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Let X1, X5, ... be independent random variables with zero means and finite variances, and let S, =
> X;and VZ= YrX 12 A Cramér type moderate deviation for the maximum of the self-normalized
sums maxj<k<p Sk/ Vu is obtained. In particular, for identically distributed X1, X», ..., it is proved that
P(maxj<k<p Sk > xVy)/(1 — ®(x)) — 2 uniformly for 0 < x < o(n]/ﬁ) under the optimal finite third
moment of X.
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1. Introduction and main results

Let X1, X», ... be a sequence of independent non-degenerate random variables with zero means.
Set

n n
Sp=Y X; and V7=) X7
j=1 j=1

The past decade has brought significant developments in the limit theorems for the so-called
“self-normalized” sum, S,/ V. It is now well understood that the limit theorems for S,/ V,, usu-
ally require fewer moment assumptions than those for their classical standardized counterpart,
and thus have much wider applicability. For examples, for identically distributed X1, X»,..., a
self-normalized large deviation holds without any moment assumption (Shao [11]), and a Cramér
type moderate deviation (Shao [12]),

P(S, > xV,
lim M:L (1.1)
n—oo 1 —®(x)

holds uniformly for x € [0, o(n'/%)) provided that E|X; | < 0o, whereas a finite moment-
generating condition of </] X[ is necessary for a similar result for the standard sum S,, /+/Var(S,,)
(see, e.g., Linnik [9]). For more related results, we refer to de la Pefia, Lai and Shao [5] for a sys-
tematic treatment of the theory and applications of self-normalization and Wang [13] for some
refined self-normalized moderate deviations.
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As for the Cramér type moderate deviations for the maximum of self-normalized sums, namely
for maxi<k<n Sk/Vu, Hu, Shao and Wang [7] were the first to prove that if X1, Xo,... is a
sequence of i.i.d. random variables with EX ‘1‘ < 00, then

lim P(maxi<g<p Sk = x V) _2 (1.2)
n— 00 1—-—®d(x)

uniformly for x € [0, o(n!/®)). This contrasts with the moderate deviation result for the maximum
of partial sums of Aleshkyavichene [1,2], where a finite moment-generating condition is required.
However, in view of the result given in (1.1), it is natural to ask whether a finite third moment
suffices for (1.2). The main purpose of this paper is to provide an affirmative answer to this
question. Indeed, we have the following more general result for independent random variables.

Theorem 1. Assume that maxy=1 E|X¢|*™" < 0o and ming>1 EX}? > 0, where 0 < r < 1. Then
(1.2) holds uniformly in 0 < x < o(n’/“4+2)),

As in the moderate deviation result for self-normalized sum S, /V,,, Theorem 1 is sharp in
both the moment condition and the range in which the result (1.2) holds true. Examples can be
constructed similarly as done by Chistyakov and Gotze [4] and Shao [12]. In particular, for r = 1
and identically distributed X1, X», ..., Theorem 1 establishes (1.2) under the optimal finite third
moment of X.

Theorem 1 can be extended further; in fact, it is a direct consequence of Theorem 2 below. Set

B:=3", EXl.z, Ly, =Y"_EIX;[*" and d, , = Bn/Lrll{,(2+r), where 0 <r < 1.

n
Theorem 2. For 0 <r <1, suppose that d,, , — 00 as n — 00, and that

Z’{: E|X ,|2+r _[Lr/(2+r)
max ]nk ! =< "’; for some &, T > 0. (1.3)
I<k=n Zj:kE|Xj| dn,r

Then (1.2) holds uniformly in 0 <x < min{B, o(dy,.,)}.

Remark 1. Forii.d. random variables with EX; = 0 and E|X; |3 < 00, Jing, Shao and Wang [8]
proved that (1.1) can be refined as

P(S, = xVy)

_ 3 3 243/2
— o =1+0M) A +x")E|X1|°/(EXY))

uniformly in x € [0, n1/6(EX%)1/3/(EX%)1/2), where O(1) is bounded by an absolute constant.
We conjecture that a similar result holds for max<x<y S/ Vi, that is,

P(maxi<x<n Sk = xVy)
1— o)

=2+ 0()(1 4+ x>)E|X; > /(EX)>?

uniformly in x € [0, n'/S(EXD)1/2/(E|X1*)!/3).
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This paper is organized as follows. The proof of the main theorems is given in the next section.
The proofs of two technical propositions are deferred to Sections 3 and 4, respectively. Through-
out the paper, A, Ay, ... denotes absolute constants and Cs r denotes a constant depending only
on § and t, which might be different at each appearance.

2. Proofs of theorems

Proof of Theorem 1. Simple calculations show that if

**" <00 and minEX? >0,

max E| X
k>1 k>1

then B,f =n,Ly,=<n,dy, =< n'/G+2) and (E) holds for § = 1 and some t > 0, where the no-
tation a, < b, denotes 0 < lim, , a,/b, <lim,_,«a,/b, < co. Therefore, Theorem 1 follows
immediately from Theorem 2. (]

Proof of Theorem 2. First note that for Ve > 0,

1 < _
=5 D EX{I(Xi| = €B,) < edy /T 50
n k=1

whenever d,, , — 0. That is, the Lindeberg condition is satisfied for the sequence X1, X»,....On
the other hand, routine calculations show that, given d,, , — 0, Vn2 / B,% — 1 in probability. Given
these facts, the invariance principle (see Theorem 2 of Brown [3]) and the continuous mapping
theorem imply that max;<x<, Sx/ V. — p [N (0, 1)|. This yields (1.2) uniformly for 0 <x < M,
where M is an arbitrary constant. Thus, Theorem 2 will follow if we can prove

P(max<k<n Sk = xVy)

lim lim sup I — 000
— X

M—oon—00 M <x<min{B, so(dn,r)}

- 2) =0. 2.1
Toward this end, let
x2 ! X3 "
Anx =55 ) EXPIXil > Ba/x}+ 25 3 EIXiPIIXi| < By/x),
n =1 n =]
and write

n
no=no(x) = max{k: Z EX? > 19233 log(x v e)/xz, 1<k<ng. 2.2)
j=k

It can be readily seen that the condition (1.3), together with 0 < x < min{B,,, o(d, )} and d, , —
oo, imply the existence of an absolute constant A such that

0<x<B,  Anx=<min(@? 1)/A, (2.3)
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Ayx — 0, and
> o1 EIXGPI{IX | < By/x} _ B
2:?:no+1E|Xv|2 _-x1+8

for all sufficiently large n, where § is defined as in (1.3). The result (2.1) follows immediately
from the following proposition.

2.4)

Proposition 1. For all x > 2 satisfying (2.3) and (2.4), we have

P(maxi<k<n Sk = xVy)

— 2 L O(1)(x—mint1/4.5/20} A1/9’ 25
o +0(1)(x + AY) (2.5)

where O(1) is bounded by a constant Cs that depends only on §.

The main idea of the proof of Proposition 1 is to use truncation and the maximum probability
inequality and then apply a moderate deviation theorem of Sakhanenko [10] to the truncated
variables. A suitable truncation level is ensured by using an inequality from Jing, Shao and
Wang [8], page 2181. This avoids the conjugate argument of Hu, Shao and Wang [7], and makes
it possible to prove the main result under an optimal moment assumption.

It remains to prove Proposition 1. In addition to the notation in the previous section, let y =
72~  min(s, 1),

&= max(2A,, v yx V2 yxTo/10) m = [x?/2],

No =@ and, for 1 <l <m, N; = {j1, j2,..-, i} € {1,2,...,n}. Furthermore, write X; =
XiI{|Xi| <eB,/x},andfor0 </ <mand 1 <k <n,

k n
S,i"’: Z (VN2 Z X2 (BM?= Y EXL

i=1,i¢N; i=1,i¢N;
k
= Z IS P R Sl
=1,i i=1,i¢N; i=1,i¢N;

Note thatif s, € R', x > 1,¢>0and s +1 > x+/c + 12, then s > (x> — 1)1/2/c. Similar to the
arguments in reported by Jing, Shao and Wang [8], page 2181, we have

P( max Sp > xV,,)

1<k=<n

< P( max Sk No >xVN°)

1<k<n

n
+ 3 (max Se > x Vo 1X),| >an/x) (2.6)

— 1<k=<n
J1=
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< P( max Sk No >xVN°)

1<k<n

n
+>°p (max sM > x2— VNl)P(IXh|>sB,,/x)

— 1<k<n
J1=

and

P( max S > xV,,)

1<k=<n

> P( max SV > vaO) .7

1<k<n

—Xn: (maxs 1> /2 VN‘>P(|X | > £B,/x).

4 1<k<n
J1=1
Repeating (2.6) m-times gives

P( max Sy szn>

1<k<n

<P< max Sko >xVN°) (2.8)

1<k<n

m+1
+sz<x)+{ZP<|Xk|>an/x>} ,

k=1

where

Zi(x) = Z Z []‘[ P(X; | >an/x)} x P((max §% = V/x2 =V ).

1<j<n
=1 =1

Note that

n
D P(Xk| = &B,/x)
k=1
2
5 ZEXkI{|Xk| > £By/x)
n k=1

(2.9
3

oy 2ZEXkI{|Xk|>Bn/x}+ S5 ZE|Xk| I{|Xk| < Bu/x)
" k=1 n k=1

<e A <3216 < 1/16.
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It follows from m = [x2 /2] that

n m+1
[Z P(IXk| > e&/x)} <e (2.10)

k=1
This, together with (2.7) and (2.8), implies that Proposition 1 will follow if we prove the follow-
ing two propositions.
Proposition 2. Forall 0 <l <m, all x/2 <y <x, and all x > 2 satisfying (2.3) and (2.4), we
have
P(max;<g<n S]fvl = y‘_/an)

1—®(y)

Proposition 3. For all x > 2 satisfying (2.3) and (2.4), we have

<24 Csc(e2Anx +6). (2.11)

P(maxj<g<p S’,ﬁvo > xV,N0)
1— o)

=24 Cs.(e 2 Apy +0). (2.12)

Indeed, noting that

d —x2/2

2
e <l - o) <
V211 + x2) V2mx

for x > 1, we have that for | <k <m = [x?/2] and x > 1,
/2
120X =k s,
1—®(x)
This, together with (2.8)—(2.11), implies that for all x > 2 satisfying (2.3) and (2.4),

(S

P( max S; > xV,,)

1<k<n

< +2{1 —ow+ 3 (1 q>(¢ﬂ)}{ip(|xj| ZGB"/X)} }

k=1 j=1

x {1+ Cs(€ 2 Apx +6)) (2.13)
<2(1 - @W){1+Csc(e Apr+e+x71)
<2(1 = D)) {1 4 Cs o (x~mn1/48/200 L AT

Similarly, by (2.7), (2.11) and (2.12), we obtain that for all x > 2 satisfying (2.3) and (2.4),

P( max S > an) > 2(1 — @ ()) {1 — Cp.o (x~minl1/4:8/20) L ALY} (2.14)

1<k<n

Combining (2.13) and (2.14), we obtain (2.5), and thus Proposition 1.
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It remains to prove Propositions 2 and 3, which we give in Sections 3 and 4, respectively. The

proof of Theorem 2 is now complete. (]
3. Proof of Proposition 2
Let b= y/B.". First, note that
P( max Sk > yVN’) (2b max S > (bVNl)z + y 2)
1<k<n 1<k<
(3.1
+ P( max S > yVN’ |bVN’ —y| > 8)
1<k<n
Furthermore, we have
P( max S > yVN’ IbVN’ y| > 8)
1<k<n
< P( mlflx S > yVN’ bz(VN’)2 >y +8y)
1<k<
" (3.2)
+ P( max S > yVN’ 192(VN’)2 <y? y)
1<k<n
=L+
and
(2b max S| SN > BTN 42 - )
< <n
(U{zbSN] > b2 VN/)2 +y2 _ 82
ELV,? = (721 = (V)2 = (7,1 = sz/b2}> (3.3)
n
P(U{zbsﬁl = b (V") + BPELV,Y? = (V1457 - 282})
=L+ 1.
By (3.1)—(3.3), Proposition 2 follows from the following Lemma 1.
Lemma 1. Under the conditions of Proposition 2, we have
It < Cs.cy 2exp(=y*/2), (3.4)

L < Csy exp(—y?/2), (3.5)
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I3 < Cs.oy 2 exp(=y?/2), (3.6)
Iy <2[1 = @(WI[1 + Cs. (7> Ap x +6)]. 3.7
To prove Lemma 1, we start with some preliminaries. Note that
y max{x /2, x7%19) < ¢ < min{1/24, §/72}, A < (g/2)°%. (3.8)
This fact (3.8) is repeatedly used in the proof without further explanation. Define kg =0, k7 =n

and k;j, 1 <i <T,by

k
ki = max{k: Z EX?§27]83B,%/)62 .

J=ki—1+1
By the definition of k;,
ki ki+1
> EX;=<27'¢’Bl/x* and ) EX;>27'¢’B/x’ (3.9)
j=ki—1+1 J=ki—1+1

forany 1 <i <T.By (2.3) and (3.8),

x? max EX? < x* max [EX7{|Xx| > Bu/x} + (E|XxP1{|Xk| < Bu/x)?3]
1<k<n 1<k<n

Vs (3.10)
< BX(An.+ AN <3B2/4,

which, together with (3.9), implies that

ki
> EX;z47'e'Bl/x%
J=ki—1+1
Therefore,
T-1 ki
(T — 14713 B2/x? < Z Z EX; < B,
i=1 j=ki_1+1

which yields 7' < 4x2/83 4+ 1.Forkj_1 +1 < j <k; — 1, define events

ki

Aj= {8 =y (BYD2 (1 +¢/y)}, Cjz{ > (Xk—EXk)z—st,Vl/y}-

k=j+1,keN,

Note that EX? <e3B?/8 forall 0 <1 < m = [x2/2] by (3.10), and thus
keN; k n

n
7
B,fz(B,iV’)z:ZEX,%— Z EX?>(1—¢%/8)B2 > gB,f. (3.11)
k=1 keN;
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Applying the Chebyshev inequality, we have, for any k;_; < j <k; and x/2 <y <x,
2 ki 2
L) I j+1 EX

P(Cj))=>1- 28V )

>1—4e/7>1/2. (3.12)

We are now ready to prove Lemma 1.

Proof of (3.4). It follows from (3.12) and the independence between C; and {A;,! < j} that

<5 0,4

i=1 =k;j_1+1
T ki
< [P(Akl Y P(A,iil,...,A;_l,A,-)}
i=1 j=ki_1+2
3.13)
T ki
< Z[P(Ak 1+17Ck 1+1)+ Z P(Ak 11~~~1A?_17Ajvcj)
i=1 J=ki—1+2
T
Z (S —ES) = y\[(BYY2(1+ 2/y) —eBY /y — Dy,).

where Dy, = Zl;i:l E|X;|[I{|X;| > ¢B,/x}. Taking t = y /1 + e/y/B,],V’ and noting

1(¢Bn/y + Dy;) <2e + 1,

PS5 —ES =y (BY)2(1 +e/y) —eBN /1y — Dy,)

we have

ki
§9exp(—y2—sy) l_[ Eexp(t(Xj—EXj))
J=1j¢N
2 - EX? 2 3% . 13a2t6B
<9exp(—y~ —¢y) l_[ <1+—t + 8°E|X | e2te n/x)
j=1.j¢N

<9exp(—y%/2 —ey/2 4+ AApx).

Submitting this estimate into (3.13) and recalling 7 < 4)62/83 +1,x/2<y<xande> yx_1/2,
we obtain
I < (e x> + Dexp(—y?/2 — £y/2 + ADy )
(3.14)
< Cé,ryizeiy 2,
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This proves (3.4). [l
. o ki v2

Proof of (3.5). For this part, let ¥}, = Zj:k,-,1+1,j¢N, X3, and define

Aj= {8V =y ("2 =Y POV =V <y -y}, 1<j=n.

From (3.12) and the independence between C; and {A;,1 < j}, it follows that

T ki
<y [P(Akilﬂw > PAL 1,...,A;‘-_1,A,-)}
i=l1 j:k,‘,]+2
T ki
< 22 |:P(Aki_|+l, Cr+1) + Z F’(A]C(i_1 . ,A?_I,Aj, CJ):|
i=1 j=ki_1+2

(3.15)

< 22 P(Si —ESp = vy (V)2 = Y, —eBY [y — Dy, 2LV, = Yi 1 <y — &)
T

= ZZIQJ,
i=1

where, as before, Dy, = ZI;’:I EIX;[I{|X;| > ¢B,/x}. Furthermore, fori =1,..., T,

L < P((VY?: -y, < (1 —e)(BY)?)

[yl
£ P B = (B — (k+ eyl — By — Dy,
k=1

(BY)?[1 = (k+ De/yl < (VM)? — vi, < (BN)*[1 — ke /y])

(]
=110+ Z Iik-
k=1

Note that, for any #; > 0 and 1, > 0,
Eexp(t1(Xx — EXi) + n(EX] — XD))
<1+ LE(0(Xx —EXp) + (EX] - X))
+ (BEPE| Xy |® + 83| Xy [0)e1eBn/x+0EX (3.16)
<exp (S1{EXE + 54112 + 136 B, /x)E| X |

+ (817 + 8136 B /x3)E| X |18 Bu/x T maxi<izn Exf)
3 .
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Lett; = y/T— (k+ De/y/BY" and t» = £~ 1y2/(B))? in (3.16). Noting that
11BN /y+ D) <e+1,
we have for 1 <k <[x],
Lk < P(r (S —ESY) + {EIV,N)? = Yi ] — (V)2 = v, 1)
>y — (k+ De/y + nke(BN)? /y — 2)
<exp(—y* + (k+ De/y — nke(BN)?/y +2)

ki—1
< [I Eexp(t(Xik —EXp)+n(EXE — XD)
k=1,k¢N,
k,’ n
X H Eexp (t1 (X — EXk)) X l_[ Eexp (tz(EX,% — X,%))
k=k; 1 +1,kgN k=ki+1,kgN,

< exp<—y2/2 +27 Yk + De/y — nke(BY)? [y +2
n
+ A+ 13eBy/x + 15 + 1563 B3 /%) Z E|Xk|3>
k=1
<exp(—y*/2+27 (k+ De/y —ky + Ae 7' Ay ¢ +2)
< Aexp(—y*/2—y/2).
Similarly, by (3.16) with #; = 0, we have
Do < P(R{E[(V,")? = Vi = [(V,")? = Y, 1) = n2e(B")? — €?)
< Aexp(—y? + As71A, ) < Arexp(—y*/2 — y).
Combining above inequalities yields
I < A(dx2/e3 + 1)e /2 < Apy~2e /2, (3.17)
The proof of (3.5) is now complete. ]

Proof of (3.6). Following the arguments in the estimates of /| and />, we have

T ki
I < ZP( U @8 =2 (N2 +y7 — &2,
i=1 Jj=ki—1+1

ELV,Y)? = (VD2 = [V — (V) > 82<B,2V'>2/y2}> (3.18)
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U @68 =61V = v 1+ 3% — &%)

] (
i=1 Jj= =kj_1+1
n
(EX? — X2) > 271e2(BM)? )y >

2

k=ki+1,k¢N;
T
<2y P<2b§,g," > (VN v 1+ 2 -2

Y EX-Xp=2 2(B,f“f)z/yz)

k=ki+1,k¢N;
T
= 22]31'.
i=1
As in the proof of (3.16), it can be easily shown that for « > 0
EcbXi—ab’X; <exp{(1/2 — )b?EX3 + AN}, (3.19)
where
) _ * ey2 AT
Ay = ) EXSI{IX; |>€Bn/x}+ EIX PI{|X;| < eBy/x}
n n
x2 3
581<—2 EXSI{|X;| > B, /x}+—E|X PI{|X;| < B, /x}>
7! Vl
and
Eea(E)?ff)??)sz)}%/Z
_ (3.20)
<exp{—3b°EX] + Qa’ By /x + x°/ B;)eE| X j [ e M 1k=n EXi }
Next, let ¢ satisfy
eB,

tel maxj<k<p EX% — - ——.
24x 3 i1 EIX

Clearly t exists. Furthermore, we have t > x2 / B,%. Indeed, if  maxi<x<, EX; > ¢, then by (3.10)

and recalling ¢ < 1/24,
t>e/ max EX? > 4e 2x*/B? > x*/B2.

I<k<
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If t max|<x<p EX,% < g, then

2

t> € By _ - > iA;1/9x2/32>x2/Bz.
T 24efx Z?:ki+l E|Xj|3 T 30BIA, T 15T "= "

Now it follows from (3.19) and (3.20) with o =t that

n
I < P(bgg’ =27V — v 1+ Y (EXP—XD)
k=k;+1,k¢N;

>y2/2 -2+ z—ltgz(B,ﬁvl)z/ﬁ)

2, pNiy2 ki1 } )
e“(B t A—132%2
EeXp|:28—y2/2—7( ”2) ] l_[ EebXi—27 07X
2y -
J=Lj¢N
ki . _ o
« l—[ Eeb)’(j % l_[ Ee—2*1b2X§+t(EX§—X§)
J=ki—1+1,j¢N; Jj=ki+1,j¢&N; 301
2B Y EX? YN, L EX? 32D
< Aexp(—y*/2exp e Ay — o - == =t B
3 2By 2By

n
+Q7By/x +x7/Be E|Xj|3efmam<k<nEX%)
Jj=ki+1

2§ 2
< Arexp(—y*/2) exp(_ Sszt -2 ZJ:Z; = 1?;;)
n

< Arexp(—y*/2) exp(— Sszt - " ZJZZ; EX?)

Note that when 1 < 26);2329, tmaxj << EX7 < %logx by (3.10). Thus, by the definition of ,
t> £Bn a—
ST S

Now considering t < 262 log x and ¢ > 262 log x , we have, by (3.21),

B3 B3
I < Ay~%0%) exp(—y?/2)
y? Z?:ki+1 EX? B e’B} )
> — ).
4B2 1445345231 EX3

(3.22)

+ Ae 2 exp(—
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From the definition of no, -/_,, 1 EX7 < 192B;x~*log x and thus by (2.4)
n 3
Z EI%, P < 1927 B;, logx'

344
X
Jj=no+1

For i < igp, where ig = max{i: k; + 1 < ng}, we have

n n
y* Y EX7=x* ) EX;/4>24B]logx.
J=ki Jj=no

It now follows from (3.22), (3.8) and the fact T < 4x2/e3 + 1 that

T
L <2 Z I3
i=1

< ZATy—a/@a)e—yz/z + 2Ae—y2/2ioe—6logx

T
+24e7°2 Y exp(— by = ) (3.23)
iZigt1 1443923 i BIXGP

< Ay(dx? /e 4 e (70 oA e loey
= Cé,ry_ze_yz/z.

This completes the proof of (3.6). (]

Proof of (3.7). For this result, we need the following moderate deviation theorem for the stan-
dardized sum due to Sakhanenko [10] (also see Heinrich [6]).

Lemma 2. Suppose that 0, ..., n, are independent random variables such that En; = 0 and
Injl <1 for j>1. Write 02 = Z;’»:] En? and L,, = Z;f:] Eln;13/o;. Then there exists an ab-
solute constant A > 0 such that for all 1 < x < min{oy,, £;1/3}/A,
P i1 nj = xon)
2y Zxon) _ 1+ 0()x3L,, (3.24)

1—d(x)
where |O(1)| is bounded by an absolute constant.
To prove (3.7), write

Y 22 2Ev2
£ =2bX; — b’ X + b’EX],

J
Ej:{ Z gkzz}, wherez:2(y2—82).

k=1,k¢N;
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Note that |§; — E&;| < 4e + 262 < 5¢, and by the non-uniform Berry—Esseen bound, there exists
an absolute constant Ag such that forany 1 <k <n and ¢ > 0,

P( > (sj—Esj)s—ce)

J=k,j¢N|

Ao Y lis jen, EIEj —EEjI?
(1+1)3s;

1 ! 2 5Ap
- — e’ /zds-i-— ]+l73l,
«/27(/0 c ( )

where S:%,k = Z;l‘:k,jgéNl Var(§;) and t = ce/sy . Because fot e=5*/2ds > t(1 +1)73/2 for any
t > 0, we may choose ¢y > 10Ap+/ 27 such that for all 1 <k <n,

=l-2@1)+

1

=

[N}

P( > & —Eg) < —c()s) <1/2. (3.25)

Jj=k,j¢N;

By virtue of (3.25), we obtain that

n
Iy=P(E)+ ) P(Ef,....Ef |, E)

k=2
n
= ZP(El, Y. (¢ —EE)= —Cos)
I IEN (3.26)
n n
+2ZP<E§,...,E§1,Ek, Z (¢j —E£j) > —cos)
k=2 j=k+1,j¢N;
n
= 2P( Y. (G—E&)=z—cos— Dn>9
k=1,k¢N;

where D,, = Z;=1,j¢1v, |EE;|. Write 2’ = z — coe — Dy, It is not difficult to show that

n
D, <2b Y EIXjI{IX,| > eB,/x} <4c Ay,

J=1j¢N;
n n
s2i= Y Vargn=4b Y EX24+0(De” Ay
J=Lj¢N J=Lj¢N

=4y> +0(1)e Ay .
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where |O(1)| < 30. This yields that

/

=y 4+0M)[(s+e2An)/¥),

Sn,1

where |O(1)| < 40. Therefore, by Lemma 2 with n; = §; — E&;

Iy <21 — d>(z//sn,1)][1 +AC )57 Y E|é,~|3}

J=Lj¢N;
(3.27)

<2[1—dMI + A(e + & 2An 0],
where we have used the fact that whenever x6,, — 0,

1— Cb(x +9n)

—owm =1+ 0(1)x6,.

This proves (3.7), and also completes the proof of Proposition 2. O

4. Proof of Proposition 3
By Proposition 2, it suffices to show that

P( max § > xV,,) >2(1— @) (1 = Cs (e Ay +2)). 4.1)

1<k<n

Toward this end, let b = x/ B,I,V % throughout this section. Recall (3.8), which we use repeatedly in
the proof without further explanation. Let ng be defined as in (2.2). It can be readily seen that

P( max S‘k > x\_/n)

1<k=<n

> P(Zb max S‘k > bz\_/n2 +x2>

no<k<n

n
> P( |J (268 = b* V2 + DPE(V; — V) + 5% + s}> (4.2)

k=no

n
- P( J 268k =0V + x>+, (V7 = V) —E(V;; = V) = eB,%/xZ})
k=ng

=:1s—Ig.

To complete the proof of Proposition 3, we only need to show the following lemma.
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Lemma 3. Under the conditions of Proposition 3, we have

Is=2(1 - @) (1 - Csc (e Anx +9),
Io < Cppx 212,

Proof of (4.3). We have

Is

v

n
P(U{zbSk > b VE+PEWV? -V + 22+ s})
k=1

no
— P<U{2b§k > PPVE+DPE(V? — V) +x2 + e}>
k=1

=151 —1I57.
Write

v 2%2 4 p2E %2
§j =2bX; —b"X; +b°EX],

J
Fj={25k2y}, where y =2x? 4 ¢.
k=1

As in the proof of (3.25), there exists a constant ¢ such that forall 0 <k <n — 1,

P( Z (6 — E§)) ZCOS) <1/2

j=k+1

This, together with the independence of &;, yields that

n
Is) =PF)+ Y PFE.... . F_.F)
k=2

n k
>PF,y <& fy+48)+ZP<Fi,...,Fz_l,Fk,y§Z§j§y+48

k=2 j=1

> ZP(FI»Y <& Sy+48,2(§j —E§)) 2008)

j=2

n k n
+2ZP<F§,...,F;_1,Fk,y5Zsj <y+de Y (& —EE)=coe
k=2

j=1 j=k+1

> 2P(Z(§k —E&) =z y+(co+de+ Dn>,

k=1

4.3)
(4.4)

(4.5)
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where D, = Z'j’»zl |E&;|. Similarly to the proofs of (3.26)—(3.27), it follows from Lemma 2 with
n;j Z%'j — EEj that

Is; > 2P<Z<sk —E&) >y +(co+4)e + Dn)

k=1
(4.6)
>2(1 - @))(1— A(e + £ 2Any)).
On the other hand, similar to the proofs of (3.26) and (3.27), we have
no
Is) < 2P<Z§j >2x? 4 (1 — co)e — Dn)
Jj=1
2 X2y EX2
<Cxlexp o @ (4.7)
2 2B,
< Cx~2e /2,
This, together with (4.6), implies (4.3). [l

Proof of (4.4). Define k=1, and k] =k/_, + 1if EX}, |
i—1

i

> ¢2B2 /x5, and otherwise

a , &’B?

/ . n

k; =max| k <n: E EXJ-E—)C6 + 1.
J=k_+1

Let m satisfy k/, | <n <k;, and define

ki =k; fori <m, and k,=n.
ki 2 2p2/,.6 ;
Because Zjl:k,-_1+1 EX5>e"B;/x” fori <m, we have
m—1 kl‘
2 2 2p2/.6
B; > EXj>(m—1)£ B;/x°,
i=1 j=kj_1+1
which implies that m < £ 2x% + 1. Furthermore, suppose that ig satisfies k;,—1 < ng < k;,, where

no is defined as in (2.2). Set

Xy = Xp I{| Xk < 167 'eB, /x3),
ki—1
Xe=Xel{167'eBy/x” < |Xil <eBu/x).  Zi= ) IXil.
k=k;_1+1
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Note that 2b| Xy | < 2e. Simple calculations show that

m k,‘
I < ZP( U @S=p*V2+x*+e,

i=ig k=k;_1+1

(V2—VH —EWVI-V}) > 833/x2}>

m k,‘—l
SZP( U @265 =0V +x* e,

k=k;_1+1

Vi=Vi oD —EV =V )= 2_1833/)‘2})

o, (4.8)
< Y P26k, + Zi; +EZi) = BV + x* = 2,
=iy
(VP =Vi ) —EWV; V2 ) =27 "eBy/x?)
m J
P 2b Xy —EXp) >
* Z (ki1+r1nsajxski—l Z e V= 8)
i=ip k=k;j_1+1
=:161+ Is 2.
Noting that
ki—1 y 5232 5
0,12,- = Z EX,% < 6" and | Xi| <167 'eB,/x3,
k=k;_1+1 *
it follows from m < £~2x% 4 1 and Lévy’s inequality that with r = 2bx? /e
m k,‘—l
lep< ) P( > Xk —EXy) = e/(2b) — ﬁoni>
i=ig k=k;_1+1
m ki—1 . .
<Y et @/ T el (%i-EX0
i=ig k=k;_1+1
4.9)

m
< Ae Zexp{At2anzi}
i=ig
<2A1(e 20 + e < Crpx e 2,

where we used the fact that ¢ > yx’l/ 2,
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To estimate /g1, let t = 248’1x2Bn’210gx. Note that

ki —1
. 32x4 N 32¢
2bEZ;, < —— § EX? < <8e.
ki = eB2 k="x2 =
k=k;_1+1

Similar to the estimate for /3 in (3.4), we obtain
Ion < ) P(2b(Sk_, + 2y, —EZi) 2 b°Vi_ +x7 — 18s,
i=ip
(‘_/n2 - ‘_/kz,»_1+1) E(V +l) >2" SBZ/x )
m
<Y P(b(Sk,_, —ESk_, + Zi, —EZy,) —b*V]_ /2
=i

+t(VE =V ) —tE(V, = V2 ) =x*/2+ 12logx — 9)

m (ki-1
2 Y. _EY.)_2-1p2%2
< Ax—12e—%/2 Z{nEeb(Xj EX;)-271p2 X3

i=ip j=1
ki—1
% l—[ Ee b(IX;I-EIX; |)+t(X2 Ex2) % l—[ Eet(X2 EXZ)
j=ki_1+1 j=ki

= Ax_lze_"z/2 ZGXP<AAn,x + A j_l;;lﬂ ] g24elogx
n

i=ig

+3 i _,3
Z—kl 1+1 XJ'

24elogx —1
+A B) e e logx
42 Ex4
Jj= k 1+1 / p24el —1 2
+ A 1’94 E0EX (7 logx)
42 E
j=ki J o24el -1 2
+ A T E08X (e logx) )
Recall, by the definition of k;,
L 2 2. -4
ﬁ Z EX] S E°X ,
" j=ki_1+1
4 ki—1 3 ki—1 2 i—1
d o4 X 3 Ex2 < gty
3 2 EXj=g3 ) EX =7 jEEx
mj=ki_1+1 o j=ki_1+1 o j=ki—1+1

1025

(4.10)
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On the other hand, we have
o124 < y—l min{x3/10+5/3,x3/2} < y—lxmin{8/2,3/2}’
and by (2.2)~(2.4) and the inequality >_, .| EXJZ. <192x~2B2log x, for all i > iy,

4 n n
X - -
= > EX}<(eBu/x) Y EIX;P

" j=ki Jj=no+1

n
< (eTB}/x**?) 3" EX} < Crsex’logx.
j:n0+1

Substituting these estimates into (4.10) gives

Is1 < C(;,,(zs_zx6 + l)x_lze_xz/2 exp(Cf,gx_l/2 10g2x + Cr,ax_‘s/2 log3 Xx)

) 4.11)
< Cs x2e /2
This proves (4.4), which also completes the proof of Lemma 3. ]
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