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With a view to statistical inference for discretely observed diffusion models, we propose simple methods
of simulating diffusion bridges, approximately and exactly. Diffusion bridge simulation plays a fundamen-
tal role in likelihood and Bayesian inference for diffusion processes. First a simple method of simulating
approximate diffusion bridges is proposed and studied. Then these approximate bridges are used as pro-
posal for an easily implemented Metropolis–Hastings algorithm that produces exact diffusion bridges. The
new method utilizes time-reversibility properties of one-dimensional diffusions and is applicable to all
one-dimensional diffusion processes with finite speed-measure. One advantage of the new approach is that
simple simulation methods like the Milstein scheme can be applied to bridge simulation. Another advantage
over previous bridge simulation methods is that the proposed method works well for diffusion bridges in
long intervals because the computational complexity of the method is linear in the length of the interval. For
ρ-mixing diffusions the approximate method is shown to be particularly accurate for long time intervals. In
a simulation study, we investigate the accuracy and efficiency of the approximate method and compare it to
exact simulation methods. In the study, our method provides a very good approximation to the distribution
of a diffusion bridge for bridges that are likely to occur in applications to statistical inference. To illustrate
the usefulness of the new method, we present an EM-algorithm for a discretely observed diffusion process.

Keywords: Bayesian inference; diffusion bridge; discretely sampled diffusions; EM-algorithm; likelihood
inference; Milstein scheme; pseudo-marginal MCMC; time-reversion

1. Introduction

In this paper, we propose a simple general method for the simulation of a one-dimensional diffu-
sion bridge. Our main motivation is that simulation of diffusion bridges plays a fundamental role
in simulation-based likelihood inference (including Bayesian inference) for discretely sampled
diffusion processes and other diffusion-type processes like stochastic volatility models.

Our approach is based on the following simple way of constructing a process that at time
zero starts from a and at time T ends in b, where a and b are given numbers. One diffusion
process, X

(1)
t , is started from the point a, while an independent diffusion, X

(2)
t , with the same

dynamics, is started from the point b. The time of the second diffusion is reversed, so that the
time starts at T and goes downwards to zero. Suppose the process X

(1)
t hits the sample path of
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the time reversed diffusion X
(2)
T −t , and let τ denote the first time the two paths intersect. Then

the process that for t ≤ τ is equal to X
(1)
t , and for t > τ equals X

(2)
T −t , is obviously a process

in the time interval [0, T ] that starts at a and ends at b. Conditional on the event that the two
processes intersect, we show that the process constructed in this way is indeed an approximation
to a realization of a diffusion bridge between the two points. A simple rejection sampler is thus
obtained by repeatedly simulating the two diffusions until they hit each other. The diffusions can
be simulated by means of simple procedures like the Milstein scheme, see Kloeden and Platen
[40], so the new method is easy to implement for likelihood inference for discretely sampled
diffusion processes. This approximate diffusion bridge is used as proposal for a Metropolis–
Hastings algorithm that has an exact diffusion bridge as its target distribution. The algorithm
uses the pseudo-marginal approach of Andrieu and Roberts [3] and is easy to implement: to
calculate the rejection probability, a number of independent diffusions are simulated and it is
determined whether or not they intersect the proposed bridge trajectory.

Diffusion bridge simulation is a highly non-trivial problem that has been investigated actively
over the last 10–15 years. A lucid exposition of the problems and the state-of-the-art can be
found in Papaspiliopoulos and Roberts [44]. It was previously thought impossible to simulate
diffusion bridges by means of simple procedures, because a rejection sampler that tries to hit the
prescribed end-point for the bridge (or a small neighbourhood around it) will have an excessively
high rejection probability. The rejection sampler presented in this paper has a quite acceptable
rejection probability because what must be hit is a sample path rather than a point. The first
diffusion bridge simulation methods in the literature were based on the Metropolis–Hastings al-
gorithm with a proposal distribution given by a process that is forced to go from a to b, see, for
example, Roberts and Stramer [47] or Durham and Gallant [20]. Later Beskos, Papaspiliopou-
los and Roberts [6,7] developed algorithms for exact simulation of diffusion bridges. These are
rejection sampling algorithms that use in a clever way a measure change and simulation of a
Brownian bridge, which can easily be simulated. Under strong boundedness conditions the al-
gorithm is relatively simple, whereas it is more complex under weaker condition. Lin, Chen and
Mykland [42] proposed a sequential Monte Carlo method for simulating diffusion bridges with
a resampling scheme guided by the empirical distribution of backward paths. The spirit of this
approach has similarities to the methods proposed here.

An advantage of the method proposed in the present paper is that the same simple algorithm
can be used for all one-dimensional diffusions with a finite speed-measure, and that it is easy to
understand and to implement. It is also worth noting that the method does not require that the
diffusion is transformed into one with unit diffusion coefficient. Though such a transformation
exists under very general conditions for one-dimensional diffusions, the transformation is not in
closed form for many interesting examples. Such a transformation is, for instance, required for
the exact algorithm of Beskos, Papaspiliopoulos and Roberts [6,7]. Another, and perhaps more
important, advantage is that it works particularly well for long time intervals. For ergodic diffu-
sions, the computational complexity of our method is shown to be linear in the distance between
the two end-points of the diffusion bridge. This is illustrated in a simulation study where the
computer time increases linearly with the interval length, while it seems to grow at least expo-
nentially with the interval length for the exact EA algorithms of Beskos, Papaspiliopoulos and
Roberts [6]. Thus, the EA algorithm is likely not to work for long time intervals. Importantly,
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it is shown that for ergodic diffusions the approximate method proposed here simulates an es-
sentially exact diffusion bridge in long time intervals (apart from the discretization error). For
exponentially mixing diffusions, which covers most diffusions used in practice, the distribution
of the simulated process goes to that of a diffusion bridge exponentially fast as a function of the
interval length. Thus the proposed method provides a useful supplement to previously published
methods because it works particularly well for long time intervals, where the other methods tend
not to work. It is worth noting that simulation-based likelihood inference for discretely sampled
diffusions is mainly important for long time intervals, because for short time intervals several
simpler methods provide highly efficient estimators, see the following discussion.

The main challenge to likelihood based inference for diffusion models is that the transition
density, and hence the likelihood function, is not explicitly available and must therefore be ap-
proximated. When the sampling frequency is relatively high, which is often the case for financial
data, rather crude approximations to the likelihood functions, like those in Ozaki [43], Bollerslev
and Wooldridge [15], Bibby and Sørensen [12] and Kessler [39], give estimators with a high ef-
ficiency. This follows from results based on high frequency asymptotics in Sørensen [48]. When
the interval between the observation times is relatively long, more accurate approximations to the
transition density are needed. One approach is numerical approximations, either by solving the
Kolmogorov PDE numerically, for example, Poulsen [46] and Hurn, Jeisman and Lindsay [33],
or by expansions, for example, Aït-Sahalia [1,2] and Forman and Sørensen [25]. Alternatively,
likelihood inference can be based on simulations, an approach that goes back to the seminal pa-
per by Pedersen [45], whose method is, however, computationally costly because he did not use
bridge simulation. The inference problem can be viewed as a missing data problem. If the diffu-
sion process had been observed continuously, the likelihood functions would be explicitly given
by the Girsanov formula, but the diffusion has been observed at discrete time points only, so the
continuous-time paths between the observation points can be considered as missing data. This
way of viewing the problem, which goes back to Dacunha-Castelle and Florens-Zmirou [17],
makes it natural to apply either the EM-algorithm or the Gibbs sampler. To do so, it is necessary
to simulate the missing continuous paths between the observations conditional on the observa-
tions, which is exactly simulation of diffusion bridges. It was a significant break-through when
this was simultaneously realized by several authors, see Roberts and Stramer [47], Elerian, Chib
and Shephard [21], Eraker [22] and Durham and Gallant [20], and approaches based on bridge
simulation has since been used by several authors including Golightly and Wilkinson [27,28,
30], Beskos, Papaspiliopoulos and Roberts [9], Delyon and Hu [18], Beskos, Papaspiliopoulos
and Roberts [8] and Lin et al. [42]. To illustrate how our bridge simulation method can be used
for likelihood inference, we modify an EM-algorithm in Beskos, Papaspiliopoulos, Roberts and
Fearnhead [9] by using our simple simulation method.

Diffusion bridge simulation is also crucial to simulation-based inference for other types of
diffusion process data than discrete time observations. Chib, Pitt and Shephard [16] presented a
general approach to simulation-based Bayesian inference for diffusion models when the data are
discrete time observations of rather general, and possibly random, functionals of the continuous
sample path, see also Golightly and Wilkinson [29]. This approach covers for instance diffusions
observed discretely with measurement error and discretely sampled stochastic volatility models.
In this approach too, the underlying continuous time diffusion process must be simulated condi-
tionally on the observations, which is done by a Metropolis–Hastings algorithm. The algorithm
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mixes badly if the entire sample path is updated simultaneously, so the interval is divided into
random subintervals that are updated sequentially. The sample path in a subinterval must be sim-
ulated conditionally of the values of the diffusion in the other intervals, which by the Markov
property is diffusion bridge simulation given the values at the end-points. This method can be
modified by using the bridge simulation method proposed here. Baltazar-Larios and Sørensen
[4] presented an EM-algorithm for integrated diffusions observed discretely with measurement
error based on the ideas in Chib et al. [16], but using the bridge simulation method of the present
paper, and showed that the method worked well in simulation studies. We shall briefly review the
results of this paper.

The paper is organized as follows. In Section 2, we first present the new approximate bridge
simulation method and show in what sense it approximates a diffusion bridge. Then results are
given about exactness and small rejection probabilities for long time intervals. Finally, the ap-
proximate bridges are used as proposal in a Metropolis–Hastings algorithm that has an exact dif-
fusion bridge as its target distribution. In Section 3, the approximate bridge simulation method
is compared to exact simulation methods in two examples, the Ornstein–Uhlenbeck process and
the hyperbolic diffusion. The study indicates that our method provides a very accurate approxi-
mation to the distribution of a diffusion bridge, except for bridges that are very unlikely to occur
when using the method for likelihood inference. An EM-algorithm for discretely observed dif-
fusions based on the proposed bridge simulation method is briefly presented in Section 4. It is
demonstrated how the algorithm simplifies for an exponential family of diffusions (i.e., when
drift is linear in the parameters). In this case, Bayesian inference is considered too. Finally, an
application of the proposed method to estimation for discretely observed integrated diffusions
with measurement errors in Baltazar-Larios and Sørensen [4] is briefly reviewed. Section 5 con-
cludes.

2. Diffusion bridge simulation

2.1. Approximate bridge simulation

Let X = {Xt }t≥0 be a one-dimensional diffusion given by the stochastic differential equation

dXt = α(Xt )dt + σ(Xt )dWt, (2.1)

where W is a Wiener process, and where the coefficients α and σ are sufficiently regular to
ensure that the equation has a unique weak solution that is a strong Markov process. Let a and
b be given points in the state space of X. We present a method for simulating an approximation
to a sample path of X such that X0 = a and X� = b. A solution of (2.1) in the interval [t1, t2]
such that Xt1 = a and Xt2 = b will be called a (t1, a, t2, b)-bridge. When t1 = 0 and t2 = 1, we
sometimes simply call it an (a, b)-bridge. We will denote the transition density of X by pt(x, y).
Specifically, the conditional density of Xs+t given Xs = x is y �→ pt (x, y). The state space of X

is denoted by (�, r) where ∞ ≤ � < r ≤ ∞.
Let W 1 and W 2 be two independent standard Wiener processes, and define X1 and X2 as the

solutions to

dXi
t = α

(
Xi

t

)
dt + σ

(
Xi

t

)
dWi

t , i = 1,2,X1
0 = a and X2

0 = b.
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The main idea of the paper is to realize an approximation to a (0, a,�,b)-bridge by simulating
the process X1 from a forward in time, and X2 from b backward in time starting at time �. If the
samples paths of the two processes intersect, they can be combined into a realization of a process
that approximates a (0, a,�,b)-bridge.

Thus to simulate an approximate diffusion bridge in the interval [0,�], we can use any of
the several methods available to simulate the diffusions X1 and X2, see, for example, Kleoden
and Platen [40]. Let Y 1

δi , i = 0,1, . . . ,N and Y 2
δi , i = 0,1, . . . ,N be (independent) simulations

of X1 and X2 in [0,�] with step size δ = �/N . Then a simulation of an approximation to a
(0, a,�,b)-bridge is obtained by the following rejection sampling scheme. Keep simulating Y 1

and Y 2 until the sample paths cross, that is, until there is an i such that either Y 1
δi ≥ Y 2

δ(N−i) and

Y 1
δ(i+1) ≤ Y 2

δ(N−(i+1)) or Y 1
δi ≤ Y 2

δ(N−i) and Y 1
δ(i+1) ≥ Y 2

δ(N−(i+1)). Once a trajectory crossing has
been obtained, define

Bδi =
{

Y 1
δi for i = 0,1, . . . , ν − 1,

Y 2
δ(N−i) for i = ν, . . . ,N,

(2.2)

where ν = min{i ∈ {1, . . . ,N}|Y 1
δi ≤ Y 2

δ(N−i)} if Y 1
0 ≥ Y 2

�, and ν = min{i ∈ {1, . . . ,N}|Y 1
δi ≥

Y 2
δ(N−i)} if Y 1

0 ≤ Y 2
�. Then B approximates a (0, a,�,b)-bridge under the condition of Theo-

rem 2.1. On top of the usual influence of the step size δ on the quality of the individual simulated
trajectories, the step size also controls the probability that a trajectory crossing is not detected.
Therefore, it is advisable to choose δ smaller than usual.

The rejection probability (the probability of no trajectory crossing) depends on the drift and
diffusion coefficients, on the values of a and b, and on the length of the interval �. It is shown
below that for ergodic diffusions the rejection probability is small when � is large (Theorem 2.4).
Simulation studies in Section 3 indicate that the number of rejections is small when a and b

are not very far apart. When the simulation algorithm is used to make likelihood inference for
discretely observed diffusion processes (Section 4), this is the typical situation for relatively
frequent sampling times, and as just noted, there are in general few rejections when an ergodic
diffusion has been sampled at a low frequency.

The distribution of the process that is simulated by the algorithm above and the sense in which
it is an approximation of a diffusion bridge is seen from the following theorem, where

m(x) = 1

σ 2(x)
exp

(
2
∫ x

z

α(y)

σ 2(y)
dy

)
, x ∈ (�, r) (2.3)

is the density of the speed measure of the diffusion. Here z is an arbitrary point in the state space
(�, r).

Theorem 2.1. Let τ = inf{0 ≤ t ≤ �|X1
t = X2

�−t } (inf ∅ = +∞) and define

Zt =
{

X1
t if 0 ≤ t ≤ τ ,

X2
�−t if τ < t ≤ �.
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Assume that

M =
∫ r

�

m(x)dx < ∞. (2.4)

Then the distribution of {Zt }0≤t≤�, conditional on the event {τ ≤ �}, equals the distribution of
a (0, a,�,b)-bridge, conditional on the event that the bridge is hit by an independent diffusion
with stochastic differential equation (2.1) and initial distribution with density p�(b, ·).

Before proving Theorem 2.1, we prove a lemma on the distribution of a time-reversed diffu-
sion. Quite generally, the density (2.3) of the speed measure for any one-dimensional diffusion
satisfies the balance equation

pt(x, y)m(x) = pt(y, x)m(y), (2.5)

see Ito and McKean [34], page 149. Under the condition (2.4) that the speed measure is finite, an
invariant probability measure exists and has the density function

ν(x) = m(x)/M. (2.6)

Lemma 2.2. Define the time-reversed process {X̄t } by X̄t = X2
�−t . The process {X̄t } and the

conditional process {Xt } given that X� = b have the same transition densities

q(x, s, y, t) = pt−s(x, y)p�−t (y, b)

p�−s(x, b)
= pt−s(y, x)p�−t (b, y)

p�−s(b, x)
, s < t < �. (2.7)

Assume that (2.4) holds. Then the distribution of {X̄t } is equal to the conditional distribution of
the process {Xt } with X0 ∼ ν given that X� = b.

Proof. The second identity in (2.7) follows from (2.5). The first expression for q is the well-
known expression for the transition density of a diffusion bridge ending in b at time 1, see
Fitzsimmons, Pitman and Yor [23], page 111. It can be easily established by direct calculation.
The second expression for q can similarly be obtained as the transition density of X̄ by direct
calculation. The conditional density of X̄t given X̄s (s < t ) is

pX̄s,X̄t
(x, y)/pX̄s

(x) = pX2
�−t ,X

2
�−s

(y, x)/pX2
�−s

(x) = p�−t (b, y)pt−s(y, x)/p�−s(b, x).

Now suppose that (2.4) holds, and assume that X0 ∼ ν. Then X� ∼ ν, and the joint density of
(X0,X�) is ν(y0)p�(y0, x) = ν(x)p�(x, y0), again by (2.5). Hence, the conditional density of
X0 given X� = b is p�(b, y0). Obviously, the density of X̄0 = X2

� is p�(b, y0), so the process
{X̄t } and the conditional process {Xt } given that X� = b have the same transition densities and
the same initial distribution. Therefore, they have the same distribution. �

Remark. Note that the results of Lemma 2.2 hold for a multivariate diffusion too, provided that a
function v exists such that pt (x, y)v(x) = pt(y, x)v(y). Diffusions with this property are called
v-symmetric, see the discussion in Kent [38]. The second assertion of the lemma holds provided
that v is an integrable function on the state space.
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Proof of Theorem 2.1. Let W 3 be a standard Wiener processes independent of W 1, and let X3

be the solution of

dX3
t = α

(
X3

t

)
dt + σ

(
X3

t

)
dW 3

t ,

where the distribution of X3
0 has the density ν given by (2.6). Finally, let ρ be the first time the

diffusion X3 hits the sample path of X1. Define a process by

Yt =
{

X1
t if 0 ≤ t ≤ ρ,

X3
t if ρ < t ≤ �

on {ρ ≤ �}, and Y = X1 on {ρ = ∞}. By the strong Markov property Y has the same distribution
as X1. From now on, we condition on X3

� = b. Since

P
(
Y ∈ ·|X3

� = b,ρ ≤ �
) = P(Y ∈ ·|Y� = b,ρ ≤ �),

the theorem follows because by Lemma 2.2 the distribution of {X2
�−t }0≤t≤� equals that of

{X3
t }0≤t≤� conditional on X3

� = b, so that P(Y ∈ ·|X3
� = b,ρ ≤ �) = P(Z ∈ ·|τ ≤ �). The

event {Y� = b,ρ ≤ �} is the event that Y is a (0, a,�,b)-diffusion bridge and that the diffusion
bridge is hit by X3, which under the condition X3

� = b has the initial distribution p�(b, ·) (see
the proof of Lemma 2.2). �

By symmetry, we see that the distribution of the process Z̃ defined by

Z̃t =
{

X1
t if 0 ≤ t ≤ � − τ̃ ,

X2
�−t if � − τ̃ < t ≤ �

where τ̃ = inf{0 ≤ t ≤ �|X1
�−t = X2

t }, is that of a (0, a,�,b)-bridge conditional on the event
that the bridge is hit by {X3

�−t }, where X3 is an independent diffusion with stochastic differential
equation (2.1) and initial distribution with density p�(a, ·). Here we use X1 until the last time
it crosses the trajectory of {X2

�−t }, which happens at time � − τ̃ . Obviously, an approximate

diffusion bridge can also be simulated by using Z̃.
We can consider the diffusions, diffusion bridges and the approximate diffusion bridge Z as

elements of the canonical space, C�, of continuous functions defined on the time interval [0,�].
Each of these processes induce a probability measure on the usual sigma-algebra generated by the
cylinder sets. Let fb denote the Radon–Nikodym derivative of the distribution of the (0, a,�,b)-
diffusion bridge with respect to a dominating measure. The diffusion bridge solves a stochastic
differential equation with the same diffusion coefficient as in (2.1), see, for example, (4.4) in
Papaspiliopoulos and Roberts [44], so the density fb is given by Girsanov’s theorem. Since the
drift for the bridge is unbounded at the end point, one has to choose the dominating measure
carefully: it must correspond to another bridge, see Papaspiliopoulos and Roberts [44], page
322, and Delyon and Hu [18]. Similarly let fa and fd denote the densities of the distributions
of the approximate bridge Z and of a diffusion with stochastic differential equation (2.1) and
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initial distribution with density p�(b, x), respectively. Let us call a diffusion of the latter type a
p�(b)-diffusion. Finally, for any x ∈ C�, let Ax be the set of functions y ∈ C� that intersect x.
Specifically,

Ax = {
y ∈ C�|gr(y) ∩ gr(x) 
= ∅

}
,

where gr(x) = {(t, xt )|t ∈ [0,�]}. With these definitions, the relation between the distribution of
the approximate bridge Z and the exact (0, a,�,b)-diffusion bridge is

fa(x) = fb(x)π�(x)/π�. (2.8)

Here

π�(x) = P(Y ∈ Ax), π� = P
(
(X,Y ) ∈ A

)
, (2.9)

where A = {(x, y) ∈ C2
�|y ∈ Ax}, X and Y are independent, X is a (0, a,�,b)-diffusion bridge,

and Y is a p�(b)-diffusion. Clearly, π�(x) is the probability that Y hits the trajectory x, while
π� is probability that a (0, a,�,b)-bridge is hit by an independent diffusion with initial distri-
bution p�(b, ·). To prove equation (2.8), note that the joint density of a diffusion bridge and an
independent p�(b)-diffusion given that they intersect is

fb(x)fd(y)1A(x, y)/π.

From this expression, (2.8) follows by marginalization. Equation (2.8) is important in two ways:
it gives an explicit expression of the quality of our approximate simulation method, and more
importantly, it can be used to improve the approximation. In Section 2.3, we will present two
MCMC-algorithms, that improves the quality of the approximation. In fact, one of them gives
exact diffusion bridges.

Obviously, the quality of our approximate bridge simulation scheme depends on the proba-
bility π� that a (0, a,�,b)-bridge is hit by an independent diffusion with initial distribution
p�(b, ·). When π� is close to one, the simulated process is essentially a (0, a,�,b)-bridge. It is
important to realize that the probability π� is not equal to the acceptance probability P(τ ≤ �).
It is quite possible that P(τ ≤ �) is small, while π� is close to one. This happens, for instance,
for a diffusion with mean reversion to a level μ when a � μ � b. In the next subsection, we
prove that π� is close to one for long time intervals, provided that the diffusion is ergodic. In
Section 3, we shall investigate when π� can otherwise be expected to be close to one, and when
a good approximation to a diffusion bridge is obtained. Simulations indicate that also when π�

is not close to one (but also not close to zero), the distribution of the simulated bridge is often
indistinguishable from the distribution of an exact diffusion bridge.

2.2. Long time intervals

We shall now prove that for ergodic diffusions, the probability π� that a (0, a,�,b)-bridge is hit
by an independent diffusion with initial distribution p�(b, ·) is close to one when � is large. This
implies that for large time intervals, the probability that the process Z defined in Theorem 2.1
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is a (0, a,�,b)-bridge is close to one, that is, the simulated process is essentially a (0, a,�,b)-
bridge. This is very fortunate, because the strength of the method presented in this paper is that,
contrary to other methods for simulating diffusion bridges, it works well numerically for long
intervals, see Section 3 and Theorem 2.4. A diffusion processes satisfying (2.4) is ergodic if

∫ z

�

1

σ 2(x)m(x)
dx =

∫ r

z

1

σ 2(x)m(x)
dx = ∞, (2.10)

where m(x) is given by (2.3).
The convergence of the probability π� to one is exponentially fast in � when the diffusion

process has a spectral gap λ > 0, that is, when the infimum λ of the non-zero eigenvalues of the
spectrum of the infinitesimal generator of the diffusion is strictly positive. For one-dimensional
diffusions, a spectral gap is equivalent to ρ-mixing. Most ergodic diffusions used in practice have
this property. Easily checked conditions on the drift and diffusion coefficients ensuring a spectral
gap and hence exponential convergence of π� can be found in Florens-Zmirou [24], Hansen
and Scheinkman [31], Hansen, Scheinkman and Touzi [32] and Genon-Catalot, Jeantheau and
Larédo [26].

A simple example is a diffusion with linear drift α(x) = −β(x − μ), β > 0, which has a spec-
tral gap λ = β , provided that the invariant probability measure (2.6) has finite second moment,
cf. Hansen et al. [32]. Thus by Theorem 2.3, 1 − π� = O(e−β�/2), so the simple method gives
a good approximation when β� is moderately large, that is, when either � is large or when
the diffusion moves fast (β large). The Pearson diffusions provide a useful broad class of diffu-
sions with linear drift; see Forman and Sørensen [25]. Ergodic diffusions with linear drift and an
arbitrary stationary distribution were given in Bibby, Skovgaard and Sørensen [11].

For a general diffusion satisfying (2.4) and (2.10), Hansen et al. [32] showed that if the func-
tion

γ (x) = σ ′(x) − 2α(x)

σ (x)

has nonzero limits as x ↓ � and x ↑ r , then the diffusion has a spectral gap λ > 0. Genon-Catalot
et al. [26] gave an explicit lower bound for λ, which gives a useful bound on the rate of con-
vergence of the probability π�. To give this lower bound, we need the functions (defined on the
state space of the diffusion)

ϕ(x) =
∫ r

x
m(y)dy

σ(x)m(x)
, ψ(x) =

∫ x

�
m(y)dy

σ(x)m(x)
,

and

C1(x) = sup
{
ϕ2(S−1(y)

)
: y ≥ x

}
, C0(x) = sup

{
ψ2(S−1(y)

)
: y ≤ x

}
,

where S is the scale function

S(x) =
∫ x

z

1

σ 2(y)m(y)
dy.
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Genon-Catalot et al. [26] showed that

λ ≥ C = 1

8 infx∈R max{C1(x),C0(x)} .

If the limits of γ (x) exist and are nonzero, then C > 0, and Theorem 2.3 implies that 1 − π� =
O(e−C�/2).

The results discussed here are summarized in the following theorem.

Theorem 2.3. For ergodic diffusions

π� → 1

as � → ∞. If the diffusion has a spectral gap λ > 0, then

1 − π� = O
(
e−λ�/2).

Proof. π� is the probability that a (0, a,�,b)-bridge Xb is hit by an independent diffusion Xd

with initial distribution p�(b, ·). Let x denote the point from which Xd starts, and assume that
x > a. The case x < a can be treated similarly.

By Karlin and McGregor [36] (page 1144) the probability that Xd
�/2 > q and Xb

�/2 ≤ q with-

out having been coincident in [0,�/2] (conditional on Xd
0 = x) is

Pq,� = det

{
P

(
Xb

�/2 ≤ q
)

P
(
Xd

�/2 ≤ q|Xd
0 = x

) P
(
Xb

�/2 > q
)

P
(
Xd

�/2 > q|Xd
0 = x

)
}

.

Here q is an arbitrary real number. That the result holds for time-inhomogeneous diffusions too
follows from Karlin [35]. Since the diffusion is ergodic, Xd

�/2 converges weakly to the stationary

distribution with density ν. Then the density of Xb
�/2 (cf. (2.7)) satisfies

q(a,0, y,�/2) = p�/2(a, y)p�/2(y, b)

p�(a, b)
→ ν(y)ν(b)

ν(b)
= ν(y),

as � → ∞. Hence

Pq,� → det

{
Pν

(
(−∞, q])

Pν

(
(−∞, q])

Pν

(
(q,∞])

Pν

(
(q,∞])

}
= 0,

as � → ∞, where Pν denotes the stationary distribution. This implies that π� → 1.
Now assume that λ > 0, where λ is the infimum of the nonzero eigenvalues of the spectrum

of the infinitesimal generator of the diffusion. Then p�/2(x, y) = ν(y)(1 + O(e−λ�/2)), see, for
example, Karlin and Taylor [37], page 332, and it follows that the density function of Xb

�/2 also

satisfies that q(a,0, y,�/2) = ν(y)(1 + O(e−λ�/2)). Hence,

Pq,� = det

{
Pν

(
(−∞, q])

Pν

(
(−∞, q])

Pν

(
(q,∞])

Pν

(
(q,∞])

}
+ O

(
e−λ�/2) = O

(
e−λ�/2).

�
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If we replace �/2 by the time γ� (0 < γ < 1) in the proof, it follows that 1−π� = O(e−γ λ�).
In practice, this refinement does not make much difference.

A similar result can be proved for the rejection probability in the same way. Let p� = P(τ >

�) denote the rejection probability.

Theorem 2.4. For ergodic diffusions

p� → 0

as � → ∞. If the diffusion has a spectral gap λ > 0, then

p� = O
(
e−λ�/2).

Theorem 2.4 implies that for ergodic diffusions the computational complexity of our method
is linear in the time distance between the two end-points of the diffusion bridge, provided that
the diffusion is simulated by a scheme that is linear in the interval length. This is true of simple
simulation method like the Milstein scheme.

2.3. Exact bridge simulation

Since we know the relationship between the distribution of an exact diffusion bridge and the
distribution of our simple approximation, cf. (2.8), it is natural to consider a Metropolis–Hastings
algorithm for which the proposal is our simple simulation method and the target distribution is
the distribution of an exact diffusion bridge. In each step, we draw an independent sample path
X(i) with distribution given by fa by means of the simple simulation method. The proposed
sample path is accepted with probability α(X(i−1),X(i)) = min(1, r(X(i−1),X(i))), where

r
(
X(i−1),X(i)

) = fb(X
(i))fa(X

(i−1))

fb(X(i−1))fa(X(i))
= π�(X(i−1))

π�(X(i))
.

Here X(i−1) is the previously accepted sample path, and π�(x) is the probability that the sample
path x is hit by an independent p�(b)-diffusion, given by (2.9). The MH-algorithm produces
draws of exact diffusion bridges, but as π�(x) is not explicitly known, the algorithm cannot be
used as it stands.

One possibility is to use a Monte Carlo within Metropolis algorithm. This can be done by
simulating in each step N independent p�(b)-diffusions, Y(i) = (Y (i,1), . . . , Y (i,N)) and estimate
π�(x) consistently by

π̃�

(
x;Y(i)

) = 1

N

N∑
j=1

1Ax

(
Y (i,j)

)
.

If N is sufficiently large, this would certainly produce a very good approximation to a diffusion
bridge, but not exact diffusion bridges. Usually, the density function p�(b, x) is not explicitly
known, but a p�(b)-diffusion can be simulated as follows. Simulate the solution V to (2.1) in
the time interval [0,2�] with V0 = b. Then Yt = Vt+�, t ∈ [0,�], is a p�(b)-diffusion.
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In order to simulate exact diffusion bridges, we propose an MCMC algorithm of the pseudo-
marginal type studied in Andrieu and Roberts [3]. The basic idea of the pseudo-marginal ap-
proach is to replace the factor in the acceptance ratio, which we cannot calculate, fb(x)/fa(x) =
1/π�(x) by an unbiased MCMC estimate. The beauty of the method is that by including the
MCMC draws needed for the estimate of 1/π�(x) in the MH-Markov chain, the marginal equi-
librium distribution of the bridge draws is exactly fb , irrespective of the randomness of the
estimate of 1/π�(x).

Define a random variable T in the following way. For a given sample path x ∈ C�, simulate
a sequence of independent p�(b)-diffusions Y (1), Y (2), . . . until a sample path is obtained that
intersects x. Then T is defined as the number of the first Y (i) that hits x:

T = min
{
i: Y (i) ∈ Ax

}
.

By results for the geometric distribution E(T ) = 1/π�(x), so if T = (T1, . . . , TN) is a vector of
N independent draws of T , then an unbiased and consistent estimator of 1/π�(x) is

ρ̂�(x;T) = 1

N

N∑
j=1

Tj .

Now consider the following MH-algorithm, where draws of T are included in the Markov chain.
In each step, we draw (independently of the previous draws) a sample paths X(i) by the simple al-
gorithm, and with x = X(i) we draw a vector of N independent T -values, T(i) = (T

(i)
1 , . . . , T

(i)
N ).

Note that the distribution of T(i) depends on X(i). The proposed update (X(i),T(i)) is accepted
with probability

α̂
(
X(i−1),T(i−1),X(i),T(i)

) = min
(
1, r̂

(
X(i−1),T(i−1),X(i),T(i)

))
,

where

r̂
(
X(i−1),T(i−1),X(i),T(i)

) = ρ̂�(X(i);T(i))

ρ̂�(X(i−1);T(i−1))
.

By results in Andrieu and Roberts [3], the target distribution of X is that of an exact diffusion
bridge. In fact, since

r̂
(
x(1), t(1), x(2), t(2)

) = fa(x
(2))fg(t(2)|x(2))ρ̂�(x(2); t(2))fa(x

(1))fg(t(1)|x(1))

fa(x(1))fg(t(1)|x(1))ρ̂�(x(1); t(1))fa(x(2))fg(y(2)|x(2))
,

where fg(t|x) is the conditional density of T given X = x, we see that the density of the target
distribution is

p(x, t) = fa(x)fg(t|x)ρ̂�(x, t)π� = fb(x)fg(t|x)ρ̂�(x, t)π�(x),

where we have used (2.8). Since ρ̂�(x, t) is an unbiased estimator of 1/π�(x) conditionally on
x, we find by marginalizing that the density of X is fb, the density function of an exact diffusion
bridge.
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To produce diffusion bridges by the proposed pseudo-marginal MH-algorithm, a number of
sample paths of ordinary diffusions must be simulated. If these sample paths are simulated by
an approximate method, like the Milstein scheme, a small discretization error is introduced.
This problem can, however, be avoided by using the methods for exactly simulating diffusions
developed by Beskos, Papaspiliopoulos and Roberts [6,7]. By combining our exact MH bridge
simulation algorithm with exact diffusion simulation methods, exact diffusion bridges can be
efficiently simulated even in long time intervals.

For ergodic diffusions, the computational complexity of the exact algorithm is linear in the
interval length �. In the previous subsection, we saw that simulation of the proposal is linear in
�, and the expected number of p�(b)-diffusions simulated in the ith M–H step is N/π�(X(i)).
For a diffusion bridge X, the expectation of π�(X) is π�, which by Theorem 2.3 converges to
one as � → ∞. Since π� is usually not small, each iteration of the M–H-algorithm producing
exact diffusion bridges is not expected to require much more computing time than the approxi-
mate algorithm. Finally, since the acceptance ratio tends to one as � → ∞, the acceptance rate
is high when � is large.

3. Simulation study

In this section, we investigate simulation of two examples of diffusion bridges for which our new
methods can be compared to other exact algorithms, the Ornstein–Uhlenbeck process and the hy-
perbolic diffusion. We compare the distribution of exact bridge simulations to the distribution of
the process obtained by our approximate bridge simulation method. It is found that the approxi-
mation is very accurate in most cases, including bridges that are likely to occur in applications to
likelihood inference. We also compare CPU execution times, and illustrate how our exact M–H
simulation method provides an exact bridge in the extreme cases where the approximate method
does not provide a good approximation.

3.1. The Ornstein–Uhlenbeck bridge

First, we consider an Ornstein–Uhlenbeck bridge, which is a solution to the stochastic differential
equation

dXt = −θXt dt + σ dWt

conditionally on X0 = a and X1 = b for some a, b ∈ R. From the well-known Gaussian tran-
sition densities of the Ornstein–Uhlenbeck process we can calculate the transition densities of
the Ornstein–Uhlenbeck bridge by (2.7). Thus, we could in principle simulate the Ornstein–
Uhlenbeck bridge by sampling transitions from these densities. The following well-known alter-
native method is, however, numerically more stable.

Lemma 3.1. Generate Xt0,Xt1 , . . . ,Xtn,Xtn+1 , where 0 = t0 < t1 < · · · < tn < tn+1, by X0 = x0
and

Xti = e−θ(ti−ti−1)Xti−1 + Wi, i = 1, . . . , n + 1,
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Figure 1. Q–Q plots that compare the empirical distribution at time 0.5 based on 25,000 simulated (0,0)

diffusion bridges obtained by our approximate method to that based on 25,000 exactly simulated diffusion
bridges. The left plot is for the Ornstein–Uhlenbeck bridge and the right plot is for the hyperbolic diffusion
bridge. Exact simulations are obtained by the method in Lemma 3.1 for the Ornstein–Uhlenbeck bridge and
by the exact algorithm of Beskos, Papaspiliopoulos and Roberts for the hyperbolic diffusion bridge.

where the Wis are independent and Wi ∼ N(0, σ 2(1 − e−2θ(ti−ti−1))/(2θ)). Define

Zti = Xti + (x − Xtn+1)
eθti − e−θti

eθtn+1 − e−θtn+1
, i = 0, . . . , n + 1.

Then (Zt0 ,Zt1, . . . ,Ztn,Ztn+1) is distributed like an Ornstein–Uhlenbeck bridge with Zt0 = x0

and Ztn+1=x .

In all examples considered in the following we simulated 25,000 (or 10,000) realizations of
diffusion bridges over the time interval [0,1]. The Euler scheme was used with discretization
level N = 100 (step size δ = 0.01). For the Ornstein–Uhlenbeck process the Euler scheme is
equal to the Milstein scheme. The methods were implemented in Fortran 90 on a Dell Precision
M65 workstation (laptop).

For the Ornstein–Uhlenbeck bridge, we chose the parameter values θ = 0.5 and σ = 1.0.
First we considered a bridge that started at 0 and ended at 0. We compare our approximate
method based on Theorem 2.1 to the exact algorithm of Lemma 3.1. To the left in Figure 1,
we have plotted the quantiles of the empirical distribution at the time point 0.5 obtained by our
approximate method against the quantiles of the empirical distribution obtained by the exact
algorithm. The two distributions appear to be equal. Similar comparisons of quantiles at time 0.5
for our approximate method to quantiles of an exact bridge are presented in Figure 2 for (0,1),
(0,2), (−1,1) and (−1,2) Ornstein–Uhlenbeck bridges. In all four cases, the two distributions
seem to be essentially equal, except for a very small negative bias for the (0,2)-bridge. Similar
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Figure 2. Q–Q plots that compare the empirical distributions at time 0.5 based on 25,000 simulated (0,1),
(0,2), (−1,1) and (−1,2) Ornstein–Uhlenbeck bridges obtained by our approximate method to that based
on 25,000 exactly simulated Ornstein–Uhlenbeck bridges. Exact simulations are obtained by the method in
Lemma 3.1.

results were found for several other comparisons of distributions with similar values of the start
and end points, a and b.

The CPU execution time (in seconds) to simulate 10,000 Ornstein–Uhlenbeck bridges using
our approximate method for the various starting points, a, and end points, b, are given in Table 1
together with estimated rejection probabilities (p�, see Theorem 2.4). The table also gives the
probabilities that an Ornstein–Uhlenbeck process moves from a to b or farther in the time inter-
val [0,1]. We see that for moves that are likely to appear in data sets, the CPU times and rejection
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Table 1. The CPU execution time (in seconds) used to simulate 10,000 Ornstein–Uhlenbeck bridges using
our approximate method for various starting points, a, and end points, b. Estimated rejection probabilities
(p�, see Theorem 2.4) and the probabilities of a move from a to b or farther are listed too. The last column
gives the probability that an exact (a, b)-bridge is not hit by an independent diffusion with initial distribution
p1(b, ·)

a �→ b CPU (sec.) Rejection prob. Probability of move 1 − π

0 �→ 0 0.5 0.17 0.28
0 �→ 1 0.7 0.41 0.1 0.21
0 �→ 2 1.7 0.77 0.006 0.08

−1 �→ 1 1.9 0.80 0.02 0.16
−1 �→ 2 11.9 0.97 0.0005 0.06

probabilities are small, and the CPU times are only slightly larger than the execution time for the
exact algorithm which is about 0.5 CPU seconds. For more unlikely moves the rejection probabil-
ity is quite large, but also in these cases the execution time is not a problem in applications. The
last column of Table 1 gives the (estimated) probability of the event that an exact (a, b)-bridge
is not hit by an independent diffusion with initial distribution p1(b, ·). These probabilities were
found by simulating exact Ornstein–Uhlenbeck bridges and independent Ornstein–Uhlenbeck
processes with initial distribution p1(b, ·). If this probability were zero, our approximate method
would simulate an exact diffusion bridge. The probabilities are small, but not negligible. It is re-
markable that the approximate method gives a quite accurate approximation to a diffusion bridge
in spite of this. The reason must be that the diffusion bridges are not hit by the independent
diffusion in a systematic way for the a and b values considered here.

In order to test our approximate method in an extreme situation, we simulated 25,000
Ornstein–Uhlenbeck bridges that started from −2 and ended in 2. The probability that an
Ornstein–Uhlenbeck process with parameters θ = 0.5 and σ = 1.0 moves from −2 to 2 or far-
ther in the time interval [0,1] equals the probability that a standard normal distribution is larger
than 4.04, which is 0.00003, so this a indeed a very extreme event. Not surprisingly that rejection
rate was very high, but as appears from Figure 3 the distribution at time 0.5 fits the distribution
obtained by exact simulation very well.

The only situation we have been able to find where the distribution obtained by our approxi-
mate simulation method differs appreciably from the distribution of an exact bridge is when the
start and end points, a and b, have the same sign and are both far from the equilibrium point
zero. This is to be expected because we simulate an exact bridge conditional on the event that
it is hit by an independent diffusion with initial distribution p1(b, ·). When b is far from zero,
most of the probability mass of p1(b, ·) is located considerably closer to zero than b (because
of the drift towards zero). The independent diffusion will tend to move towards zero, while the
(a, b)-bridge will tend to stay relatively close to a and b. Only trajectories of the bridge that move
sufficiently towards zero has a reasonable chance of being hit by the independent diffusion. This
creates a bias towards zero. The comparison of quantiles at time 0.5 and time 0.1 for (−2,−2)

and (−3,−2) bridges are presented in Figure 4. As expected from the consideration above, there
is a positive bias. The time point 0.5 was chosen in most simulations because it is expected that
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Figure 3. Q–Q plot that compares the empirical distribution at time 0.5 based on 25,000 simulated (−2,2)

Ornstein–Uhlenbeck bridges obtained by our approximate method to that based on 25,000 exactly simulated
Ornstein–Uhlenbeck bridges.

this is the time point where it is most difficult to get a good approximation of the distribution
of a diffusion bridge. The comparison of distributions at time 0.1 illustrate that the approximate
method works better close to the end-points of the time interval, where the bias is considerably
smaller. Several similar comparisons confirm that the approximate method works better close to
the end-points than at time 0.5.

The first row of Figure 5 illustrates Theorem 2.1. For the (−2,−2) and (−3,−2) Ornstein–
Uhlenbeck bridges Q–Q plots compare empirical distributions at time 0.5 of 25,000 approximate
simulations to the similar empirical distributions based on 25,000 exactly simulated Ornstein–
Uhlenbeck bridges, where the simulated bridges were removed from the sample if the bridge
was not hit by an independent diffusion with initial distribution p1(b, ·). As expected from The-
orem 2.1, the two distributions appear to be equal (there is a numerical problem in the left tail
for the (−2,−2)-bridge). We know from Figure 4 that this distribution differs from that of the
unconditional bridge. In the second row of Figure 5, Q–Q plots compare the empirical distri-
butions at time 0.5 based on 25,000 (−2,−2) (left) and (−3,−2) (right) Ornstein–Uhlenbeck
bridges simulated by our MH-algorithm to the empirical distribution based on 25,000 exactly
simulated Ornstein–Uhlenbeck bridges. For the MH-algorithm the burn-in was 5000 iterations
and N = 10 (the number of T -values simulated in each step). The algorithm worked well for a
much shorter burn-in and for N = 1. Also these distributions appear to be equal (again there is
a numerical problem in the left tail for the (−2,−2)-bridge). The autocorrelations of the MH-
algorithm decreases very quickly to zero. The empirical autocorrelation function of the succes-
sive values of the (−3,−2) Ornstein–Uhlenbeck bridge at time 0.5 obtained by our Metropolis–
Hastings algorithm is plotted in Figure 6. After less than 10 iterations the correlation is essentially
zero.
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Figure 4. Q–Q plots that compare the empirical distributions at time 0.5 (first row) and time 0.1 (second
row) based on 25,000 simulated (−2,−2) (left) and (−3,−2) (right) Ornstein–Uhlenbeck bridges obtained
by our approximate method to that based on 25,000 exactly simulated Ornstein–Uhlenbeck bridges. Exact
simulations are obtained by the method in Lemma 3.1.

Table 2 gives estimated rejection probabilities (of the approximate rejection sampler) and the
probability that an exact (a, b)-bridge is not hit by an independent diffusion with initial distribu-
tion p1(b, ·). As expected from the discussion above, the probabilities of not being hit is quite
substantial. The last column gives the probability that a stationary Ornstein–Uhlenbeck process
is a distance |a| or more from zero. We see that the process will only spend very little time in the
parts of the state space, where the approximate method is biased.
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Figure 5. In the first row, Q–Q plots compare the empirical distributions at time 0.5 based on 25,000
simulated (−2,−2) (left) and (−3,−2) (right) Ornstein–Uhlenbeck bridges obtained by our approximate
method to that based on 25,000 exactly simulated Ornstein–Uhlenbeck bridges, where the bridges that were
not hit by an independent diffusion with initial distribution p1(b, ·) were removed from the sample. In the
second row, Q–Q plots compare the empirical distributions at time 0.5 based on 25,000 simulated (−2,−2)

(left) and (−3,−2) (right) Ornstein–Uhlenbeck bridges obtained by our Metropolis–Hastings algorithm
(after a burn-in of 5000 iterations) to that based on 25,000 exactly simulated Ornstein–Uhlenbeck bridges.

3.2. The hyperbolic bridge

Next we consider the hyperbolic diffusion which is the solution to

dXt = − θXt√
1 + X2

t

dt + σ dWt,
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Figure 6. The empirical autocorrelation function of the successive values of the (−3,−2) Ornstein–Uh-
lenbeck bridge at time 0.5 obtained by our Metropolis–Hastings algorithm.

with θ > 0 and σ > 0. The hyperbolic diffusion was introduced by Barndorff-Nielsen [5]. It is
ergodic with the standardized symmetric hyperbolic distribution as invariant distribution, see, for
example, Bibby and Sørensen [10]. In this case the transition density is not explicitly known,
but we can compare our method to the exact EA1 algorithm by Beskos, Papaspiliopoulos and
Roberts [6]. It is applicable to diffusion processes on the form

dXt = α(Xt )dt + dWt, (3.1)

provided that α is continuously differentiable, and the function α(x)2 + α′(x) is bounded from
above and below for all x, conditions satisfied by the hyperbolic diffusion process. The algorithm
by Beskos, Papaspiliopoulos and Roberts [6] is very quick for short intervals as it essentially only
requires one simulation of a Brownian bridge if it is not rejected. Rejection in the EA1 algorithm

Table 2. Estimated rejection probabilities (p�, see Theorem 2.4) for the Ornstein–Uhlenbeck bridges us-
ing our approximate method for various starting points, a, and end points, b. The second column gives
the probability that an exact (a, b)-bridge is not hit by an independent diffusion with initial distribution
p1(b, ·). The last column gives the probability of finding an Ornstein–Uhlenbeck a distance |a| or more
from zero

a �→ b Rejection prob. 1 − π 2P(Xt > |a|)
−2 �→ −2 0.09 0.55 0.05
−3 �→ −2 0.24 0.74 0.003
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Table 3. The CPU execution time (in seconds) used to simulate 10,000 hyperbolic diffusion bridges with
θ = σ = 1 by our method for various starting points, a, and end points, b. Also estimated rejection proba-
bilities are given (p�, see Theorem 2.4)

a �→ b CPU (sec.) Rejection prob.

0 �→ 0 0.6 0.14
0 �→ 1 0.8 0.36
0 �→ 2 2.1 0.77

−1 �→ 1 2.0 0.76
−1 �→ 2 12.6 0.96

is not very costly computationally in our example since it is only a few points that are thrown
away per rejection. Thus, we compare our algorithm to a very efficient method.

Again we simulated 25,000 bridges using the Euler scheme with a 100 points subdivision of
[0,1]. Also for the hyperbolic diffusion the Euler scheme equals the Milstein scheme. The pa-
rameter values were θ = σ = 1. We start with a bridge from 0 to 0 and compare our approximate
method to the exact EA1 algorithm. To the right in Figure 1, we have plotted the quantiles of
the empirical distribution at the time point 0.5 obtained by our approximate method against the
quantiles of the empirical distribution obtained by the exact EA1 algorithm. Also for this ex-
ample the two distributions appear to be equal. Table 3 shows CPU execution times to simulate
10,000 hyperbolic diffusion bridges by our approximate method for various starting points, a,
and end points, b. Also estimated rejection probabilities are given. The pattern is similar to that
for the Ornstein–Uhlenbeck process. For moves that are likely to appear in data sets, the CPU
times and rejection probabilities are small, and for unlikely moves the execution time is not a
problem in applications, even though the rejection probability is quite large. The execution time
for the EA1 algorithm was 0.3 CPU seconds, which, as expected, is faster than our method. Note
that there is no reason to consider diffusions for which the EA1 algorithm does not work in order
to compare our method to the more complicated simulation methods EA2 and EA3 in Beskos,
Papaspiliopoulos and Roberts [6] and Beskos et al. [7]. The EA2 and EA3 algorithms are clearly
more time consuming than EA1, while execution times for our methods can be expected to be
approximately as for the two examples considered here.

Beskos, Papaspiliopoulos and Roberts [6] noted that the computing time of their exact algo-
rithm is large for diffusion bridges over long time intervals. It is therefore of interest to compare
computer time and rejection probabilities for our approximate algorithm to the EA1 algorithm.
To do so, we simulated 10,000 trajectories of the (0,0,�,0)-bridge for the hyperbolic diffu-
sion with θ = σ 2 = 4. This was done for values of the interval length � ranging from 0.5 to
5. The CPU execution time (in seconds) used to simulate the 10,000 trajectories are given in
Table 4. We see that for this particular diffusion the two methods use the same CPU time for
an interval length of two. For smaller interval lengths the exact algorithm is somewhat faster,
whereas our approximate method is much faster for long intervals. The simulations confirm that
the computational complexity of the proposed method is linear in the interval length � as shown
in Section 2, whereas the complexity appears to grow at least exponentially with � for the ex-
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Table 4. The CPU execution time (in seconds) used to simulate 10,000 hyperbolic (0,0,�,0)-bridges with
θ = σ 2 = 4 for our approximate method and for the EA1 method in Beskos et al. [7] for different interval
lengths �. Also the number of rejections while simulating the 10,000 trajectories is given

Present paper Beskos et al. [7] EA1

� CPU time # rejections CPU time # rejections

0.5 0.52 819 0.28 14,497
1.0 0.99 307 0.59 53,087
1.5 1.45 102 1.05 163,599
2.0 1.93 44 1.92 457,226
2.5 2.40 17 4.00 1,242,922
3.0 2.88 6 10.01 3,491,838
3.5 3.36 2 26.86 9,357,310
4.0 3.83 0 75.79 25,232,418
4.5 4.31 0 222.09 69,299,642
5.0 4.79 0 641.70 187,069,771

act algorithm; see Figure 7. The main reason is that for long intervals the number of rejections
becomes very large for the algorithm in Beskos, Papaspiliopoulos and Roberts [6], while our ap-
proximate algorithm has a very small rejection probability for long intervals. The rapid decrease
of the rejection probabilities for the approximate method as a function of � is expected from
Theorem 2.4.

Figure 7. The CPU execution time (in seconds) used to simulate 10,000 hyperbolic (0,0,�,0)-bridges
with θ = σ 2 = 4. In the left plot the CPU time is plotted against � for our approximate method, while
in the right plot the logarithm of the CPU time is plotted against � for the EA1 method in Beskos
et al. [7].
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4. Maximum likelihood estimation

The main motivation for the theory developed in this papers is the central role diffusion bridge
simulation plays in simulated likelihood-based inference for processes of the diffusion type.
Therefore, we end the paper by giving two examples of application of our diffusion bridge simu-
lation method to maximum likelihood estimation first for discretely observed diffusion processes
then for integrated diffusions observed with measurement error.

4.1. Discretely observed diffusions

First, we present an EM-algorithm for finding the maximum likelihood estimator for discretely
observed diffusion processes. We also briefly discuss aspects of Bayesian inference.

Consider the diffusion process

dXt = bα(Xt )dt + σβ(Xt )dWt, (4.1)

where α and β are unknown parameters to be estimated, and W is the standard Wiener process.
We assume that σβ(x) > 0 for all x in the state interval. Suppose that the only data available
from a realization of the diffusion process are observations at times t1 < t2 < · · · < tn, xi = Xti ,
i = 1, . . . , n.

As explained in the Introduction, discrete time observation of a continuous time process can be
viewed as an incomplete observation problem, so the EM-algorithm (Dempster, Laird and Rubin
[19]) is a natural method for finding the maximum likelihood estimator of the parameters. Max-
imum likelihood estimation for discretely observed Markov jump processes was treated in this
way by Bladt and Sørensen [13,14]. Unfortunately, the probability measures corresponding to
complete continuous time observation of the diffusion model given by (4.1) are singular because
the diffusion coefficient depends on the parameter β . It is therefore not straightforward to imple-
ment the EM-algorithm, but an approach in the spirit of Roberts and Stramer [47] was proposed
by Beskos, Papaspiliopoulos and Roberts [9]. In the following, we summarize a modification of
this approach using our diffusion bridge simulation technique.

The transformation

hβ(x) =
∫ x

x∗
1

σβ(y)
dy (4.2)

is essential. Here x∗ is some arbitrary, but appropriately chosen, point in the state interval. By
Ito’s formula, Yt = hβ(Xt ) solves

dYt = μα,β(Yt )dt + dWt, (4.3)

where

μα,β(y) = bα(h−1
β (y))

σβ(h−1
β (y))

− 1

2
σ ′

β

(
h−1

β (y)
)
.
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In (4.3), the diffusion coefficient does not depend on the parameters, so the probability measures
are equivalent and the likelihood function can be found. To do so the function

gα,β(x) = sα,β(x) 1
2 log

(
σβ(x)

)
, (4.4)

where

sα,β(x) =
∫ x

x∗
bα(z)

σ 2
β (z)

dz, (4.5)

is needed. Note that
∫ y

y∗ μα,β(z)dz = gα,β(h−1
β (y)) − gα,β(h−1

β (y∗)), and that the functions gα,β

and sα,β are closely related to the density ϕα,β of the stationary distribution of the original dif-
fusion model given by (4.1). Specifically, sα,β(x) equals 1

2 log(σβ(x)2ϕα,β(x)) apart from an
additive constant. Thus, when the stationary density is known, the only problem is to find hβ

and its inverse. This is for instance the case for the Pearson diffusions studied by Forman and
Sørensen [25].

The problem with the transformation hβ is that it is parameter dependent, while we need to
keep the original discrete time data fixed when running the EM-algorithm. To get around this
problem, define

Y ∗
t (β,β0) = Z

(i,α0,β0)
t + (ti − t)(hβ(xi−1) − hβ0(xi−1)) + (t − ti−1)(hβ(xi) − hβ0(xi))

ti − ti−1

for ti−1 ≤ t ≤ ti , i = 2, . . . , n. Here Z
(i,α0,β0)
t denotes the (ti−1, hβ0(xi−1), ti , hβ0(xi))-bridge for

the diffusion (4.3) with parameter values α0 and β0, and Z
(i,α0,β0)
t , i = 2, . . . , n are independent.

Then the EM-algorithm works as follows. Let α0, β0 be initial values of the parameters.

(1) (E-step) Calculate the function

q(α,β) = gα,β(xn) − gα,β(x1)

− 1

2

n∑
i=2

[
hβ(xi) − hβ(xi−1)

]2
/(ti − ti−1) −

n∑
i=2

log
(
σβ(xi)

)

− 1

2

n∑
i=2

EZ(i,α0,β0)

(∫ ti

ti−1

[
μ′

α,β

(
Y ∗

t (β,β0)
) + μα,β

(
Y ∗

t (β,β0)
)2]dt

)
.

(2) (M-step) (α0, β0) = arg maxα,β q(α,β).
(3) GO TO (1).

In the E-step, EZ(i,α0,β0) means that the data points are fixed so that only the diffusion bridge
is random, and expectation is with respect to the distribution of the diffusion bridge. Thus, the
expectations in the E-step can be approximated by simulating diffusion bridges by our exact
MH-method and averaging (after a burn-in period). Arguments that q(α,β) is the conditional
expectation of the relevant continuous time likelihood function can be found in Roberts and
Stramer [47] and Beskos, Papaspiliopoulos, Roberts and Fearnhead [9]. As pointed out in the
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latter paper, the conditional expectation can also be calculated as

EZ(i,α0,β0),U

(
μ′

α,β

(
Y ∗

U(β,β0)
) + μα,β

(
Y ∗

U(β,β0)
)2)

,

where U is a uniformly distributed random variable on [ti−1, ti] that is independent of Z
(i,α0,β0)
t

and the data.
In the M-step the maximization of q(α,β) must in general be done by a suitable maximization

algorithm. With modern software (e.g., the R-function optim), this is not a problem. When the
drift of the original diffusion model (4.1) depends linearly on the vector of parameters α, that is,
when

bα(x) = α1a1(x) + · · · + αkak(x), (4.6)

where a1, . . . , ak are known functions, then the maximization problem is simplified somewhat.
When the drift has this form, and when the diffusion parameter β is fixed, the model for con-
tinuous time observation of X as well as the transformed process Y is an exponential family of
stochastic processes, see Küchler and Sørensen [41], page 27. We can therefore take advantage
of well known properties of exponential families of diffusions.

For the EM-algorithm the specification (4.6) implies that the function q(α,β) has the form

q(α,β) =
k∑

i=1

αiHi,β − 1

2

k∑
i=1

k∑
j=1

αiαjBi,j,β + Gβ,

where

Hi,β = si,β(xn) − si,β(x1)

+
n∑

j=2

EZ(j,α0,β0)

(∫ tj

tj−1

[
ai

(
h−1

β

(
Y ∗

t (β,β0)
))

(logσβ)′
(
h−1

β

(
Y ∗

t (β,β0)
))

− 1

2
a′
i

(
h−1

β

(
Y ∗

t (β,β0)
))]

dt

)
,

with si,β(x) = ∫ x

x∗ ai(y)/σ 2
β (y)dy,

Bi,j,β =
n∑

j=2

EZ(j,α0,β0)

(∫ tj

tj−1

ai(h
−1
β (Y ∗

t (β,β0)))aj (h
−1
β (Y ∗

t (β,β0)))

σ 2
β (h−1

β (Y ∗
t (β,β0)))

dt

)
,

and

Gβ = −1

2
log

(
σβ(xn)/σβ(x1)

)

− 1

2

n∑
i=2

[
hβ(xi) − hβ(xi−1)

]2
/(ti − ti−1) −

n∑
i=2

log
(
σβ(xi)

)
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+ 1

4

n∑
j=2

EZ(j,α0,β0)

(∫ tj

tj−1

[
σ ′′

β

(
h−1

β

(
Y ∗

t (β,β0)
))

σβ

(
h−1

β

(
Y ∗

t (β,β0)
))

− 1

2

{
σ ′

β

(
h−1

β

(
Y ∗

t (β,β0)
))}2

]
dt

)
.

For a fixed value of β , the function α �→ q(α,β) is maximal for

α̂(β) = B−1
β Hβ,

where α̂ = (α̂1, . . . , α̂k)
T , Hβ = (H1,β , . . . ,Hk,β)T and Bβ = {Bi,j,β}. This is provided that Bβ

is invertible, which it is when the functions ai , i = 1, . . . , k are linearly independent. Thus,
q(α,β) attains its maximal value at (α̂(β̂), β̂), where β̂ maximizes

β �→ q
(
α̂(β),β

) = 1
2HT

β B−1
β Hβ + Gβ.

The Gibbs sampler for Bayesian inference for discretely observed diffusion processes pro-
posed by Roberts and Stramer [47] can also be modified by replacing the MCMC algorithm for
simulating diffusion bridges in that paper by our diffusion bridge simulation method. We will not
go into any detail for general diffusions, but will limit ourselves to pointing out that when the
drift has the form (4.6), then the (continuous time) posterior distribution of α simplifies. Choose
as the prior for α the conjugate prior for an exponential family of diffusions (see Küchler and
Sørensen [41], page 51), which here is a multivariate normal distribution with expectation ᾱ

and covariance matrix �. Then the posterior of α (given β = β0 and given simulated diffusion
bridges) is a k-dimensional normal distribution with expectation (�−1 + B̃β0)

−1(�−1ᾱ + H̃β0)

and covariance matrix (�−1 + B̃β0)
−1, where H̃β = (H̃1,β , . . . , H̃k,β)T , Bβ = {Bi,j,β},

H̃i,β = si,β(xn) − si,β(x1)

+
n∑

i=2

∫ ti

ti−1

[
ai

(
h−1

β

(
Y ∗

t (β,β0)
))

(logσβ)′
(
h−1

β

(
Y ∗

t (β,β0)
))

− 1

2
a′
i

(
h−1

β

(
Y ∗

t (β,β0)
))]

dt,

and

B̃i,j,β =
n∑

i=2

∫ ti

ti−1

ai(h
−1
β (Y ∗

t (β,β0)))aj (h
−1
β (Y ∗

t (β,β0)))

σ 2
β (h−1

β (Y ∗
t (β,β0)))

dt.

4.2. Integrated diffusions observed with measurement error

Here we present an EM-algorithm to find the maximum likelihood estimator when an inte-
grated diffusion is observed with measurement errors. The method was proposed and studied
by Baltazar-Larios and Sørensen [4].
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We consider again the diffusion process X given by (4.1), but here the data are of the form

Vi =
∫ ti

ti−1

Xs ds + Zi, i = 1, . . . , n, (4.7)

where Zi ∼ N(0, τ 2), i = 1, . . . , n are mutually independent and independent of X, and t0 = 0.
We assume that X is stationary and ergodic. The variance of the measurement error, τ 2, is an
extra unknown parameter, so we need to estimate the parameter θ = (α,β, τ 2). We can think
of the data set V = (V1, . . . , Vn) as an incomplete observation of a full data set given by the
sample path Xt, t ∈ [0, tn] and the measurement errors Z1, . . . ,Zn, or equivalently Xt, t ∈ [0, tn]
and V = (V1, . . . , Vn). To apply the EM-algorithm, we need to find the likelihood function for
the full data set and the conditional expectation of this full log-likelihood function given the
observations V = (V1, . . . , Vn).

Conditionally on the sample path of X, the observations Vi , i = 1, . . . , n are independent and
normal distributed with expectation

∫ ti
ti−1

Xs ds and variance τ 2. Again we need to apply the
transformation (4.2) because the probability measures are singular. By expressing the data Vi

in terms of the process Y , using the parameter-dependent transformation hβ , and by Girsanov’s
theorem, we find that the log-likelihood function for the full data set is

�
(
θ;V1, . . . , Vn,Yt , t ∈ [0, tn]

)
=

n∑
i=1

logϕ

(
Vi;

∫ ti

ti−1

h−1
β (Ys)ds, τ 2

)
+ gα,β

(
h−1

β (Ytn)
)

(4.8)

− gα,β

(
h−1

β (Y0)
) − 1

2

∫ tn

0

(
μα,β(Yt )

2 + μ′
α,β(Ut )

)
dt,

where ϕ(x;a, b) denotes the normal density function with mean a and variance b. The EM-
algorithm works as follow. Let the initial value θ̂ = (α̂, β̂, τ̂ 2) be any value of the parameter
vector θ .

(1) (E-step) Generate M sample paths of the diffusion process X, X(k), k = 1, . . . ,M , con-
ditional on the observations V1, . . . , Vn using the parameter value θ̂ , and calculate

g(θ) = 1

M − M0

M∑
k=M0+1

�
(
θ;Y1, . . . , Yn,hβ̂

(
X

(k)
t

)
, t ∈ [0, tn]

)

for a suitable burn-in period M0 and M sufficiently large.
(2) (M-step) θ̂ = argmax g(θ).

(3) GO TO (1).

To implement this algorithm, the main issue is how to generate sample paths of X conditionally
on V1, . . . , Vn, where the relation between the Vis and X is given by (4.7). This can be done
by means of a Metropolis–Hastings algorithm. However, if the sample path in the entire time
interval [0, tn] is updated in one step, the rejection probability is typically very large. Therefore,
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it is more efficient to randomly divide the time interval into subintervals and update the sample
path in each of the subintervals conditional on the rest of the sample path, which corresponds to
simulating a diffusion bridge in each subinterval (except the end-intervals). This is a modification
of the method in Chib et al. [16], where we use the algorithm for diffusion bridge simulation
proposed in Section 2. In the following, the parameter value θ is fixed. Start by generating an
initial unrestricted stationary sample path, {X(0)

t : t ∈ [0, tn]}, of the diffusion given by (4.1), and
set l = 1.

(1) Generate a sample path {X(l)
t : t ∈ [0, tn]} conditional on Y by updating subsets of the

sample path:

(a) Randomly split the time interval from [0, tn] into K blocks, and write these subsampling
times as 0 = τ0 ≤ τ1 ≤ · · · ≤ τK = tn, where each τi is one of the end-points of the inte-
gration intervals, tj , j = 0, . . . , n. Let Y{k} denote the collection of all observations Yj for
which τk−1 < tj ≤ τk .

(b) Draw X
(l)
0 from the stationary distribution, and simulate the conditional subpath {X(l)

t : t ∈
[τk−1, τk]}|Y{k},X(l)

τk−1 ,X
(l−1)
τk

, for k = 1, . . . ,K − 1. Finally, simulate {X(l)
t : t ∈ [τK−1,

τK ]}|Y{K},X(l)
τK−1 .

(2) l = l + 1.
(3) GO TO (1).

The random time intervals can for instance be generated by independent Poisson variables.
Simulation of a (τk−1, a, τk, b)-bridge conditional on Y{k}, the data in (τk−1, τk], can be done by
a Metropolis–Hastings algorithm that uses the bridge simulation method introduced in Section 2
as proposal and accepts a proposed bridge X(l) with probability

min

(
1,

nk∏
i=1

ϕ(Yj+i;
∫ tj+i

tj+i−1
X

(l)
s ds, τ 2)

ϕ(Yj+i;
∫ tj+i

tj+i−1
X

(l−1)
s ds, τ 2)

)
,

where the end-point τk−1 is equal to tj , nk is the number of observations in the interval (τk−1, τk]
(the observations are Yj+1, . . . , Yj+nk

), and X(l−1) is the bridge in the previous step of the MH-
algorithm.

In a simulation study by Baltazar-Larios and Sørensen [4], where the approximate algorithm
of Section 2.1 was used to simulate diffusion bridges, this EM-algorithm worked well. The study
considered 1500 observations of Ornstein–Uhlenbeck and CIR processes integrated over time in-
tervals of length one. Three versions of the EM-algorithm were investigated, where the expected
number of observations in each random subinterval was 11, 21 and 31, respectively.

5. Conclusion

We have presented a straightforward way of simulating an approximation to a diffusion bridge
and an easily implementable Metropolis–Hastings algorithm that uses the approximate simu-
lation as proposal and has exact diffusion bridges as the target distribution. Advantages of the
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new method is that it is easy to understand and to implement, that the same simple algorithm
can be used for all one-dimensional diffusion processes with finite speed measure, and most im-
portantly, that the method works particularly well for long time intervals, where other methods
tends not to work or to be very time consuming. The method allows the use of simple simulation
procedures like the Milstein scheme for bridge simulation. The simulation study showed that the
one-dimensional distributions obtained by the approximate method compare accurately to the
results from exact simulations for bridges corresponding to data that are likely in discrete-time
samples from diffusion models.

For ergodic diffusions, the computational complexity was shown to be linear in the interval
length for our approximate method as well as for our exact method. The simulation study showed
that the computing time for the approximate algorithm for small time intervals is of the same
order of magnitude as for the exact EA1 method and for long intervals it is much faster than the
EA1 method. Thus our new diffusion bridge simulation method is highly suitable for likelihood
inference for discretely observed diffusions and can be used to simplify and in some cases speed
up methods for likelihood inference and Bayesian inference (the EM-algorithm and the Gibbs
sampler) for discretely observed diffusion processes. The method is also potentially useful for
inference for more general diffusion type models like stochastic volatility models.
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