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In this paper, we tackle the problem of comparing distributions of random variables and defining a mean
pattern between a sample of random events. Using barycenters of measures in the Wasserstein space, we
propose an iterative version as an estimation of the mean distribution. Moreover, when the distributions
are a common measure warped by a centered random operator, then the barycenter enables to recover this
distribution template.
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1. Introduction

Giving a sense to the notion of mean behaviour may be counted among the very early activities
of statisticians. When confronted to a large sample of high dimensional data, the usual notion of
Euclidean mean is not usually enough since the information conveyed by the data possesses an
inner geometry far from the Euclidean one. Indeed, deformations on the data such as translations,
scale location models for instance or more general warping procedures prevent the use of the
usual methods in data analysis. The mere issue of defining the mean of the data becomes a
difficult task. This problem arises naturally for a wide range of statistical research fields such as
functional data analysis for instance in [7,16,24] and references therein, image analysis in [26] or
[5], shape analysis in [20] or [17] with many applications ranging from biology in [9] to pattern
recognition [25] just to name a few.

Without any additional knowledge, this problem is too difficult to solve. Hence to tackle this
issue, two main directions have been investigated. On the one hand, some assumptions are made
on the deformations. Models governed by parameters have been proposed, involving for instance,
scale location parameters, rotations, actions of parameters of Lie groups as in [8] or in a more
general way deformations parametrized by their coefficients on a given basis or in an RKHS
set [2]. Adding structure on the deformations enables to define the mean behaviour as the data
warped by the mean deformation, that is, the deformation parametrized by the mean of the pa-
rameters. Bayesian or semi-parametric statistics enable to provide sharp estimation of these pa-
rameters. However, the consistency of the estimator remains a theoretical issue for many cases.

On the other hand, another direction consists in finding an adequate distance between the data
which reveals the information which is conveyed. Actually, the chosen distance depends on the
nature of the set where the observations belong, whose estimation is a hard task. We refer for
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instance, to [23] for some examples. Once an appropriate distance has been chosen, difficulties
arise when trying to define the mean as the minimum of the square distance since both existence
and uniqueness rely on assumptions on the geometry of the data sets. This will be the framework
of our work.

Assume that we observe j = 1, . . . , J samples of i = 1, . . . , n independent random variables
Xi,j ∈ R

d with distribution μj . We aim at defining the mean behaviour of these observations,
that is, their mean distribution. For this, we will extend the notion of barycenter of the distribu-
tions with respect to the Wasserstein distance defined in [1] to the empirical measures and prove
the consistency of its estimate. Actually, Wasserstein distance is a powerful tool to compute dis-
tance between distributions, with application in statistics pioneered in [3,12] or [13], for instance.
Moreover, we will tackle the case where the distributions are the images of an unknown original
distribution by random operators under some suitable assumptions. In this case, we prove that
an iterative version of the barycenter of the empirical distributions provides an estimate which
enables to recover the original template distribution when the number of replications J is large
enough.

The paper falls into the following parts. Section 2 is devoted to the extension of the notion
of barycenter in the Wasserstein space for empirical measures. In Section 3.2, we consider a
modification of the notion of barycenter by considering iterative barycenters, which have the
advantage to enable to recover the distribution pattern as proved in Section 4. Finally, some data
applications are outlined in Section 5.

2. Barycenters in the Wasserstein space: Notations and general
results

Let (E,d,�) denote a metric measurable space. The set of probability measures over E is de-
noted by P(E). Given a collection of probability measures μ1, . . . ,μJ over E, and weights
λ1, . . . , λJ ∈ R, λj ≥ 0, 1 ≤ j ≤ J ,

∑J
j=1 λj = 1, there are several natural ways to define a

weighted average of these measures. Perhaps the most straightforward is to take the convex com-
bination of these measures

μc =
J∑

j=1

λjμj ,

using the fact that probability measures form a convex subset of the linear space of finite mea-
sures. However, if we provide P(E) with some metric structure, the definition above is not really
appropriate.

We denote by P2(E) the set of all probability measures over E with a finite second-order
moment. Given two measures μ, ν in P(E), we denote by P(μ, ν) the set of all probability
measures π over the product set E × E with first, resp. second, marginal μ, resp. ν.

The transportation cost with quadratic cost function, or quadratic transportation cost, between
two measures μ, ν in P2(E), is defined as

T2(μ, ν) = inf
π∈P(μ,ν)

∫
d(x, y)2 dπ.
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The quadratic transportation cost allows to endow the set of probability measures (with finite
second-order moment) with a metric by setting

W2(μ, ν) = T2(μ, ν)1/2.

This metric is known under the name of 2-Wasserstein distance.
In Euclidean space, the barycenter of the points x1, . . . , xJ with weights λ1, . . . , λJ , λj ≥ 0,∑J
j=1 λj = 1, is defined as

b =
J∑

j=1

λjxj .

It is also the unique minimizer of the functional

y �→ E(y) =
J∑

j=1

λj |xj − y|2.

By analogy with the Euclidean case, we give the following definition for Wasserstein barycen-
ter, introduced by Agueh and Carlier in [1].

Definition 2.1. We say that the measure μ ∈ P2(E) is a Wasserstein barycenter for the mea-
sures μ1, . . . ,μJ ∈ P2(E) endowed with weights λ1, . . . , λJ , where λj ≥ 0, 1 ≤ j ≤ J , and∑J

j=1 λj = 1, if μ minimizes

E(ν) =
J∑

j=1

λjW
2
2 (ν,μj ).

We will write

μB(λ) = Bar
(
(μj ,λj )1≤j≤J

)
.

In other words, the barycenter is the weighted Fréchet mean in the Wasserstein space. In [1],
the authors prove that when E = R

d the barycenter exists. They also provide suitable assump-
tions on the measures μj , 1 ≤ j ≤ J to ensure that the barycenter is unique. For example, a suf-
ficient condition is that one of the measures μj admits a density with respect to the Lebesgue
measure. They also provide a problem that is the dual of the minimization of the functional E

defined above, as well as characterizations of the barycenter.
Next, we recall a version of Brenier’s theorem on the characterization of quadratic optimal

transport in R
d . Throughout all the paper, we will use the following notation.

Definition 2.2. Let E, F be measurable spaces and μ ∈ P(E). Let T :E → F be a measurable
map. The push-forward of μ by T is the probability measure T#μ ∈P(F ) defined by the relations

T#μ(A) = μ
(
T −1(A)

)
, A ⊂ F measurable.
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Hence, Brenier’s theorem can be stated as follows.

Theorem 2.1 (Brenier’s theorem, see [10]). Let μ,ν ∈P2(R
d) be measures, with μ absolutely

continuous w.r.t. Lebesgue measure. Then there exists a μ-a.e. unique map T :Rd → R
d such

that

• T#μ = ν,
• W 2

2 (μ, ν) = ∫
Rd |T (x) − x|2μ(dx).

Moreover, there exists a lower semi-continuous convex function ϕ :Rd → R such that T =
∇ϕ μ-a.e., and T is the only map of this type pushing forward μ to ν, up to a μ-negligible
modification. The map T is called the Brenier map from μ to ν.

Remark 2.1. The theorem above is commonly referred to as Brenier’s theorem and originated
from Y. Brenier’s work in the analysis and mechanics literature. Much of the current interest in
transportation problems emanates from this area of mathematics. We conform to the common
use of the name. However, it is worthwhile pointing out that a similar statement was established
earlier independently in a probabilistic framework by Cuesta-Albertos and Matrán [11]: they
show existence of an optimal transport map for quadratic cost over Euclidean and Hilbert spaces,
and prove monotonicity of the optimal map in some sense (Zarantarello monotonicity).

As observed in [1], the barycenter of two measures is the interpolant of these two measures in
the sense of McCann.

Proposition 2.1 (See [1], Section 6.2). Let μ,ν ∈ P2(R
d) be absolutely continuous w.r.t.

Lebesgue measure. Let T :Rd → R
d denote the Brenier map from μ to ν. The barycenter of

(μ,λ) and (ν,1 − λ) is

μλ = (
λ Id+(1 − λ)T

)
#μ.

This provides a natural expression for the barycenter of measures as a convex combination of
measures.

3. Estimation of barycenters of empirical measures

Assume we do not observe the distributions μj ’s but approximations of these distributions. Let
μn

j ∈ P2(R
d) for 1 ≤ j ≤ J be these approximations in the sense that they converge with re-

spect to Wasserstein distance, that is, W2(μ
n
j ,μj ) → 0 when n → +∞. Our aim is to study the

asymptotic behaviour of the barycenter of the μn
j ’s when n goes to infinity.

3.1. Consistency of the approximated barycenter

We are interested here in statistical properties of the barycenter of the μn
1, . . . ,μ

n
J . We begin by

establishing a consistency result.
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Theorem 3.1. Let J ≥ 1, and for every n ≥ 0, let μn
j ∈ P2(R

d), 1 ≤ j ≤ J , be probability
measures converging in Wasserstein topology to some probability measure μj for 1 ≤ j ≤ J . Let
λ1, . . . , λJ be positive weights. Let μn

B be a barycenter of the (μn
j , λj ). The sequence (μn

B)n≥1 is
compact and any of its limit points lies in Bar((μj ,λj )1≤j≤J ).

Note that If any of the μn
j is absolutely continuous with respect to the Lebesgue measure,

then μn
B is unique and our theorem states that it converges to a barycenter of the limit mea-

sures (μj ,λj ). Likewise, if any of the μj is absolutely continuous with respect to the Lebesgue
measure, any μn

B is converging to the unique barycenter of (μj ,λj ).
The proof of this theorem relies on the following lemma which provides a characterization of

a barycenter of measures. The proof of the lemma is inspired by the proof of Proposition 4.2 in
[1] and is postponed to the Appendix.

Lemma 3.1. Let �(μ1, . . . ,μJ ) be the set of probability measures on (Rd)J with marginals
μ1, . . . ,μJ , respectively and T (x1, . . . , xJ ) = ∑J

j=1 λjxj with weights λj ≥ 0 such that∑J
j=1 λj = 1. A probability measure ν is a barycenter of μ1, . . . ,μJ with weights (λj )≤j≤J

if and only if ν = T#γ where γ ∈ �(μ1, . . . ,μJ ) minimizes∫ ∑
1≤j≤J

λj

∥∥T (x1, . . . , xJ ) − xj

∥∥2 dγ (x1, . . . , xJ ). (3.1)

3.2. An iterative version of barycenters of measures

Barycenters in Euclidean spaces enjoy the associativity property: the barycenter of x1, x2, x3

with weights λ1, λ2, λ3 coincides with the barycenter of x12, x3 with weights λ1 + λ2, λ3 when
x12 is the barycenter of x1, x2 with weights λ1, λ2. This property, as we will see, no longer holds
when considering barycenters in Wasserstein spaces over Euclidean spaces, with the notable
exception of dimension 1.

Therefore, we introduce a notion of iterated barycenter as the point obtained by successively
taking two-measures barycenters with appropriate weights. This does not in general coincide
with the ordinary barycenter. However, we will identify cases where the two notions match.

Definition 3.1. Let μi ∈P2(E), 1 ≤ i ≤ n, and λi > 0, 1 ≤ i ≤ n with
∑n

i=1 λi = 1. The iterated
barycenter of the measures μ1, . . . ,μn with weights λ1, . . . , λn is denoted by IB((μi, λi)1≤i≤n)

and is defined as follows :

• IB((μ1, λ1)) = μ1,
• IB((μi, λi)1≤i≤n) = Bar[(IB((μi, λi)1≤i≤n−1), λ1 + · · · + λn−1), (μn,λn)].

The next proposition establishes consistency of iterated barycenters of approximated measures
μn

j , for j = 1, . . . , J .
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Theorem 3.2. The iterated barycenter is consistent: if μn
j → μj in W2 distance for j = 1, . . . , J ,

then

IB
((

μn
j ,λj

)
1≤j≤J

) → IB
(
(μj ,λj )1≤j≤J

)
in W2 distance.

Remark 3.1. Iterated barycenters as well as barycenters are well-suited to computations, since
there exist efficient numerical methods to compute McCann’s interpolant, see, for example, [6,
18]. The purpose of introducing the iterative barycenters is that, as shown in the next Section 4.2,
the resulting measure has an expression as the image of a measure by a linear combination of
maps. This will be helpful when considering a warping setting. Moreover, as we will see later,
in some cases of interest the iterated barycenter does not depend on the order in which two-
measures barycenters are taken, allowing for parallel computation schemes.

4. Deformations of a template measure

We now would like to use Wasserstein barycenters or iterated barycenters in the following frame-
work: let (E,d,�) denotes a metric measurable space and assume that we observe probability
measures in P(E), μ1, . . . ,μJ that are deformed versions, in some sense, of an original measure
μ. We would like to recover μ from the observations. Here, we propose to study the relevance of
the barycenter as an estimator of the template measure, when the deformed measures are of the
type μj = Tj #μ for suitable push-forward maps Tj .

Our aim here is to extend the results of Dupuy, Loubes and Maza in [14]. They study the prob-
lem of curve registration, that we can describe as follows: given an unknown increasing function
F : [a, b] �→ [0,1], and a random variable H with values in the set of continuous increasing
functions h : [a, b] �→ [a, b], we observe F ◦ h−1

1 , . . . ,F ◦ h−1
n where hi are i.i.d. versions of H

(randomly warped versions of F ). Let μ ∈ P(R) denote the probability measure that admits F

as its c.d.f.: then the above amounts to saying that we observe hi#μ, 1 ≤ i ≤ n. The authors build
an estimator by using quantile functions that turns out to be the Wasserstein barycenter of the
observed measures. They show that the estimator converges to (EH)#μ.

Hereafter, we first define a class of deformations for distributions, which are modeled by a
push forward action by a family of measurable maps Tj , j = 1, . . . , J undergoing the following
restrictions. Such deformations will be called admissible.

4.1. Admissible deformations

Definition 4.1. The set GCF(�) is the set of all gradients of convex functions, that is to say the
set of all maps T :� → R

n such that there exists a proper convex l.s.c. function φ :� → R with
T = ∇φ.

Definition 4.2. We say that the family (Ti)i∈I of maps on � is an admissible family of deforma-
tions if the following requirements are satisfied:
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1. there exists i0 ∈ I with Ti0 = Id,
2. the maps Ti :� → � are one-to-one and onto,
3. for i, j ∈ I we have Ti ◦ T −1

j ∈ GCF(�).

The following proposition provides examples are of such deformations.

Proposition 4.1. The following are admissible families of deformations on domains of Rn.

• The set of all product continuous increasing maps on R
n, that is, the set of all maps

T :x �→ (
F1(x1), . . . ,Fn(xn)

)
,

where the functions Fi :R → R are continuous increasing functions with Fi →−∞ −∞,
Fi →+∞ +∞.
In particular, this includes the family of scale-location transformations, that is, maps of the
type x �→ ax + b, a > 0, b ∈R

n.
• The set of radial distortion transformations, that is, the set of maps

T :Rn → R
n, x �→ F

(|x|) x

|x| ,

where F :R+ �→ R
+ is a continuous increasing function such that F(0) = 0.

• The maps tG ◦ Ti ◦ G where (Ti)i∈I is an admissible family of deformations on � and
G ∈On is a fixed orthogonal matrix. This family has tG(�) as its domain.

Proof. Let us consider the first family. Checking the two first requirements is straightfor-
ward and we only take care of the last one. Let S :x �→ (F1(x1), . . . ,Fn(xn)) and T :x �→
(G1(x1), . . . ,Gn(xn)). The map S ◦ T −1 is given by

S ◦ T −1(x) = (
F1 ◦ G−1

1 (x1), . . . ,Fn ◦ G−1
n (xn)

)
,

and this is the gradient of the function

x �→
∫ x1

0
F1 ◦ G−1

1 (z)dz + · · · +
∫ xn

0
Fn ◦ G−1

n (z)dz.

The functions Fi ◦ G−1
i are increasing, so that their primitives are convex functions, which

makes the function above convex.
Second point: observe that radial distortion transformations form a group, so that we only need

show that each such transformation is the gradient of a convex function. And indeed, T :x �→
F(|x|) x

|x| is the gradient of the function

x �→
∫ |x|

0
F(r)dr

and this is a convex function because F is increasing.
The final item is a simple consequence of the observation that if G ∈ GLn and f :Rn → R is

differentiable, then ∇(f ◦ G) =t G ◦ ∇f ◦ G. �
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4.2. Barycenter of measures warped using admissible deformations

We are interested in recovering a template measure from deformed observations. The unknown
template is a probability measure μ on the domain � ⊂ R

d , absolutely continuous w.r.t. the
Lebesgue measure λ. We represent the deformed observations as push-forwards of μ by maps
T :� → �, that is, we observe (Tj )#μ, j = 1, . . . , J .

Theorem 4.1 states that when Tj belongs to an admissible family of deformations, taking
the iterated barycenter of the observations corresponds to averaging the deformations. With this
explicit expression at hand, we can check that in the case described above, the iterated barycenter
coincides with the usual notion of barycenter.

Theorem 4.1. Assume that (Ti)i∈I is an admissible family of deformations on a domain � ⊂R
n,

and let μ ∈P2(�), μ << λ. Let μj = (Tj )#μ. The following holds:

IB
(
(μj ,λj )1≤j≤J

) =
(

J∑
j=1

λjTj

)
#

μ. (4.1)

Moreover,

IB
(
(μj ,λj )1≤j≤J

) = Bar
(
(μj ,λj )1≤j≤J

)
. (4.2)

Remark 4.1.

1. The special case of the dimension 1.
In dimension 1, the set of all continuous increasing maps is an admissible family of defor-
mations. The previous theorem applies for this very large class of deformations. Results in
this case are known from [14] or [15]: the only new part here is that the estimator can be
computed iteratively.

2. Barycenters and iterated barycenters do not match in general.
The fact that the two notions of barycenter introduced above coincide no longer holds as
soon as the dimension is larger than 2. For a counterexample, consider the case of non-
degenerate centered Gaussian measures γ1, . . . , γJ on R

n, defined by their covariances
matrices S1, . . . , SJ ∈ S++

n .
According, for example, to [22], Example 1.7, the optimal transport map from N (0, S) to
N (0, T ) is given by

x �→ T 1/2(T 1/2ST 1/2)−1/2
T 1/2x.

From this result, it is possible to give an explicit expression of the iterated barycenter.
On the other hand, according to Theorem 6.1 in [1], the barycenter of the μj with weights
1/J is the Gaussian measure with covariance matrix the unique positive definite solution
of the fixed point equation

M = 1

J

J∑
j=1

(
M1/2SjM

1/2)1/2
.
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One may check that these two covariance matrices do not match in general.

4.3. Template estimation from admissible deformations

Thanks to Theorem 4.1, we can study the asymptotic behaviour of the barycenter when the num-
ber of replications of the warped distributions J increases. Actually, we prove that the barycenter
is an estimator of the template distribution.

Let T be a process with values in some admissible family of deformations acting on a subset
I ⊂R

d .

T :� → T (I),

w �→ T (w, ·),
where (�,A,P) is an unknown probability space, Assume that T is bounded and has a finite
moment ϕ(·) = E(T (·)). Let Tj for j = 1, . . . , J be a random sample of realizations of the
process T . Then, we observe measures μj which are warped by Tj in the sense that for all,
μj = Tj #μ.

Theorem 4.2. Assume that μ is compactly supported. As soon as ϕ = id, μB the barycenter of
the μj ’s with weights 1/J is a consistent estimate of μ when J tends to infinity in the sense that
a.s.

W 2
2 (μB,μ)

J→∞−→ 0.

Moreover, assuming that ‖T − id‖L2 ≤ M a.s., we get the following error bound:

P
(
W2(μB,μ) ≥ ε

) ≤ 2 exp

(
−J

ε2

M2(1 + cε/M)

)
.

Note that when the warping process is not centered, the problem of estimating the original
measure μ is not identifiable and we can only estimate by the barycenter μB the original measure
transported by the mean of the deformation process, namely ϕ#μ.

The proof of this theorem relies on the following proposition.

Proposition 4.2. Let (Ti)i∈I be an admissible family of deformations on a domain � ⊂R
n, and

let μ ∈ P2(�), absolutely continuous with respect to the n-dimensional Lebesgue measure. Let
μj = (Tj )#μ. Denote by μB the barycenter with equal weights 1/J . For every ν in P2(R

d), we
have

W2(μB, ν) ≤
∥∥∥∥∥ 1

J

J∑
j=1

Tj − Tν

∥∥∥∥∥
L2(μ)

,

where Tν is the Brenier map from μ to ν.
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Proof. With the explicit expression of the barycenter, we know that the Brenier map from μ to
μB is 1/J

∑J
j=1 Tj , which implies that

π =
(

1

J

J∑
j=1

Tj , Tν

)
#

μ

is a coupling of μB and ν. Consequently,

W 2
2 (μB, ν) ≤

∫ ∣∣∣∣∣ 1

J

J∑
j=1

Tj (x) − Tν(x)

∣∣∣∣∣
2

μ(dx).
�

5. Statistical applications

5.1. Distribution template estimation from empirical observations

In many situations, the issue of estimating the mean behaviour of random observations plays
a crucial role to analyze the data, in image analysis, kinetics in biology, for instance. For this,
we propose to use the iterative barycenter of the empirical distribution as a good estimate of
the mean information conveyed by the data. Moreover, this estimate has the advantage that if the
different distribution are warped from an unknown distribution, the empirical iterative barycenter
converges to this pattern when the number of replications grows large.

Assume we observe j = 1, . . . , J samples of i = 1, . . . , n points Xi,j ∈ R
d which are i.i.d.

realizations of measures μj . Hence, we observe cloud points or in an equivalent way μn
j =

1
n

∑n
i=1 δXi,j

empirical versions of the measures μj . It is well known that considering the mean
with respect to the number of samples J of all observation points does not provide a good model
of the mean behaviour. Instead, we here consider the iterative barycenter μJ

B = IB(μj ,
1
J
) defined

in Definition 3.1. The following proposition shows that the barycenter of the empirical distribu-
tions provides a good estimate for this mean shape. We point out that this estimator corresponds
to the so-called Fréchet mean of the empirical measures.

Proposition 5.1. Assume that the observations X.,j ∼ μj are warped by a centered admissi-
ble deformation process from an unknown template distribution μ continuous with respect to
Lebesgue measure. Set μ

n,J
B ∈ Bar(μn

j ,
1
J
), an empirical mean of the empirical distribution. As

n → +∞, we have

μ
n,J
B −→ μJ

B.

Moreover, when n → +∞ and J → +∞, μ
n,J
B is a consistent estimate of μ, in the sense that

μ
n,J
B −→ μ in W2 distance.
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We point out that μ
n,J
B exits but is not unique. Actually, to ensure uniqueness, one may con-

sider a regularized version of the empirical measures. For instance, let γε denotes a N (0, εId)

measure. Set μ̂n
j = μn

j ∗ γ1/n. In this case, μ̂
n,J
B = Bar(μn

j ,
1
J
) is uniquely defined and as

n → +∞, we have μ̂
n,J
B −→ μB in Wasserstein distance. Note that any other regularization

scheme may be used as soon as the corresponding measures converge to the true measures in
Wasserstein distance when n goes to infinity.

An important application is given by the issue of ensuring equality between the candidates in
an exam with several different referees. This constitutes a natural extension of the work in [14]
to higher dimensions.

Consider an examination with a large number of candidates, such that it is impossible to eval-
uate the candidates one after another. The students are divided into J groups, and J boards of
examiners are charged to grade these groups: each board grades one group of candidates. The
evaluation is performed by assigning p scores. The J different boards of examiners are supposed
to behave the same way, so as to respect the equality among the candidates. Moreover, it is as-
sumed that the sampling of the candidates is perfect in the sense that it is done in such a way
that each board of examiners evaluates candidates with the same global level. Hence, if all the
examiners had the same requirement levels, the distribution of the ranks would be the same for
all the boards of examiners. Here, we aim at balancing the effects of the differences between
the examiners, gaining equity for the candidates. The situation can be modeled as follows. For
each group j among J groups of candidates, let Xj = {Xj

i ∈ R
p, i = 1, . . . , n} denote the scores

of the students within this group. Let μj and μn
j be respectively the measure and the empirical

measure of the scores in the j th group.
We aim at finding the average way of ranking, with respect to the ranks that were given within

the p bunches of candidates. For this, assume that there is such an average measure, and that
each group-specific measure is warped from this reference measure by a random process. A good
choice is given by the barycenter measure. In order to obtain a global common ranking for the
N candidates, one can now replace the p group-specific rankings by the sole ranking based on
barycenter measure. Indeed each measure can be pushed towards the barycenter. As a result, we
obtain a new set of scores for the N candidates, which can be interpreted as the scores that would
have been obtained, had the candidates been judged by an average board of examiners.

5.2. Principal component analysis with Wasserstein distance

Once we have succeeded in defining a mean of a collection of distributions, then the second
step consists in understanding the variability of the different experiments with respect to this
average distribution, which is, in statistics, the aim of the so-called PCA analysis. In a Euclidean
space, a natural way to define principal components is through the minimization of the variance
of the residuals. This concept has been extended to non Euclidean situations such as manifolds,
Kendall’s shape spaces in [24]. The principal component directions are replaced by principal
component curves from a suitable family of curves, for example, geodesics. In our framework,
we generalize this idea to the Wasserstein distance.

As previously, let μ1, . . . ,μJ be measures in P2(R
d) and let μB be the mean defined as the

Barycenter μB = Bar(μj ,
1
J
). Let Sj , j = 1, . . . , J be the transport plan between the μj ’s and



Distribution’s template estimate with Wasserstein metrics 751

μB and write μj = Sj #μB . Assume the (Id, Sj ) are an admissible family of transformations.
Clustering the experiments in order to build coherent groups is usually achieved by comparing a
distance between these distributions. Here by choosing the Wasserstein distance, we get that

W 2
2 (μB,μj ) =

∫ ∣∣Sj (x) − x
∣∣2 dμB = ‖Sj − id‖2

L2(μB)
.

Hence, statistical analysis of the distributions μj ’s amounts to clustering their Wasserstein square
distance ‖Sj − id‖2

L2(μB)
∈R

+.
It is known that the Wasserstein metric endows the space of probability measures with a formal

Riemannian structure, in which it is possible to define geodesics, tangent spaces, etc., see [4,19].
We propose here a method of principal component analysis using Wasserstein distance based on
geodesics of the intrinsic metric, which follows the ideas developed in [19]. For this, consider a
geodesic segment γ at point μ with direction T , which can be written as

∀t ∈ [0,1], γ (t) = (
(1 − t) Id+ tT

)
#μ.

We extend the definition of γ to every t ∈ R, with the important provision that γ is in general
not a geodesic curve for the whole range of t ∈ R. We perform PCA with respect to this family
of curves which we somewhat abusively refer to as “geodesic curves“ on their extended range.
We will come back to this discussion at the end of our analysis.

For every μj , the natural distance to the geodesic curve γ is given by

d2(μj , γ ) = inf
t∈RW 2

2

(
μj , γ (t)

)
.

Definition 5.1. A geodesic γ1 is called a first generalized principal component geodesic (GPCG)
to the μj ’s if it minimizes the following quantity

γ �→ 1

J

J∑
j=1

d2(μj , γ ). (5.1)

Then we define the second GPCG, a geodesic γ2 which minimizes (5.1) over all geodesics that
have at least one point in common with γ1 and that are orthogonal to γ1 at all points in common.

Every point μ� that minimizes μ �→ 1
J

∑J
j=1 W 2

2 (μj ,μ) over all common points of γ1 and
γ2 will be called a principal component geodesic mean. Given the first and the second princi-
pal component geodesics γ1 and γ2 with principal component geodesic mean μ� we say that
a geodesic γ3 is a third principal component geodesic if it minimizes (5.1) over all geodesics
that meet previous principal components orthogonally at μ�. Analogously, principal component
geodesics of higher order are defined.

Here we will focus on the computation of the first geodesic component γ1. We will only
consider geodesic curves from μB , in that case note that μB = μ�. Hence, we root our analysis
at the central point given by μB which plays the role of the mean of the sample of distributions.
In this setting, we first define a geodesic starting at a measure μB directed by a map T as γ (t) =
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((1 − t) Id+ tT )#μB . We consider a family of maps T such that (Id, Sj , T ) is an admissible
family of deformations. Hence, in that case, the distance of any measure μj with respect to such
a geodesic can be written as

d2(μj , γ ) = inf
t∈R

∫ [(
(1 − t) Id+ tT

) ◦ S−1
j − Id

]2 dμj (x)

= inf
t∈R

∫ [(
(1 − t) Id+ tT

) − Sj

]2 dμB(x)

= −
〈Sj − Id, T − Id〉2

L2(μB)

‖T − Id‖2
L2(μB)

,

where ‖ · ‖L2(μB) denotes the quadratic norm with respect to the measure μB with corresponding
scalar product 〈·, ·〉L2(μB). Finally, PCA with respect to Wasserstein distance amounts to mini-

mizing with respect to T the quantity
∑J

j=1 d2(μj , γ ), which can be written as

T �→ −
J∑

j=1

∣∣∣∣〈Sj − Id,
(T − Id)

‖T − Id‖L2(μB)

〉∣∣∣∣2

L2(μB)

.

If we set v = T − Id, this maximization can be written as finding the solution to

arg max
v,‖v‖

L2(μB )
=1

J∑
j=1

∣∣〈Sj − Id, v〉∣∣2
L2(μB)

,

which corresponds to the functional principal component analysis of the maps Sj , j = 1, . . . , J

in the space L2(μB). This analysis can be achieved using tools defined for instance in [24].
Finally, if we get T (1) the map corresponding to the first functional principal component, the
corresponding principal geodesic if obtained by setting γ (1)(t) = ((1 − t) Id+ tT (1))#μB . The
other principal components can be computed using the same procedure.

In the one-dimensional case, the situation is simpler since, the distance between μj with dis-
tribution function Fj and a geodesic γ from μB with distribution function FB to T#μB is given
by

d2(μj , γ ) = inf
t∈R

∫ [(
(1 − t) Id+ tT

) ◦ F−1
B − F−1

j

]2 dt.

Hence, PCA analysis amounts to maximizing for all functions T

T �→
J∑

j=1

∣∣∣∣〈Sj ◦ F−1
B − F−1

B ,
(T − Id) ◦ F−1

B

‖(T − Id) ◦ F−1
B ‖

〉∣∣∣∣2

,

which corresponds to the functional PCA of the maps Sj , j = 1, . . . , J in the space L2(μB)

without any restriction.
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Let us come back to the caveat that the curves chosen are not Wasserstein geodesics on the
entire parameter range. It is easy to check in the one-dimensional case (see [4]) that a curve
γ (t) = ((1 − t) Id+ tT )#μ is a geodesic curve for all t ∈ R such that (1 − t) Id+ tT is an in-
creasing function. Assuming T ′ takes values in the interval [a, b], 0 < a < 1 < b, this means
that γ is a geodesic curve for all t ∈ [1/(a − 1),1/(b − 1)]. Once the analysis above yields the
expression of T (1) and the t∗j minimizing d2(μj , γ ), it is possible to check whether they fall in
this range. Actually,

t∗j = 〈Sj − Id, T (1) − Id〉L2(μB)

‖T (1) − Id‖2
L2(μB)

.

Hence, when the measures μj are not too far from their barycenter (i.e., when the ‖Sj − Id‖∞
are small) these conditions are met.

Within this framework, we can analyze the toy example of translation effect, studied in [16]
or in [15]. Here consider i.i.d. random variables Xi ∈ R

p, i = 1, . . . , n who are translated by
parameters θj = (θ1

j , . . . , θ
p
j ), j = 1, . . . , J . Hence, the observation model is Xij = Xi + θj . Let

μ be the distribution of the Xi ’s and assume that this distribution admits a density f with respect
to the Lebesgue measure. Hence, μj ’s, the distributions of the Xij are given by

μj = Tj #μ

with Tj (x) = x + θj . They admit densities with respect to Lebesgue measure, fj ’s which are
such that ∀x ∈ R

p,fj (x) = f (x − θj ). In this case, μB the barycenter of the μj ’s exists and is
characterized by its density fB(x) = f (x − θ̄ ), with θ̄ = 1

J

∑J
j=1 θj .

In this context, each distribution μj can be expressed as

μj = Sj #μB, Sj (x) = 1

J

J∑
k=1

T −1
k ◦ Tj (x) = x + θ̄ − θj .

Now finding the first geodesic component rooted in μB amounts to maximize with respect to T

the quantity

T �→
J∑

j=1

∣∣∣∣〈Sj − Id,
(T − Id)

‖T − Id‖L2(μB)

〉
L2(μB)

∣∣∣∣2

=
J∑

j=1

‖θj − θ̄‖2 (
∫
(T − Id)dμB)2

‖T − Id‖2
L2

(μB )

which is achieved by choosing T = Id+ c for all constant c, where ‖ · ‖ denotes the norm in R
p .

Hence, the first principal geodesic component is given by μ1
t with density f (x − θ̄ − t) while

the variance explained is given by
∑J

j=1 ‖θj − θ̄‖2. This corresponds actually to the variance of
the deformations.
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Appendix

Proof of Lemma 3.1. The existence of a solution of the multimarginal problem (3.1) follows
from a classical compactness argument.

Let γ ∈ �(μ1, . . . ,μJ ) and set ν = T#γ . For all 1 ≤ j ≤ J ,

W 2
2 (ν,μj ) ≤

∫ ∥∥T (x1, . . . , xJ ) − xj

∥∥2 dγ (x1, . . . , xJ ),

and thus, ∑
1≤j≤J

λjW
2
2 (ν,μj ) ≤

∫ ∑
1≤j≤J

λj‖T (x1, . . . , xJ ) − xj‖2 dγ (x1, . . . , xJ ). (A.1)

For 1 ≤ j ≤ J and a probability measure ν̂, denote π̂j a minimiser of∫
‖x − xj‖2 dπ(x, xj )

over all π ∈ �(ν,μj ) and define � by

�(A × B1 × · · · × BJ ) = ν̂(A)
π1(A × B1)

ν̂(A)
· · · πJ (A × BJ )

ν̂(A)
. (A.2)

Suppose now that γ is moreover a minimizer of (3.1), we want to show that ν = T#γ is a
barycenter. Indeed,∑

1≤j≤J

λjW
2
2 (ν̂,μj ) =

∑
1≤j≤J

λj

∫
‖x − xj‖2 d�(x,x1, . . . , xJ )

(A.3)

=
∫ ∑

1≤j≤J

λj‖x − xj‖2 d�(x,x1, . . . , xJ )

≥
∫

inf
z∈E

∑
1≤j≤J

λj‖z − xj‖2 d�(x,x1, . . . , xJ ) (A.4)

=
∫ ∑

1≤j≤J

λj

∥∥T (x1, . . . , xJ ) − xj

∥∥2 d�(x,x1, . . . , xJ ) (A.5)

≥
∫ ∑

1≤j≤J

λj

∥∥T (x1, . . . , xJ ) − xj

∥∥2 dγ (x1, . . . , xJ ) (A.6)

≥
∑

1≤j≤J

λjW
2
2 (ν,μj ), (A.7)
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where (A.3) holds by definition (A.2) and (A.5) holds since for fixed x1, . . . , xJ , the sum∑
1≤j≤J λj‖x −xj‖2 attains its minimum at x = T (x1, . . . , xJ ) = ∑

1≤j≤J λjxj . The inequality
(A.6) holds since γ is optimal and (A.7) holds by (A.1).

Since ν̂ was arbitrary, this shows that ν is a barycenter.
On the other hand, taking ν̂ a barycenter, inequality (A.4) becomes an equality, so that, for

�-almost all (x, x1, . . . , xJ ) ∈ R
d×(J+1),∑

1≤j≤J

λj‖x − xj‖2 = inf
z∈E

∑
1≤j≤J

λj‖z − xj‖2

which shows that x = T (x1, . . . , xJ ) �-almost surely, and thus that ν̂ = T#�p , where �p is the
projection of � over the last J marginals. The fact that �p is a solution of (3.1) is a consequence
of (A.1) and equality (A.6). �

Proof of Theorem 3.1. We know by Lemma 3.1 that for all n ≥ 1, there exists γ n ∈
�(μ1, . . . ,μJ ) such that μn = T#γ

n. We first show that the sequence (γ n)n≥1 is tight. Let
B1, . . . ,BJ be large balls in R

d , we have

γ n
(
(B1 × · · · × BJ )c

) = γ n

(
J⋃

j=1

E × · · · × E × Bc
j × E × · · · × E

)

≤
J∑

j=1

γn

(
E × · · · × E × Bc

j × E × · · · × E
)

=
J∑

j=1

μn
j

(
Bc

j

)
.

Thus, tightness of the sequences (μn
j )n≥1 guarantees tightness of (γ n)n≥1. Note that the under

the assumption of the convergence of μn
j , n ≥ 1 in Wasserstein distance, we recover the compact-

ness of (γ n)n≥1 in Wasserstein topology. Indeed, denote γ any weak limit of the tight sequence
(γ n)n≥1, the second moments are converging:

∫
|x|2 dγ n =

J∑
j=1

∫
|xj |2 dμn

j

→
∫

|xj |2 dμj =
∫

|x|2 dγ.

Here we used the fact that Wasserstein’s convergence coincides with weak convergence together
with the convergence of second order moments. The above implies tightness of the sequence
of barycenters μn

B,n ≥ 1: indeed, it is the push-forward of the tight sequence (γ n)n≥1 by the

application T :Rd×J → R
d , which is Lipschitz continuous (with Lipschitz constant bounded
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by 1). It is readily checked that this operation preserves tightness, as it preserves convergence (in
weak and Wasserstein topologies).

We conclude by showing that any limiting point μ∞ is a minimizer for the barycenter problem
associated with μ1, . . . ,μJ . Denote by μB a barycenter of μ1, . . . ,μJ . Since μn

B is a barycenter
for μn

1, . . . ,μ
n
J , we have

J∑
j=1

λjW
2
2

(
μn

B,μn
j

) ≤
J∑

j=1

λjW
2
2

(
μB,μn

j

)
.

Since, up to a subsequence, μn
B → μ∞ in Wasserstein distance, letting n → +∞ shows

J∑
j=1

λjW
2
2

(
μ∞,μj

) ≤ lim
J∑

j=1

λjW
2
2

(
μB,μn

j

)
. (A.8)

�

Proof of Theorem 4.1. For the first part, (4.1), we use induction on J . For J = 1, the result
is obvious. Suppose then that it is established for J ≥ 1. Choose T1, . . . , TJ+1 from a family of
admissible deformations, and fix λ1, . . . , λJ+1 with

∑J+1
j=1 λj = 1. Using the definition of the

iterated barycenter, we have

IB
(
(μj ,λj )1≤j≤J+1

) = Bar

((
IB

(
(μj ,λj )1≤j≤J

)
,

J∑
j=1

λ,j

)
, (μJ+1, λJ+1)

)

= Bar

(((
1

�j

J∑
j=1

λjTj

)
#

μ,�J

)
, (μJ+1, λJ+1)

)
,

where we set �J = ∑J
j=1 λj .

Set ν = ( 1
�j

∑J
j=1 λjTj )#μ. As μJ+1 = TJ+1#μ, we have also μ = (TJ+1)

−1
# μJ+1, and

ν =
(

1

�j

J∑
j=1

λjTj

)
◦ (TJ+1)

−1
# μ

=
(

1

�j

J∑
j=1

λjTj ◦ (TJ+1)
−1

)
#

μJ+1.

Now, observe that by assumption all the maps Tj ◦ (TJ+1)
−1 are gradients of convex functions,

so that their convex combination also is. By Brenier’s theorem, the map

T = 1

�j

J∑
j=1

λjTj ◦ (TJ+1)
−1
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is the Brenier map from μJ+1 to ν. We deduce that the barycenter of ν and μJ+1 is

(λJ+1 Id+�JT )#μJ+1 = (λJ+1TJ+1 + �JT ◦ TJ+1)#μ

=
(

J+1∑
j=1

λjTj

)
#

μ.

This finishes the first part of the proof.
For the identification of the barycenter and the iterative barycenter given in (4.2), we proceed

as follows. Set T (x1, . . . , xJ ) = ∑J
j=1 λjxj for x1, . . . , xJ ∈ R

d . Proposition 4.2 of [1] claims

that the barycenter of (μj ,λj )1≤j≤J , denoted by μB , satisfies μB = T#γ where γ ∈ P((Rd)J )

is the unique solution of the optimization problem

inf

{∫ J∑
j=1

λj

∣∣T (x) − xj

∣∣2
dγ (x1, . . . , xJ ), γ ∈ �(μ1, . . . ,μJ )

}
,

where �(μ1, . . . ,μJ ) is the set of probability measures on R
dJ with j th marginal μj , 1 ≤ j ≤ J .

This can be rewritten as

1

2
inf

{∫ J∑
i,j=1

λiλj |xi − xj |2 dγ (x1, . . . , xJ ), γ ∈ �(μ1, . . . ,μJ )

}
.

The integral is bounded below by
∑J

i,j=1 λiλjW
2
2 (μi,μj ) (because each term of the sum is

bounded by W 2
2 (μi,μj )). On the other hand, choosing

γ = (T1, . . . , Tj )#μ,

we see that γ ∈ �(μ1, . . . ,μJ ), and that∫
|xj − xi |2 dγ =

∫ ∣∣Tj (x) − Ti(x)
∣∣2 dμ(x) =

∫ ∣∣Tj ◦ Ti
−1(x) − x

∣∣2
μi(dx) = W 2

2 (μi,μj ).

Thus γ is optimal, and we have

μB = T#γ =
(

J∑
j=1

λjTj

)
#

μ.
�

Proof of Theorem 4.2. Using the results of Proposition 4.2, we get that

W 2
2 (μB,μ) ≤

∫ ∣∣∣∣∣ 1

J

J∑
j=1

Tj (x) − x

∣∣∣∣∣
2

μ(dx).
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Almost sure convergence towards 0 of 1
J

∑J
j=1(Tj − id) is directly deduced from Corollary 7.10

(page 189) in [21], which is an extension of the Strong Law of Large Numbers to Banach spaces.
Then the result follows from dominated convergence.

Likewise, obtaining error bounds is straightforward. Assuming that ‖T − id‖L2 ≤ M a.s., we
can use Yurinskii’s version of Bernstein’s inequality in Hilbert spaces ([27], page 491) to get the
result announced. �
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