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We consider the recurrence and transience problem for a time-homogeneous Markov chain on the real
line with transition kernel p(x,dy) = fx(y − x)dy, where the density functions fx(y), for large |y|,
have a power-law decay with exponent α(x) + 1, where α(x) ∈ (0,2). In this paper, under a unifor-
mity condition on the density functions fx(y) and an additional mild drift condition, we prove that when
lim inf|x|−→∞ α(x) > 1, the chain is recurrent. Similarly, under the same uniformity condition on the den-
sity functions fx(y) and some mild technical conditions, we prove that when lim sup|x|−→∞ α(x) < 1, the
chain is transient. As a special case of these results, we give a new proof for the recurrence and transience
property of a symmetric α-stable random walk on R with the index of stability α ∈ (0,1) ∪ (1,2).

Keywords: Foster–Lyapunov drift criterion; Harris recurrence; petite set; recurrence; stable distribution;
T-chain; transience

1. Introduction

Let (�, F ,P) be a probability space and let {Zn}n∈N be a sequence of i.i.d. random variables on
(�, F ,P) taking values in R

d , d ≥ 1. Let us define Xn := ∑n
i=1 Zi and X0 := 0. The sequence

{Xn}n≥0 is called a random walk with jumps {Zn}n∈N. The random walk {Xn}n≥0 is said to be
recurrent if

P

(
lim inf
n−→∞ |Xn| = 0

)
= 1,

and transient if

P

(
lim

n−→∞|Xn| = ∞
)

= 1.

It is well known that every random walk is either recurrent or transient (see [3], Theorem 4.2.1).
Recall that a random walk {Xn}n≥0 in Rd is called truly d-dimensional if P(〈Z1, x〉 	= 0) > 0
holds for all x ∈ R

d \ {0}. It is also well known that every truly d-dimensional random walk is
transient if d ≥ 3 (see [3], Theorem 4.2.13). An R

d -valued random variable Z is said to have
stable distribution if, for any n ∈ N, there are an > 0 and bn ∈ Rd , such that

Z1 + · · · + Zn
d= anZ + bn,

where Z1, . . . ,Zn are independent copies of Z and
d= denotes equality in distribution. It turns out

that an = n1/α for some α ∈ (0,2] which is called the index of stability (see [11], Definition 1.1.4
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and Corollary 2.1.3). The case α = 2 corresponds to the Gaussian random variable. A random
walk {Xn}n≥0 is said to be stable if the random variable Z1 has stable distribution. In the class
of truly two-dimensional stable random walks in R

2, by [3], Theorem 4.2.9, the only recurrent
case is the case when {Xn}n≥0 is a truly two-dimensional random walk with zero mean Gaussian
jumps. In the case d = 1, every stable distribution is characterized by four parameters: the sta-
bility parameter α ∈ (0,2], the skewness parameter β ∈ [−1,1], the scale parameter γ ∈ (0,∞)

and the shift parameter δ ∈ R (see [11], Definition 1.1.6). Using the notation from [11], we de-
note one-dimensional stable distributions by Sα(β, γ, δ). For symmetric stable distributions, that
is, for Sα(0, γ,0) (see [11], Property 1.2.5), we write SαS. A SαS random walk is recurrent if
and only if α ≥ 1 (see the discussion after [3], Lemma 4.2.12). In this paper, we generalize the
SαS random walk in the way that the index of stability of the jump distribution depends on the
current position and study the transience and recurrence property of the generalization.

Actually, we will not need the stability property of transition jumps. All we will need is a tail
behavior of transition jumps. Let us introduce the notation f (y) ∼ g(y), when y −→ y0, for
limy−→y0 f (y)/g(y) = 1, where y0 ∈ [−∞,∞]. Recall that if f (y) is the density function of
a SαS distribution with α ∈ (0,2) and γ ∈ (0,∞) (for the existence of densities of Sα(β, γ, δ)

distributions see [11], Definition 1.1.6 and [3], Theorem 3.3.5), then

f (y) ∼ cα|y|−α−1,

when |y| −→ ∞, where c1 = γ
2 and cα = γ

π �(α + 1) sin(πα
2 ), for α 	= 1, see [11], Prop-

erty 1.2.15. Now, let α : R −→ (0,2) and c : R −→ (0,∞) be arbitrary functions and let
{fx : x ∈ R} be a family of density functions on R such that

(C1) x �−→ fx(y) is a Borel measurable function for all y ∈ R and
(C2) fx(y) ∼ c(x)|y|−α(x)−1, when |y| −→ ∞, for all x ∈ R.

Let us define a Markov chain {Xn}n≥0 on R by the following transition kernel

p(x,dy) := fx(y − x)dy. (1.1)

The chain {Xn}n≥0 jumps from the state x with transition density fx(y − x), with the power-law
decay with exponent α(x) + 1, and this jump distribution depends only on the current state x.
Transition densities {fx : x ∈ R} are asymptotically equivalent to the densities of SαS distribu-
tions, and we call such chain a stable-like chain. The aim of this paper is to find conditions for
the recurrence and transience property of the stable-like chain {Xn}n≥0 in terms of the function
α(x).

To the best of our knowledge, all methods used in establishing conditions for recurrence and
transience in the random walk case are based on the i.i.d. property of random walk jumps, that is,
laws of large numbers (Chung–Fuchs theorem), central limit theorems, characteristic functions
approach (Stone–Ornstein formula) etc. (see [3], Theorems 4.2.7, 4.2.8 and 4.2.9). Although we
deal with distributions similar to SαS distributions, it is not clear if these methods can be used in
the case of the non-constant function α(x).

Special cases of this problem have been considered in [2,4–6] and [10]. In [6] and [10], the
authors consider the countable state space Z and the function α(x) is a two-valued step function
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which takes one value on negative integers and the other one on nonnegative integers. The pro-
cesses considered in [2] and [4] run in continuous time. The function α(x) considered in [2] is
a two-valued step function which takes one value on negative reals and the other one on non-
negative reals, while in [4] the author considers the case when the function α(x) is periodic and
continuously differentiable. The methods used in [2,6,10] and [4], actually reduce the process
to random walks and Lévy processes. Also, it is not clear if these methods can be used in the
general case, that is, when the function α(x) is an arbitrary function. In this paper, under certain
assumptions on the functions α(x), c(x) and on the family of density functions {fx : x ∈ R},
we give sufficient conditions for the recurrence and transience property of the stable-like chain
{Xn}n≥0 in terms of the function α(x).

Let us denote by B(R) the Borel σ -algebra on R, by λ the Lebesgue measure on B(R) and for
arbitrary B ∈ B(R) and x ∈ R we define B − x := {y − x: y ∈ B}. Assume that the family of
probability densities {fx : x ∈ R} satisfies additional three conditions:

(C3) there exists k > 0 such that

lim|y|−→∞ sup
x∈[−k,k]c

∣∣∣∣fx(y)
|y|α(x)+1

c(x)
− 1

∣∣∣∣ = 0;

(C4) infx∈C c(x) > 0 for every compact set C ⊆ [−k, k]c;
(C5) there exists l > 0 such that for every compact set C ⊆ [−l, l]c with λ(C) > 0, we have

inf
x∈[−k,k]

∫
C−x

fx(y)dy > 0.

Condition (C3) ensures that out of some compact set all jump densities of the stable-like chain
{Xn}n≥0 can be replaced by their tail behavior uniformly. This condition is crucial in proving
certain structural properties of the chain {Xn}n≥0 and in finding sufficient conditions for the
recurrence and transience. Another essential property of the chain {Xn}n≥0 is that every compact
set is a petite set. A petite set is a set which assumes a role of a singleton for Markov chains
on general state space (for the exact definition of the petite set see Definition 2.2). This is the
reason why compact sets are important in conditions (C3), (C4) and (C5). Besides ensuring that
all compact sets are petite sets (singletons), conditions (C4) and (C5) ensure also that the chain is
irreducible. Condition (C4) ensures that the scaling function c(x) does not vanish on petite sets,
and condition (C5) ensures that the petite set [−k, k] communicates with the rest of the state
space.

Remark 1.1. Note that condition (C3) implies

sup
x∈[−k,k]c

c(x) < ∞. (1.2)

Indeed, let 0 < ε < 1 be arbitrary. Then there exists yε ≥ 1 such that for all |y| ≥ yε we have∣∣∣∣fx(y)
|y|α(x)+1

c(x)
− 1

∣∣∣∣ < ε
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for all x ∈ [−k, k]c . Therefore, upon integrating over y we get

c(x) <
1

1 − ε

(
2
∫ ∞

yε

y−α(x)−1 dy

)−1

≤ 1

1 − ε

(
2
∫ ∞

yε

y−3 dy

)−1

= y2
ε

1 − ε

for every x ∈ [−k, k]c.

An example of a stable-like chain which satisfies conditions (C3)–(C5) is the chain which has
exactly Sα(x)(0, γ (x), δ(x)) jumps at each location x, where the functions α(x), γ (x) and δ(x)

are Borel measurable and take finitely many values (see Proposition 5.5 for details).
Before stating the main results of this paper we recall relevant definitions of recurrence and

transience.

Definition 1.2. Let {Yn}n≥0 be a Markov chain on (R, B(R)).

(i) The chain {Yn}n≥0 is ϕ-irreducible if there exists a probability measure ϕ on B(R) such
that for every x ∈ R there exists n ∈ N such that ϕ(B) > 0 implies P(Yn ∈ B|Y0 = x) > 0.

(ii) The chain {Yn}n≥0 is recurrent if it is ϕ-irreducible and if
∑∞

n=0 P(Yn ∈ B|Y0 = x) = ∞
holds for all x ∈ R and all B ∈ B(R), such that ϕ(B) > 0.

(iii) The chain {Yn}n≥0 is transient if it is ϕ-irreducible and if there exists a countable cover of
R with sets {Bj }j∈N ⊆ B(R), such that for each j ∈ N there is a finite constant Mj ≥ 0
such that

∑∞
n=0 P(Yn ∈ Bj |Y0 = x) ≤ Mj holds for all x ∈ R.

The following two constants will appear in the statements of the main results: For α ∈ (1,2),
let

R(α) :=
∞∑
i=1

1

i(2i − α)
− ln 2

α
− 1

2α

(
�

(
α + 1

2

)
− �

(
α

2

))
,

and for α ∈ [0,1) and β ∈ (0,1 − α) let

T (α,β) := 2F1(−α,β,1 − α;1) + βB(1;α + β,1 − α) − αB(1;α + β,1 − β),

where �(z) is the Digamma function, 2F1(a, b, c; z) is the Gauss hypergeometric function and
B(x; z,w) is the incomplete Beta function (see Section 3 for the definition of these functions).
The constants R(α) and T (α,β) are strictly positive (see proofs of Theorems 1.3 and 1.4). Fur-
thermore, it is not hard to see that the constant R(α), as a function of α ∈ (1,2), is strictly increas-
ing, R(1) = 0 and limα−→2 R(α) = ∞. The constant T (α,β), as a function of β ∈ (0,1 − α) for
fixed α ∈ (0,1), is strictly positive and T (α,0) = T (α,1−α) = 0, while considered as a function
of α ∈ [0,1 − β) for fixed β ∈ (0,1), it is strictly decreasing, T (0, β) = 2 and T (1 − β,β) = 0.

Theorem 1.3. Let α : R −→ (1,2) be an arbitrary function such that

α := lim inf|x|−→∞α(x) > 1.
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Furthermore, let c : R −→ (0,∞) be an arbitrary function and let {fx : x ∈ R} be a family of
density functions on R which satisfies conditions (C1)–(C5) and such that

lim sup
|x|−→∞

sgn(x)
|x|α(x)−1

c(x)
E[X1 − X0|X0 = x] < R(α) (1.3)

when α < 2, and the left-hand side in (1.3) is finite when α = 2. Then the stable-like Markov
chain {Xn}n≥0 given by the transition kernel

p(x,dy) = fx(y − x)dy,

is recurrent.

Theorem 1.4. Let α : R −→ (0,1) be an arbitrary function such that

α := lim sup
|x|−→∞

α(x) < 1

and let β ∈ (0,1 − α) be arbitrary. Furthermore, let c : R −→ (0,∞) be an arbitrary function
and let {fx : x ∈ R} be a family of density functions which satisfies conditions (C1)–(C5) and
there exists a0 > 0, such that

lim inf|x|−→∞
α(x)|x|α(x)

c(x)

∫ a

−a

(
1 −

(
1 + sgn(x)

y

1 + |x|
)−β)

fx(y)dy > −T (α,β) (1.4)

for all a ≥ a0. Then the stable-like Markov chain {Xn}n≥0 given by the transition kernel

p(x,dy) = fx(y − x)dy,

is transient.

Actually, instead of condition (1.3), in the proof of Theorem 1.3, we use the following more
technical but equivalent condition

lim sup
δ−→0

lim sup
|x|−→∞

(1 + |x|)α(x)

c(x)

∫ δ(1+|x|)

−δ(1+|x|)
ln

(
1 + sgn(x)

y

1 + |x|
)

fx(y)dy < R(α) (1.5)

(see Section 5 for details). Conditions (1.3) (i.e., (1.5)) and (1.4) are needed to control the be-
havior of the family of density functions {fx : x ∈ R} on sets symmetric around the origin. Con-
dition (1.3) actually says that when the chain {Xn}n≥0 has moved far away from the origin,
since R(α) > 0, it cannot have strong tendency to move further from the origin. Since R(α) > 0,
it is clear that condition (1.3) is satisfied if α(x) ∈ (1,2) and if fx(y) = fx(−y) holds for all
y ∈ R and for all |x| large enough. For a non-symmetric example, one can take fx(y) to be
the density function of a Sα−(0, γ−, δ−) distribution, when x < 0, and the density function of a
Sα+(0, γ+, δ+) distribution, when x ≥ 0, where α−, α+ ∈ (1,2), γ−, γ+ ∈ (0,∞), δ− ≥ 0 and
δ+ ≤ 0.
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Using the concavity property of the function x �−→ xβ , for β ∈ (0,1 − α), condition (1.4)
follows from the condition

lim sup
|x|−→∞

α(x)

c(x)
|x|α(x)−1 <

T (α,β)

a0β
(1.6)

(see Section 5 for details). Note that condition (1.6) actually says that the function c(x) cannot
decrease too fast. Since T (α,β) > 0 and α(x) ∈ (0,1), a simple example which satisfies con-
dition (1.6) is the case when c(x) ≥ d|x|α(x)−1+ε , for some d > 0 and for all |x| large enough,
where 0 < ε < 1 − α is arbitrary. Furthermore, one can prove that the function β �−→ T (α,β)/β

is strictly decreasing on (0,1 − α). Hence, according to the condition (1.6), we choose β close
to 0.

In the random walk case, that is, when the family of density functions {fx : x ∈ R} is reduced
to a single density function f (y) such that f (y) ∼ c|y|−α−1, when |y| −→ ∞, where α ∈ (0,2)

and c ∈ (0,∞), conditions (C1)–(C5) are trivially satisfied. Hence, by Theorem 1.3 and the
condition (1.3), if α > 1 and if ∫

R

yf (y)dy = 0,

the random walk with the jump density f (y) is recurrent, and if α < 1, by Theorem 1.4 and
the condition (1.6), the random walk with the jump density f (y) is transient. This result can
be strengthened. If we assume that f (y) = f (−y) for all y ∈ R, from the discussion in [12],
page 88, the random walk with the jump density f (y) is recurrent if and only if α ≥ 1. As a
simple consequence of Theorems 1.3 and 1.4, we get the following well-known recurrence and
transience conditions for the SαS random walk case.

Corollary 1.5. A SαS, 1 < α < 2, random walk is recurrent. A Sα(0, γ, δ), 0 < α < 1, random
walk with arbitrary shift is transient.

The previous corollary can be generalized. If the functions α(x), γ (x) and δ(x) are Borel
measurable and take finitely many values, then the stable-like chain with Sα(x)S jumps is recur-
rent if α(x) ∈ (1,2) for all x ∈ R. If α(x) ∈ (0,1) for all x ∈ R, then the stable-like chain with
Sα(x)(0, γ (x), δ(x)) jumps is transient.

Remark 1.6. Conditions in Theorems 1.3 and 1.4 are only sufficient conditions for recurrence
and transience of the stable-like chain {Xn}n≥0. On the countable state space Z, when

α(i) =
{

α, i < 0,
β, i ≥ 0

for α,β ∈ (0,2), in [6,10] it is proved that if α+β
2 > 1, the associated chain is recurrent, and if

α+β
2 < 1, the associated chain is transient. A similar result, with

α(x) =
{

α, x < 0,
β, x ≥ 0
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for α,β ∈ (0,2), is proved in the continuous time case in [2], that is, a stable-like process with
the symbol |ξ |α(x) is recurrent if and only if α+β

2 ≥ 1. In [4], in the case when the function
α(x) is periodic and continuously differentiable function, it is proved that all that matters is the
minimum of the function α(x). If λ({x: α(x) = α0 := inf{α(y): y ∈ R}}) > 0, then a stable-like
process with the symbol |ξ |α(x) is recurrent if and only if α0 ≥ 1.

Now we explain our strategy of proving the main results. The proof of Theorems 1.3 and 1.4
is based on the Foster–Lyapunov drift criterion for recurrence and transience of Markov chains
(see [9], Theorems 8.4.2 and 8.4.3). This criterion is based on finding an appropriate test function
V (x) (positive and unbounded in the recurrence case and positive and bounded in the transience
case), and an appropriate set C ∈ B(R) (petite set) such that

∫
R

p(x,dy)V (y)− V (x) ≤ 0, in the
recurrence case, and

∫
R

p(x,dy)V (y) − V (x) ≥ 0, in the transience case, for every x ∈ Cc. The
idea is to find test functions V (x) such that the associated level sets CV (r) := {y: V (y) ≤ r} are
compact sets, that is, petite sets, and that CV (r) ↑ R, when r −→ ∞, in the case of recurrence and
CV (r) ↑ R, when r −→ 1, in the case of transience. In the recurrence case for the test function,
we take V (x) = ln(1 + |x|), and in the transience case we take V (x) = 1 − (1 + |x|)−β, where
0 < β < 1 − α (recall that α = lim sup|x|−→∞ α(x) < 1). Now, by proving that

lim sup
|x|−→∞

|x|α(x)

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
< 0,

in the recurrence case, and

lim inf|x|−→∞
α(x)|x|α(x)+β

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
> 0,

in the transience case, since compact sets are petite sets, the proofs of Theorems 1.3 and 1.4 are
accomplished.

A similar approach, by using similar test functions V (x), can be found in [7] and [8]. In [7], the
author considers a Markov chain on the nonnegative real line with uniformly bounded transition
jumps, while in [8] the authors generalize this result to the case of uniformly bounded 2 + δ0-
moments of transition jumps, for some δ0 > 0. If we allow that α(x) ∈ (0,∞) and assume the
following additional assumption: supx∈C α(x) < ∞, for every compact set C ⊆ [−k, k]c (recall
that the constant k is defined in condition (C3)), one can prove all nice structural properties of the
chain {Xn}n≥0, given by (1.1), proved in Section 2. Hence, since the chain {Xn}n≥0 is recurrent
if and only if the chain {|Xn|}n≥0 is recurrent, [8] covers the case when lim inf|x|−→∞ α(x) > 2.

The paper is organized as follows. In Section 2, we give several structural properties of the
stable-like chain {Xn}n≥0 which will be crucial in finding sufficient conditions for the recurrence
and transience property. In Sections 3 and 4, using Foster–Lyapunov drift criterion for recurrence
and transience of Markov chains, we prove Theorems 1.3 and 1.4. In Section 5, we extend our
model from the model of asymptotically symmetric transition jumps to the model of asymptot-
ically non-symmetric transition jumps. Further, we prove that the change of the chain {Xn}n≥0
on bounded sets will not affect the recurrence and transience property.

Throughout the paper, we use the following notation. We write Z+ and Z− for nonnegative
and nonpositive integers, respectively. For x, y ∈ R let x ∧y = min{x, y} and x ∨y = max{x, y}.
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Furthermore, {Xn}n≥0 will denote the stable-like Markov chain on R given by (1.1) with tran-
sition densities satisfying conditions (C1)–(C5), while {Yn}n≥0 will denote an arbitrary Markov
chain on (R, B(R)) given by the transition kernel p(x,B), for x ∈ R and B ∈ B(R). For x ∈ R,
B ∈ B(R) and n ∈ N let pn(x,B) := P(Yn ∈ B|Y0 = x) and τB := min{n ≥ 1: Yn ∈ B}.

2. Structural properties of the model

In this section, we discuss several structural properties of stable-like Markov chains. In Def-
inition 1.2, we defined irreducibility of a Markov chain on the state space (R, B(R)). In [9],
Proposition 4.2.1, it is shown that the irreducibility measure can always be maximized, that is,
if {Yn}n≥0 is a ϕ-irreducible Markov chain, then there exists a probability measure ψ on B(R)

such that the chain {Yn}n≥0 is ψ -irreducible and ϕ′ � ψ , for every irreducibility measure ϕ′
on B(R) of the chain {Yn}n≥0. The measure ψ is called the maximal irreducibility measure
and from now on, when we refer to irreducibility measure we actually refer to the maximal
irreducibility measure. For the ψ -irreducible Markov chain {Yn}n≥0 on (R, B(R)), let us set
B+(R) = {B ∈ B(R): ψ(B) > 0}.

Proposition 2.1. Under conditions (C1)–(C4), the maximal irreducibility measure for the chain
{Xn}n≥0 is equivalent, in the absolutely continuous sense, with the Lebesgue measure. Therefore,
the chain {Xn}n≥0 is λ-irreducible.

Proof. First, we prove that under conditions (C1)–(C4), the chain {Xn}n≥0 is ϕ-irreducible for
all measures ϕ, such that ϕ � λ. We prove that for every x ∈ R and for every B ∈ B(R), such that
λ(B) > 0, there exists n ∈ N, such that pn(x,B) > 0. It is enough to prove the claim in the case
of bounded sets. Let B ∈ B(R), λ(B) > 0, be an arbitrary bounded set. Let x ∈ R and 0 < ε < 1
be arbitrary. Then, by (C2), there exists yε,x ≥ 1 such that for all |y| ≥ yε,x we have

∣∣∣∣fx(y)
|y|α(x)+1

c(x)
− 1

∣∣∣∣ < ε.

Furthermore, by (C3), there exists k > 0 such that for given ε there exists yε ≥ 1, such that for
all |y| ≥ yε and all z ∈ [−k, k]c, we have

∣∣∣∣fz(y)
|y|α(z)+1

c(z)
− 1

∣∣∣∣ < ε.

Let a := supB and y0 := (yε,x ∨ yε ∨ k) + |x| + |a| + 1. Finally, by (C4) we have

p2(x,B) =
∫

R

p(x,dy)p(y,B) =
∫

R

fx(y − x)

∫
B−y

fy(z)dz dy

≥
∫ 2y0

y0

fx(y − x)

∫
B−y

fy(z)dz dy
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> (1 − ε)2c(x)

∫ 2y0

y0

(y − x)−α(x)−1c(y)

∫
B−y

|z|−α(y)−1 dz dy

> (1 − ε)2c(x)
(

inf
y0≤y≤2y0

c(y)
)∫ 2y0

y0

(y − x)−3
∫

B−y

|z|−3 dz dy > 0,

since B − y ⊆ (−∞,−yε), for y ≥ y0.
Now, we show the maximality of the Lebesgue measure. Let ψ be the maximal irreducibility

measure of the chain {Xn}n≥0. Hence, λ � ψ. Let us show that ψ � λ. If that would not be
the case, that is, if there would exist B ∈ B(R) such that λ(B) = 0 and ψ(B) > 0, then by
irreducibility of the chain {Xn}n≥0, for every x ∈ R there would exist n ∈ N such that

pn(x,B) =
∫

R

p(x,dx1)

∫
R

p(x1,dx2) · · ·
∫

R

p(xn−2,dxn−1)

∫
B−xn−1

fxn−1(xn)dxn > 0.

But, since
∫
B−x

fx(y)dy = 0, for every x ∈ R, because λ(B) = 0, we have pn(x,B) = 0. �

Definition 2.2. Let {Yn}n≥0 be a Markov chain on (R, B(R)).

(i) A set C ∈ B(R) is called a νn-small set if there exist n ∈ N and a nontrivial measure νn

on B(R) such that for every B ∈ B(R) and for every x ∈ C we have

pn(x,B) ≥ νn(B). (2.1)

(ii) The ψ -irreducible Markov chain {Yn}n≥0 is called aperiodic if for some small set C with
ψ(C) > 0, 1 is the greatest common divisor of all values m ∈ N for which (2.1) holds for
νm = δmνn, where n ∈ N is such that C is νn-small set with νn(C) > 0 and δm > 0.

(iii) Let C ∈ B(R). If there exist a probability measure a = {a(n)}n≥0 on Z+ and a nontrivial
measure νa on B(R) such that

∞∑
n=0

a(n)pn(x,B) ≥ νa(B)

holds for every x ∈ C and every B ∈ B(R), then the set C is called νa-petite set.

Proposition 2.3. Conditions (C1)–(C4) imply that for the chain {Xn}n≥0 every bounded Borel
set C ⊆ [−k, k]c is a ν2-small set for some nontrivial measure ν2.

Proof. By (C3), there exists k > 0, such that for all 0 < ε < 1 there exists yε ≥ k ∨ 1, such that
for all |y| ≥ yε we have ∣∣∣∣fx(y)

|y|α(x)+1

c(x)
− 1

∣∣∣∣ < ε
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for all x ∈ [−k, k]c . Let C ⊆ (−∞,−k] be a bounded Borel set. Let x ∈ C and B ∈ B(R) be
arbitrary. Similarly as in Proposition 2.1, we have

p2(x,B) =
∫

R

fx(y − x)

∫
B−y

fy(z)dz dy ≥
∫ 2yε

yε

fx(y − x)

∫
(B−y)∩(−∞,−yε)

fy(z)dz dy

> (1 − ε)2
(

inf
x∈C

c(x)
)(

inf
yε≤y≤2yε

c(y)
)∫ 2yε

yε

(y − a)−3
∫

(B−y)∩(−∞,−yε)

|z|−3 dz dy,

where a := infC. Now, by condition (C4), the measure

ν2(B) := (1 − ε)2
(

inf
x∈C

c(x)
)(

inf
yε≤y≤2yε

c(y)
)∫ 2yε

yε

(y − a)−3
∫

(B−y)∩(−∞,−yε)

|z|−3 dz dy

is a nontrivial measure. Therefore, the set C is a ν2-small set. Similarly, we deduce that a bounded
Borel set C ⊆ [k,∞) is a ν2-small for some nontrivial measure ν2. �

Proposition 2.4. Under conditions (C1)–(C4), the chain {Xn}n≥0 is an aperiodic chain.

Proof. From the previous proposition, we know that every bounded Borel set C ⊆ [−k, k]c is a
ν2-small set. Let us show that there exists a ν2-small set C ⊆ [−k, k]c which is also a ν3-small
set with ν3 = δ3ν2, for some δ3 > 0. Let C = [−4yε − k,−k], where ε and yε are given as in the
previous proposition. The set C is a ν2-small set. Let us show that

inf
x∈C

p(x,C) > 0.

Then, by [9], Proposition 5.2.4, C is a ν3-small set, where ν3 is a multiple of ν2. Similarly as in
Proposition 2.1, we have

p(x,C) =
∫

C−x

fx(y)dy ≥
∫

(C−x)∩(−∞,−yε)∪(C−x)∩(yε,∞)

fx(y)dy

> (1 − ε)
(

inf
x∈C

c(x)
)

inf
x∈C

∫
(C−x)∩(−∞,−yε)∪(C−x)∩(yε,∞)

|y|−3 dy > 0. �

The following result is a consequence of [9], Proposition 5.5.2 and Theorem 5.5.7.

Proposition 2.5. Conditions (C1)–(C4) imply that for the chain {Xn}n≥0, a Borel set is a small
set if and only if it is a petite set.

Since conditions (C3), (C4) and (C5) consider compact sets, we get the following result which
is essential in proving Theorems 1.3 and 1.4.

Proposition 2.6. Conditions (C1)–(C5) imply that for the chain {Xn}n≥0, every bounded Borel
set is a small set.
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Proof. From Proposition 2.3, we know that every bounded Borel set C ⊆ [−k, k]c is a small set.
By [9], Proposition 5.5.5, it is enough to show that [−k, k] is a small set. Let C ⊆ (−∞,−k] be
a bounded Borel set, that is, a small set. Let 0 < ε < 1 be arbitrary and let yε ≥ (k ∨ l ∨ 1) (recall
that l is defined in condition (C5)) be such that for all |y| ≥ yε we have∣∣∣∣fx(y)

|y|α(x)+1

c(x)
− 1

∣∣∣∣ < ε

for all x ∈ [−k, k]c. Then, similarly as in Proposition 2.1, for every x ∈ [−k, k], we have

p2(x,C) =
∫

R

fx(y − x)

∫
C−y

fy(z)dz dy ≥
∫ 2yε

yε

fx(y − x)

∫
(C−y)∩(−∞,−yε)

fy(z)dz dy

> (1 − ε)
(

inf
yε≤y≤2yε

c(y)
)

inf
x∈[−k,k]

(∫
[yε,2yε]−x

fx(y)dy

)(∫
C−2yε−k

|z|−3 dz

)
.

Now, using condition (C5), we have that p2(x,C) > 0. Therefore, by [9], Proposition 5.2.4, the
set [−k, k] is a small set, that is, every bounded Borel set is a small set. �

3. Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Before the proof we recall several special
functions we need. The Digamma function is a function defined by �(z) := �′(z)

�(z)
, for z ∈ C,

Re(z) > 0, where �(z) is the Gamma function.

Lemma 3.1. Let a > 0 be an arbitrary real number. Then∫ ∞

1

dy

ya(1 + y)
= 1

2

(
�

(
a + 1

2

)
− �

(
a

2

))
.

Proof. From [1], formula 6.3.22, we have

�(z) =
∫ 1

0

1 − xz−1

1 − x
dx − γ,

for Re(z) > 0, where γ is Euler’s constant. Then

�

(
a + 1

2

)
− �

(
a

2

)
=

∫ 1

0

xa/2−1 − x(a+1)/2−1

1 − x
dx.

The claim follows by change of variables x = y−2. �

The Gauss hypergeometric function is defined by the formula

2F1(a, b, c; z) :=
∞∑

n=0

(a)n(b)n

(c)n

zn

n! (3.1)
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for a, b, c, z ∈ C, c /∈ Z−, where for w ∈ C and n ∈ Z+, (w)n is defined by

(w)0 = 1 and (w)n = w(w + 1) · · · (w + n − 1).

The series (3.1) absolutely converges on |z| < 1, absolutely converges on |z| ≤ 1 when Re(c −
a − b) > 0, conditionally converges on |z| ≤ 1, except for z = 1, when −1 < Re(c − b − a) ≤ 0
and diverges when Re(c − b − a) ≤ −1. In the case when Re(c) > Re(b) > 0, it can be analyti-
cally continued on C \ (1,∞) by the formula

2F1(a, b, c; z) = �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt. (3.2)

The incomplete Beta function is defined by the formula

B(x; z,w) :=
∫ x

0
tz−1(1 − t)w−1 dt (3.3)

for x ∈ [0,1], Re(z) > 0 and Re(w) > 0. When x = 1, the function B(1; z,w) is called the Beta
function and

B(1; z,w) = �(z)�(w)

�(z + w)
. (3.4)

We need the following technical lemma.

Lemma 3.2. Let α : R −→ (1,2) be an arbitrary function. Then for every R ≥ 0 we have

lim|x|−→∞
1

2 − α(x)

(
1 −

( |x|
|x| + R

)2−α(x))
= 0.

Proof. Let 0 < ε < 1 be arbitrary. Since

1

x

(
1 − (1 − ε)x

) ≤ − ln(1 − ε)

for all x ∈ (0,1], we have

0 ≤ lim sup
|x|−→∞

1

2 − α(x)

(
1 −

( |x|
|x| + R

)2−α(x))
≤ lim sup

|x|−→∞
1 − (1 − ε)2−α(x)

2 − α(x)
≤ − ln(1 − ε).

By letting ε −→ 0, we have the claim. �

Proof of Theorem 1.3. The proof is divided in four steps.
Step 1. In the first step, we explain our strategy of the proof. Let us define the function

V : R −→ R+ by the formula

V (x) := ln
(
1 + |x|).
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From Proposition 2.6, the set CV (r) = {y: V (y) ≤ r} is a petite set for all r < ∞. We will show
that there exists r0 > 0, big enough, such that

∫
R

p(x,dy)V (y) − V (x) ≤ 0 for all x ∈ Cc
V (r0).

Then, the desired result will follow from [9], Theorem 8.4.2. Since CV (r) ↑ R, when r −→ ∞,
it is enough to show that

lim sup
|x|−→∞

(1 + |x|)α(x)

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
< 0.

We have∫
R

p(x,dy)V (y) =
∫

R

fx(y − x)V (y)dy =
∫

R

fx(y)V (y + x)dy

(3.5)

=
∫ ∞

−x

ln(1 + x + y)fx(y)dy +
∫ −x

−∞
ln(1 − x − y)fx(y)dy.

Step 2. In the second step, we find an appropriate upper bound for the first summand in (3.5).
For any x > 0, we have

∫ ∞

−x

ln(1 + x + y)fx(y)dy = ln(1 + x)

∫ ∞

−x

fx(y)dy +
∫ ∞

−x

ln

(
1 + y

1 + x

)
fx(y)dy.

Let 0 < δ < 1 be arbitrary. By restricting ln(1 + t) to intervals (−1,−δ), [−δ, δ], (δ,1) and
[1,∞), and using the Taylor expansion of the function ln(1 + t), that is,

ln(1 + t) =
∞∑
i=1

(−1)i+1

i
t i

for t ∈ (−1,1], we get

∫ ∞

−x

ln(1 + x + y)fx(y)dy ≤ ln(1 + x)

∫ ∞

−x

fx(y)dy

−
∞∑
i=1

1

i(1 + x)i

∫
{−1−x<y<−δ(1+x)}∩{y+x>0}

|y|ifx(y)dy

+
∫

{−δ(1+x)≤y≤δ(1+x)}∩{y+x>0}
ln

(
1 + y

1 + x

)
fx(y)dy

+
∞∑
i=1

(−1)i+1

i(1 + x)i

∫
{δ(1+x)<y<1+x}∩{y+x>0}

yifx(y)dy

+
∫

{y≥1+x}∩{y+x>0}
ln

(
1 + y

1 + x

)
fx(y)dy.
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Furthermore, by taking x > δ
1−δ

we get

∫ ∞

−x

ln(1 + x + y)fx(y)dy ≤ ln(1 + x)

∫ ∞

−x

fx(y)dy −
∞∑
i=1

1

i(1 + x)i

∫ −δ(1+x)

−x

|y|ifx(y)dy

+
∫ δ(1+x)

−δ(1+x)

ln

(
1 + y

1 + x

)
fx(y)dy

+
∞∑
i=1

(−1)i+1

i(1 + x)i

∫ 1+x

δ(1+x)

yifx(y)dy

+
∫ ∞

1+x

ln

(
1 + y

1 + x

)
fx(y)dy.

Let us put

Uδ
1 (x) := − 1

1 + x

∫ x

δ(1+x)

yfx(−y)dy + 1

1 + x

∫ 1+x

δ(1+x)

yfx(y)dy,

Uδ
2 (x) := − 1

2(1 + x)2

∫ x

δ(1+x)

y2fx(−y)dy − 1

2(1 + x)2

∫ 1+x

δ(1+x)

y2fx(y)dy,

Uδ
3 (x) := −

∞∑
i=3

1

i(1 + x)i

∫ x

δ(1+x)

yifx(−y)dy +
∞∑
i=3

(−1)i+1

i(1 + x)i

∫ 1+x

δ(1+x)

yifx(y)dy,

Uδ
4 (x) :=

∫ δ(1+x)

−δ(1+x)

ln

(
1 + y

1 + x

)
fx(y)dy and

U5(x) :=
∫ ∞

1+x

ln

(
1 + y

1 + x

)
fx(y)dy

for 0 < δ < 1 and x > δ
1−δ

. Hence, we find

∫ ∞

−x

ln(1 + x + y)fx(y)dy

(3.6)

≤ ln(1 + x)

∫ ∞

−x

fx(y)dy + Uδ
1 (x) + Uδ

2 (x) + Uδ
3 (x) + Uδ

4 (x) + U5(x).

Here comes the crucial step where condition (C3) is needed. In the above terms, by (C3), we can
replace all the density functions fx(y) by the functions c(x)|y|−α(x)−1 and find a more operable
upper bound in (3.6). Let 0 < ε < 1 be arbitrary. Then, by (C3), there exists yε ≥ 1, such that for
all |y| ≥ yε ∣∣∣∣fx(y)

|y|α(x)+1

c(x)
− 1

∣∣∣∣ < ε
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for all x ∈ [−k, k]c. Let x > (k ∨ yε−δ
δ

∨ δ
1−δ

). By a straightforward calculation, we have

Uδ
1 (x) < − (1 − ε)c(x)

(α(x) − 1)(1 + x)α(x)

(
δ−α(x)+1 −

(
x

1 + x

)−α(x)+1)

+ (1 + ε)c(x)

(α(x) − 1)(1 + x)α(x)

δ − δα(x)

δα(x)
=: Uδ,ε

1 (x),

Uδ
2 (x) < − (1 − ε)c(x)

(1 + x)α(x)

1

2(2 − α(x))

((
x

1 + x

)2−α(x)

− δ2−α(x)

)

− (1 − α)c(x)

(1 + x)α(x)

1

2(2 − α(x))

δα(x) − δ2

δα(x)
=: Uδ,ε

2 (x),

Uδ
3 (x) < − (1 − ε)c(x)

(1 + x)α(x)

∞∑
i=3

1

i(i − α(x))

((
x

1 + x

)i−α(x)

− δi−α(x)

)

+ c(x)

(1 + x)α(x)

∞∑
i=3

(
(−1)i+1(1 + (−1)i+1ε)

i(i − α(x))

δα(x) − δi

δα(x)

)
=: Uδ,ε

3 (x) and

U5(x) < (1 + ε)c(x)

∫ ∞

1+x

ln

(
1 + y

1 + x

)
1

yα(x)+1
dy =: Uε

5 (x).

Hence, from (3.6), we get∫ ∞

−x

ln(1 + x + y)fx(y)dy

(3.7)

< ln(1 + x)

∫ ∞

−x

fx(y)dy + U
δ,ε
1 (x) + U

δ,ε
2 (x) + U

δ,ε
3 (x) + Uδ

4 (x) + Uε
5 (x).

Step 3. In the third step, we find an appropriate upper bound for the second summand in (3.5).
We have∫ −x

∞
ln(1 − x − y)fx(y)dy = ln(x − 1)

∫ −x

∞
fx(y)dy +

∫ −x

∞
ln

(
−1 − y

x − 1

)
fx(y)dy.

Let x > (k ∨ yε−δ
δ

∨ δ
1−δ

). Then, again by (C3),

∫ −x

∞
ln(1 − x − y)fx(y)dy < ln(x − 1)

∫ −x

∞
fx(y)dy

+ c(x)(1 − ε)

∫ 2x−2

x

ln

(
−1 + y

x − 1

)
dy

|y|α(x)+1

+ c(x)(1 + ε)

∫ ∞

2x−2
ln

(
−1 + y

x − 1

)
dy

|y|α(x)+1
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= ln(x − 1)

∫ −x

∞
fx(y)dy

+ c(x)(1 − ε)

∫ ∞

x

ln

(
−1 + y

x − 1

)
dy

|y|α(x)+1

+ 2εc(x)

∫ ∞

2x−2
ln

(
−1 + y

x − 1

)
dy

|y|α(x)+1
.

Let us put

Uε
6 (x) := c(x)(1 − ε)

∫ ∞

x

ln

(
−1 + y

x − 1

)
dy

|y|α(x)+1

+ 2εc(x)

∫ ∞

2x−2
ln

(
−1 + y

x − 1

)
dy

|y|α(x)+1
.

We have ∫ −x

∞
ln(1 − x − y)fx(y)dy < ln(x − 1)

∫ −x

∞
fx(y)dy + Uε

6 (x). (3.8)

Step 4. In the fourth step, we prove

lim sup
x−→∞

(1 + x)α(x)

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
< 0.

By combining (3.5), (3.7) and (3.8), we have

∫
R

p(x,dy)V (y) < U0(x) + U
δ,ε
1 (x) + U

δ,ε
2 (x) + U

δ,ε
3 (x)

+ Uδ
4 (x) + Uε

5 (x) + Uε
6 (x),

where

U0(x) = ln(1 + x)

∫ ∞

−x

fx(y)dy + ln(x − 1)

∫ −x

−∞
fx(y)dy

= ln(1 + x) − ln(1 + x)

∫ −x

−∞
fx(y)dy + ln(x − 1)

∫ −x

−∞
fx(y)dy

< ln(1 + x) = V (x).

Hence, we have∫
R

p(x,dy)V (y) − V (x) < U
δ,ε
1 (x) + U

δ,ε
2 (x) + U

δ,ε
3 (x) + Uδ

4 (x) + Uε
5 (x) + Uε

6 (x). (3.9)
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In the rest of the fourth step, we prove

lim sup
x−→∞

(1 + x)α(x)

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)

< lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
U

δ,ε
1 (x) + lim sup

δ−→0
lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
U

δ,ε
2 (x)

+ lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
U

δ,ε
3 (x) + lim sup

ε−→0
lim sup
x−→∞

(1 + x)α(x)

c(x)
Uε

5 (x)

+ lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
Uε

6 (x) + R(α) ≤ 0.

Recall that α = lim inf|x|−→∞ α(x) > 1,

R(α) =
∞∑
i=1

1

i(2i − α)
− ln 2

α
− 1

2α

(
�

(
α + 1

2

)
− �

(
α

2

))

and

lim sup
δ−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
Uδ

4 (x) < R(α)

when α < 2, and the above limit is finite when α = 2 (assumption (1.3)). We have

lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
U

δ,ε
1 (x)

= lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

[
− 1 − ε

α(x) − 1

(
δ−α(x)+1 −

(
x

1 + x

)−α(x)+1)

+ 1 + ε

α(x) − 1

δ − δα(x)

δα(x)

]

= lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

[
− 1 − ε

α(x) − 1

(
δ − δα(x)

δα(x)
+ 1 −

(
x

1 + x

)−α(x)+1)
(3.10)

+ 1 + ε

α(x) − 1

δ − δα(x)

δα(x)

]

= lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

[
2ε

α(x) − 1

δ − δα(x)

δα(x)
− 1 − ε

α(x) − 1

(
1 −

(
x

1 + x

)−α(x)+1)]

= lim sup
x−→∞

[
1

α(x) − 1

((
x

x + 1

)−α(x)+1

− 1

)]
= 0.
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In the last two equalities, we use the assumption lim inf|x|−→∞ α(x) > 1. From Lemma 3.2, we
have

lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
U

δ,ε
2 (x)

= lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

[
− 1 − ε

2(2 − α(x))

((
x

1 + x

)2−α(x)

− δ2−α(x)

)

− 1 − ε

2(2 − α(x))

δα(x) − δ2

δα(x)

]

= lim sup
δ−→0

lim sup
x−→∞

[
− 1

2(2 − α(x))

((
x

1 + x

)2−α(x)

+ δα(x) − δ2

δα(x)
− 1

)
(3.11)

− 1

2(2 − α(x))

δα(x) − δ2

δα(x)

]

= lim sup
δ−→0

lim sup
x−→∞

[
− 1

2 − α(x)

δα(x) − δ2

δα(x)

]

≤
{

− 1

2 − α
, α < 2,

−∞, α = 2.

Using the dominated convergence theorem, we have

lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
U

δ,ε
3 (x)

= lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

[
−(1 − ε)

∞∑
i=3

1

i(i − α(x))

((
x

1 + x

)i−α(x)

− δi−α(x)

)

+
∞∑
i=3

(ε + (−1)i+1)

i(i − α(x))

δα(x) − δi

δα(x)

]

= lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

[ ∞∑
i=3

−(x/(1 + x))i−α(x) + δi−α(x) + (−1)i+1 − (−1)i+1δi−α(x)

i(i − α(x))

(3.12)

+ ε

∞∑
i=3

(x/(1 + x))i−α(x) − δi−α(x) + 1 − δi−α(x)

i(i − α(x))

]

= lim sup
δ−→0

lim sup
x−→∞

∞∑
i=3

−(x/(1 + x))i−α(x) + δi−α(x) + (−1)i+1 − (−1)i+1δi−α(x)

i(i − α(x))
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= lim sup
δ−→0

lim sup
x−→∞

∞∑
i=3

(−(x/(1 + x))i−α(x) + (−1)i+1

i(i − α(x))
+ δi−α(x) − (−1)i+1δi−α(x)

i(i − α(x))

)

≤ −
∞∑
i=2

2

2i(2i − α)
= −

∞∑
i=2

1

i(2i − α)
.

Therefore, by combining (3.10), (3.11) and (3.12) we get

lim sup
δ−→0

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)

(
U

δ,ε
1 (x) + U

δ,ε
2 (x) + U

δ,ε
3 (x)

)
(3.13)

≤

⎧⎪⎨
⎪⎩−

∞∑
i=1

1

i(2i − α)
, α < 2,

−∞, α = 2.

Now, let us calculate

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
Uε

5 (x).

Using integration by parts formula, we get

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
Uε

5 (x)

= lim sup
x−→∞

(1 + x)α(x)

∫ ∞

1+x

ln

(
1 + y

1 + x

)
1

yα(x)+1
dy

= lim sup
x−→∞

(
ln 2

α(x)
+ 1

α(x)

∫ ∞

1

dy

yα(x)(1 + y)

)
.

Furthermore, from Lemma 3.1 and the fact that the function

x �−→ �

(
x + 1

2

)
− �

(
x

2

)

is decreasing on (0,∞) (Lemma 3.1) we have

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
Uε

5 (x)

= lim sup
x−→∞

(
ln 2

α(x)
+ 1

2α(x)

(
�

(
α(x) + 1

2

)
− �

(
α(x)

2

)))
(3.14)

≤ ln 2

α
+ 1

2α

(
�

(
α + 1

2

)
− �

(
α

2

))
.
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At the end, using integration by parts formula, we have

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
Uε

6 (x)

= lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

[
(1 − ε)

∫ ∞

x

ln

(
−1 + y

x − 1

)
1

|y|α(x)+1
dy

+ 2ε

∫ ∞

2x−2
ln

(
−1 + y

x − 1

)
1

|y|α(x)+1
dy

]

= lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

[
1 − ε

α(x)

(
1

xα(x)
ln

(
−1 + x

x − 1

)
+

∫ ∞

x

dy

yα(x)(y − x + 1)

)

+ 2ε

α(x)

∫ ∞

2x−2

dy

yα(x)(y − x + 1)

]

= lim sup
ε−→0

lim sup
x−→∞

[
1 − ε

α(x)

(
(1 + x)α(x)

xα(x)
ln

(
1

x − 1

)
+ (1 + x)α(x)

(x − 1)α(x)

∫ (x−1)/x

0

yα(x)−1

1 − y
dy

)

+ 2ε

α2(x)

(1 + x)α(x)

(x − 1)α(x) 2F1
(
α(x),α(x),α(x) + 1;−1

)]
,

where in the last equality we use (3.2). From (3.2), we get

2F1
(
α(x),α(x),α(x) + 1;−1

) ≤ 2
∫ 1

0
(1 + t)−1 dt = ln 4,

and ∫ (x−1)/x

0

yα(x)−1

1 − y
dy ≤

∫ (x−1)/x

0

dy

1 − y
= lnx.

Hence,

lim sup
ε−→0

lim sup
x−→∞

(1 + x)α(x)

c(x)
Uε

6 (x)

≤ lim sup
x−→∞

1

α(x)

(
(1 + x)α(x)

xα(x)
ln

(
−1 + x

x − 1

)
+ (x + 1)α(x)

(x − 1)α(x)
lnx

)
(3.15)

≤ lim sup
x−→∞

1

α(x)

(
ln

(
−1 + x

x − 1

)
+

(
1 + 2

x − 1

)2

lnx

)
= 0.

By combining (3.9), (3.13), (3.14) and (3.15), we have

lim sup
x−→∞

(1 + x)α(x)

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
< 0.

The case when x < 0 is treated in the same way. Therefore, we have proved the desired result. �
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4. Proof of Theorem 1.4

Let us first list some properties of the Gauss hypergeometric function which will be needed in
the proof of Theorem 1.4:

(i) for a, b, c, z ∈ C, c /∈ Z−,

2F1(0, b, c; z) = 2F1(a,0, c; z) = 1; (4.1)

(ii) for Re(c − a − b) > 0, c /∈ Z−,

2F1(a, b, c;1) = �(c)�(c − a − b)

�(c − a)�(c − b)
; (4.2)

(iii) for z ∈ C \ (1,∞)

2F1(a, b, c; z) = (1 − z)c−b−a
2F1(c − a, c − b, c; z); (4.3)

(iv) for z ∈ C \ (0,∞)

2F1(a, b, c; z) = �(c)�(b − a)

�(b)�(c − a)
(−z)−a

2F1

(
a,1 − c + a,1 − b + a,

1

z

)
(4.4)

+ �(c)�(a − b)

�(a)�(c − b)
(−z)−b

2F1

(
b,1 − c + b,1 − a + b,

1

z

)
.

For further properties of the hypergeometric functions, the incomplete Beta functions and the
Beta function (see [1], Chapters 6 and 15).

Proof of Theorem 1.4. The proof is divided in three steps.
Step 1. In the first step, we explain our strategy of the proof. Let us define the function

V : R −→ R+ by the formula

V (x) := 1 − (1 + |x|)−β,

where 0 < β < 1 − α is arbitrary (recall that α = lim sup|x|−→∞ α(x) < 1). It is clear that
CV (r) ∈ B+(R) and Cc

V (r) ∈ B+(R), for every 0 < r < 1. By [9], Theorem 8.4.3, we have to
show that there exists 0 < r0 < 1 such that �V (x) ≥ 0, for every x ∈ Cc

V (r0). Since CV (r) ↑ R,
when r ↑ 1, it is enough to show that

lim inf|x|−→∞
α(x)|x|α(x)+β

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
> 0.

We have ∫
R

p(x,dy)V (y) − V (x)

=
∫

R

V (y + x)fx(y)dy − V (x) (4.5)
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=
∫ ∞

−x

(
1 − (1 + y + x)−β

)
fx(y)dy +

∫ −x

−∞
(
1 − (1 − y − x)−β

)
fx(y)dy

− (
1 − (

1 + |x|)−β)∫ ∞

−x

fx(y)dy − (
1 − (

1 + |x|)−β)∫ −x

−∞
fx(y)dy

= (
1 + |x|)−β

[∫ ∞

−x

(
1 −

(
1 + |x|

1 + x + y

)β)
fx(y)dy

+
∫ −x

−∞

(
1 −

(
1 + |x|

1 − x − y

)β)
fx(y)dy

]
.

Step 2. In the second step, by use of condition (C3), we find an operable lower bound for (4.5).
First, let us take a look at the case when x > 0. Let 0 < ε < 1 be arbitrary. Then, by (C3), there
exists yε ≥ a0 ∨ 1 (the constant a0 > 0 is defined in (1.3)), such that for all |y| ≥ yε∣∣∣∣fx(y)

|y|α(x)+1

c(x)
− 1

∣∣∣∣ < ε

for all x ∈ [−k, k]c. Let x ≥ k ∨ yε. Then we have

∫ ∞

−x

(
1 −

(
1 + y

1 + x

)−β)
fx(y)dy > c(x)(1 + ε)

∫ x

yε

(
1 −

(
1 − y

1 + x

)−β)
dy

yα(x)+1

+
∫ yε

−yε

(
1 −

(
1 + y

1 + x

)−β)
fx(y)dy

+ c(x)(1 − ε)

∫ ∞

yε

(
1 −

(
1 + y

1 + x

)−β)
dy

yα(x)+1

and

∫ −x

−∞

(
1 −

(
1 + x

1 − x − y

)β)
fx(y)dy

>
c(x)(1 − ε)

α(x)xα(x)
− c(x)(1 + ε)

∫ ∞

x

(
1 + x

1 − x + y

)β dy

yα(x)+1
.

Note that this was the crucial step where we needed condition (C3). For given 0 < ε < 1 and
x ≥ k ∨ yε , let us put

Uε
1 (x) := c(x)(1 + ε)

∫ x

yε

(
1 −

(
1 − y

1 + x

)−β)
dy

yα(x)+1
,

Uε
2 (x) :=

∫ yε

−yε

(
1 −

(
1 + y

1 + x

)−β)
fx(y)dy,
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Uε
3 (x) := c(x)(1 − ε)

∫ ∞

yε

(
1 −

(
1 + y

1 + x

)−β)
dy

yα(x)+1
,

Uε
4 (x) := c(x)(1 − ε)

α(x)xα(x)
and

Uε
5 (x) := c(x)(1 + ε)

∫ ∞

x

(
1 + x

1 − x + y

)β dy

yα(x)+1
.

Hence, we have∫
R

p(x,dy)V (y) − V (x) > Uε
1 (x) + Uε

2 (x) + Uε
3 (x) + Uε

4 (x) − Uε
5 (x).

Step 3. In the third step, we prove

lim inf
x−→∞

α(x)xα(x)+β

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
(4.6)

> lim inf
ε−→0

lim inf
yε−→∞ lim inf

x−→∞
α(x)xα(x)

c(x)

(
Uε

1 (x) + Uε
3 (x) + Uε

4 (x) − Uε
5 (x)

) − T (α,β) ≥ 0.

Recall that

T (α,β) = 2F1(−α,β,1 − y;1) + βB(1;α + β,1 − α) − αB(1;α + β,1 − β)

and

lim inf
ε−→0

lim inf
yε−→∞ lim inf

x−→∞
α(x)xα(x)

c(x)
Uε

2 (x) > −T (α,β)

(assumption (1.4)). By straightforward calculations, using (3.2), (4.3) and (3.3), we have

α(x)xα(x)

c(x)
Uε

1 (x) = (1 + ε)xα(x)

y
α(x)
ε

− (1 + ε)xα(x)
2F1(−α(x),β,1 − α(x);yε/(1 + x))

y
α(x)
ε

− (1 + ε) + (1 + ε)2F1

(
−α(x),β,1 − α(x); x

1 + x

)
,

α(x)xα(x)

c(x)
Uε

4 (x) = (1 − ε) and

α(x)xα(x)

c(x)
Uε

5 (x) = (1 + ε)α(x)xα(x)(1 + x)βB((x − 1)/x;α(x) + β,1 − β)

(x − 1)α(x)+β
.

It is easy to check that

∂

∂y

(
− 2F1(−α(x),β,1 − α(x);−y/(1 + x))

α(x)yα(x)(1 + x)β

)
= 1

(1 + x + y)βyα(x)+1
,
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and from (4.4) and

�(z + 1) = z�(z), z ∈ C \ Z−, (4.7)

we have

2F1(−α(x),β,1 − α(x);−y/(1 + x))

α(x)yα(x)(1 + x)β
= 2F1(β,α(x) + β,1 + α(x) + β;−(1 + x)/y)

(α(x) + β)yα(x)+β

+ �(1 − α(x))�(α(x) + β)

α(x)(1 + x)2α(x)+β�(β)
.

Therefore,∫
dy

(1 + x + y)βyα(x)+1
= − 2F1(β,α(x) + β,1 + α(x) + β;−(1 + x)/y)

(α(x) + β)yα(x)+β
,

that is,

α(x)xα(x)

c(x)
Uε

3 (x)

= (1 − ε)xα(x)

y
α(x)
ε

− (1 − ε)α(x)xα(x)(1 + x)β2F1(β,α(x) + β,1 + α(x) + β,−(1 + x)/yε)

y
α(x)+β
ε (α(x) + β)

.

Furthermore, from (4.1), (4.4) and (4.7), we have

α(x)xα(x)

c(x)
Uε

3 (x)

= (1 − ε)xα(x)

y
α(x)
ε

− (1 − ε)xα(x)

y
α(x)
ε

2F1

(
β,−α(x),1 − α(x);− yε

x + 1

)

− (1 − ε)�(α(x) + β)�(−α(x))α(x)xα(x)

�(β)(1 + x)α(x) 2F1

(
α(x) + β,0,1 + α(x);− yε

x + 1

)

= (1 − ε)xα(x)

y
α(x)
ε

− (1 − ε)xα(x)

y
α(x)
ε

2F1

(
β,−α(x),1 − α(x);− yε

x + 1

)

− (1 − ε)�(α(x) + β)�(−α(x))α(x)xα(x)

�(β)(1 + x)α(x)
.

Let us put

V ε
1 (x) := (1 + ε)xα(x)

y
α(x)
ε

− (1 + ε)xα(x)
2F1(−α(x),β,1 − α(x);yε/(1 + x))

y
α(x)
ε

V ε
2 (x) := (1 − ε)xα(x)

y
α(x)
ε

− (1 − ε)xα(x)

y
α(x)
ε

2F1

(
β,−α(x),1 − α(x);− yε

x + 1

)
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and

V ε
3 (x) := (1 + ε)2F1

(
−α(x),β,1 − α(x); x

1 + x

)

− (1 − ε)�(α(x) + β)�(−α(x))α(x)xα(x)

�(β)(1 + x)α(x)

− (1 + ε)α(x)xα(x)(1 + x)βB((x − 1)/x;α(x) + β,1 − β)

(x − 1)α(x)+β
.

Hence, (4.6) is reduced to

lim inf
x−→∞

α(x)xα(x)+β

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)

> lim inf
ε−→0

lim inf
yε−→∞ lim inf

x−→∞ V ε
1 (x) + lim inf

ε−→0
lim inf
yε−→∞ lim inf

x−→∞ V ε
2 (x) (4.8)

+ lim inf
ε−→0

lim inf
x−→∞ V ε

3 (x) − T (α,β).

By (3.1) and (3.2), we have

0 ≤ 2F1

(
−α(x),β,1 − α(x),

yε

1 + x

)
≤ 1,

therefore

lim inf
ε−→0

lim inf
yε−→∞ lim inf

x−→∞ V ε
1 (x) ≥ 0. (4.9)

Since 1 − α(x) − (−α(x)) − β = 1 − β > 0, from (3.1) and the dominated convergence theo-
rem, we have

lim inf
ε−→0

lim inf
yε−→∞ lim inf

x−→∞ V ε
2 (x) = 0. (4.10)

At the end, let us calculate

lim inf
ε−→0

lim inf
x−→∞ V ε

3 (x).

From (3.1), we have

2F1

(
−α(x),β,1 − α(x); x

1 + x

)
≥ 2F1

(−α(x),β,1 − α(x);1
)
,

and from (3.3) we have

α(x)B

(
x − 1

x
;α(x) + β,1 − β

)
≤ α(x)B

(
1;α(x) + β,1 − β

)
.
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Hence, we have

lim inf
ε−→0

lim inf
x−→∞ V ε

3 (x)

≥ lim inf
ε−→0

lim inf
x−→∞

[
(1 + ε)2F1

(−α(x),β,1 − α(x);1
)

− (1 − ε)α(x)�(α(x) + β)�(−α(x))xα(x)

�(β)(1 + x)α(x)

− (1 + ε)α(x)B(1;α(x) + β,1 − β)xα(x)(1 + x)β

(1 − x)α(x)+β

]
,

that is, since all terms are bounded,

lim inf
ε−→0

lim inf
x−→∞ V ε

3 (x)

≥ lim inf
x−→∞

[
2F1

(−α(x),β,1 − α(x);1
) + βB

(
1;α(x) + β,1 − α(x)

)
− α(x)B

(
1;α(x) + β,1 − β

)]
.

One can prove that the function

y �−→ T (y,β) := 2F1(−y,β,1 − y;1) + βB(1;y + β,1 − y) − yB(1;y + β,1 − β)

is strictly decreasing on [0,1 −β), and it easy to see that T (1 −β,β) = 0. Hence, since 0 ≤ α <

1 − β , we have

lim inf
ε−→0

lim inf
x−→∞ V ε

3 (x) ≥ T (α,β). (4.11)

By combining (4.8), (4.9), (4.10) and (4.11), we have

lim inf
x−→∞

α(x)xα(x)+β

c(x)

(∫
R

p(x,dy)V (y) − V (x)

)
> 0.

The case when x < 0 is treated in the same way. Therefore, by [9], Theorem 8.4.3, the chain
{Xn}n≥0 is transient. �

5. Some remarks and generalizations of the model

We start this section with the proof of equivalence of conditions (1.3) and (1.5), and the proof of
relaxation of condition (1.4) to condition (1.6).

(i) Recall that condition (1.5) is given by

lim sup
δ−→0

lim sup
|x|−→∞

(1 + |x|)α(x)

c(x)

∫ δ(1+|x|)

−δ(1+|x|)
ln

(
1 + sgn(x)

y

1 + |x|
)

fx(y)dy < R(α).
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Using ln(1 + t) ≤ t , condition (1.5) follows from the condition

lim sup
δ−→0

lim sup
|x|−→∞

sgn(x)
(1 + |x|)α(x)−1

c(x)

∫ δ(1+|x|)

−δ(1+|x|)
yfx(y)dy < R(α). (5.1)

In fact, under condition (C3), conditions (1.5) and (5.1) are equivalent, but the proof of this
statement is rather elementary and technical and we omit it here. Furthermore, by (C3) and since
α(x) ∈ (1,2), condition (5.1) is equivalent with

lim sup
|x|−→∞

sgn(x)
(1 + |x|)α(x)−1

c(x)

∫
R

yfx(y)dy < R(α),

that is, with condition (1.3). Indeed, let δ > 0 and 0 < ε < 1 be arbitrary. Then, by (C3), there
exists yε > 0 such that for all |y| ≥ yε∣∣∣∣fx(y)

|y|α(x)+1

c(x)
− 1

∣∣∣∣ < ε

for all x ∈ [−k, k]c. By taking |x| ≥ yε

δ
− 1, we have (recall that α(x) ∈ (1,2))

∫
R

yfx(y)dy > −(1 + ε)

∫ −δ(1+|x|)

−∞
c(x)

|y|α(x)
dy +

∫ δ(1+|x|)

−δ(1+|x|)
yfx(y)dy

+ (1 − ε)

∫ ∞

δ(1+|x|)
c(x)

|y|α(x)
dy

=
∫ δ(1+|x|)

−δ(1+|x|)
yfx(y)dy − 2εc(x)

(α(x) − 1)δα(x)−1(1 + |x|)α(x)−1
.

In the same way, we get

∫
R

yfx(y)dy <

∫ δ(1+|x|)

−δ(1+|x|)
yfx(y)dy + 2εc(x)

(α(x) − 1)δα(x)−1(1 + |x|)α(x)−1
.

By taking lim sup|x|−→∞, lim supε−→0 and lim supδ−→0 we get the desired result.
(ii) From the concavity of the function x �−→ xβ , for β ∈ (0,1 − α), we have

lim inf|x|−→∞
α(x)|x|α(x)

c(x)

∫ a

−a

(
1 −

(
1 + sgn(x)

y

1 + |x|
)−β)

fx(y)dy

≥ lim inf|x|−→∞
α(x)|x|α(x)

c(x)

(1 + |x| − a)β − (1 + |x|)β
(1 + |x| − a)β

∫ a

−a

fx(y)dy

≥ lim inf|x|−→∞

(
− aβα(x)|x|α(x)

c(x)(1 + |x| − a)

)
= −aβ lim sup

|x|−→∞
α(x)

c(x)
|x|α(x)−1.
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In the sequel, we give several generalizations of the stable-like chain {Xn}n≥0. Recall that a
function f : R −→ R is called lower semicontinuous if lim infy−→x f (y) ≥ f (x) for all x ∈ R.

Definition 5.1. Let {Yn}n≥0 be a Markov chain on (R, B(R)).

(i) The chain {Yn}n≥0 is called a T-chain if for some probability measure a = {a(n)}n≥0 on
Z+ there exists a kernel T (x,B) on (R, B(R)) with T (x,R) > 0 for all x ∈ R, such that
the function x �−→ T (x,B) is lower semicontinuous for all B ∈ B(R), and

∞∑
n=0

a(n)pn(x,B) ≥ T (x,B)

holds for all x ∈ R and all B ∈ B(R).

(ii) The chain {Yn}n≥0 is Harris recurrent, or H-recurrent, if it is ψ -irreducible and if P(τB <

∞|Y0 = x) = 1 holds for all x ∈ R and all B ∈ B+(R).
(iii) A state x ∈ R is called a topologically recurrent state if

∑∞
n=0 pn(x,Ox) = ∞ holds for

all open neighborhoods Ox around x. Otherwise we call state x a topologically transient
state.

From Proposition 2.6 and [9], Theorem 6.2.5, we have the following.

Proposition 5.2. The chain {Xn}n≥0 is a T-chain.

It is well known that the recurrence and H-recurrence properties of a Markov chain on the gen-
eral state space are not equivalent (see [9], Section 9.1.2). Now, let us prove that these properties
are equivalent for the stable-like chain {Xn}n≥0.

Proposition 5.3. The chain {Xn}n≥0 is recurrent if and only if it is H-recurrent.

Proof. We have to prove that recurrence property implies H-recurrence property, since the op-
posite claim is trivial. Since the Markov chain {Xn}n≥0 is a T-chain, by [9], Theorem 9.3.6,
it is enough to prove that every state is a topologically recurrent state. That follows from [9],
Lemma 6.1.4 and Theorem 9.3.3. �

If we change the chain {Xn}n≥0 on a set of Lebesgue measure zero, it can happen that its
recurrence and H-recurrence properties are not equivalent anymore. Let A ∈ B(R) be such that
λ(A) = 0. Note that A can be unbounded. Let {X̄n}n≥0 be a Markov chain on (R, B(R)) given
by the transition kernel

p̄(x,dy) = f̄x(y − x)dy,

where {f̄x : x ∈ R} is the family of density functions on R such that f̄x = fx , for every x ∈ R\A.
It is to easy see that the chain (X̄n) is λ-irreducible and aperiodic. Therefore, a Borel set is a small
set for {X̄n}n≥0 if and only if it is a petite set for {X̄n}n≥0. But we cannot conclude that every
bounded Borel set is a petite set. The most we can get is that every bounded set B ∈ B(R\A) is a
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petite set. As a consequence of this fact, we do not know if the chain {X̄n}n≥0 is a T-chain, so we
cannot deduce equivalence between recurrence and H-recurrence property of the chain {X̄n}n≥0.
But, since the chains {Xn}n≥0 and {X̄n}n≥0 are λ-irreducible and since they differ on the set with
zero Lebesgue measure, it is easy to see that the recurrence property of the chain {Xn}n≥0 is
equivalent with the recurrence property of the chain {X̄n}n≥0, and the H-recurrence property of
the chain {Xn}n≥0 is equivalent with the H-recurrence property of the chain {X̄n}n≥0. Hence, the
chain {X̄n}n≥0 is recurrent if and only if it is H-recurrent.

In Proposition 2.6, it is proved that every bounded Borel set is a petite set (singleton) for the
stable-like chain {Xn}n≥0. Therefore, it is natural to expect that a change of the chain {Xn}n≥0
on an arbitrary bounded Borel set will not affect its recurrence and transience property. Let
B ∈ B(R) be bounded and let {X̃n}n≥0 be a stable-like Markov chain on (R, B(R)) given by the
transition kernel

p̃(x,dy) = f̃x(y − x)dy,

where {f̃x : x ∈ R} is a family of density functions on R such that f̃x = fx for all x ∈ R \ B and
such that it satisfies conditions (C1)–(C5). Therefore, the chain {X̃n}n≥0 is either H-recurrent or
transient.

Proposition 5.4. The chain {Xn}n≥0 is H-recurrent if and only if the chain {X̃n}n≥0 is H-
recurrent. Hence, the chain {Xn}n≥0 is recurrent if and only if the chain {X̃n}n≥0 is recurrent.

Proof. If λ(B) = 0, the claim follows from the above discussion. Let us suppose that λ(B) > 0.
By Proposition 2.6, the set B is a petite set for both chains {Xn}n≥0 and {X̃n}n≥0. Let us suppose
that the chain {Xn}n≥0 is H-recurrent. Then, by [9], Theorem 9.1.4, we have P(τB < ∞|X0 =
x) = 1 for all x ∈ R. Since

P(τB < ∞|X0 = y) = P(τ̃B < ∞|X̃0 = y)

for all y /∈ B , we have

P(τ̃B < ∞|X̃0 = x) = p̃(x,B) +
∫

Bc

p̂(x,dy)P(τ̃B < ∞|X̃0 = y)

= p̃(x,B) + p̃
(
x,Bc

) = 1

for all x ∈ R. Therefore, by [9], Proposition 9.1.7, the chain {X̃n}n≥0 is H-recurrent. The proof
of the opposite direction is completely the same. �

From the above discussions, we can weaken assumptions on function α(x) and conditions
(1.3) and (1.4) in Theorems 1.3 and 1.4. In Theorem 1.3, we assumed that α : R −→ (1,2) and

lim inf|x|−→∞α(x) > 1,

but it is enough to request that α : R \ (A ∪ B) −→ (1,2) and

lim inf
x∈R\A,|x|−→∞α(x) > 1
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for some set A ∈ B(R) with zero Lebesgue measure and some bounded set B ∈ B(R). In condi-
tion (1.3) instead of using lim sup|x|−→∞, we use lim supx∈R\A,|x|−→∞. An analog modification
can be done in Theorem 1.4.

The transition densities of the stable-like chain {Xn}n≥0, from the current state x, have the
power-law decay with exponent α(x) + 1. Let us take a look at the Markov chain with transition
densities with the power-law decay with exponent α−(x) + 1 on the left of the current state x

and with the power-law decay with exponent α+(x) + 1 on the right of the current state x. Let
α+, α− : R −→ (0,2) and c+, c− : R −→ (0,∞) be arbitrary functions and let (X′

n) be a Markov
chain on (R, B(R)) given by the transition kernel p′(x,dy) = f ′

x(y − x)dy, where {f ′
x :x ∈ R}

is a family of density functions on R which satisfies:

(C1′) x �−→ f ′
x(y) is measurable, for every y ∈ R;

(C2′) f ′
x(y) ∼ c+(x)y−α+(x)−1, when y −→ ∞, and f ′

x(y) ∼ c−(x)(−y)−α−(x)−1, when
y −→ −∞;

(C3′) there exists k′ > 0 such that

lim
y−→∞ sup

x∈[−k′,k′]c

∣∣∣∣f ′
x(y)

yα+(x)+1

c+(x)
− 1

∣∣∣∣ = 0

and

lim
y−→−∞ sup

x∈[−k′,k′]c

∣∣∣∣f ′
x(y)

(−y)α−(x)+1

c−(x)
− 1

∣∣∣∣ = 0;

(C4′) infx∈C(c+(x) ∧ c−(x)) > 0 for every compact set C ⊆ [−k′, k′]c;
(C5′) there exists l′ > 0 such that for every compact set C ⊆ [−l′, l′]c with λ(C) > 0, we have

inf
x∈[−k′,k′]

∫
C−x

f ′
x(y)dy > 0.

It is clear that the chain {X′
n}n≥0 has the same properties, discussed in Section 2, as the chain

{Xn}n≥0. It is λ-irreducible and aperiodic and every bounded Borel set is a petite set. By assuming
certain additional conditions, Theorems 1.3 and 1.4 can be generalized in terms of the chain
{X′

n}n≥0. The chain {X′
n}n≥0 will be recurrent if α+, α− : R −→ (1,2) are such that

lim|x|−→∞
α+(x)

α−(x)
= 1 and α := lim inf|x|−→∞α+(x)

(
= lim inf|x|−→∞α−(x)

)
> 1,

and c+, c− : R −→ (0,∞) are such that

lim|x|−→∞
c−(x)

c+(x)
|x|α+(x)−α−(x) = 1

and such that condition (1.3) is satisfied with the constant R(α). In this case, for the test func-
tion V (x), we take V (x) = ln(1 + |x|) again. Similarly, the chain (X′

n) will be transient if
α+, α− : R −→ (0,1) are such that

α+ := lim sup
|x|−→∞

α+(x) < 1 and α− := lim sup
|x|−→∞

α−(x) < 1,
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and c+, c− : R −→ (0,∞) are such that

lim|x|−→∞
α+(x)c−(x)

c+(x)α−(x)
|x|α+(x)−α−(x) = 1

and such that condition (1.4) is satisfied with the constant T (α,β), where α := α− ∨ α+ and
β ∈ (0,1 − α). In this case, for the test function V (x), we take V (x) = 1 − (1 + |x|)−β again.

In the following proposition, we treat the case when the family of density functions {fx : x ∈
R} is exactly a family of Sα(x)(β(x), γ (x), δ(x)) densities and we give sufficient conditions
on functions α(x),β(x), γ (x) and δ(x) such that the family {fx :x ∈ R} satisfies conditions
(C1′)–(C5′). From [11], Properties 1.2.2, 1.2.3, 1.2.4 and 1.2.15, [3], Theorem 3.3.5, and (1.2) it
follows:

Proposition 5.5. Let 0 < ε < 1, M > 0 and k′ ≥ 0 be arbitrary, and let Fα ⊆ [1,2), Fβ ⊆
(−1,1) and Fγ ⊆ (0,∞) be arbitrary and finite. Furthermore, let

(i) ᾱ : R −→ (ε,2 − ε) and α̃ : R −→ (0,1) ∪ Fα , such that infx∈C α̃(x) > 0 for all compact
sets C ⊆ R,

(ii) β̄ : R −→ (−1 + ε,1 − ε) and β̃ : R −→ Fβ ,
(iii) γ̄ : R −→ (0,M), γ̃ : R −→ Fγ and γ̂ : R −→ (ε,M), such that infx∈C γ̄ (x) > 0 for all

compact sets and C ⊆ R,
(iv) δ : R −→ (−M,M)

be arbitrary and Borel measurable. Define

α(x) :=
{

ᾱ(x), x ∈ [−k′, k′],
α̃(x), x ∈ [−k′, k′]c,

β(x) :=
{

β̄(x), x ∈ [−k′, k′],
β̄(x)1{y:α(y)<1}(x) + β̃(x)1{y:α(y)≥1}(x), x ∈ [−k′, k′]c and

γ (x) :=
{

γ̂ (x), x ∈ [−k′, k′],
γ̄ (x)1{y:α(y)<1}(x) + γ̃ (x)1{y:α(y)≥1}(x), x ∈ [−k′, k′]c.

Then, for any l′ ≥ 0, the family of Sα(x)(β(x), γ (x), δ(x)), x ∈ R, densities satisfies conditions
(C1′)–(C5′).

Unfortunately, Proposition 5.5 does not cover the case when the function α(x) takes infinitely
many values in the interval [1,2) since we do not know the series representation of stable densi-
ties for α ≥ 1, as for α < 1 (see [13], Theorems 2.4.2, 2.5.1 and 2.5.4).

At the end, note that all conclusions, methods and proofs given in this paper can also be carried
out in the discrete state space Z. Note that in this case conditions (C1)–(C5) are reduced just to
conditions (C2) and (C3), since compact sets are replaced by finite sets. Therefore, we deal with
a Markov chain {Xd

n}n≥0 on Z given by the transition kernel

pi,j = fi(j − i)
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for i, j ∈ Z, where {fi : i ∈ Z} is a family of probability functions which satisfies the following
conditions:

(CD1) fi(j) ∼ c(i)|j |−α(i)−1, when |j | −→ ∞, for every i ∈ Z;
(CD2) there exists k ∈ N such that

lim|j |−→∞ sup
i∈{−k,...,k}c

∣∣∣∣fi(j)
|j |α(i)+1

c(i)
− 1

∣∣∣∣ = 0.

Functions α : Z −→ (0,2) and c : Z −→ (0,∞) are arbitrary given functions. Proofs and as-
sumptions of Theorems 1.3 and 1.4 in the discrete case remain the same as in the continuous
case because we can switch from sums to integrals due to the tail behavior of transition jumps.
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