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We propose a new testing procedure for detecting localized departures from monotonicity of a signal em-
bedded in white noise. In fact, we perform simultaneously several tests that aim at detecting departures from
concavity for the integrated signal over various intervals of different sizes and localizations. Each of these
local tests relies on estimating the distance between the restriction of the integrated signal to some interval
and its least concave majorant. Our test can be easily implemented and is proved to achieve the optimal
uniform separation rate simultaneously for a wide range of Hölderian alternatives. Moreover, we show how
this test can be extended to a Gaussian regression framework with unknown variance. A simulation study
confirms the good performance of our procedure in practice.
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1. Introduction

Suppose that we observe on the interval [0,1] a stochastic process Fn that is governed by the
white noise model

Fn(t) =
∫ t

0
f (x)dx + σ√

n
W(t), (1)

where n ≥ 1 is a given integer, σ > 0 is known, f : [0,1] → R is an unknown function on [0,1]
assumed to be integrable, and W is a standard Brownian motion on [0,1] starting at 0. We aim
to test the null hypothesis that f is non-increasing on [0,1] against the general alternative that it
is not.

Several non-parametric procedures have already been proposed, either in model (1) or, most
often, in a regression model. To avoid going back and forth between the two directions of mono-
tonicity, we will only talk about non-increasing monotonicity since the other direction can be
treated similarly via a straightforward transformation. Without being exhaustive, we now re-
view some tests that are well suited in the regression framework for detecting global departures
from monotonicity. Bowman, Jones and Gijbels [7] propose a procedure based on the small-
est bandwidth for which a kernel-type estimator of the regression function is monotone. Their
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test rejects monotonicity if this critical bandwidth is too large. Durot [11] exploits the equiva-
lence between monotonicity of a continuous regression curve g defined on [0,1] and concavity
of G : t �→ ∫ t

0 g(x)dx, t ∈ [0,1]. In the uniform design setting, Durot’s test rejects monotonicity
when the supremum distance between an empirical estimator of G and its least concave majo-
rant is too large. The test has the correct asymptotic level, and has the advantage of being easy
to implement. Domínguez-Menchero, González-Rodríguez and López-Palomo [9] propose a test
statistic based on the L2 distance of a regression estimator to the set of all monotone curves.
Tailored for fixed design regression models, their method allows for repeated measurements at a
given design point, and presents also the merit of being easy to implement. Still in the fixed de-
sign setting, Baraud, Huet and Laurent [4] construct a multiple test that, roughly speaking, rejects
monotonicity if there is at least one partition of [0,1] into intervals, among a given collection,
such that the estimated projection of the regression function on the set of piecewise constant
functions on this partition is too far from the set of monotone functions. They show that their test
has the correct level for any given sample size and study its uniform separation rate, with respect
to an L2 criterion, over Hölderian balls of functions. We may also mention some procedures for
testing monotonicity in other frameworks. For instance, Durot [12] or Groeneboom and Jong-
bloed [16,17] test the monotonicity of a hazard rate, whereas Delgado and Escanciano [8] test
the monotonicity of a conditional distribution. As Durot [11], they consider a statistic based on
some distance between an empirical estimator of the function of interest and its least concave
majorant.

Other procedures were considered to detect local departures from monotonicity. Hall and
Heckman [18] test negativity of the derivative of the regression function via a statistic based on
the slopes of the fitted least-squares regression lines over small blocks of observations. Gijbels,
Hall, Jones and Koch [15] propose two statistics based on signs of differences of the response
variable. In the case of a uniform fixed design and i.i.d. errors with a bounded density, the au-
thors study the asymptotic power of their procedure against local alternatives under which the
regression function departs linearly from the null hypothesis at a certain rate. Ghosal, Sen and
van der Vaart [14] test negativity of the first derivative of the regression function via a locally
weighted version of Kendall’s tau. The asymptotic level of their test is guaranteed and their test
is powerful provided that the derivative of the regression function locally departs from the null
at a rate that is fast enough. Dümbgen and Spokoiny [10] and Baraud, Huet and Laurent [5] both
propose two multiple testing procedures, either in the Gaussian white noise model for [10] or in
a regression model for [5]. The former authors consider two procedures based on the supremum,
over all bandwidths, of kernel-based estimators for some distance from f to the null hypothesis.
The distance they estimate is either the supremum distance from f to the set of non-increasing
functions or the supremum of f ′. The latter authors propose a procedure based on the difference
of local means and another one based on local slopes, a method that is akin to that of Hall and
Heckman [18]. In both papers, the uniform separation rate of each test is studied over a range of
Hölderian balls of functions. Last, let us mention the (unfortunately non-conservative) alternative
approach developed by Hall and Van Keilegom [19] for testing local monotonicity of a hazard
rate.

In this paper, we propose a multiple testing procedure that may be seen as a localized version
of the test considered by [11]. Based on the observation of Fn in (1), it rejects monotonicity
if there is at least one subinterval of [0,1], among a given collection, such that the local least
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concave majorant of Fn on this interval is too far from Fn. Our test has the correct level for any
given n, independently of the degree of smoothness of f . Its implementation is easy and does
not require bootstrap nor any a priori choice of smoothing parameter. Moreover, we show that
it is powerful simultaneously against most of the alternatives considered in [14]. We also study
the uniform separation rate of our test, with respect to two different criteria, over a range of
Hölderian balls of functions. We recover the uniform separation rates obtained in [5,10], as well
as new ones, and check that our test achieves the optimal uniform separation rate simultaneously
over the considered range of Hölderian balls. Besides, we are concerned with the more realistic
Gaussian regression framework with fixed design and unknown variance. We describe how our
test can be adapted to such a framework, and prove that it still enjoys similar properties. Finally,
we briefly discuss how our method could be extended to more general models.

The organization of the paper is as follows. In Section 2, we describe our testing procedure and
the critical region in the white noise model for a prescribed level. Section 3 contains theoretical
results about the power of the test. In Section 4, we turn to the regression framework. Section 5
is devoted to the practical implementation of our test – both in the white noise and regression
frameworks – and to its comparison with other procedures via a simulation study. In Section 6,
we discuss possible extensions of our test to more general models. All proofs are postponed to
Section 7 or to the supplementary material [1].

2. Testing procedure

Let us fix a closed sub-interval I of [0,1] and denote by DI the set of all functions from [0,1]
to R which are non-increasing on I . We start with describing a procedure for testing the null
hypothesis

HI
0 :f ∈ DI

against HI
1 :f /∈ DI within the framework (1). Since the cumulative function

F(t) =
∫ t

0
f (x)dx, t ∈ [0,1], (2)

is concave on I under HI
0 and Fn estimates F , we reject HI

0 when Fn is “too far from being
concave on I”. Thus, we consider a procedure based on a local least concave majorant. For every
continuous function G : [0,1] → R, we denote by ĜI the least concave majorant of the restriction
of G to I , and simply denote Ĝ[0,1] by Ĝ. Our test statistic is then

SI
n =

√
n

σ 2|I | sup
t∈I

(
F̂ I

n (t) − Fn(t)
)
,

where |I | denotes the length of I , and we reject HI
0 when SI

n is too large. From the following
lemma, SI

n is the supremum distance between F̂ I
n and Fn over I , normalized in such a way that

its distribution does not depend on I under the least favorable hypothesis that f is constant on I .
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Lemma 2.1. Let I be a closed sub-interval of [0,1]. If f ≡ c over I for some c ∈ R, then
SI

n = supt∈I (Ŵ
I (t) − W(t))/

√|I | and is distributed as

Z := sup
t∈[0,1]

(
Ŵ (t) − W(t)

)
. (3)

For a fixed α ∈ (0,1), we reject the null hypothesis HI
0 at level α if

SI
n > q(α), (4)

where q(α) is calibrated under the hypothesis that f is constant on I , that is, q(α) is the (1 −α)-
quantile of Z. As stated in the following theorem, this test is of non-asymptotic level α and the
hypothesis that the function f is constant on I is least favorable, under no prior assumption on f .

Theorem 2.1. For every α ∈ (0,1),

sup
f ∈DI

Pf

[
SI

n > q(α)
] = α.

Moreover, the supremum is achieved at f ≡ c over I , for any fixed c ∈ R.

We now turn to our main goal of testing the null hypothesis

H0 :f ∈ D (5)

against the general alternative H1 :f /∈ D, where D denotes the set of non-increasing functions
from [0,1] to R. In the case where the monotonicity assumption is rejected, we would also like
to detect the places where the monotonicity constraint is not satisfied. Therefore, we consider
a finite collection Cn of sub-intervals of [0,1], that may depend on n, and propose to combine
all the local tests of HI

0 against HI
1 for I ∈ Cn. In the spirit of the heuristic union-intersection

principle of Roy [22] (see Chapter 2), we accept H0 when we accept HI
0 for all I ∈ Cn, which

leads to maxI∈Cn
SI

n as a natural test statistic. More precisely, given α ∈ (0,1), we reject the null
hypothesis H0 at level α if

max
I∈Cn

SI
n > sα,n, (6)

where sα,n is calibrated under the hypothesis that f is a constant function, that is, sα,n is the
(1 − α)-quantile of

max
I∈Cn

√
1

|I | sup
t∈I

(
Ŵ I (t) − W(t)

)
.

If H0 is rejected, then we are able to identify one or several intervals I ∈ Cn where the mono-
tonicity assumption is violated: these are intervals where SI

n > sα,n. Moreover, Theorem 2.2
below shows that this multiple testing procedure has a non-asymptotic level α.
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Theorem 2.2. For every α ∈ (0,1),

sup
f ∈D

Pf

[
max
I∈Cn

SI
n > sα,n

]
= α.

Moreover, the above supremum is achieved at f ≡ c on [0,1] for any fixed c ∈ R.

Let us recall that the distribution of SI
n does not depend on I under the least favorable hypoth-

esis. This allows us to perform all the local tests with the same critical threshold sα,n, which is of
practical interest. On the contrary, the multiple test in [5] involves several critical values, which
induces a complication in its practical implementation (see Section 5.1 in [5]).

The least concave majorants involved in our procedure can be computed by first discretizing
the intervals I ∈ Cn and then using, for example, the Pool Adjacent Violators Algorithm on a
finite number of points, see [6], Chapter 1, page 13. Thus, sα,n can be computed using Monte
Carlo simulations and the test is easily implementable. However, in the white noise model this
requires simulating a large number of (discretized) Brownian motion paths and the computation
of a local least concave majorant on each I ∈ Cn, which can be computationally expensive. An
alternative to Monte Carlo simulations is to replace the critical threshold sα,n with an upper-
bound that is easier to compute. Two different proposals for an upper-bound are given in the
following lemma.

Lemma 2.2. For every γ ∈ (0,1), let q(γ ) denote the (1 − γ )-quantile of the variable Z defined
in (3). Then, for every α ∈ (0,1), we have

sα,n ≤ q

(
α

|Cn|
)

≤ 2

√
2 log

(
2|Cn|

α

)
.

Consider the test that rejects H0 if

max
I∈Cn

SI
n > tα,n, (7)

where tα,n denotes either q(α/|Cn|) or 2
√

2 log(2|Cn|/α). Combining Theorem 2.2 with Lem-
ma 2.2 proves that this test is at most of non-asymptotic level α. In practice, the first proposal of
definition of tα,n can be computed by using either recent results of Balabdaoui and Pitman [3]
about a characterization of the distribution function of Z or fast Monte Carlo simulations. More-
over, it is easy to see that all the theoretical results we obtain in Section 3 about the performance
of the test with critical region (6) continue to hold for the test with critical region (7) with both
proposals for tα,n. In practice however, the test with critical region (7) may have lower power
than the test (6), see Section 5.
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3. Performance of the test

Keeping in mind the connection between the white noise model and the regression model of
Section 4, we study the theoretical performance of our test in model (1) for

Cn =
{[

i

n
,
j

n

]
, i < j in {0, . . . , n}

}
, (8)

which can be viewed as the collection of all possible subintervals of [0,1] in model (20). Of
course, if we knew in advance the interval I over which f is likely to violate the non-increasing
assumption, then the power would be largest for the choice Cn = {I }, which would be the right
collection for testing HI

0 instead of H0. However, such a situation is far from being realistic since
I is in general unknown. With the choice (8), we expect Cn to contain an interval close enough
to I . Therefore, by performing local tests simultaneously on all intervals of Cn, the resulting mul-
tiple testing procedure is expected to detect a wide class of alternatives. Other possible choices
of Cn will be discussed in Section 6.

In the sequel, we take n ≥ 2, and α and β are some fixed numbers in (0,1). We will give
a sufficient condition for our test to achieve a prescribed power: we provide a condition on f

which ensures that

Pf

[
max
I∈Cn

SI
n > sα,n

]
≥ 1 − β. (9)

Then, based on this condition, we study the uniform separation rate of our test over Hölderian
classes of functions.

3.1. Power of the test

For every x < y in [0,1], let

f̄xy = 1

y − x

∫ y

x

f (u)du. (10)

In the following theorem, we prove that our test achieves a prescribed power provided there are
x < t < y such that f̄xy is too large as compared to f̄xt .

Theorem 3.1. There exists C(α,β) > 0 only depending on α and β such that (9) holds provided
there exist x, y ∈ [0,1] such that y − x ≥ 2/n and

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≥ C(α,β)

√
σ 2 logn

n
. (11)

To illustrate this theorem, let us consider a sequence of alternatives where f , which may
depend on n, is assumed to be continuously differentiable. Moreover, we assume that there exist
an interval [tn − �n, tn + �n] ⊂ [0,1] and positive numbers M , λn and δn ≤ �n such that{

f ′(t) ≥ 0, on [tn − �n, tn + �n],
f ′(t) ≥ Mλn, on [tn − δn, tn + δn]. (12)
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Here, tn, λn, δn and �n may depend on n while M does not. Under these assumptions, we obtain
the following corollary.

Corollary 3.1. There exists a positive number C(α,β) only depending on α and β such that (9)
holds provided �n ≥ 1/n and

Mδ2
nλn√
�n

≥ C(α,β)

√
σ 2 logn

n
. (13)

Corollary 3.1 allows us to compare our test to the one constructed in [14] for monotonicity of
a mean function f in a regression model with random design and n observations. Indeed, The-
orem 5.2 in [14], when translated to the case of non-increasing monotonicity as in (5) provides
sufficient conditions on (λn, δn,�n) for the test in [14] to be powerful against an alternative of
the form (12) with a large enough M . One can check that if (λn, δn,�n) satisfies one of the
sufficient conditions given in Theorem 5.2 in [14], then it also satisfies

δ2
nλn√
�n

≥ C

√
σ 2 log(1/�n)

n
(14)

for some constant C > 0 which does not depend on n. Hence, it also satisfies (13) provided that

C
√

log(1/�n) ≥ C(α,β)

M

√
logn. (15)

It follows that Corollary 3.1 shows that our test is powerful simultaneously against all the al-
ternatives considered in Theorem 5.2 in [14] for which �n ≥ 1/n and (15) holds. Noticing that
(15) holds, for instance, when �n ≤ n−ε for some ε > 0 and M large enough, we conclude that
our test is powerful simultaneously for most of the alternatives against which the test in [14] is
shown to be powerful. However, as opposed to our test the test in [14] is not simultaneously pow-
erful against those alternatives: a given alternative is detected only if a parameter hn is chosen in
manner that depends on that particular alternative.

As a second illustration of Theorem 3.1, consider the alternative that f is U-shaped, that is
f is convex and there exists x0 ∈ (0,1) such that f is non-increasing on [0, x0] and increasing
on [x0,1]. Thus, f violates the null hypothesis on [x0,1] and deviation from non-increasing
monotonicity is related to f (1) − f (x0) > 0.

Corollary 3.2. Assume f is U-shaped, denote by x0 the greatest location of the minimum of f ,
and let ρ = f (1) − f (x0) and

R = lim
x↑1

f (x) − f (1)

x − 1
< ∞.

Then, there exist a constant C0 > 0 and a real number C(α,β) > 0 only depending on α and β

such that (9) holds provided ρ > C0R/n and

ρ > C(α,β)

(
σ 2R logn

n

)1/3

.
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3.2. Uniform separation rates

In this section, we focus on Hölderian alternatives: we study the performance of our test assuming
that for some R > 0 and s ∈ (0,2] both unknown, f belongs to the Hölderian class F (s,R)

defined as follows. For all R > 0 and s ∈ (0,1], F (s,R) is the set of functions f : [0,1] → R

satisfying ∣∣f (u) − f (v)
∣∣ ≤ R|u − v|s for all u,v ∈ [0,1],

while for all R > 0 and s ∈ (1,2], F (s,R) is defined as the set of differentiable functions
f : [0,1] → R with derivative f ′ satisfying f ′ ∈ F (s − 1,R).

To evaluate the performance of our test, we consider a criterion that measures the discrepancy
of f from D. In the case where we only assume that f ∈ F (s,R) for some R > 0 and s ∈ (0,2],
we consider the criterion

�1(f ) = inf
g∈D

sup
t∈[0,1]

∣∣f (t) − g(t)
∣∣,

which is the supremum distance from f to D. Then, we restrict our attention to the case where
f ∈ F (s,R) for some R > 0 and s ∈ (1,2] and consider the criterion

�2(f ) = sup
t∈[0,1]

f ′(t).

We recall that, for a given class of functions F and a given criterion �, the uniform separation
rate of an α-level test � over F with respect to � is defined by

ρ(�, F ,�) = inf
{
ρ > 0,Pf (� rejects H0) ≥ 1 − β for all f ∈ F s.t. �(f ) ≥ ρ

}
and allows us to compare the performance of α-level tests: the smaller the better. The following
theorem provides an upper-bound for the uniform separation rate of our test with respect to the
criteria introduced above.

Theorem 3.2. Let Cn be the collection (8), Tn be the test with critical region (6), and let R > 0
and s ∈ (0,2]. Assume ns

√
logn ≥ R/σ and, in the case where s ∈ (1,2], assume moreover that

R ≥ 21+2sσ
√

(logn)/n. Then, there exists a positive real C(s,α,β) only depending on s, α and
β such that

ρ
(
Tn, F (s,R),�1

) ≤ C(s,α,β)R1/(1+2s)

(
σ 2 logn

n

)s/(1+2s)

(16)

and, in case s ∈ (1,2],

ρ
(
Tn, F (s,R),�2

) ≤ C(s,α,β)R3/(1+2s)

(
σ 2 logn

n

)(s−1)/(1+2s)

. (17)

It should be noticed that the conditions

ns
√

logn ≥ R/σ and R ≥ 21+2sσ
√

(logn)/n
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simply mean that n is sufficiently large when compared to R/σ .
Let us now discuss the optimality of the upper-bounds given in Theorem 3.2. Indeed, Propo-

sition 3.1 below proves that, for each criterion �1 and �2 and any choice of the smoothness
parameter s considered in Theorem 3.2, no test can achieve a better rate over F (s,R), up to a
multiplicative constant that does not depend on n.

Proposition 3.1. Assume f ∈ F (s,R) for some R > 0 and s ∈ (0,2]. Let Tα be the set of all α-
level tests for testing that f ∈ D. Assume moreover that R ≥ σ

√
(logn)/n1−ε for some ε ∈ (0,1)

and n is large enough. Then, there exists κ(s,α,β, ε) > 0 only depending on s, α, β and ε such
that

inf
�n∈Tα

ρ
(
�n, F (s,R),�1

) ≥ κ(s,α,β, ε)R1/(1+2s)

(
σ 2 logn

n

)s/(1+2s)

(18)

and, in case s ∈ (1,2],

inf
�n∈Tα

ρ
(
�n, F (s,R),�2

) ≥ κ(s,α,β, ε)R3/(1+2s)

(
σ 2 logn

n

)(s−1)/(1+2s)

. (19)

The lower-bound (18) is proved in [5] (Proposition 2), and the other one in [1]. According to
(16) and (18), our test thus achieves the optimal uniform separation rate (up to a multiplicative
constant) with respect to �1, simultaneously over all classes F (s,R) for s ∈ (0,2] and a wide
range of values of R. A testing procedure enjoying similar performance in a Gaussian regression
model, at least for s ∈ (0,1], can be found in [5], Section 2. In the white noise model we consider
here, [10] (Section 3.1) propose a procedure that achieves the precise optimal uniform separation
rate (we mean, with the optimal constant) with respect to �1, simultaneously over all classes

F (1,R) with R > 0. But, to our knowledge, our test is the first one to achieve the rate (16) in the
case s ∈ (1,2]. On the other hand, according to (17) and (19), our test also achieves the optimal
uniform separation rate (up to a multiplicative constant) with respect to �2, simultaneously over
all classes F (s,R) for s ∈ (1,2] and a wide range of values of R. The second procedure proposed
by [5] (Section 3) achieves this rate in a Gaussian regression model, and the second procedure
proposed by [10] (Section 3.2) in the white noise model is proved to achieve the optimal rate for
f ∈ F (2,R).

4. Testing procedure in a regression framework

In this section, we explain how our testing procedure can be extended, with similar performance,
to the more realistic regression model

Yi = f (i/n) + σεi, i = 1, . . . , n, (20)

where f : [0,1] → R and σ > 0 are unknown, and (εi)1≤i≤n are independent standard Gaussian
variables. Based on the observations (Yi)1≤i≤n, we would like to test H0 :f ∈ D against H1 :f /∈
D where as above, D denotes the set of all non-increasing functions from [0,1] to R.
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If σ 2 were known, then going from the white noise model (1) to the regression model (20)
would amount to replace F(t) = ∫ t

0 f (x)dx and the rescaled Brownian motion n−1/2W(t),
0 ≤ t ≤ 1, by the approximations (1/n)

∑
1≤i≤j f (i/n) and (1/n)

∑
1≤i≤j εi , 1 ≤ j ≤ n, re-

spectively, so that a counterpart for Fn in the regression model is the continuous piecewise linear
function F

reg
n on [0,1] interpolating between the points(

j

n
,

1

n

∑
0≤i≤j

Yi

)
, j = 0, . . . , n,

where Y0 = 0. Note that F
reg
n is nothing but the cumulative sum diagram of the data Yi,1 ≤ i ≤ n,

with equal weights wi = 1/n (see also Barlow et al. [6]). Precisely, if σ 2 were known, then we
would consider a finite collection Cn of sub-intervals of [0,1] and we would reject H0 if

max
I∈Cn

S
reg,I
n > rα,n,

where rα,n is calibrated under the hypothesis that f ≡ 0 and where for all I ∈ Cn,

S
reg,I
n =

√
n

σ 2|I | sup
t∈I

(
F̂

reg
n

I
(t) − F

reg
n (t)

)
. (21)

Since σ 2 is unknown, we need to estimate it. For ease of notation, we assume that n is even and
we consider the estimator

σ̂ 2 = 1

n

n/2∑
i=1

(Y2i − Y2i−1)
2.

We introduce n̄ = n/2, σ0 = σ/
√

2,

Ȳi = (Y2i−1 + Y2i )/2 and ε̄i = (ε2i−1 + ε2i )/
√

2

for all i = 1, . . . , n̄, and we define on [0,1] the function

f̄n(t) = (
f (t − 1/n) + f (t)

)
/2,

where f (t) is defined in an arbitrary way for all t ≤ 0. Thus, from the original model (20), we
deduce the regression model

Ȳi = f̄n(i/n̄) + σ0ε̄i , i = 1, . . . , n̄, (22)

with the advantage that the observations (Ȳi)1≤i≤n̄ are independent of σ̂ 2 (see the proof of Theo-
rem 4.1). Note that (ε̄i)1≤i≤n̄ are independent standard Gaussian variables, and a natural estima-
tor for σ 2

0 is σ̂ 2
0 = σ̂ 2/2. Thus, the regression model (22) has similar features as model (20), so

we proceed as described above, just replacing the unknown variance by its estimator. Precisely,
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we choose some finite collection Cn̄ of closed sub-intervals of [0,1] with endpoints on the grid
{i/n̄; i = 0, . . . , n̄} and for all I ∈ Cn̄, we define

Ŝ
reg,I

n̄ =
√

n̄

σ̂ 2
0 |I | sup

t∈I

(
F̂

reg
n̄

I
(t) − F

reg
n̄ (t)

)
,

where F
reg
n̄ is the cumulative sum diagram of the data Ȳi ,1 ≤ i ≤ n̄, with equal weights wi = 1/n̄.

For a given α ∈ (0,1), we reject H0 :f ∈ D at level α when

max
I∈Cn̄

Ŝ
reg,I

n̄ > rα,n, (23)

where rα,n is calibrated under the hypothesis that f ≡ 0. In order to describe more precisely rα,n,
let us define

Z
reg
n = max

I∈Cn̄

√
n̄

|I | sup
t∈I

(
ĜI

n̄(t) − Gn̄(t)
)
, (24)

where Gn̄ is the cumulative sum diagram of the variables ε̄i ,1 ≤ i ≤ n̄, with equal weights wi =
1/n̄. Although Gn̄ is not observed, its distribution is entirely known, and so is the distribution of
Z

reg
n . We define rα,n as the (1−α)-quantile of Z

reg
n /

√
χ2(n̄)/n̄, where χ2(n̄) is a random variable

independent of Z
reg
n and having chi-square distribution with n̄ degrees of freedom. Approximated

values for the quantiles rα,n can be obtained via Monte Carlo simulations, and the test with
critical region (23) is of non-asymptotic level α, as stated in the following theorem.

Theorem 4.1. For every α ∈ (0,1),

sup
f ∈D

Pf

[
max
I∈Cn̄

Ŝ
reg,I

n̄ > rα,n

]
= α.

Moreover, the above supremum is achieved at f ≡ c, for any fixed c ∈ R.

As in Section 3, we study the performance of the test in the case where

Cn̄ =
{[

i

n̄
,
j

n̄

]
, i < j in {0, . . . , n̄}

}
. (25)

We obtain uniform separation rates that are comparable with the optimal rates we have obtained
in the white noise model, see Theorem 3.2 and Proposition 3.1. For all s ∈ (1,2], R > 0 and
L > 0, denote

F (s,R,L) = F (s,R) ∩ {
f : [0,1] → R s.t.

∥∥f ′∥∥∞ ≤ L
}
.

Theorem 4.2. Let α,β in (0,1), Cn̄ be the collection (25) and T
reg
n be the test with critical re-

gion (23). Let L > 0, s ∈ (0,2] and R > 0 and assume n ≥ 18 log(2/α). In case s ∈ (0,1], we as-
sume that R/σ ≤ ns whereas in case s ∈ (1,2], we assume that L/σ ≤ n, n̄s

√
log n̄ ≥ 3s+1/2R/σ
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and R/σ ≥ 21+2s
√

(log n̄)/n̄. Then, there exists a positive real C(s,α,β) only depending on s,
α and β such that in case s ∈ (0,1],

ρ
(
T

reg
n , F (s,R),�1

) ≤ C(s,α,β)R1/(1+2s)

(
σ 2 logn

n

)s/(1+2s)

(26)

and, in case s ∈ (1,2],

ρ
(
T

reg
n , F (s,R,L),�1

) ≤ C(s,α,β)R1/(1+2s)

(
σ 2 logn

n

)s/(1+2s)

(27)

and

ρ
(
T

reg
n , F (s,R,L),�2

) ≤ C(s,α,β)R3/(1+2s)

(
σ 2 logn

n

)(s−1)/(1+2s)

. (28)

5. Simulation study and power comparison

In this section, we are first concerned with some algorithmic aspects as well as with power
comparisons. First, we explain how to compute approximate values of our test statistics

Sn := max
I∈Cn

SI
n or S

reg
n := max

I∈Cn̄

Ŝ
reg,I

n̄ .

We give also a brief description of how the critical thresholds and the power are calculated.
For n = 100 we study the power of our test under various alternatives in the white noise and
Gaussian regression models so as to provide a comparison with other monotonicity tests such
as those proposed by Gijbels et al. [15] and Baraud et al. [5]. Although the tests are expected
to behave better for large sample sizes, we give below power results in the regression model for
n = 50 and some of the examples considered in the aforementioned papers to give an idea of the
performance of the corresponding test for moderate sample sizes.

5.1. Implementing the test

Computing Sn

We describe here the numerical procedures used to compute our statistic for the white noise
model. Some of these numerical procedures take a simpler form for the Gaussian regression
model, and hence they will be only briefly described below. In the white noise model, the ob-
served process Fn can be only computed on a discrete grid of [0,1]. For each subinterval I of
[0,1], let F̃ I

n be the approximation of the restriction of Fn to I obtained via a linear interpolation

between the values of Fn at the points of the chosen grid. Also, let ̂̃
F I

n be its least concave majo-
rant. For a given pair of integers (i, j) such that 0 ≤ i < j ≤ n, we use the Pool Adjacent Viola-

tors Algorithm (see, e.g., [6]) to compute the slopes and vertices of ̂̃
F

Iij
n , where Iij = [i/n, j/n].
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In order to gain in numerical efficiency, we compute the least concave majorants progressively,
taking advantage of previous computations on smaller intervals using a concatenation procedure.

More precisely, we first compute ̂̃
F

Ij(j+1)
n , for all j ∈ {0, . . . , n − 1}, and store the corresponding

sets of vertices. Then, for l ∈ {j + 2, . . . , n}, the least concave majorant ̂̃
F

Ijl
n is also equal to the

least concave majorant of the function resulting from the concatenation of ̂̃
F

Ij(l−1)
n and ̂̃

F
I(l−1)l
n ,

whose sets of vertices were previously stored. This merging step reduces the computation time
substantially, because the number of vertices of a least concave majorant on Iij is often much
smaller than the number of grid points in Iij . At each step of the algorithm, the maximum of̂̃
F

Ijl
n − F̃

Ijl
n on Ijl is multiplied by n/

√
(l − j) and stored. Last, we obtain the (approximated)

value of the test statistic Sn by taking the largest value of those rescaled maxima and then divid-
ing by σ .

Computing the statistic S
reg
n

The discretized nature of this setting makes the computations faster than in the white noise model.
The least concave majorants based on the independent data Ȳi , i = 1, . . . , n̄ are progressively
computed on Iij = {i/n̄, . . . , j/n̄},0 ≤ i < j ≤ n̄, using the concatenation technique as described
above. Note that each data point Ȳi is assigned to the design point xi = i/n̄, i = 1, . . . , n̄, so
that only half of the original grid is exploited. This is the price to be paid for not knowing the
variance of the noise. The maximum deviation between the cumulative sum diagrams and their
corresponding least concave majorants yields the value of the test statistic S

reg
n after division by

the estimate σ̂0 = (n̄−1 ∑n̄
j=1(Y2i−1 − Y2i ))

1/2.

In Figure 1, we illustrate the computation of Z
reg
n . Independent replications of the above cal-

culations under the hypothesis f ≡ 0 enable us to compute the empirical quantiles of S
reg
n . For a

Figure 1. The plot of the cumulative sum diagram of Ȳi , i = 1, . . . , n̄ = 50 based on 100 independent
realizations of standard Gaussians Y1, . . . , Y100, and the least concave majorant on I = {4/50, . . . ,15/50}
yielding the maximal value of deviation Z

reg
n .
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given α ∈ (0,1), the empirical quantile of order 1 − α will be taken as an approximation for the
critical threshold for the asymptotic level α, which will be denoted by rα,n.

Computing the critical thresholds and the power

We now describe how we determine the critical region of our tests for a given level α ∈ (0,1).
The calculation of the power under the alternative hypothesis is performed along the same lines,
hence its details are skipped. Determining the critical region relies on computing Monte Carlo
estimates of sα,n and rα,n, the (1 − α)-quantiles of the statistic Sn and S

reg
n under the least favor-

able hypothesis f ≡ 0. The calculations in the regression setting have been described above and
are much simpler than for the white noise model. Thus, we only provide some details of how the
approximation of the critical threshold sα,n is performed. Approximation of sα,n requires simu-
lation of C independent copies of Brownian motion on [0,1]. For a chosen r ∈ N

�, we simulate
m = n×r independent standard Gaussians Y1, . . . , Ym. The rescaled partial sums m−1/2 ∑k

i=1 Yi ,
for k = 0, . . . ,m, provide approximate values for Brownian motion at the points of the regular
grid {k/m; k = 0, . . . ,m} of [0,1]. We then proceed as explained in the previous paragraph to
obtain the approximations W̃ Iij , 0 ≤ i < j ≤ n, of the restrictions of Brownian motion to the

intervals Iij and their respective least concave majorants ̂̃
WIij . In the sequel, we fix n = 100.

Figure 2 shows an example where approximated value of Sn for f ≡ 0 is found to be equal to
0.611 × √

100/11 ≈ 1.842, where 0.611 is the length of the vertical dashed line representing
the maximal difference between W̃ I and its least concave majorant. For the approximation of
Brownian motion, we have taken r = 1000.

Based on C = 5000 runs, we found that r = 1000 and 10 000 yield close results for the dis-
tribution of the approximated value of the test statistic Sn. On the other hand, larger values of r

make the computations prohibitively slow. Thus, we chose r = 1000 as a good compromise for

Figure 2. Left plot: Brownian approximation on the unit interval and the least concave majorant on the
subinterval I = [61/100,72/100] yielding the approximate value of Sn for f ≡ 0. Right plot: magnified
plot of the least concave majorant on I . The vertices are shown in bullets.
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Table 1. Monte Carlo estimates of sα,n, the (1 − α)-quantiles of Sn for
f ≡ 0. The estimation is based on C = 5000 runs, n = 100 and r = 1000

α 0.01 0.02 0.03 0.04 0.05
sα,n 2.451860 2.384279 2.343395 2.308095 2.278482

α 0.06 0.07 0.08 0.09 0.10
sα,n 2.254443 2.235377 2.217335 2.205137 2.191502

Monte Carlo estimation of the quantiles as well as for power calculations. Based on C = 5000
runs, Monte Carlo estimates of sα,n, the (1 − α)-quantiles of Sn for f ≡ 0, were computed for
α ∈ {0.01,0.02, . . . ,0.1} and are gathered in Table 1. In particular, the Monte Carlo estimate of
the quantile of order 1 − α = 0.95 is found to be equal to 2.278482. Note that the true quantile
should be comprised between q(α) and q(2α[n(n + 1)]−1), the 1 − α and 1 − 2α[n(n + 1)]−1

quantiles of Z (cf. Section 2). A numerical method for finding very precise approximations of up-
per quantiles of Z was developed by Balabdaoui and Filali [2] using a Gaver–Stehfest algorithm.
For α = 0.05, the Gaver–Stehfest approximation of q(α) and q(2α[n(n+1)]−1) computed yields
the values 1.46279052 and 2.60451660, respectively. Hence, the obtained Monte Carlo estimate
seems to be consistent with the theory.

For testing monotonicity in the regression model in (22), Table 2 give values of rα,n for
n = 100 and α ∈ {0.01,0.02, . . . ,0.1}. The approximated quantiles are obtained with C = 5000
independent draws from a standard Gaussian. The Monte Carlo estimate of the quantile of
order 1 − α = 0.95 is found to be equal to r0.05,100 = 1.970304, and hence smaller than its
counterpart in the white noise model. Recall that the statistic S

reg
n has the same distribution as

Z
reg
n /

√
χ2(n̄)/n̄. Thus, as n gets larger, we expect the distribution of S

reg
n to be closer to that

of Sn. We have added Table 3 where we give the obtained values of rα,n for n = 1000, and which
are clearly close to the approximated quantiles obtained in Table 1 in the white noise model.

5.2. Power study

In this subsection, we shall determine the power of our tests when the true signal deviates either
globally or locally from monotonicity. The functions we consider here have already been used by
Gijbels, Hall, Jones and Koch [15] and Baraud, Huet and Laurent [5]. Our goal is then two-fold:

Table 2. Monte Carlo estimates of rα,n, the (1 − α)-quantiles of S
reg
n for

f ≡ 0. The estimation is based on C = 5000 runs and n = 100

α 0.01 0.02 0.03 0.04 0.05
rα,n 2.150903 2.090423 2.013185 1.998276 1.970304

α 0.06 0.07 0.08 0.09 0.10
rα,n 1.950475 1.938510 1.906807 1.892049 1.870080
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Table 3. Monte Carlo estimates of rα,n, the (1 − α)-quantiles of S
reg
n for

f ≡ 0. The estimation is based on C = 5000 runs and n = 1000

α 0.01 0.02 0.03 0.04 0.05
rα,n 2.475129 2.405715 2.351605 2.320332 2.295896

α 0.06 0.07 0.08 0.09 0.10
rα,n 2.277919 2.249911 2.232569 2.214476 2.202449

compute the power of our test, and compare its performance to that of the tests considered in
these papers.

In Tables 4 and 5 below, the columns labeled Sn and S
reg
n give the power of the tests of level

α = 0.05 based on the statistics Sn and S
reg
n in the white noise and regression model (20), respec-

tively, that is, the proportion of Sn > sα,n and S
reg
n > rα,n among the total number of runs.

Functions considered by Baraud et al. [5]

Baraud, Huet and Laurent [5] consider a regression model with deterministic design points
0 ≤ x1 ≤ · · · ≤ xn ≤ 1 and Gaussian noise whose variance is finite and equal to σ 2. Their
monotonicity test of the true regression function is based on partitioning the set {1, . . . , n} into
l ∈ {2, . . . , ln} subintervals for a given integer 2 ≤ ln ≤ n. Below, we use TB as a shorthand no-
tation for their local mean test where the maximal number of subsets in the partition is ln = 25
and xi = i/n, i = 1, . . . , n. The basis of power comparison consists of the following functions

f1(x) = −15(x − 0.5)31x≤0.5 − 0.3(x − 0.5) + exp
(−250(x − 0.25)2),

f2(x) = 1.5σx,

f3(x) = 0.2 exp
(−50(x − 0.5)2),

f4(x) = −0.1 cos(6πx),

f5(x) = −0.2x + f3(x),

f6(x) = −0.2x + f4(x),

f7(x) = −(1 + x) + 0.25 exp
(−50(x − 0.5)2).

Note that f7 is a special case of Model III of Gijbels et al. [15], which we consider below.
Table 4 gathers power results for the functions f1/σ1, . . . , f7/σ7 where σ 2

i is the variance
of the noise considered by the authors when the true function is fi (see the second column in
Table 4). Calculation of the power of our local least concave majorant test was based on 1000
independent runs in both white noise and regression models. We see that in both models our tests
perform as well as the local mean test of Baraud et al. [5], except for the function f7, which is a
special case of Model III considered by Gijbels et al. [15] (a = 0.45 and σ = 0.1), and where our
test in the regression model seems to be doing a bit worse than local mean test. We would like
to note that in the white noise model the power obtained for the functions f1, . . . , f6 is not much
altered when we replace the quantile sα,n by the upper-bound q(2α[n(n + 1)]−1) ≈ 2.60451660
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Table 4. Power of the tests based on Sn, S
reg
n and TB for n = 100 (see text for details)

Function σ 2 Sn S
reg
n TB

f1 0.01 1.00 0.99 0.99
f2 0.01 0.99 1.00 0.99
f3 0.01 1.00 0.98 1.00
f4 0.01 0.99 0.99 0.99
f5 0.004 1.00 0.99 0.99
f6 0.006 1.00 0.99 0.98
f7 0.01 0.79 0.68 0.76

(see Lemma 2.2): in this case, the power is slightly smaller and we find a minimum difference of
order −0.070.

Functions considered by Gijbels et al. [15]

Gijbels et al. [15] consider a regression model where the deviation from monotonicity of the true
regression function f defined on [0,1] depends on a parameter a > 0 in the following manner

fa(x) = −(1 + x) + a exp
(−50(x − 0.5)2), x ∈ [0,1].

(Note that we have multiplied their function by (−1) to obtain a perturbation of a decreasing
function, here −1 − x.) We refer to [15] for a description of their tests. Here, we compare the
performance of our test to their test based on the statistic Trun (runs of equal signs).

For a = 0, where the true function −1 − x satisfies H0, all three tests have a rejection prob-
ability which is much smaller than α = 0.05. Our test in the white noise model seems to be
however less conservative than our test in the regression model and the test of Gijbels et al. [15].
Our power values in both models (1) and (20) suggest that our tests are exhibiting comparable
performance, except for the configuration a = 0.45 and σ = 0.1 where our test based on S

reg
n

seems to be doing a bit worse. This fact was also noted above in our comparison with the local
mean test of Baraud et al. [5]. In the white noise model, we would like to note that replacing the
quantile sα,n by q(2α[n(n + 1)]−1) implies now a strong decrease in the power. We conclude
that the upper-bound of Lemma 2.2, although interesting in its own right, should be used with
caution.

Table 5. Power of the tests based on Sn, S
reg
n and Trun for n = 100 (see text for details)

a = 0 a = 0.25 a = 0.45

σ 0.025 0.05 0.1 0.025 0.05 0.1 0.025 0.05 0.1

Sn 0.010 0.018 0.014 0.246 0.043 0.031 1.000 1.000 0.796
S

reg
n 0.000 0.002 0.013 0.404 0.053 0.007 1.000 1.000 0.683

Trun 0.000 0.000 0.000 0.106 0.037 0.014 1.000 1.000 0.805
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Table 6. Power of the test based on S
reg
n for

n = 50 (see text for details)

Function σ 2 Power

f1 0.01 0.44
f2 0.01 0.68
f3 0.01 0.84
f4 0.01 0.36
f5 0.004 0.90
f6 0.006 0.44
f7 0.01 0.34

Finally, we have carried out further investigation of the performance of our test in the regres-
sion model for the moderate sample size n = 50. The Monte Carlo estimate of the 95% quantile
of S

reg
n is found to be approximately equal to 1.837931. Table 6 gives the obtained values of the

power for the alternatives considered by Baraud et al. [5]. As expected, the test loses from its
performance for this smaller sample size but is still able to detect deviation from monotonicity
for some of those alternatives with large power (functions f3 and f5). The alternatives consid-
ered by Gijbels et al. [15] present a much bigger challenge and the power of our test is found to
be small with values between 0.003 and 0.01 for a = 0.25. For a = 0.45, our test is found to be
powerful with power values equal to 1 and 0.954 for σ = 0.025 and 0.05, respectively.

6. Discussion

In this section, we compare our test method with some of its (existing) competitors and also
discuss possible generalizations to other settings.

6.1. Comparison with competing tests

In this article, we have proposed a new procedure for testing monotonicity which is able to detect
localized departures from monotonicity, with exact prescribed level, either in the white noise
model or in the Gaussian regression framework with unknown variance. Firstly, as explained in
Section 5, our test statistic, which is a maximum over a finite number of intervals – increasing
with n – of local least concave majorants, can be computed exactly and efficiently. This is a
big advantage when our method is compared with the two test statistics proposed in [10], as
they rely on a family of kernel estimators indexed by a continuous set of bandwidths which
must be in practice discretized. Secondly, the distribution of our test statistic under the least
favorable hypothesis is known and its quantiles can be evaluated via Monte Carlo simulations.
We insist on the fact that, as opposed to [5], only one quantile has to be evaluated for a given
level, and that no bootstrap is required as opposed to [18]. Moreover, our test statistic does
not rely on any smoothness assumption, because no smoothing parameter is involved in the
construction of the test as opposed to [14]. In terms of power, an interesting property of our
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procedure is its adaptivity. Indeed, our procedure attains the same rates of separation as [14]
(without having to play with some smoothness parameter), as well as the optimal rates obtained
in the four procedures in [5,10]. Lastly, the detailed comparative study above shows that the
power values we attain are generally similar to those obtained by [5] and better than the ones
obtained by [15]. Note also that in practice our procedure reaches at most the prescribed level,
which may not be the case for [18], even for Gaussian errors. We conclude that our approach
seems to enjoys all the qualities of the existing methods.

6.2. About the choice of Cn

As explained at the beginning of Section 3, our choice of Cn is motivated by our wish to detect
as many alternatives as possible. However, if one knows in advance properties of the subinterval
where f is likely to violate the non-increasing assumption, then one can incorporate this knowl-
edge to the choice of Cn, that is, one can choose a reduced collection of subintervals in such a way
that for the largest interval I ⊂ [0,1] where f is likely to violate the non-increasing assumption,
there is an interval close to I in the chosen collection Cn. By “reduced collection”, we mean a
collection that is included in the one defined in (8), and by “an interval close to I”, we mean, for
instance, an interval whose intersection with I has a length of the same order of magnitude (up to
a multiplicative constant that does not depend on n) as the length of I , and where the increment
of f has the same order as on I . It can be seen from our proofs that for an arbitrary choice of Cn,
we obtain that there exists C(α,β) > 0 only depending on α and β such that (9) holds provided
there exists [x, y] ∈ Cn such that

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≥ C(α,β)

√
σ 2 log|Cn|

n
. (29)

Note that in the case where Cn is given by (8), |Cn| = n(n + 1)/2 so that log |Cn| is of the order
logn, hence the logn term in Theorem 3.1. In view of condition (29), good power properties are
obtained if one chooses Cn in such a way that |Cn| is not too large, but Cn contains an interval
[x, y] close to the largest interval where f is likely to violate the non-increasing assumption: Cn

must have good approximation properties while having a moderate cardinality. For instance, to
test that f is non-increasing on [0,1] against the alternative that f is U-shaped on [0,1], one can
consider a collection of intervals of the form [x,1]. However, in such a case, only alternatives
that are increasing on the right boundary of [0,1] could be detected. More generally, considering
a reduced collection Cn may cause a loss of adaptivity so we do not pursue the study of our test
in the case where it is defined with a reduced collection Cn.

6.3. Possible extensions to more general models

Recall that in the case where we observe Y1, . . . , Yn according to (20) with a known σ > 0 and
i.i.d. standard Gaussian εi ’s, we reject H0 :f ∈ D against the alternative H1 :f /∈ D if

max
I∈Cn

S
reg,I
n > rα,n, (30)
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where S
reg,I
n is given by (21) and rα,n is the (1 −α)-quantile of maxI∈Cn

S
reg,I
n under the hypoth-

esis that f ≡ 0.
The hypothesis that the εi ’s are standard Gaussian can easily be relaxed provided that the

common distribution remains known. Indeed, provided both σ and the common distribution of
the εi ’s are known, the law of maxI∈Cn

S
reg,I
n is entirely known (at least theoretically) under

the least favorable hypothesis that f ≡ 0, so we can obtain approximate value of the (1 − α)-
quantile rα,n of this law via Monte Carlo simulations. The critical region (30) then defines a test
with level α. If there exists C > 0 and C′ > 0 such that for all x > 0 and I = [i/n, j/n] ∈ Cn,

P

(
max

i<k≤j

k∑
l=i+1

δi > x
√

j − i

)
≤ C exp

(−C′x2),
where δi denotes either εi or −εi , then this test has similar power properties as in the Gaussian
case (the rates in Theorem 4.2 still hold, with possibly different constants).

In the case where the distribution of the εi ’s is known but σ is unknown, it is tempting to
replace σ with an estimator σ̂n in the definition of the test statistic, and to consider the critical
region Tn/σ̂n > r̂α,n where

Tn = σ max
I∈Cn

S
reg,I
n

is observable and r̂α,n is the (1−α)-quantile of Tn/σ̂n under the hypothesis that f ≡ 0. However,
the distribution of Tn/σ̂n is not known in the general case even if f ≡ 0. In the particular case
where the εi ’s are standard Gaussian, we suggest in Section 4 to rather consider

σ0

σ̂0
max
I∈Cn̄

S
reg,I

n̄

as a test statistic, where σ̂0 and S
reg,I

n̄ are defined in such a way that the distribution of σ̂0/σ0

is known if f ≡ 0, and σ̂0 is independent of maxI∈Cn̄
S

reg,I

n̄ . This way, the distribution of the
test statistic is known under the hypothesis that f ≡ 0 and we are able to calibrate the test.
Except in the Gaussian case, the distribution of the test statistic is not known even under the
hypothesis that f ≡ 0. In such situations, it is tempting to argue asymptotically, as n → ∞. This
requires computation of the limit distribution of the test statistic Tn/σ̂n under the least favorable
hypothesis. More precisely, suppose there exist sequences an and bn such that if f ≡ 0,

an(Tn/σ − bn)

converges in distribution to T as n → ∞, where T is a random variable with a continuous
distribution function. Suppose, moreover, that σ̂n converges in probability to σ as n → ∞, and
either anbn = O(1) or σ̂n = σ + oP (1/(anbn)). Denoting by sα the (1 − α)-quantile of T , the
test defined by the critical region

Tn/σ̂n > bn + a−1
n sα (31)

has asymptotic level α. This means that one can extend our method (even in the case where the
distribution of the εi ’s is unknown) by considering a critical region of the form (31).
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Other extensions of the method are conceivable to test, for instance, that a density function or
a failure rate is non-increasing on a given interval, or that a regression function is non-increasing
in a heteroscedastic model. In such cases, the exact distribution of the test statistic is not known
even under the least favorable hypothesis since it depends on unknown parameters. Similar to the
regression case with non-Gaussian errors above, it is then tempting to replace the unknown pa-
rameters with consistent estimators and argue asymptotically. Such asymptotic arguments, with
the computation of the limit distribution of the test statistic, is beyond the scope of the present
paper and is left for future research.

7. Proofs

Without loss of generality (see [1]), we assume for simplicity that the noise level is σ = 1.

7.1. Proofs for Section 2

Proof of Lemma 2.1. Define B(t) = (W(t (b − a) + a) − W(a))/
√|I | on [0,1]. From Lem-

ma 2.1 in [13], it follows that for all t ∈ I ,

Ŵ I (t) − W(t) = √|I |
[
B̂

(
t − a

b − a

)
− B

(
t − a

b − a

)]
.

If f ≡ c on I then F is linear on I , so Lemma 2.1 in [13] shows that F̂ I
n = F + Ŵ I /

√
n and

SI
n = 1√|I | sup

t∈I

(
Ŵ I (t) − W(t)

) = sup
t∈[0,1]

(
B̂(t) − B(t)

)
.

But B is distributed like W , so SI
n is distributed like Z. �

Proof of Theorem 2.1. For every f ∈ DI , F is concave on I , so the process F + Ŵ I /
√

n is
concave and above Fn on I . Thus, it is also above F̂ I

n , and hence

SI
n ≤

√
n

|I | sup
t∈I

(
F(t) + 1√

n
Ŵ I (t) − Fn(t)

)
≤ 1√|I | sup

t∈I

(
Ŵ I (t) − W(t)

)
.

Since Z is continuously distributed (see [11], Lemma 1), Lemma 2.1 yields

sup
f ∈DI

Pf

[
SI

n > q(α)
] ≤ P

[
Z > q(α)

] = α.

Now, suppose f ≡ c over I for a fixed c ∈ R. Then Lemma 2.1 shows that

Pf

[
SI

n > q(α)
] = P

[
Z > q(α)

] = α. �
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Proof of Theorem 2.2. Suppose f ∈ D. We deduce as in the proof of Theorem 2.1 that

max
I∈Cn

SI
n ≤ max

I∈Cn

√
1

|I | sup
t∈I

(
Ŵ I (t) − W(t)

)
with equality when f ≡ c for some fixed c ∈ R, hence Theorem 2.2. �

Proof of Lemma 2.2. It follows from Lemma 2.1 that for every x ≥ 0,

P

[
max
I∈Cn

√
1

|I | sup
t∈I

(
Ŵ I (t) − W(t)

)
> x

]
≤ |Cn|P[Z > x].

Thus, with x = q(α/|Cn|), we obtain the first inequality. Now, from the definition (3) of Z, we
have

Z ≤ sup
t∈[0,1]

W(t) + sup
t∈[0,1]

(−W(t)
)
.

Since W has the same distribution as −W and its supremum over [0,1] satisfies an exponential
inequality (see, e.g., [21], Chapter II, Proposition 1.8), it follows that for every x ≥ 0,

P(Z > x) ≤ 2P

[
sup

t∈[0,1]
W(t) >

x

2

]
≤ 2 exp

(
−x2

8

)
. (32)

In particular, for every γ ∈ (0,1), applying (32) with x = 2
√

2 log(2/γ ) implies that q(γ ) ≤
2
√

2 log(2/γ ) and completes the proof. �

7.2. Proof of Theorem 3.1

We first prove the following lemma.

Lemma 7.1. Assume Cn is any finite collection of subintervals of [0,1] and

max
I∈Cn

√
n

|I | sup
t∈I

(
F̂ I (t) − F(t)

) ≥ 2
√

2

(√
log

(
2|Cn|

α

)
+

√
log

(
2

β

))
(33)

for some α and β in (0,1). Then, (9) holds.

Proof. Let I ∈ Cn achieving the maximum in (33) and ε = √
4 log(2/β)/log(2|Cn|/α). It follows

from the definition of SI
n , Lemma 2.2 and (33) that

Pf

[
max
I∈Cn

SI
n > sα,n

]
≥ Pf

[√
n

|I | sup
t∈I

(
F̂ I

n (t) − Fn(t)
)
> 2

√
2 log

(
2|Cn|

α

)]
.
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Since F̂ I
n ≥ Fn and F̂ I ≥ F on I , the triangle inequality yields

sup
t∈I

(
F̂ I

n (t) − Fn(t)
) ≥ sup

t∈I

(
F̂ I (t) − F(t)

) − sup
t∈I

∣∣∣∣F̂ I
n (t) − F̂ I (t) − 1√

n
W(t)

∣∣∣∣.
Besides, with I = [a, b], we have for every t ∈ I :∣∣∣∣F̂ I

n (t) − F̂ I (t) − 1√
n
W(t)

∣∣∣∣ ≤
∣∣∣∣F̂ I

n (t) − F̂ I (t) − 1√
n
W(a)

∣∣∣∣ + 1√
n

∣∣W(t) − W(a)
∣∣.

But F̂ I
n (t) − W(a)/

√
n is the least concave majorant at time t of the process {Fn(u) −

W(a)/
√

n}u∈I , so it follows from Lemma 2.2 in [13] that

sup
t∈I

∣∣∣∣F̂ I
n (t) − F̂ I (t) − 1√

n
W(a)

∣∣∣∣ ≤ sup
t∈I

∣∣∣∣Fn(t) − F(t) − 1√
n
W(a)

∣∣∣∣
≤ 1√

n
sup
t∈I

∣∣W(t) − W(a)
∣∣.

Hence,

sup
t∈I

∣∣∣∣F̂ I
n (t) − F̂ I (t) − 1√

n
W(t)

∣∣∣∣ ≤ 2√
n

sup
t∈I

∣∣W(t) − W(a)
∣∣.

By scaling, the right-hand side is distributed like 2
√|I |/n supt∈[0,1] |W(t)|, so combining all

previous inequalities leads to

Pf

[
max
I∈Cn

SI
n > sα,n

]
≥ Pf

[
2 sup

t∈[0,1]
∣∣W(t)

∣∣ < ε

√
2 log

(
2|Cn|

α

)]
.

We conclude with the same arguments as in (32) that

Pf

[
max
I∈Cn

SI
n > sα,n

]
≥ 1 − 2 exp

(
−ε2

4
log

(
2|Cn|

α

))
.

By definition of ε, the right-hand side is 1 − β , hence inequality (9). �

Let us turn now to the proof of Theorem 3.1 and recall that we restrict ourselves without loss
of generality to the case σ = 1. Assume (11) for some x, y ∈ [0,1] such that y − x ≥ 2/n, and
write I0 = [x, y]. The linear function

t �→ F(x) + (t − x)
F (y) − F(x)

y − x
= F(t) + (t − x)(f̄xy − f̄xt ),

where f̄xy is defined by (10), coincides with F at the boundaries x and y of the interval I0. So
this function is below F̂ I0 on I0 and we obtain

1√|I0| sup
t∈I0

(
F̂ I0(t) − F(t)

) ≥ sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≥ C(α,β)

√
logn

n
.
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Now, let I be the smallest interval in Cn containing I0. Since |I0| ≥ 2/n, we have |I | ≤ |I0| +
2/n ≤ 2|I0|. Moreover, F̂ I ≥ F̂ I0 on I0, so

1√|I | sup
t∈I

(
F̂ I (t) − F(t)

) ≥ 1√
2|I0| sup

t∈I0

(
F̂ I0(t) − F(t)

) ≥ C(α,β)

√
logn

2n
. (34)

Since |Cn| = n(n + 1)/2, it follows that (33) holds provided that C(α,β) is large enough, so
Theorem 3.1 follows from Lemma 7.1.

7.3. A useful lemma

In the case f is not non-decreasing such that f is assumed to be smooth enough, then Lemma 7.2
below may serve as a tool to prove that condition (11) in Theorem 3.1 is fulfilled.

Lemma 7.2. Assume f /∈ D and f (u) − f (v) ≤ R(u − v)s for all u ≥ v, for some R > 0 and
s ∈ (0,1]. Let x0 < y0 in [0,1] such that ρ := f (y0) − f (x0) > 0. Then, there exist an interval
[x, y] ⊂ [x0, y0] and a real C(s) > 0 that only depends on s such that

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≥ C(s)R−1/(2s)ρ1+1/(2s). (35)

Proof. Let s ∈ (0,1] and L ≥ 1 be fixed, and let G(s,L) be the set of integrable functions
g : [0,1] → R such that g(0) = 0, g(1) = 1, and

g(u) − g(v) ≤ L(u − v)s for all u ≥ v.

Let G0(s,L) be the set of functions g ∈ G(s,L) such that ḡ01 ≥ 1/2, where for every x < y, ḡxy

is defined as in (10). We first prove that for all g ∈ G(s,L),

sup
0≤x<t<y≤1

t − x√
y − x

(ḡxy − ḡxt ) ≥ C(s,L) := s

7 × 21+s+1/s
L−1/(2s). (36)

We first consider the case where g ∈ G0(s,L) and argue by contradiction. Assume there exists
g ∈ G0(s,L) such that inequality (36) is not satisfied. For every integer k, let mk = ḡ02−k . Setting
xk = 0, tk = 2−k−1 and yk = 2−k , it follows from our assumption on g that

mk − mk+1 = 21+k/2 tk − xk√
yk − xk

(ḡxkyk
− ḡxktk ) < 21+k/2C(s,L).

But for all integers k0 ≥ 0,

ḡ01 = m0 =
k0∑

k=0

(mk − mk+1) + mk0+1.
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By assumption, ḡ01 ≥ 1/2 whence

1

2
< C(s,L)

k0∑
k=0

21+k/2 + mk0+1 < 7C(s,L)2k0/2 + mk0+1. (37)

Since g(0) = 0, for all integers k0 ≥ 0 we have

mk0+1 = 2k0+1
∫ 2−k0−1

0

(
g(u) − g(0)

)
du < L2−s(k0+1).

From (37) and the definition of C(s,L), we obtain that for all integers k0 ≥ 0,

1

2
<

s

21+s+1/s
L−1/(2s)2k0/2 + L2−s(k0+1). (38)

In particular, consider k0 = sup{k ∈ N : 2k/2 ≤ 21/sL1/(2s)}, which is well defined since s ∈ (0,1]
and L ≥ 1. By definition of k0, 2k0/2 ≤ 21/sL1/(2s) and 2(k0+1)/2 > 21/sL1/(2s), so (38) implies
s2−s > 1/2. This is a contradiction because s2−s ≤ 1/2 for all s ∈ (0,1]. Hence, (36) holds for
all s ∈ (0,1], L ≥ 1 and g ∈ G0(s,L). Now, for every g ∈ G(s,L) we set g̃ = g if ḡ01 ≥ 1/2, and
g̃(u) := 1 − g(1 − u) otherwise, so that g̃ ∈ G0(s,L). Noting that

t − x√
y − x

(ḡxy − ḡxt ) = y − t√
y − x

(ḡty − ḡxy)

for all x < t < y, we obtain

sup
0≤x<t<y≤1

t − x√
y − x

(ḡxy − ḡxt ) = sup
0≤x<t<y≤1

t − x√
y − x

( ¯̃gxy − ¯̃gxt ) ≥ C(s,L),

since (36) holds for all s ∈ (0,1], L ≥ 1 and g ∈ G0(s,L). Hence, (36) holds for all s ∈ (0,1],
L ≥ 1 and g ∈ G(s,L).

Finally, under the assumptions of Lemma 7.2, the function

g(u) = 1

ρ

(
f

(
x0 + (y0 − x0)u

) − f (x0)
)
, u ∈ [0,1],

belongs to G(s,L) with L = R(y0 − x0)
s/ρ ≥ 1. Thus, it follows from (36) that there exists

C(s) > 0 only depending on s such that

sup
x0≤x<t<y≤y0

t − x√
y − x

(f̄xy − f̄xt ) = ρ
√

y0 − x0 sup
0≤x<t<y≤1

t − x√
y − x

(ḡxy − ḡxt )

≥ C(s)R−1/(2s)ρ1+1/(2s). �
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7.4. Remaining proofs for Section 3

Proof of Corollary 3.1. Setting t = tn, x = tn − �n, y = tn + �n, we obtain

t − x√
y − x

(f̄xy − f̄xt ) = 1

2
√

2�n

(∫ y

t

f (u)du −
∫ t

x

f (u)du

)

≥ 1

2
√

2�n

(∫ t

t−δn

(
f (u + δn) − f (u)

)
du

)
≥ Mδ2

nλn

2
√

2�n

,

so Corollary 3.1 follows from Theorem 3.1. �

Proof of Corollary 3.2. Since f is convex, we can apply Lemma 7.2 with s = 1 and R defined
in Corollary 3.2. Therefore, there exist [x, y] ⊂ [x0,1] and C > 0 such that

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≥ CR−1/2ρ3/2. (39)

By change of variable, we have for all t ∈ [x, y],

f̄xy − f̄xt = 1

y − x

∫ y

x

(
f (v) − f

(
v − x

y − x
(t − x) + x

))
dv. (40)

By convexity of f and definition of R, this implies that for all t ∈ [x, y],

f̄xy − f̄xt ≤ R

y − x

∫ y

x

(
v − x

y − x
(y − t)

)
dv ≤ R

2
(y − x),

hence

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≤ R

2
(y − x)3/2. (41)

Combining inequalities (39) and (41) proves that y − x ≥ (2C)2/3ρ/R. Therefore, y − x ≥ 2/n

provided ρ > C0R/n for a large enough C0. From Theorem 3.1, it follows that (33) holds pro-
vided

CR−1/2ρ3/2 > C(α,β)

√
σ 2 logn

n

for a large enough C(α,β), which completes the proof of Corollary 3.2. �

Proof of Theorem 3.2. Inequality (17) easily follows from Corollary 3.1. Yet, a detailed proof
may be found in [1].
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We now turn to the proof of inequality (16). Let f ∈ F (s,R) for some s ∈ (0,2] and R > 0
and define

ρn = C′(s,α,β)R1/(1+2s)

(
logn

n

)s/(1+2s)

, (42)

where C′(s,α,β) is a positive number to be chosen later, that only depends on s, α and β .
Assume ns

√
logn ≥ R, R ≥ 21+2s

√
(logn)/n in case s > 1, and �1(f ) ≥ ρn. The function f ∗

defined on [0,1] by

f ∗(y) = inf
x∈[0,y]f (x)

is non-increasing with f ∗ ≤ f , so

�1(f ) ≤ sup
t∈[0,1]

(
f (t) − f ∗(t)

) ≤ sup
0≤x<y≤1

(
f (y) − f (x)

)
.

Since f is continuous and �1(f ) ≥ ρn, this shows that there are x0 < y0 (that may depend on n)
such that f (y0) = f (x0) + ρn.

Consider first the case s ∈ (0,1]. From Lemma 7.2, there exist an interval [x, y] ⊂ [x0, y0] and
a positive number C(s) only depending on s such that

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≥ C(s)
(
C′(s,α,β)

)1+1/(2s)

√
logn

n
. (43)

Since f ∈ F (s,R), formula (40) implies

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≤ R

s + 1
(y − x)s+1/2.

Combining this with (43) proves that

y − x ≥ (
C(s)(s + 1)

)2/(1+2s)(
C′(s,α,β)

)1/s
(

logn

nR2

)1/(1+2s)

, (44)

so in particular, y −x ≥ 2/n provided ns
√

logn ≥ R and C′(s,α,β) is sufficiently large. Thanks
to (43) and Theorem 3.1, we obtain that (9) holds in the case s ∈ (0,1], provided C ′(s,α,β) is
large enough, hence ρ(Tn, F (s,R),�1) ≤ ρn.

Consider now the case s ∈ (1,2]. Assume that, for a given C(s,α,β) > 0,

sup
t∈[0,1]

f ′(t) ≤ C(s,α,β)R3/(1+2s)

(
logn

n

)(s−1)/(1+2s)

, (45)

since otherwise (17) immediately allows to conclude. As f ∈ F (s,R) with some s > 1, we also
have

f (u) − f (v) ≤ (u − v) sup
t∈[0,1]

f ′(t) for all u ≥ v,
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where supt f
′(t) > 0. Therefore, it follows from the definition of x0, y0 and Lemma 7.2 that there

exist C > 0 and [x, y] ⊂ [x0, y0] such that

sup
x<t<y

t − x√
y − x

(f̄xy − f̄xt ) ≥ C
(

sup
t∈[0,1]

f ′(t)
)−1/2

ρ
3/2
n .

From (45) and the definition of ρn, we get

sup
t∈[x,y]

t − x√
y − x

(f̄xy − f̄xt ) ≥ C(C′(s,α,β))3/2

√
C(s,α,β)

√
logn

n
.

Similar to (44), and using then (45), one obtains

y − x ≥
(

2C

supt f
′(t)

√
C(s,α,β)

)2/3

C′(s,α,β)

(
logn

n

)1/3

≥ (2C)2/3 C′(s,α,β)

C(s,α,β)

(
logn

nR2

)1/(1+2s)

.

Then, we conclude with the same arguments as in the case s ∈ (0,1]. �

7.5. Proofs for Section 4

In the sequel, we denote by Hn̄ the function F
reg
n̄ − σ0Gn̄, which is continuous and piecewise

linear on [0,1]: Hn̄ is the cumulative sum diagram of the points fn(i/n̄), 1 ≤ i ≤ n̄, with equal
weights 1/n̄.

Proof of Theorem 4.1. Assume f ∈ D. Then, Hn̄ has decreasing slopes, so it is concave on
[0,1], and even linear when f is constant over [0,1]. Since σ0/σ̂0 = σ/σ̂ , we deduce as in the
proof of Theorem 2.2 that

max
I∈Cn̄

Ŝ
reg,I

n̄ ≤ (σ/σ̂ )Z
reg
n (46)

with equality when f is constant over [0,1]. According to Cochran’s theorem, n̄σ̂ 2/σ 2 is inde-
pendent of Z

reg
n and distributed as a non-central chi-square variable with n̄ degrees of freedom

and non-centrality parameter

δ2
f = (

2σ 2)−1
n̄∑

i=1

(
f (2i/n) − f

(
(2i − 1)/n

))2
. (47)

In particular, when f is constant over [0,1],

σ̂ 2 = 1

n

n/2∑
i=1

(ε2i − ε2i−1)
2 := σ̂ 2

ε ,
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where n̄σ̂ 2
ε /σ 2 is a χ2(n̄) variable independent of Z

reg
n . Thus, we deduce from (46) and the

stochastic order between non-central chi-square variables with same degrees of freedom (see,
e.g., [20], Chapter 29) that

Pf

(
max
I∈Cn̄

Ŝ
reg,I

n̄ > rα,n

)
≤ Ef

[
Pf

(
σ̂ 2/σ 2 <

(
Z

reg
n /rα,n

)2|Zreg
n

)]
≤ E

[
P
(
σ̂ 2

ε /σ 2 <
(
Z

reg
n /rα,n

)2|Zreg
n

)]
≤ P

(
(σ/σ̂ε)Z

reg
n > rα,n

)
with equalities in the case where f is constant over [0,1]. Both σ̂ε and Z

reg
n are continuously

distributed, so their independence, together with the definition of rα,n, shows that the latter prob-
ability is equal to α. �

Proof of Theorem 4.2. As in Sections 7.1 to 7.4, we may assume that σ = 1. The line of proof of
Theorem 4.2 is close to that of Theorem 3.2. Indeed, it relies on the discrete versions of Lemmas
2.2 and 7.1 stated below. �

Lemma 7.3. For all α ∈ (0,1) and n ≥ 18 log(2/α),

rα,n ≤ 2

√
6 log

(
2|Cn̄|(2 − α)

α

)
.

Lemma 7.4. Let α,β in (0,1), Cn̄ be the collection (25), L > 0, s ∈ (0,2], and R > 0. Assume
that n ≥ 18 log(2/α) and either that f ∈ F (s,R) for some s ∈ (0,1] and R ≤ ns , or that f ∈

F (s,R,L) for some s ∈ (1,2] and L ≤ n. Then, there exists a positive number C(α,β) depending
only on α and β such that, for all f satisfying

max
I∈Cn̄

√
n̄

|I | sup
t∈I

(
Ĥ I

n̄ (t) − Hn̄(t)
) ≥ C(α,β)

√
log n̄, (48)

it holds that

Pf

(
max
I∈Cn̄

Ŝ
reg,I

n̄ > rα,n

)
≥ 1 − β.

Detailed proofs of both lemmas and Theorem 4.2 are given in [1].
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Supplementary Material

Supplement to “Testing monotonicity via local least concave majorants” (DOI: 10.3150/12-
BEJ496SUPP; .pdf). We collect in the supplement [1] the most technical proofs. Specifically, we
prove how to reduce to the case σ = 1, we prove (19) and we provide a detailed proof for (17)
and all results in Section 4.
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