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Let X = (X1,X2,X3) be a spherically symmetric random vector of which only (X1,X2) can be observed.
We focus attention on estimating F , the distribution function of the squared radius Z := X2

1 + X2
2 + X2

3,
from a random sample of (X1,X2). Such a problem arises in astronomy where (X1,X2,X3) denotes the
three dimensional position of a star in a galaxy but we can only observe the projected stellar positions
(X1,X2). We consider isotonic estimators of F and derive their limit distributions. The results are nonstan-
dard with a rate of convergence

√
n/logn. The isotonized estimators of F have exactly half the limiting

variance when compared to naive estimators, which do not incorporate the shape constraint. We consider
the problem of constructing point-wise confidence intervals for F , state sufficient conditions for the consis-
tency of a bootstrap procedure, and show that the conditions are met by the conventional bootstrap method
(generating samples from the empirical distribution function).

Keywords: asymptotic normality; consistency of bootstrap; globular cluster; nonstandard problem; shape
restricted estimation; spherically symmetric distribution

1. Introduction

Stereology is the study of three-dimensional properties of objects or matter usually observed
two-dimensionally. We consider such a problem, which arises in astronomy. Suppose that the
position X := (X1,X2,X3) of a star within a given galaxy has a spherically symmetric distribu-
tion and that we observe the projected stellar positions, that is, (X1,X2) (with a proper choice of
co-ordinates); and consider the problem of estimating the distribution function F of the squared
distance Z := X2

1 + X2
2 + X2

3 of a star to the center of the galaxy from a random sample of
(X1,X2). In this paper, we study the statistical properties of three estimators of F . We show
that enforcing known shape restrictions (monotonicity) in the estimation procedure leads to es-
timators with lower asymptotic variance (exactly by one-half in this case). We also consider the
problem of constructing point-wise confidence intervals (CIs) around F , and show that the con-
ventional bootstrap method can be used to construct valid CIs. Our treatment is similar in flavor
to Groeneboom and Jongbloed’s [6] study of the Wicksell’s [13] “Corpuscle Problem.”

Suppose that X has a density of the form ρ(x2
1 + x2

2 + x2
3). Then Y := X2

1 + X2
2 ∼ G and Z

have densities

g(y) = π

∫ ∞

y

ρ(z)√
z − y

dz (1.1)
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and f (z) = 2π
√

zρ(z). The reader may recognize (1.1) as Abel’s transformation. It may be
inverted as follows. Let

V (y) =
∫ ∞

y

g(u)√
u − y

du.

Then

V (y) = π

∫ ∞

y

[∫ ∞

u

ρ(z)dz√
z − u

]
du√
u − y

= π2
∫ ∞

y

ρ(z)dz (1.2)

so that ρ(z) = −V ′(z)/π2 at continuity points. Observe that V is a nonincreasing function. The
quantity of interest, F , can be related to V and, therefore, to the distribution of (X1,X2) by

F(x) =
∫ x

0
2π

√
uρ(u)du = 1 + 2

π

∫ ∞

x

√
z dV (z), (1.3)

where the last equality follows from
∫ ∞

0 2π
√

uρ(u)du = 1. Relationship (1.3) will be used ex-
tensively in the sequel. Let

U(x) :=
∫ x

0
V (t)dt

for x > 0. Then U is concave since V is nonincreasing. Concavity can also be seen from

U(x) = 2
∫ ∞

0

{√
u − √

(u − x)+
}
g(u)du,

where y+ = max{y,0}. Let J (t) := ∫ ∞
t

√
z − t dV (z). Then

G(t) = π

∫ ∞

0

∫ t∧z

0

ρ(z)√
z − y

dy dz

(1.4)

= 2π

∫ ∞

0

{√
z − √

(z − t)+
}
ρ(z)dz = 1 + 2

π
J (t),

where the last step follows from
∫ ∞

0 2π
√

zρ(z)dz = 1 and J (t) = −π2
∫ ∞
t

√
z − tρ(z)dz (using

(1.2)).
Now suppose that we observe an i.i.d. sample {(Xi1,Xi2)}ni=1 having the same distribution as

(X1,X2). Letting Yi = X2
i1 + X2

i2, a natural (unbiased) “naive” estimator of V is

V #
n (y) :=

∫ ∞

y

dG#
n(u)√

u − y
= 1

n

n∑
i=1

1{Yi > y}√
Yi − y

,

where G#
n is the empirical distribution function (EDF) of the Yi ’s. Then V #

n (y) is an unbiased
estimator of V (y) for each fixed y; but V #

n has infinite discontinuities at the data points Yi and
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Figure 1. Left panel: Plots of V #
n (green), Ṽ #

n (red, piece-wise constant) and V (blue, smooth); middle
panel: F #

n (red), F (blue, smooth); right panel: F̃ #
n (green, piece-wise constant), F̌n (black, piece-wise

constant) and F (blue, smooth) from a sample with n = 20 data points.

is, therefore, not monotonic when viewed as a function of y. See Figure 1. We call V #
n the

naive estimator. The naive estimator can be improved by requiring monotonicity. If V #
n were

square integrable, this could be accomplished by minimizing the integral of (W − V #
n )2 over all

nonincreasing functions W, or equivalently,∫ ∞

0
W 2(y)dy − 2

∫ ∞

0
W(y)V #

n (y)dy. (1.5)

The function V #
n is not square integrable, but it is integrable, so (1.5) is well defined. Let Ṽ #

n be the
nonincreasing function W that minimizes (1.5). Existence and uniqueness can be shown along
the lines of Theorem 1.2.1 of Robertson et al. [9], replacing the sums by integrals. Groeneboom
and Jongbloed [6] derived the limit distributions of V #

n and Ṽ #
n : Let x0 > 0 and

εn :=
√

n−1 logn, (1.6)

then under appropriate conditions,

V #
n (x0) − V (x0)

εn

⇒ N(0, g(x0)), (1.7)

Ṽ #
n (x0) − V (x0)

εn

⇒ N

(
0,

1

2
g(x0)

)
, (1.8)

where ⇒ denotes weak convergence.
We can define two estimators of F , Fn and F̃ #

n , by replacing V from the right-hand side of (1.3)
with V #

n and Ṽ #
n , respectively. Observe that F #

n is not even nondecreasing; F̃ #
n is nondecreasing,

and max{F̃ #
n ,0} (as F̃ #

n ≤ 1), is a valid distribution function and a more appealing estimator of F

(see Figure 1).
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Yet another estimator of F can be obtained by isotonizing F #
n over all nondecreasing functions.

Let F̌n be the nondecreasing function that is closest to F #
n , in the sense that it minimizes (1.5) with

V #
n replaced by F #

n . It is not difficult to see that then max{0,min(F̌n,1)} is a valid distribution
function. Figure 1 shows the graphs of the estimators V #

n , Ṽ #
n , F #

n , F̃ #
n , and F̌n obtained from

simulated data with n = 20.
It will be shown later that for x0 > 0,

F #
n (x0) − F(x0)

εn

⇒ N

(
0,

4

π2
x0g(x0)

)
, (1.9)

F̃ #
n (x0) − F(x0)

εn

⇒ N

(
0,

2

π2
x0g(x0)

)
and (1.10)

F̌n(x0) − F(x0)

εn

⇒ N

(
0,

2

π2
x0g(x0)

)
(1.11)

under modest conditions. As above the isotonized estimators have exactly half limiting variances
of corresponding naive estimators.

Construction of confidence intervals for F(x0) using these limiting distributions is still com-
plicated as they require the estimation of the nuisance parameter g(x0). Bootstrap intervals avoid
this problem and are generally reliable and accurate in problems with

√
n convergence rate (see

Bickel and Freedman [4], Singh [12], Shao and Tu [11] and its references). However, conven-
tional bootstrap estimators are inconsistent for some shape restricted estimators – dramatically
so for the Grenander estimator. See Kosorok [8], Abrevaya and Huang [1] and Sen et al. [10] and
its references. So, it is not a priori clear whether bootstrap methods are consistent in the present
context. We show that they are.

In Section 2, we prove uniform versions of (1.7), (1.8), (1.9), (1.10) and (1.11). These are used
in Section 3 to establish the consistency of bootstrap methods in approximating the sampling
distribution of the various estimators of V and F , while generating samples from the EDF. Using
data on the globular cluster M62 we illustrate the isotonized estimators of F along with the
corresponding bootstrap based point-wise CIs in Section 4. Section A, the Appendix, gives the
details of some of the arguments in the proofs of the main results.

2. Uniform convergence

In this section, we prove central limit theorems for estimates of V and F when we have a tri-
angular array of random variables whose row-distributions satisfy certain regularity conditions.
This generalization will also help us analyze the asymptotic properties of the bootstrap estima-
tors (to be introduced in Section 3). Note that conditional on the data, bootstrap samples can be
embedded in a triangular array of random variables, with the nth row being generated from a
distribution (built from the first n data points) that approximates the data-generating mechanism.

Suppose that we have i.i.d. triangular data {Yn,i}ni=1 having distribution function Gn. We con-
sider a special construction of Yn,i , namely, let Yn,i = G−1

n (Ti), where G−1
n (u) = inf{x: Gn(x) ≥
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u} and T1, T2, . . . are i.i.d. Uniform(0,1) random variables. Let Vn and Un be defined as

Vn(y) =
∫ ∞

y

dGn(u)√
u − y

and Un(x) =
∫ x

0
Vn(y)dy.

Let LCMI be the operator that maps a function h : R → R into the least concave majorant (LCM)
of its restriction to the interval I ⊂ R. Define Ṽn := LCM[0,∞)[Un]′ where ′ denotes the right
derivative. Let G#

n denote the EDF of Yn,1, Yn,2, . . . , Yn,n,

V #
n (y) :=

∫ ∞

y

dG#
n(u)√

u − y
= 1

n

∑
i:Yn,i>y

1√
Yn,i − y

.

Then V #
n is a nonmonotonic, unbiased estimate of Vn(y), as above, and we call V #

n the naive
estimator. The naive estimator can be improved by imposing the monotonicity constraint as in
(1.5) to obtain Ṽ #

n . Observe that

U#
n (x) := 2

n

n∑
i=1

{√
Yn,i − √

(Yn,i − x)+
}

is an unbiased estimate of Un(x) for all x ∈ [0,∞); U#
n is a nondecreasing function; V #

n is the
derivative of U#

n a.e. Let Ũ#
n be the LCM of U#

n . Then Ṽ #
n is the right-derivative of Ũ#

n (see, e.g.,
Lemma 2 of [6]). Let Fn and F #

n be defined by replacing V from the right-hand side of (1.3) with
Vn and V #

n , respectively.

2.1. CLT for estimates of V

Fix x0 ∈ (0,∞) such that g(x0) > 0. We consider two estimates of V (x0), namely V #
n (x0) and

Ṽ #
n (x0). To find the limit distribution of V #

n (x0), we assume the following conditions on Gn:

Vn(x0) → V (x0), (2.1)

n

{
Gn

(
x0 + 1

ε2n logn

)
− Gn(x0)

}
→ 0 for all ε > 0, (2.2)

∫ x0+cn

x0

dGn(y)√
y − x0

= o(εn), (2.3)

1

logn

∫ ∞

x0+cn

dGn(y)

y − x0
→ g(x0), (2.4)

where cn = 1/(
√

n logn + Vn(x0))
2 and εn is defined in (1.6).

Proposition 2.1. If (2.1)–(2.4) hold then ε−1
n {V #

n (x0) − Vn(x0)} ⇒ N(0, g(x0)).
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The proof of the proposition is given in the Appendix. Next, we study the limiting distribution
of

�n := Ṽ #
n (x0) − V̂n(x0)

εn

,

where V̂n(x0) can be Vn(x0) or Ṽn(x0). Define the stochastic process

Zn(t) = ε−2
n {U#

n (x0 + εnt) − U#
n (x0) − V̂n(x0)εnt}

for t ∈ In := [−ε−1
n x0,∞) and note that �n = LCMIn[Zn]′(0), that is, �n is the right-hand

slope at 0 of the LCM of the process Zn. We will study the limiting behavior of the process Zn

and use continuous mapping arguments to derive the limiting distribution of �n. We consider
all stochastic processes as random elements in C(R), the space of continuous functions on R,
equipped it with the Borel σ -field and the metric of uniform convergence on compacta. To better
understand the limiting behavior of Zn, we decompose Zn into the sum of

Zn,1(t) = ε−2
n {(U#

n − Un)(x0 + εnt) − (U#
n − Un)(x0)} and

Zn,2(t) = ε−2
n {Un(x0 + εnt) − Un(x0) − V̂n(x0)εnt}.

Observe that Zn,2 depends only on Gn and not on the Yn,j . Let

Z1(t) = tW and Z(t) = Z1(t) + 1
2 t2V ′(x0)

for t ∈ R, where W is a normal random variable having mean 0 and variance 1
2g(x0). We state

some conditions on the behavior of Gn, V̂n and Un used to obtain the limiting distribution of
�n.

(a) Dn := ‖Gn − G‖ = O(εn), where ‖ · ‖ refers to the uniform norm, that is, ‖Gn − G‖ =
supt∈R |Gn(t) − G(t)|.

(b) Zn,2(t) → 1
2 t2V ′(x0) as n → ∞ uniformly on compacta.

(c) For each ε > 0,

∣∣Un(x0 + β) − Un(x0) − βV̂n(x0) − 1
2β2V ′(x0)

∣∣ ≤ εβ2 + o(β2) + O(ε2
n)

for large n, uniformly in β varying over a neighborhood of zero.

Theorem 2.1. Under condition (a) the distribution of Zn,1 converges to that of Z1. Further, if
(b) holds, then the distribution of Zn converges to that of Z.

Proof. The covariance of Zn,1(s) and Zn,1(t), is needed. To compute it let

φ(y,η) := √
(y − x0)+ − √

(y − x0 − η)+
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for y,η ∈ R and observe the following two properties:

φ(·, η) ≤ √|η|, (P1)∫ ∞

0
|φ′(y, η)|dy ≤ 2

√|η| (P2)

of which the second follows from splitting the interval of integration into [0, x0 + η] and (x0 +
η,∞). Observe that

Zn,1(t) = 2

ε2
n

∫
φ(u, εnt)d(G#

n − Gn)(u)

and

Cov(Zn,1(s),Zn,1(t)) = 4

nε4
n

Cov(φ(Yn,1, εns),φ(Yn,1, εnt)),

where Yn,1 ∼ Gn. We first show that E[φ(Yn,1, εnt)] = O(εn), so that Cov(Zn,1(s), Zn,1(t)) =
(1/nε4

n)E[φ(Yn,1, εns)φ(Yn,1, εnt)] + o(1). For this, observe that

E[φ(Yn,1, εnt)] = 2
∫

φ(u, εnt)d(Gn − G)(u) + {U(x0 + tεn) − U(x0)}. (2.5)

The first term is at most

2
∫ ∞

0
(Gn − G)(u)φ′(u, εnt)du ≤ 2Dn

∫ ∞

0
|φ′(u, εnt)|du

= 2O(εn)2
√|εnt | = O(ε

3/2
n ),

and the second term in (2.5) is at most O(εn) by using a one term Taylor expansion. Next, suppose
that s ≤ t and write E[φ(Yn,1, εns)φ(Yn,1, εnt)] as

∫
φ(u, εns)φ(u, εnt)d(Gn − G)(u) +

∫
φ(u, εns)φ(u, εnt)dG(u). (2.6)

From Lemma 3 of Groeneboom and Jongbloed [6], page 1539,

∫
φ(u, εns)φ(u, εnt)dG(u) = −1

4
g(x0)stε

2
n log εn + O(ε2

n). (2.7)

Using integration by parts, (P1), and (P2), the first term in (2.6) is at most∣∣∣∣
∫ ∞

0
{φ′(u, εns)φ(u, εnt) + φ(u, εns)φ

′(u, εnt)}(Gn − G)(u)du

∣∣∣∣
≤ 2Dn

√|εnt |
{
2
√|εns|

} = O(ε2
n).
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So,

Cov(Zn,1(s),Zn,1(t)) = 4

nε4
n

{
1

4
stg(x0)ε

2
n log

(
1

εn

)
+ O(ε2

n)

}
(2.8)

= 1

2
g(x0)st

{
1 − log logn

logn

}
+ O

(
1

logn

)
.

It follows directly from the Lindeberg–Feller central limit theorem for triangular arrays that
Zn,1(1) ⇒ N(0, 1

2g(x0)); and Chebyshev’s inequality implies that |sZn,1(t)− tZn,1(s)| = oP (1)

as n → ∞ for all for all fixed s, t ∈ R. So, the finite dimensional distributions of Zn,1 converges
weakly to the finite dimensional distributions of Z1.

For the the convergence in distribution of Zn,1 to Z1 in C(R), it suffices to show that for each
M > 0 and sequence of positive numbers {δn} converging to zero,

E{sup |Zn,1(s) − Zn,1(t)|: |s − t | ≤ δn,max(|s|, |t |) ≤ M} → 0.

See Theorem 2.3 of Kim and Pollard [7]. Consider the class of functions CR = {φ(·, η): |η| < R}
with its natural envelope 
R(y) := √

(y − x0 + R)+ − √
(y − x0 − R)+. Observe that CR are

uniformly manageable for its envelope 
R and that 
R ≤ √
2R. Let δn be a sequence of positive

numbers converging to zero, h(y; s, t) := φ(y, t)−φ(y, s) = √
(y − x0 − s)+ −√

(y − x0 − t)+
for y, s, t ∈ R, and Hn := {h(·; sεn, tεn): max(|s|, |t |) < M, |s − t | ≤ δn}. The class Hn has
envelope Hn := 2
Mεn . Observe that

Zn,1(t) = 2ε−2
n (G#

n − Gn)φ(·, tεn).

So, it suffices to show that ε−2
n E[suph∈Hn

|(G#
n −Gn)h|] = o(1). Define Sn := G#

nH
2
n /(nε4

n) and
Tn := suph∈Hn

G#
nh

2. Then by the maximal inequality of Section 3.1 in Kim and Pollard [7],
there is a (single) continuous function J (·) for which J (0) = 0, J (1) < ∞, and

1

ε2
n

E
[

sup
h∈Hn

|G#
nh − Gnh|

]
≤ 1

ε2
n

√
n
E

[√
G#

nH
2
n J

(
sup

Hn

G#
nh

2

G#
nH

2
n

)]

= E

[√
SnJ

(
Tn

nε4
nSn

)]
.

Let η > 0. Splitting according to whether {Sn ≤ η} or not, using the fact that nε4
nSn ≥ Tn and

invoking the Cauchy–Schwarz inequality for the contribution from {Sn > η}, we may bound the
last expected value by

E

[√
Sn1{Sn ≤ η}J

(
Tn

nε4
nSn

)]
+ E

[√
Sn1{Sn > η}J

(
Tn

nε4
nSn

)]

≤ √
ηJ (1) + √

ESn

√
EJ 2

(
min

(
1,

Tn

nε4
nη

))
.
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Noting that 
Mεn = φ(·,Mεn) − φ(·,−Mεn) and using (2.7) and (2.8) with −s = t = M , we
have

ESn = 1

nε4
n

E

[
1

n

n∑
i=1

H 2
n (Yn,i)

]
= GnH

2
n

nε4
n

= O(1). (2.9)

So, it suffices to show that Tn = oP (nε4
n), which implies E[J 2(min(1, Tn/(nε4

nη))] → 0 (note
that J (1) < ∞). We will establish the stronger result ETn = o(nε4

n). Observe that

E
[
sup

Hn

G#
nh

2
]

≤ E sup
Hn

Gnh
2 + E

[
sup

Hn

|G#
nh

2 − Gnh
2|

]

and

Gnh
2 = Gn[φ(y, tεn) − φ(y, sεn)]2 = − 1

4g(x0)(s − t)2ε2
n log εn + O(ε2

n)

= O(δ2
nnε4

n) + O(ε2
n) = o(nε4

n)

by (2.7). The maximal inequality applied to the uniformly manageable class {h2: h ∈ Hn} with
envelope H 2

n bounds the second term by J̃ (1)
√

GnH 4
n /n ≤ 8Mεn/

√
n = o(nε4

n), where we have
used (2.9) and the fact that H 2

n ≤ 8Mεn. That Zn converges in distribution to Z in C(R) follows
directly. �

A rigorous proof of the convergence of �n involves a little more than an application of a
continuous mapping theorem. The convergence Zn ⇒ Z is only in the sense of the metric of
uniform convergence on compacta. A concave majorant near the origin might be determined by
values of the process long way from the origin; the convergence Zn ⇒ Z by itself does not imply
the convergence LCMIn[Zn] ⇒ LCMR[Z]. We need to show that LCMIn[Zn] is determined by
values of Zn for t in an OP (1) neighborhood of the origin. Corollary 2.1 shows the convergence
of �n, and its proof is given in the Appendix.

Corollary 2.1. Under conditions (a)–(c), the distribution of �n converges to that of W
d=

LCMR[Z]′(0).

2.2. CLT for estimates of F

We consider three estimates of F , namely F #
n , F̃ #

n and F̌ #
n , where F #

n and F̃ #
n are obtained by

replacing V from the right-hand side of (1.3) with V #
n and Ṽ #

n , respectively; and F̌ #
n is the closest

(in the sense of minimizing (1.5) with Vn replaced with F #
n ) nondecreasing function to F #

n . We
start by deriving the limit distribution of F #

n . Let σ 2 := Var[sin−1 √
1 ∧ (x0/Y )] where Y ∼ G.

Proposition 2.2. If g(x0) > 0 and ‖Gn − G‖ → 0 as n → ∞, then

√
n

∫ ∞

x0

V #
n (u) − Vn(u)

2
√

u
du ⇒ N(0, σ 2). (2.10)
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If also (2.1)–(2.4) hold, then

F #
n (x0) − Fn(x0)

εn

⇒ N

(
0,

4

π2
x0g(x0)

)
. (2.11)

Proof. For (2.10), observe that

∫ ∞

x0

V #
n (u)

2
√

u
du = 1

n

n∑
i=1

∫ ∞

x0

1{Yn,i > u}
2
√

u
√

Yn,i − u
du = π

2
− 1

n

n∑
i=1

sin−1
√

1 ∧ x0

Yn,i

after some simplification, and (similarly),∫ ∞

x0

Vn(u)

2
√

u
du = π

2
−

∫ ∞

0
sin−1

√
1 ∧ x0

y
dGn(y).

Relation (2.10) now follows from the Lindeberg–Feller CLT. For (2.11), first observe that
F #

n (x0) − Fn(x0) may be written as

− 2

π

√
x0{V #

n (x0) − Vn(x0)} − 2

π

∫ ∞

x0

V #
n (u) − Vn(u)

2
√

u
du.

From Proposition 2.1, ε−1
n {V #

n (x0) − Vn(x0)} ⇒ N(0, g(x0)). Relation (2.11) follows directly
from this and (2.10). �

Applying the proposition with Gn = G verifies (1.9). Next, we derive the limiting distribution
of F̃ #

n .

Proposition 2.3. Suppose that (a)–(c) hold with V̂n = Ṽn, then,

F̃ #
n (x0) − F̃n(x0)

εn

⇒ N

(
0,

2

π2
x0g(x0)

)
.

Proof. As above F̃ #
n (x0) − F̃n(x0) may be written as

2

π

√
x0{Ṽn(x0) − Ṽ #

n (x0)} + 2

π

∫ ∞

x0

Ṽn(u) − Ṽ #
n (u)

2
√

u
du.

From Corollary 2.1, ε−1
n {Ṽn(x0)− Ṽ #

n (x0)} ⇒ N(0, 1
2g(x0)). Integrating by parts, the integral on

the last display is a most

|Ũn(x0) − Ũ#
n (x0)|

2
√

x0
+ 1

4

∣∣∣∣
∫ ∞

x0

Ũn(u) − Ũ#
n (u)

u3/2
du

∣∣∣∣
≤ ‖Ũn − Ũ#

n‖
2
√

x0
+ ‖Ũn − Ũ#

n‖ 1

2
√

x0
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= ‖Ũn − Ũ#
n‖√

x0
≤ ‖Un − U#

n‖√
x0

= OP (n−1/2) = oP (εn)

by Marshall’s lemma and maximal inequality 3.1 of Kim and Pollard [7] (to bound ‖Un − U#
n‖).

The proposition follows. �

Now let Hn(x) := ∫ x

0 Fn(z)dz and H #
n (x) := ∫ x

0 F #
n (z)dz. Note that F #

n is the derivative of

H #
n a.e. Let Ȟ #

n be the greatest convex minorant (GCM) of H #
n . Then F̌n is the right-derivative

of Ȟ #
n . We want to study the limit distribution of

�n := F̌n(x0) − F̂n(x0)

εn

,

where F̂n can be Fn or F̃n. Let

Xn(t) := ε−2
n {H #

n (x0 + εnt) − H #
n (x0) − F̂n(x0)εnt}

for t ∈ In := [−ε−1
n x0,∞). As before, we decompose Xn into Xn,1 and Xn,2 where

Xn,1(t) := ε−2
n {(H #

n − Hn)(x0 + εnt) − (H #
n − Hn)(x0)} and

Xn,2(t) := ε−2
n {Hn(x0 + εnt) − Hn(x0) − F̂n(x0)εnt}.

Let GCMI be the operator that maps the restriction of a function h : R → R to the interval I into
its GCM, and observe that �n = GCMIn[Xn]′(0). Also let

X1(t) = tW and X(t) = X1(t) + 1
2 t2f (x0)

for t ∈ R, where W is a normal random variable having mean 0 and variance 2x0g(x0)/π
2 and

f is the density of Z = X2
1 + X2

2 + X2
3. The following conditions will be used.

(b′) Xn,2(t) → 1
2 t2f (x0) as n → ∞ uniformly on compacta.

(c′) For each ε > 0,∣∣Hn(x0 + β) − Hn(x0) − βF̂n(x0) − 1
2β2f (x0)

∣∣ ≤ εβ2 + o(β2) + O(ε2
n)

for large n, uniformly in β varying over a neighborhood of zero.

Theorem 2.2. Under condition (a), the distribution of Xn,1 converges to that of X1. Further, if
(b′) holds, then the distribution of Xn converges to that of X.

Proof. Using the definitions of F #
n , Hn and H #

n , we may write H #
n (x) − Hn(x) as

− 2

π

[∫ x

0

√
z{V #

n (z) − Vn(z)}dz +
∫ x

0

∫ ∞

z

(V #
n − Vn)(u)

2
√

u
dudz

]
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and ∣∣∣∣
∫ ∞

z

(V #
n − Vn)(u)

2
√

u
du

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

z

∫ y

z

du

2
√

y − u
√

u
d(G#

n − Gn)(y)

∣∣∣∣
=

∣∣∣∣∣
∫ ∞

z

{
π

2
− sin−1

√
z

y

}
d(G#

n − Gn)(y)

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

z

d

dy

[
sin−1

√
z

y

]
(G#

n − G)(y)dy

∣∣∣∣∣
= π

2
‖G#

n − Gn‖ = o(εn) a.s.,

using the Law of Iterated Logarithms for ‖G#
n − Gn‖ = o(εn) a.s. Fix a compact set K =

[−M,M]. Then

Xn,1(t) = − 2

π

∫ x0+εnt

x0

√
z[V #

n (z) − Vn(z)]
ε2
n

dz + o(1)

= − 2

π

√
x0

∫ x0+εnt

x0

[V #
n (z) − Vn(z)]

ε2
n

dz + oP (1) (2.12)

= − 2

π

√
x0Zn,1(t) + oP (1)

uniformly on K . Note that (2.12) follows as | ∫ x0+εnt

x0
(
√

z − √
x0)[V #

n (z) − Vn(z)]/ε2
n dz| can be

bounded, using integration by parts, by

∣∣√x0 + εnt − √
x0

∣∣ max|s|≤M
|Zn,1(s)| + max|s|≤M

|Zn,1(s)|
∫ x0+εnt

x0

dz

2
√

z
= oP (1), (2.13)

as max|s|≤M |Zn,1(s)| = OP (1). The theorem now follows. �

Corollary 2.2. Under conditions (a), (b′) and (c′), the distribution of �n converges to that of

W
d= GCMR[X]′(0).

The proof is very similar to that Corollary 2.1 with the LCMs changed to GCMs. The modifi-
cations are outlined in the Appendix.

3. Consistency of the bootstrap

We begin with a brief discussion on the bootstrap. Suppose we have i.i.d. random variables
(vectors) T1, T2, . . . , Tn having an unknown distribution function λ defined on a probability
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space (
, A,P ) and we seek to estimate the sampling distribution of the random variable
Rn(Tn, λ), based on the observed data Tn = (T1, T2, . . . , Tn). Let μn be the distribution func-
tion of Rn(Tn, λ). The bootstrap methodology can be broken into three simple steps:

Step 1: Construct an estimate λn of λ based on the data (for example, the EDF).
Step 2: With λn fixed, draw a random sample of size n from λn, say T∗

n = (T ∗
1 , T ∗

2 , . . . , T ∗
n )

(identically distributed and conditionally independent given Tn). This is called the boot-
strap sample.

Step 3: Approximate the sampling distribution of Rn(Tn, λ) by the sampling distribution of
R∗

n = Rn(T∗
n, λn). The sampling distribution of R∗

n , the bootstrap distribution, can be sim-
ulated on the computer by drawing a large number of bootstrap samples and computing R∗

n

for each sample.

Thus the bootstrap estimator of the sampling distribution function of Rn(Tn, λ) is given by
μ∗

n(x) = P ∗{R∗
n ≤ x} where P ∗{·} is the conditional probability given the data Tn. Let L de-

note the Levy metric or any other metric metrizing weak convergence of distribution functions.

We say that μ∗
n is (weakly) consistent if L(μn,μ

∗
n)

P→ 0. Similarly, μ∗
n is strongly consistent if

L(μn,μ
∗
n) → 0 a.s. If μn has a weak limit μ, for the bootstrap procedure to be consistent, μ∗

n

must converge weakly to μ, in probability. In addition, if μ is continuous, we must have

sup
x∈R

|μ∗
n(x) − μ(x)| P→ 0 as n → ∞.

3.1. Bootstrapping Ṽn

Given data Y1, Y2, . . . , Yn ∼ G let G#
n denote its EDF. Suppose that we draw conditionally in-

dependent and identically distributed random variables Y ∗
n,1, Y

∗
n,2, . . . , Y

∗
n,n having distribution

function G#
n; and let G∗

n be the EDF of the bootstrap sample. Letting

V ∗
n (y) := 1

n

∑
i:Y ∗

n,i>y

1√
Y ∗

n,i − y
=

∫
1[y,∞)(u)√

u − y
dG∗

n(u) and

U∗
n (x) := 2

n

n∑
i=1

{√
Y ∗

n,i −
√

(Y ∗
n,i − x)+

}

= 2
∫ {√

u − √
(u − x)+

}
dG∗

n(u),

the isotonic estimate of V based on the bootstrap sample is Ṽ ∗
n = LCM[0,∞)[U∗

n ]′. The bootstrap
estimator of the distribution function of �n = ε−1

n {Ṽn(x0) − V (x0)} is then the conditional dis-
tribution function of �∗

n := ε−1
n {Ṽ ∗

n (x0) − Ṽn(x0)} given the sample Y1, . . . , Yn. To find its limit
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let

Z
∗
n(t) = ε−2

n {U∗
n (x0 + εnt) − U∗

n (x0) − Ṽn(x0)εnt}
for t ∈ In := [−ε−1

n x0,∞) and decompose Z
∗
n into Z

∗
n,1 and Z

∗
n,2 where

Z
∗
n,1(t) = ε−2

n {(U∗
n − U#

n )(x0 + εnt) − (U∗
n − U#

n )(x0)},
Z

∗
n,2(t) = ε−2

n {U#
n (x0 + εnt) − U#

n (x0) − Ṽ #
n (x0)εnt}.

Recall that Z1(t) = tW and Z(t) = Z1(t)+ 1
2 t2V ′(x0) are two processes defined for t ∈ R, where

W is a normal random variable having mean 0 and variance 1
2g(x0). Let Y = (Y1, Y2, . . .). The

following theorem shows that bootstrapping from the EDF G#
n is weakly consistent.

Theorem 3.1. Suppose that V is continuously differentiable around x0, and g(x0) �= 0. Then:

(i) The conditional distribution of the process Z
∗
n,1, given Y, converges to that of Z1 a.s.

(ii) Unconditionally, Z
∗
n,2(t) converges in probability to 1

2 t2V ′(x0), uniformly on compacta.
(iii) The conditional distribution of the process Z

∗
n, given Y, converges to that of Z, in proba-

bility.
(iv) The bootstrap procedure is weakly consistent, that is, the conditional distribution of �∗

n,
given Y, converges to that of W , in probability.

Proof. Assertion (i) follows directly from Theorem 2.1, applied with Gn = G#
n, G#

n = G∗
n and

P {·} = P ∗{·} = P {·|Y}, since condition (a) required for Theorem 2.1 holds a.s. For (ii) and (iii),
let

Z
0
n(t) = ε−2

n {U#
n (x0 + tεn) − U#

n (x0) − εntV (x0)}
for t ∈ In. By Theorem 2.1, applied with Gn = G, Vn = V and Un = U for all n, Z

0
n converges

in distribution to Z. To prove (ii) observe that

Z
∗
n,2(t) = Z

0
n(t) − t · LCMIn[Z0

n]′(0).

Unconditionally, using the continuous mapping theorem along with a localization argument as in
Corollary 2.1, we obtain Z

∗
n,2(t) ⇒ Z(t)− t ·LCMR[Z]′(0) = 1

2 t2V ′(x0). As the limiting process

is a constant, Z
∗
n,2(t)

P→ 1
2 t2V ′(x0). Let {nk} be a subsequence of N. We will show that there ex-

ists a further subsequence such that conditional on Y, Zn ⇒ Z a.s. along the subsequence. Now,
given {nk}, there exists a further subsequence {nkl

} such that Z
∗
nkl

,2(t) → 1
2 t2V ′(x0) uniformly

on compacta a.s. Thus, the conditional distribution of Z
∗
nkl

given Y, converges to that of Z, for
a.e. Y. This completes the proof of (iii).

For (iv), we use Corollary 2.1. Although conditions (a) and (b) hold in probability, condi-
tion (c) holds with V̂n = Ṽn and the O(ε2

n) term replaced by OP (ε2
n). Thus we cannot appeal

directly to Corollary 2.1. Let ξ > 0 and η > 0 be given. We will show that there exists N ∈ N

such that for all n ≥ N , P {L(K,K∗
n) > ξ} < η, where L is the Levy metric (Gnedenko and



Bootstrap in a stereological problem 1263

Kolmogorov [5], page 33), K is the distribution function of W ∼ N(0, 1
2g(x0)) and K∗

n is the
distribution function of �∗

n, conditional on the data. For ε > 0, sufficiently small, let

An := {∣∣U#
n (x0 + β) − U#

n (x0) − βṼ #
n (x0) − 1

2β2V ′(x0)
∣∣ < Cε2

n + εβ2},
where C > 0 is chosen such that P {Ac

n} <
η
2 . This can be done since (c) holds with O(ε2

n) term
replaced by OP (ε2

n). Further, let P 0
n (E)(ω) = P ∗(E)(ω), if ω ∈ An and P 0

n (E)(ω) = P(E), if
ω /∈ An; and let K0

n be the distribution function of �∗
n under the probability measure P 0

n . Observe

that K0
n = K∗

n on An and that L(K,K0
n)

P 0
n→ 0 by Corollary 2.1 can be applied. Therefore, for all

sufficiently large n,

P {L(K,K∗
n) > ξ} ≤ P

{
L(K,K0

n) >
ξ

2

}
+ P

{
L(K0

n,K∗
n) >

ξ

2

}

≤ η

2
+ P

{
L(K0

n,K∗
n) >

ξ

2
,Ac

n

}
≤ η.

This completes the proof of (iv). �

Remark 3.1. Let Jn(t) = ∫ ∞
t

√
z − t dV #

n (z), for t ≥ 0, as in (1.4). Then G#
n = 1 + 2Jn(t)/π

after some simplification. So, using (1.4) to generate the bootstrap sample would lead back to
G#

n.

3.2. Bootstrapping Fn, F̃n and F̌n

Bootstrap versions of the three estimators of F under study, F ∗
n , F̃ ∗

n and F̌ ∗
n say, are defined as

in Section 2.2; for example, F ∗
n (x) = 1 + (2/π)

∫ ∞
x

√
z dV ∗

n (z). We approximate the sampling
distribution of ε−1

n {F #
n (x0)−F(x0)} by the bootstrap distribution of ε−1

n {F ∗
n (x0)−F #

n (x0)}. The
bootstrap samples are generated from G#

n, the EDF of the Yi ’s. By appealing to Proposition 2.2
with Gn = G#

n, it is easy to see that the bootstrap method is weakly consistent as (2.1)–(2.4) hold
in probability.

The sampling distribution of ε−1
n {F̃ #

n (x0) − F(x0)} is approximated by that of ε−1
n {F̃ ∗

n (x0) −
F̃n(x0)}. Using Proposition 2.3, we can establish the consistency of the method. Note that the
proof of Theorem 3.1 shows how conditions (a)–(c) are satisfied with Gn = G#

n, V̂n = Ṽn required
to apply Proposition 2.3.

Recall that F̌ ∗
n is the nondecreasing function closest to F ∗

n . Let H #
n (x) := ∫ x

0 F #
n (z)dz and

H ∗
n (x) := ∫ x

0 F ∗
n (z)dz. Next, we show that approximating the distribution of �n = ε−1

n {F̌n(x0)−
F(x0)} by the bootstrap distribution of �∗

n := ε−1
n {F̌ ∗

n (x0) − F̌n(x0)} is consistent. To find the
limit of the conditional distribution of �∗

n, let

X
∗
n(t) = ε−2

n {H ∗
n (x0 + εnt) − H ∗

n (x0) − F̌n(x0)εnt}
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for t ∈ In := [−ε−1
n x0,∞) and decompose it into X

∗
n,1 and X

∗
n,2, where

X
∗
n,1(t) = ε−2

n {(H ∗
n − H #

n )(x0 + εnt) − (H ∗
n − H #

n )(x0)},
X

∗
n,2(t) = ε−2

n {H #
n (x0 + εnt) − H #

n (x0) − F̌n(x0)εnt}.

Recall that X1(t) = tW and X(t) = X1(t)+ 1
2 t2f (x0) are two processes defined for t ∈ R, where

W is a normal random variable having mean 0 and variance 2
π2 x0g(x0).

Theorem 3.2. Suppose that F is continuously differentiable around x0, and g(x0) �= 0. Then:

(i) The conditional distribution of the process X
∗
n,1, given Y, converges to that of X1 a.s.

(ii) Unconditionally, X
∗
n,2(t) converges in probability to 1

2 t2f (x0), uniformly on compacta.
(iii) The conditional distribution of the process X

∗
n, given Y, converges to that of X, in proba-

bility.
(iv) The bootstrap procedure is weakly consistent, that is, the conditional distribution of �∗

n,
given Y, converges to that of W , in probability.

Proof. The proof is very similar to that of Theorem 3.1. To find the conditional distribution of
X

∗
n,1 given Y, we appeal to Theorem 2.2 with Gn = G#

n, G#
n = G∗

n and P {·} = P ∗{·} = P {·|Y}.
Note that condition (a) required for Theorem 2.2 holds a.s. We express X

∗
n,2(t) as X

0
n(t) − t ·

GCMIn[X0
n]′(0) where

X
0
n(t) = ε−2

n {H #
n (x0 + tεn) − H #

n (x0) − F(x0)εnt}.
Note that unconditionally X

0
n converges in distribution to X by an application of Theorem 2.2

with Gn = G, F̂n = F and Hn = H for all n.
Unconditionally, using the continuous mapping theorem along with a localization argument

as in Corollary 2.1, we obtain X
∗
n,2(t) ⇒ X(t) − t · GCMR[X]′(0) = 1

2 t2f (x0). As the limiting

process is a constant, X
∗
n,2(t)

P→ 1
2 t2f (x0).

An argument using subsequences as in the proof of (iii) of Theorem 3.1 shows that the condi-
tional distribution of the process X

∗
n, given Y, converges to that of X, in probability. The last part

of the theorem follows along similar lines as in the proof of (iv) of Theorem 3.1. �

4. Data application

A globular cluster (GC) is a spherical collection of stars that orbits a galactic core as a satellite.
GCs are very tightly bound by gravity, which gives them their spherical shapes and relatively
high stellar densities toward their centers. The study of the inner Galactic GCs is important for
several reasons – to understand the morphology of the inner Galaxy, to better constraint the
characteristics of the Galactic bulge, etc. Data is available on individual stars in 25 globular
clusters located toward the center of the Milky Way (see, e.g., Alonso [2] and Alonso et al.
[3]). The left panel of Figure 2 shows the projected positions of n = 2000 stars in the inner
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Figure 2. Left panel: Scatter plots of the projected positions of the stars; right panel: F #
n (red), F̃ #

n (black,
piece-wise constant).

core of the globular cluster M62 (also known as NGC 6266). Interest focuses on estimating the
distribution function F of the squared radius. The naive estimator of F , F #

n , is shown in the right
panel of Figure 2 along with the isotonized estimator F̃ #

n . The two isotonic estimators F̃ #
n and

F̌n are virtually indistinguishable, and the left panel of Figure 3 shows the difference between
the two estimators. Note that both the isotonic estimators have the same pointwise normal limit
distribution. The right panel of Figure 3 shows the point-wise bootstrap based 95% CIs for F

using the estimator F̃ #
n . A very similar plot is obtained using the estimator F̌n.

Figure 3. Left panel: F̃ #
n − F̌n; right panel: Bootstrap based 95% pointwise CIs around F̃ #

n .
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