability tending to 1.

We first quantify the influence of the transformation of the second coordinate. Note that

ν
(
S∗

n

) =
∫ ∞

u∗
n

∫ ∞

qn(u)

η(u, v)dv du,

ν
{(

x,Hn,2(y)
) | (x, y) ∈ S∗

n

} =
∫ ∞

u∗
n

∫ ∞

Hn,2(qn(u))

η(u, v)dv du

and hence

ν
{(

x,Hn,2(y)
) | (x, y) ∈ S∗

n

}− ν
(
S∗

n

)=−
∫ ∞

u∗
n

∫ Hn,2(qn(u))

qn(u)

η(u, v)dv du. (5.7)

The inner integral equals

∫ Hn,2(qn(u))

qn(u)

η(u, v)dv

= (
Hn,2

(
qn(u)

)− qn(u)
)
η
(
u,qn(u)

)
(5.8)

+
∫ Hn,2(qn(u))/qn(u)

1

(
η(u, qn(u)w)

η(u, qn(u))
− 1

)
dwη

(
u,qn(u)

)
qn(u).
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By the assumptions and Lemma 5.1, Hn,2(qn(u))/qn(u) → 1 uniformly for u ∈ (u∗
n,∞) as

qn(u) ∈ [λn,2, τn,2] for u > u∗
n.

Next note that for all 0 < δ < π/4

sup
0<t≤tan δ

∣∣∣∣arctan(tw)

arctan t
− 1

∣∣∣∣≤ sup
0<t≤tan δ

t |w − 1|
arctan t

≤ (
1 + tan2 δ

)|w − 1|→ 0

as w → 1, and likewise by symmetry

sup
t≥tan(π/2−δ)

∣∣∣∣π/2 − arctan(tw)

π/2 − arctan t
− 1

∣∣∣∣= sup
0<t≤tan δ

∣∣∣∣arctan(t/w)

arctan t
− 1

∣∣∣∣→ 0.

Therefore, by condition (2.9), to each ε > 0 there exists δ > 0 such that for all t ∈ (0, tan δ] ∪
[tan(π/2 − δ),∞) ∣∣∣∣ϕ(arctan(tw))

ϕ(arctan t)
− 1

∣∣∣∣< ε.

Moreover, by the uniform continuity of ϕ ◦ arctan on [tan δ, tan(π/2 − δ)]

sup
tan δ≤t≤tan(π/2−δ)

∣∣∣∣ϕ(arctan(tw))

ϕ(arctan t)
− 1

∣∣∣∣

≤ suptan δ≤t≤tan(π/2−δ) |ϕ(arctan(tw))− ϕ(arctan t)|
infδ≤u≤π/2−δ ϕ(u)

→ 0

as w → 1. Using (2.10) and

1 + t2

1 + t2w2
= 1 + 1 −w2

t−2 + w2
→ 1

as w → 1 uniformly for t > 0, we conclude that

η(u, vw)

η(u, v)
=
(

1 + (v/u)2

1 + (v/u)2w2

)3/2
ϕ(arctan(vw)/u)

ϕ(arctanv/u)
→ 1

as w → 1 uniformly for u,v > 0. Thus,

∫ Hn,2(qn(u))/qn(u)

1

(
η(u, qn(u)w)

η(u, qn(u))
− 1

)
dw = o

(
Hn,2

(
qn(u)

)
/qn(u)− 1

)

which, combined with (5.7) and (5.8), yields

ν
{(

x,Hn,2(y)
) | (x, y) ∈ S∗

n

}− ν
(
S∗

n

)+
∫ ∞

u∗
n

(
Hn,2

(
qn(u)

)− qn(u)
)
η
(
u,qn(u)

)
du

(5.9)

= o

(∫ ∞

u∗
n

∣∣Hn,2
(
qn(u)

)− qn(u)
∣∣η(u,qn(u)

)
du

)
.
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One can derive an analogous approximation of the difference between ν{(x,Hn,2(y)) |
(x, y) ∈ S} and ν{(Hn,1(x),Hn,2(y)) | (x, y) ∈ S} by similar arguments if one interchanges the
order of integration:

∣∣∣∣ν(Hn

(
S∗

n

))− ν
{(

x,Hn,2(y)
) | (x, y) ∈ S∗

n

}

+
∫ ∞

Hn,2(v
∗
n)

(
Hn,1

(
q̃←
n (v)

)− q̃←
n (v)

)
η
(
q̃←
n (v), v

)
dv

∣∣∣∣ (5.10)

= o

(∫ ∞

Hn,2(v
∗
n)

∣∣Hn,1
(
q̃←
n (v)

)− q̃←
n (v)

∣∣η(q̃←
n (v), v

)
dv

)
.

Summing up (5.9) and (5.10), we arrive at the assertion. �

In the next lemma, we calculate the limits of the integrals arising in Lemma 5.3 using the
approximation established in Lemma 5.1.

Lemma 5.4. Suppose that the conditions of Lemma 5.3 and, in addition, the following conditions
are fulfilled for some x0 ∈ (xl, q

←(q(∞))), y0 ∈ (q(∞), q(xl)):

∫ ∞

y0

(
q←(v)

)1−γ1v−3 dv < ∞ or λ
1−γ1
n,1 = o(log cn), (5.11)

∫ ∞

x0

(
q(u)

)1−γ2u−3 du < ∞ or λ
1−γ2
n,2 = o(log cn). (5.12)

Then the following approximations hold true:

(i)

k1/2

wn(γ2)

∫ ∞

u∗
n

(
Hn,2

(
qn(u)

)− qn(u)
)
η
(
u,qn(u)

)
du

→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−	2

γ2

∫ ∞

xl

q(u)η
(
u,q(u)

)
du, γ2 > 0,(

α2

γ2
− β2 − 	2

γ 2
2

)∫ ∞

xl

(
q(u)

)1−γ2η
(
u,q(u)

)
du, γ2 < 0,

−	2

∫ ∞

xl

q(u)η
(
u,q(u)

)
du, γ2 = 0.

Moreover,

∫ ∞

u∗
n

∣∣Hn,2
(
qn(u)

)− qn(u)
∣∣η(u,qn(u)

)
du = O

(
k−1/2wn(γ2)

)
.
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(ii)

k1/2

wn(γ1)

∫ ∞

Hn,2(v
∗
n)

(
Hn,1

(
q̃←
n (v)

)− q̃←
n (v)

)
η
(
q̃←
n (v), v

)
dv

→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−	1

γ1

∫ ∞

q(∞)

q←(v)η
(
q←(v), v

)
dv, γ1 > 0,(

α1

γ1
− β1 − 	1

γ 2
1

)∫ ∞

q(∞)

(
q←(v)

)1−γ1η
(
q←(v), v

)
dv, γ1 < 0,

−	1

∫ ∞

q(∞)

q←(v)η
(
q←(v), v

)
dv, γ1 = 0.

Furthermore,
∫ ∞

Hn,2(v
∗
n)

∣∣Hn,1
(
q̃←
n (v)

)− q̃←
n (v)

∣∣η(q̃←
n (v), v

)
dv = O

(
k−1/2wn(γ1)

)
.

Proof. ad (i): Because the spectral density ϕ is bounded, there exists a constant K > 0 such that

η
(
u,q(u)

)≤ K
(
u2 + (

q(u)
)2)−3/2 ≤ K

(
u−3 ∧ (

q(u)
)−3) ∀u > 0. (5.13)

Hence, qn(u)η(u, qn(u)) ≤ K(q(u))−2 for u ∈ [xl, x0] and n sufficiently large and qn(u)

η(u, qn(u)) ≤ Kq(x0)u
−3 for u > x0. Therefore,

lim
n→∞

∫ ∞

u∗
n

qn(u)η
(
u,qn(u)

)
du =

∫ ∞

xl

q(u)η
(
u,q(u)

)
du < ∞ (5.14)

by the dominated convergence theorem and u∗
n ↓ xl .

Now, we distinguish three cases.
If γ2 > 0, then by Lemma 5.1 and dn � en

k1/2

log cn

∫ ∞

u∗
n

(
Hn,2

(
qn(u)

)− qn(u)
)
η
(
u,qn(u)

)
du

=−
(

	2

γ2
+ oP (1)

)∫ ∞

u∗
n

qn(u)η
(
u,qn(u)

)
du + OP

(
1

log cn

∫ ∞

u∗
n

(
qn(u)

)1−γ2η
(
u,qn(u)

)
du

)
.

Because of (5.13) and (5.12)
∫ ∞

u∗
n

(
qn(u)

)1−γ2η
(
u,qn(u)

)
du

≤ K
(
q(x0)

)−2−γ2(x0 − xl)+ K

∫ ∞

x0

(
q(u) ∨ λn,2

)1−γ2u−3 du (5.15)

= o(log cn).
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Hence, in view of (5.14), we have
∫ ∞

u∗
n

(
Hn,2

(
qn(u)

)− qn(u)
)
η
(
u,qn(u)

)
du

=−k−1/2 log cn

	2

γ2

∫ ∞

xl

q(u)η
(
u,q(u)

)
du+ oP

(
k−1/2 log cn

)
.

If γ2 < 0, then the assertion follows similarly from Lemma 5.1 and (5.13).
Finally, in the case γ2 = 0

∫ ∞

xl

qn(u)
∣∣logqn(u)

∣∣η(u,qn(u)
)

du

(5.16)

≤ K sup
x≤x0

| logq(x)|
(q(x))2

+K sup
x≥x0

q(x)
∣∣logq(x)

∣∣ ∫ ∞

x0

u−3 du < ∞.

Hence, similarly as in the first case, we may conclude the assertion from Lemma 5.1.
ad (ii): The second assertion can be proved in a very similar fashion using q(Hn,2(v

∗
n)) →

q(∞) and the fact that q̃←
n (u) → q←(u) for Lebesgue-almost all u > q(∞), because of

Lemma 5.1 and the Lebesgue-almost surely continuity of q←. For that reason, we only give
the analog to the bound (5.15) for the integral under consideration in the case γ1 > 0.

For y0 ∈ (q(∞), q(xl)) and all sufficiently large n, we have
∫ y0

Hn,2(v
∗
n)

(
q̃←
n (v)

)1−γ1η
(
q̃←
n (v), v

)
dv ≤ K

(
q̃←
n (y0)

)−2−γ1
(
y0 − q(∞)

)= O(1).

If γ1 ≤ 1, then
∫ ∞

y0

(
q̃←
n (v)

)1−γ1η
(
q̃←
n (v), v

)
dv ≤ K

(
q̃←
n (y0)

)1−γ1

∫ ∞

y0

v−3 dv = O(1).

Finally, if γ1 > 1, then by the monotonicity of q← and the asymptotic behavior of Hn,2 we have
for all δ > 0 and sufficiently large n

∫ ∞

y0

(
q̃←
n (v)

)1−γ1η
(
q̃←
n (v), v

)
dv

≤ K

∫ ∞

y0

((
q←(

v(1 + δ)
))1−γ1 ∧ λ

1−γ1
n,1

)
v−3 dv

= O

(∫ ∞

y0(1+δ)

(
q←(v)

)1−γ1v−3 dv ∧ λ
1−γ1
n,1

)
= o(log cn)

by condition (5.11). �

The following result gives sufficient conditions such that the difference between the ν-measure
of S and of the truncated set after the marginal transformations (i.e., dn(IV + V ) in (2.5)) can
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be approximated by the limiting terms in Lemma 5.4. For the sake of simplicity, we assume
that dn and en are of the same order, but it is not difficult to prove similar results under weaker
conditions on dn/en. Moreover, one can weaken the condition (S2) and the assumptions (Q2)
could be replaced with rather strong conditions on the rate at which k tends to ∞.

Corollary 5.5. If the conditions (M1)–(M3), (D2), (Q1), (Q2) and (S1)–(S3) are fulfilled, then

ν
(
Hn

(
S∗

n

))− ν(S)

= k−1/2wn(γ1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−	1

γ1

∫ ∞

q(∞)

q←(v)η
(
q←(v), v

)
dv, γ1 > 0,(

α1

γ1
− β1 − 	1

γ 2
1

)∫ ∞

q(∞)

(
q←(v)

)1−γ1η
(
q←(v), v

)
dv, γ1 < 0,

−	1

∫ ∞

q(∞)

q←(v)η
(
q←(v), v

)
dv, γ1 = 0,

(5.17)

+ k−1/2wn(γ2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−	2

γ2

∫ ∞

xl

q(u)η
(
u,q(u)

)
du, γ2 > 0,(

α2

γ2
− β2 − 	2

γ 2
2

)∫ ∞

xl

(
q(u)

)1−γ2η
(
u,q(u)

)
du, γ2 < 0,

−	2

∫ ∞

xl

q(u)η
(
u,q(u)

)
du, γ2 = 0,

+ oP

(
k−1/2(wn(γ1)∨wn(γ2)

))
.

Proof. In view of the Lemmas 5.2–5.4, it suffices to define sequences λn,i and τn,i , i ∈ {1,2},
such that the conditions (i)–(iv) of Lemma 5.1 and (5.11) and (5.12) are fulfilled and

λn,1 − xl

q2(λn,1−)
+ q(τn,1)− q(∞)

τ 2
n,1

= o
(
k−1/2wn(γ1)

)
,

λn,2 − q(∞)

(q←(λn,2))2
+ q←(τn,2)− xl

τ 2
n,2

= o
(
k−1/2wn(γ2)

)
.

Note that we can check these conditions for i = 1 and i = 2 separately. We focus on the sequences
λn,1 and τn,1, since the case i = 2 can be treated analogously if xl is replaced with q(∞) and q

with q←. Again we distinguish three cases depending on the sign of γ1.
If γ1 > 0, then τn,1 must only satisfy (q(τn,1) − q(∞))/τ 2

n,1 = o(k−1/2 log cn), which can
easily be fulfilled by letting τn,1 tend to ∞ sufficiently fast.

The sequence λn,1 has to satisfy the conditions (i) and (ii) of Lemma 5.1, (5.11) and (λn,1 −
xl)/q

2(λn,1) = o(k−1/2 log cn). If xl > 0, then λn,1 = xl does the job, because condition (i) of
Lemma 5.1 is implied by (S2).

If xl = 0 and γ1 ≤ 1, then the integrability condition of (5.11) is trivial. Moreover, λn,1 :=
k−1/2(log cn)

1/2 → 0 obviously fulfills Lemma 5.1(ii) and (λn,1 − xl)/q
2(λn,1) = O(λn,1) =

o(k−1/2 log cn). Condition 5.1(i) follows from (S2) and (S3), which implies cnλn,1 →∞.
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Finally, if xl = 0 and γ1 > 1, then λn,1 := (k−1/2 log cn)
1/γ1 fulfills Lemma 5.1(ii), Lem-

ma 5.1(i) follows from (S2) and (S3) as above, and (Q2) implies

λn,1 − xl

q2(λn,1)
= O

(
λ

γ1
n,1

| logλn,1|2
)
= O

(
k−1/2 log cn

| log(k−1/2 log cn)|2
)
= o

(
k−1/2 log cn

)

by (S1). Furthermore, the integrability condition of (5.11) is fulfilled, because (Q2) implies
(v/ logv)2/(1−γ1) = O(q←(v)) as v →∞.

Next, we consider the case −1/2 < γ1 < 0, when the integrability condition of (5.11) is trivial.
If xl > 0, then we can argue as above that λn,1 = xl satisfies all conditions on λn,1. If xl = 0, then
define λn,1 = c−1

n ϕn for some ϕn → ∞ sufficiently slowly, so that Lemma 5.1(i) follows from
(S2). Further (λn,1 − xl)/q

2(λn,1) = O(c−1
n ϕn) = o(k−1/2c

−γ1
n ) follows from assumption (S3).

The conditions on τn,1 read as (q(τn,1) − q(∞))/τ 2
n,1 = o(k−1/2c

−γ1
n ) and k−1/2 =

o((cnτn,1)
γ1) in this case, which are fulfilled by τn,1 = k1/2c

γ1
n →∞.

In the case γ1 = 0 the integrability condition of (5.11) is again trivial and λn,1 = xl if xl > 0,
and λn,1 = c−1

n log cn if xl = 0 does the job. Moreover, it is easily checked that τn,1 = k1/4

satisfies (q(τn,1)− q(∞))/τ 2
n,1 = o(k−1/2 log2 cn) and condition of Lemma 5.1(iv). �

Observe that we have verified stronger conditions on λn,1 and τn,1 than actually necessary, if
wn(γ1) = o(wn(γ2)). A refined analysis would lead to weaker, but more complex conditions on
q and k that depend on both the values of γ1 and γ2 at the same time. (Also the proof would
become more lengthy as one had to consider 9 cases arising from different combinations of signs
of γ1 and γ2.) Moreover, note that for the above choice of λn,i one has

cnλn,i →∞, i ∈ {1,2} (5.18)

and

λ
−γi

n,i = O
(
k1/2/ log cn

)
if γi > 0, i ∈ {1,2}. (5.19)

Now we use classical empirical process theory to establish a uniform bound on νn(B) −
Eνn(B) and thus on term II in decomposition (2.5).

Lemma 5.6. Under the conditions of Theorem 2.1, one has

νn(B)− Eνn(B)|B=(dn/en)Hn(S∗
n) = oP

(
k−1/2(wn(γ1)∨wn(γ2)

))
.

Proof. Note that by (5.2) one has

dn

en

Hn(x1, x2) =
(
H̃

(n,1)
ϑ1,χ1,ξ1

(x1), H̃
(n,2)
ϑ2,χ2,ξ2

(x2)
)

for (x1, x2) ∈ [u∗
n,∞) × [v∗

n,∞) with H̃
(n,i)
ϑi ,χi ,ξi

defined by (2.8) and

−ϑi = χi = k1/2(γ̂i − γi), ξi = k1/2
(

âi (n/k)

ai(n/k)
− 1 − b̂i (n/k) − bi(n/k)

ai(n/k)
γ̂i

)
.
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Since, according to condition (M3), these random variables are stochastically bounded, it suffices
to prove that for all M > 0

sup
max(|ϑi |,|χi |,|ξi |)≤M

∣∣νn

(
E

(n)
(ϑi ,χi ,ξi )i=1,2

)−Eνn

(
E

(n)
(ϑi ,χi ,ξi )i=1,2

)∣∣= oP

(
k−1/2(wn(γ1) ∨wn(γ2)

))
,

where

E
(n)
(ϑi ,χi ,ξi )i=1,2

:= {(
H̃

(n,1)
ϑ1,χ1,ξ1

(x1), H̃
(n,2)
ϑ2,χ2,ξ2

(x2)
) | (x1, x2) ∈ S∗

n

}
.

Letting θ := (ϑi,χi, ξi)i=1,2 and

Zn(θ) := k1/2

wn(γ1) ∨wn(γ2)

(
νn

(
E

(n)
θ

)− Eνn

(
E

(n)
θ

))
, θ ∈ [−M,M]6,

we have to prove that Zn tends to 0 in probability uniformly. To this end, we establish asymptotic
equicontinuity of Zn, that is,

lim
δ↓0

lim sup
n→∞

P
{

sup
θ,ψ∈[−M,M]6,‖θ−ψ‖∞≤δ

∣∣Zn(θ) − Zn(ψ)
∣∣> η

}
= 0 ∀η > 0 (5.20)

and convergence in probability of Zn(θ) for all θ ∈ [−M,M]6 (see van der Vaart and Wellner
[21], Theorem 1.5.7).

For the proof of asymptotic equicontinuity, it is crucial that the functions H̃
(n,i)
ϑi ,χi ,ξi

(xi) are

decreasing in all three parameters for all (x1, x2) ∈ [u∗
n,∞)×[v∗

n,∞). For ξi resp. ϑi this mono-
tonicity is an immediate consequence of the facts that (c

−γ
n − 1)/γ is negative and increasing1.5

in γ (for cn > 1) and that (1 + γ t)1/γ is increasing in t . Because c
−γ
n is a decreasing function

of γ , the monotonicity in χi follows from (2.7), (5.18) and condition (i) of Lemma 5.1, which
imply

Ui(dnx)− bi(n/k)

ai(n/k)
= (xidnk/n)γi − 1

γi

+ O
(
Ai(n/k)(xidnk/n)γi+ρi+ε

)

= (xicndn/en)
γi − 1

γi

+ o
(
(cnxi)

γi k−1/2wn(γi)
)

> 0

for sufficiently large n.
The monotonicity of H

(n,i)·,·,· (xi) implies that the sets E
(n)
(ϑi ,χi ,ξi )i=1,2

are increasing in all param-

eters. Hence, for arbitrary θ,ψ ∈ [−M,M]6

∣∣Zn(θ) −Zn(ψ)
∣∣≤ k1/2

wn(γ1)∨wn(γ2)

(
νn

(
E

(n)
θ∨ψ \E

(n)
θ∧ψ

)+ Eνn

(
E

(n)
θ∨ψ \E

(n)
θ∧ψ

))
,

where θ ∨ψ resp. θ ∧ψ denote the coordinatewise maximum resp. minimum of θ and ψ .



Estimating failure probabilities 995

To establish asymptotic equicontinuity of Zn, we cover the parameter space [−M,M]6 with

hypercubes Il :=×6
i=1[liδ, (li + 1)δ], −�M/δ� ≤ li ≤ �M/δ , for some small δ > 0 (depending

on the value η in (5.20)) to be specified later on. For θ,ψ ∈ [−M,M]6 with ‖θ − ψ‖∞ ≤ δ and
l(θ) := (�θi/δ )1≤i≤6, one has ‖l(θ) − l(ψ)‖ ≤ 1 and thus

∣∣Zn(θ) −Zn(ψ)
∣∣

≤ ∣∣Zn(θ) −Zn

(
l(θ)δ

)∣∣+ ∣∣Zn(ψ) −Zn

(
l(ψ)δ

)∣∣+ ∣∣Zn

(
l(θ)δ

)− Zn

(
l(ψ)δ

)∣∣
(5.21)

≤ 3 max
l∈{−�M/δ�,...,�M/δ }6

sup
t,u∈Il

∣∣Zn(t) −Zn(u)
∣∣

≤ 3
k1/2

wn(γ1)∨wn(γ2)
max

l∈{−�M/δ�,...,�M/δ }6

(
νn

(
E

(n)
(l+1)δ \E

(n)
lδ

)+ Eνn

(
E

(n)
(l+1)δ \E

(n)
lδ

))
,

where (l + 1)δ := ((li + 1)δ)1≤i≤6. By (D1), the expectation can be approximated as follows:

Eνn

(
E

(n)
(l+1)δ \E

(n)
lδ

) = n

k
P
{
T ←

n (X,Y ) ∈ E
(n)
(l+1)δ \E

(n)
lδ

}
(5.22)

= ν
(
E

(n)
(l+1)δ \E

(n)
lδ

)+ O
(
A0(n/k)

)
.

To bound the right-hand side, first note that by similar calculations as in the proof of Lemma 5.1,
one obtains

H̃
(n,i)
ϑi ,χi ,ξi

(x)

= dn

en

x

⎛
⎜⎜⎝ 1

+

⎧⎪⎪⎨
⎪⎪⎩

−k−1/2 log cn

(
χi

γi

+ oP (1)

)
+ OP

(
k−1/2(xdn/en)

−γi
)
, γi > 0,

k−1/2(dnk/n)−γi
((

ξi/γi + ϑi/γ
2
i + oP (1)

)
x−γi + oP (1)

)
, γi < 0,

−k−1/2 log2 cn

(
χi + ϑi/2 + oP (1)

)+ OP

(
k−1/2 log cn logx

)
, γi = 0

⎞
⎟⎟⎠

uniformly for x ∈ [λn,i , τn,i]. That means that under the same conditions as in Lemma 5.1 one can
prove an analogous approximation where 	i is replaced with χi if γi > 0, αi/γi − βi −	i/γ

2
i is

replaced with ξi/γi +ϑi/γ
2
i if γi < 0, and 	i is replaced with 2χi +ϑi in the case γi = 0. Hence,

we may also conclude a corresponding analog to Corollary 5.5, that is, ν((en/dn)E
(n)
(ϑi ,χi ,ξi )i=1,2

)−
ν(S) equals the right-hand side of (5.17) with the above substitutions. Because all integrals are
finite, there exists a constant K > 0 such that for sufficiently large n

ν
(
E

(n)
(l+1)δ

)− ν
(
E

(n)
lδ

)≤ en

dn

Kδk−1/2(wn(γ1) ∨wn(γ2)
)

uniformly for all l ∈ {−�M/δ�, . . . , �M/δ }6. A combination with (5.22), en � dn and condition
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(S2) shows that to each η > 0 there exists δ > 0 such that for sufficiently large n

Eνn

(
E

(n)
(l+1)δ \E

(n)
lδ

)≤ η

12
k−1/2(wn(γ1)∨ wn(γ2)

)
. (5.23)

In view of (5.21), we obtain

P
{

sup
θ,ψ∈[−M,M]6,‖θ−ψ‖∞≤δ

∣∣Zn(θ) − Zn(ψ)
∣∣> η

}

≤ P

{
max

l∈{−�M/δ�,...,�M/δ }6

(
νn

(
E

(n)
(l+1)δ \E

(n)
lδ

)+Eνn

(
E

(n)
(l+1)δ \E

(n)
lδ

))

>
η

3
k−1/2(wn(γ1)∨wn(γ2)

)}

≤
∑

l∈{−�M/δ�,...,�M/δ }6

P

{∣∣νn

(
E

(n)
(l+1)δ \E

(n)
lδ

)− Eνn

(
E

(n)
(l+1)δ \E

(n)
lδ

)∣∣

>
η

6
k−1/2(wn(γ1)∨wn(γ2)

)}
.

Therefore the asserted asymptotic equicontinuity (5.20) follows from (5.23) and Chebyshev’s
inequality applied to the binomial random variables kνn(E

(n)
(l+1)δ \E

(n)
lδ ):

P

{∣∣νn

(
E

(n)
(l+1)δ \E

(n)
lδ

)−Eνn

(
E

(n)
(l+1)δ \E

(n)
lδ

)∣∣> η

6
k−1/2(wn(γ1)∨wn(γ2)

)}

≤ kEνn(E
(n)
(l+1)δ

\E
(n)
lδ )

(η/6)2k(wn(γ1)∨wn(γ2))2
→ 0

uniformly for all l ∈ {−�M/δ�, . . . , �M/δ }6.
It remains to prove that Zn(θ) → 0 in probability for all θ ∈ [−M,M]6. This, however, follows

similarly by Chebyshev’s inequality, (D1) and the aforementioned analog to Corollary 5.5:

P
{∣∣Zn(ϑ)

∣∣> η
} = P

{
k
∣∣νn

(
E

(n)
θ

)−Eνn

(
E

(n)
θ

)∣∣> ηk1/2(wn(γ1)∨wn(γ2)
)}

≤ nP {T ←
n (X,Y ) ∈ E

(n)
θ }

η2k(wn(γ1)∨wn(γ2))2

= ν(E
(n)
θ )+ O(A0(n/k))

η2(wn(γ1)∨wn(γ2))2

= ν(S) + o(1)

η2(wn(γ1)∨ wn(γ2))2

→ 0. �

Remark 5.7. Two remarks on this proof are in place. At first glance it seems peculiar that in
the definition of H̃

(n,i)
ϑi ,χi ,ξi

both parameters −ϑi and χi take over the role of k1/2(γ̂i − γi) in
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the definition of H̃ . This, however, is necessary to ensure the crucial monotonicity property of
H̃

(n,i)
ϑi ,χi ,ξi

in the case γi > 0.

Second, we used the (slightly old-fashioned) classical approach to establish asymptotic
equicontinuity instead of the often more elegant approach via bracketing numbers (see van
der Vaart and Wellner [21], Theorem 2.11.9), because the same approximation error of order
O(A0(n/k)) in (D1) always enters the upper bound on Eνn(E

(n)
(l+1)δ \ E

(n)
lδ ), thus impeding the

calculation of bracketing numbers for radii of smaller order.

Next, we show that the terms I and III in decomposition (2.5) are negligible.

Lemma 5.8. If the conditions of Theorem 2.1 are fulfilled, then

p̂n − 1

en

νn

(
dn

en

Hn

(
S∗

n

)) = oP

(
d−1
n k−1/2(wn(γ1)∨wn(γ2)

))
, (5.24)

1

en

(
Eνn(B)− ν(B)

)|B=(dn/en)Hn(S∗
n) = oP

(
d−1
n k−1/2(wn(γ1)∨wn(γ2)

))
. (5.25)

Proof. As p̂n = νn((dn/en)Hn(S))/en, the left-hand side of (5.24) is non-negative with expec-
tation

n

ken

P

{
T ←

n (X,Y ) ∈ dn

en

Hn

(
S \ S∗

n

)}

≤ n

ken

P

{
T ←

n (X,Y ) ∈ dn

en

Hn

((
0, u∗

n

)× [
q
(
u∗

n−
)
,∞)∪ [

q←(
v∗
n

)
,∞)× [

q(∞), v∗
n

))}

= 1

dn

(
ν
(
Hn

((
0, u∗

n

)× [
q
(
u∗

n−
)
,∞)∪ [

q←(
v∗
n

)
,∞)× [

q(∞), v∗
n

)))

+ o
(
k−1/2(wn(γ1)∨wn(γ2)

)))
,

where we have used (D1) and (S2). Now assertion (5.24) follows from Lemma 5.2 and the proof
of Corollary 5.5.

Likewise, by conditions (D1), (S2) and dn � en, the left-hand side of (5.25) equals

1

en

(
n

k
P
{
T ←

n (X,Y ) ∈ B
}− ν(B)

)∣∣∣∣
B=(dn/en)Hn(S∗

n)

= OP

(
e−1
n A0(n/k)

)

= oP

(
d−1
n k−1/2(wn(γ1)∨ wn(γ2)

))
. �

Finally, we derive a bound on term VI in decomposition (2.5).

Lemma 5.9. Under the assumptions of Theorem 2.1 one has

ν(dnS) − pn = o
(
d−1
n k−1/2(wn(γ1)∨wn(γ2)

))
.
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Proof. With λn,i , τn,i as in Lemma 5.1, we define for x ∈ [λn,i , τn,i]

H ∗
n,i(x) :=

(
1 + γi

Ui(dnx)− bi(dn)

ai(dn)

)1/γi

.

According to de Haan and Ferreira [9], Theorems 2.3.6 and 2.3.7 one can choose ai(t) as a multi-
ple of tγi and bi(t) = Ui(t)+O(ai(t)Ai(t)). Thus, for �1(x) defined in the proof of Lemma 5.1

Ui(dnx)− bi(dn)

ai(dn)

= ai(n/k)

ai(dn)

(
Ui(dnx)− bi(n/k)

ai(n/k)
− bi(dn)− bi(n/k)

ai(n/k)

)

=
(

n

kdn

)γi
(

(xdnk/n)γi − 1

γi

+�1(x) + (dnk/n)γi − 1

γi

+ �1(1)

)
+ O

(
Ai(dn)

)

= xγi − 1

γi

+ O

(
Ai(n/k)

(
dnk

n

)ρi+ε(
xγi+ρi+ε + 1

))+ o

(
Ai(n/k)

(
dnk

n

)ρi+ε)
,

where in the last step we have used (5.1), (5.18) and the Potter bound for the regularly varying
function A0 (de Haan and Ferreira [9], Proposition B.1.9 5.). We conclude that

1 + γi

Ui(dnx)− bi(dn)

ai(dn)
= xγi

(
1 + O

(
Ai(n/k)

(
xdnk

n

)ρi+ε)

+ O

(
Ai(n/k)

(
dnk

n

)ρi+ε

x−γi

))
.

Check that the first remainder term is of smaller order than k−1/2wn(γi) by condition (i) of
Lemma 5.1. Moreover, for γi > 0, (5.19) and again condition (i) of Lemma 5.1 imply

Ai(n/k)

(
dnk

n

)ρi+ε

x−γi = O

(
Ai(n/k)

(
dnk

n

)ρi+ε

k1/2/ log cn

)
→ 0,

while for γi < 0 this convergence follows from the conditions (i) and (iii) of Lemma 5.1, and for
γi it is obvious from condition (i).

This shows that H ∗
n,i(x) is indeed well defined with

H ∗
n,i(x) = x

⎛
⎜⎝1 +

⎧⎪⎨
⎪⎩

o
(
k−1/2 log cn

)+ O
(
Ai(n/k)(dnk/n)ρi+εx−γi

)
, γi > 0,

o
(
k−1/2(dnk/n)−γi

(
1 + x−γi

))
, γi < 0,

o
(
k−1/2 log2 cn

)
, γi = 0

⎞
⎟⎠

uniformly for x ∈ [λn,i , τn,i]. Notice that this representation is of similar type as the approxima-
tion derived in Lemma 5.1 with all leading terms equal to 0 (though in the case γi > 0 the second
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remainder term has a slightly different form). Therefore, we may proceed as before to conclude

ν
(
H ∗

n

(
S∗

n

))− ν(S)

= o
(
k−1/2(wn(γ1)∨wn(γ2)

))+
2∑

i=1

O
(
Ai(n/k)(dnk/n)ρi+ε

)
1{γi>0}

= o
(
k−1/2(wn(γ1)∨wn(γ2)

))
,

where the last equality follows from Lemma 5.1(i) (cf. Corollary 5.5).
To complete the proof, we must show that

pn − ν
(
dnH

∗
n

(
S∗

n

))= o
(
d−1
n k−1/2(wn(γ1)∨wn(γ2)

))
.

This, however, follows from assumption (D1) (with t = dn) in a similar way as (5.24). �

Proof of Theorem 2.1. The assertion is a direct consequence of (2.5), Corollary 5.5 and of the
Lemmas 5.8, 5.6 and 5.9. �

Proof of Corollary 2.2. First note that, similarly as for p̂n, one obtains the representation
ν̂n(Ŝ

+
n,2) = νn(

dn

en
H+

n (S)) with H+
n (x, y) := (Hn,1(x),H+

n,2(y)),

H+
n,2(y) := en

dn

T ←
n ◦ T̂n ◦ (T̂ (c+)

n

)← ◦U(dny)

and c+ := c+n := (1+ �n)n/(ken). Thus, Lemma 5.1 (with en replaced by en/(1+ �n)) yields the
approximation

H+
n,2(y)

= (1 + �n)y

⎛
⎝ 1

+

⎧⎪⎪⎨
⎪⎪⎩

−k−1/2 log cn

(
	2/γ2 + oP (1)

)+ OP

(
k−1/2(ydn/en)

−γ2
)
, γ2 > 0,

k−1/2(dnk/n)−γ2

× ((
α2/γ2 − β2 − 	2/γ

2
2 + oP (1)

)
y−γ2 + oP (1)

)
, γ2 < 0,

−k−1/2 log2 cn

(
	2/2 + oP (1)

)+ OP

(
k−1/2 log cn logy

)
, γ2 = 0

⎞
⎟⎟⎠ .

Now the very same arguments as used in the analysis of p̂n show that

ν̂n

(
Ŝ+

n,2

)= ν
(
S+

n,2

)+ OP

(
k−1/2(wn(γ1)∨wn(γ2)

))
.
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Together with an analogous approximation for ν̂n(Ŝ
−
n,2) and our assumption on �n, we may

conclude that

dn

en

În,2 = dn

en

ν(S−
n,2)− ν(S+

n,2)

2�n

+ oP (1)

=
∫ ∞

xl

(2�n)
−1

∫ (1+�n)q(u)

(1−�n)q(u)

η(u, v)dv du

→
∫ ∞

xl

q(u)η
(
u,q(u)

)
du.

In the last step we have used the fact that, on the range of integration, η(u, v) is continuous and
bounded by a multiple of u−3 ∨ (q(u))−3 (cf. (2.10)), so that the integrand of the outer integral
can easily be bounded by an integrable function and convergence follows by the dominated
convergence theorem. �
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