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We define the group-lasso estimator for the natural parameters of the exponential families of distributions
representing hierarchical log-linear models under multinomial sampling scheme. Such estimator arises as
the solution of a convex penalized likelihood optimization problem based on the group-lasso penalty. We
illustrate how it is possible to construct an estimator of the underlying log-linear model using the blocks of
nonzero coefficients recovered by the group-lasso procedure. We investigate the asymptotic properties of
the group-lasso estimator as a model selection method in a double-asymptotic framework, in which both
the sample size and the model complexity grow simultaneously. We provide conditions guaranteeing that
the group-lasso estimator is model selection consistent, in the sense that, with overwhelming probability
as the sample size increases, it correctly identifies all the sets of nonzero interactions among the variables.
Provided the sequences of true underlying models is sparse enough, recovery is possible even if the number
of cells grows larger than the sample size. Finally, we derive some central limit type of results for the
log-linear group-lasso estimator.
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1. Introduction

The theory of log-linear models has produced a variety of statistical methodologies and theoreti-
cal results for the analysis of categorical data that have found applications in numerous scientific
areas, ranging from social and biological sciences, to medicine, disclosure limitation problems,
data-mining, image analysis, finger-printing, language processing and genetics.

Inherently, log-linear modeling is a model selection procedure for contingency tables that
encompasses testing a number of statistical models for the joint distribution of a set of categorical
variables. The classical asymptotic theory of model selection and goodness-of-fit testing is well
developed and understood for the ‘small p and large N ’ case, that is, the case in which the
sample size N is much larger than the number p of candidate parameters. It is applicable to a
variety of goodness-of-fit measures, such as Pearson’s χ2, the likelihood ratio statistic and, more
generally, any statistics belonging to the power-divergence family of Read and Cressie [29]. The
applicability and validity of these methods demand the availability of large sample sizes and the
existence of the maximum likelihood estimate (MLE).

In recent years, the importance and usage of log-linear modeling methodologies have increased
dramatically with the compilation and diffusion of large databases in the form of sparse contin-
gency tables. In such instances, the number of sampled units is not much different, in fact often
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smaller, than the number of cells, so that most of the cell entries are very small or zero counts.
In high-dimensional settings, the traditional methodologies indicated above are inadequate. First
off, the number of log-linear models grow extremely fast with the number of variables (for ex-
ample, there are 7580 hierarchical models for a 5-way table!), and selecting an optimal model
involves exploring a space of models of virtually infinite dimension. Secondly, for a given model
of even moderate complexity, under a sparse scenario, the MLE is unlikely to exist. This implies
that the information content present in the data is not sufficient to estimate all the parameters of
the model, and, therefore, the possibility for inference is only limited to portions of the parameter
space (see Rinaldo, Fienberg and Zhou [31] for details). As a result, traditional goodness-of-fit
testing and model selection will produce very poor, if not completely erroneous, asymptotic
approximations. It is quite clear that a more appropriate statistical formalization requires the
consideration of a ‘large p’ setting.

In this article, we study a methodology for log-linear model selection that is particularly suited
to high-dimensional tables, and we describe some of its asymptotic properties. Our results are
akin to the asymptotic optimality of the lasso estimator in high dimensional least squares prob-
lems, where the recovery of the sparsity pattern of an unknown set of parameters in noisy settings
via �1-regularization is possible, even if the number of parameters grows faster than the sample
size. See, in particular, Meinshausen and Bühlmann [21], Zhao and Yu [41], Wainwright [37] and,
for a different approach, Greenshtein [15] and Greenshtein and Ritov [16]. Existing work on pe-
nalized likelihood problems involving �1-regularization for discrete data include the nonasymp-
totic results about �2 consistency for estimation in high-dimensional generalized linear models
via the lasso by van de Geer [35,36], and the analysis by Wainwright, Ravikumar and Laf-
ferty [38] on the consistency of �1-regularized logistic regression with binary variables under
a double asymptotic framework. In Section 5, we discuss in detail the differences between our
problem and solutions and the existing results.

We formulate the log-linear model selection problem as a convex penalized maximum like-
lihood problem based on the group-lasso, a convex penalty function introduced by Yuan and
Lin [40] in a nonasymptotic ANOVA setting and further analyzed by Nardi and Rinaldo [23].
The group-lasso regularization is an extension of the lasso, or �1, penalty function designed to
penalized groups of coefficients simultaneously. It has been shown to be effective in logistic re-
gression problems by Meier, van der Geer, and Bühlmann [20] and has been used in applications
involving log-linear modeling of sparse contingency tables in Dahinden et al. [7].

The paper is organized as follows. In Section 2, we describe the log-linear model settings
we will be considering. The direct sum decomposition of the natural parameter space by log-
linear subspaces defines a partition of the parameters in blocks of different dimensions, which
are utilized as arguments of the group penalty function. In Section 3, we describe the group-lasso
estimator for log-linear models, which can be computed by solving a convex program. Next, we
show that the group-lasso estimator produces, in turn, an estimator of the underlying log-linear
model, which is constructed simply by isolating the nonzero blocks of the group-lasso estimates.
Section 4 outlines our contribution by studying the consistency properties of the group-lasso es-
timator as a model selection procedure. We formulate a general double-asymptotic framework
in which we allow both the sample size and the model complexity to grow. In Section 4.1, we
derive conditions guaranteeing that the model estimates are consistent, that is, asymptotically,
the group-lasso correctly identifies the set of interactions making up the underlying model. We
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conclude our analysis with some central limit results in Section 4.2. The proofs appear in Sec-
tion 6.

1.1. Notation

Let X1, . . . ,XK denote K categorical variables, where each Xk takes values in Ik = {1, . . . , Ik},
with Ik ≥ 2 an integer. Set I = I1 × · · · × IK . We denote by RI the class of real-valued func-
tions on I which is the vector space of real-valued K-dimensional arrays indexed by the multi-
index I . The vector space RI can be naturally represented as a Euclidean space of dimension
I ≡∏K

k=1 Ik . This identification can be realized in a straightforward fashion by ordering I as
a linear list using any bi-jection between I and {1,2, . . . , I }. Each element i of I , called a
cell, is a multi-index i = (i1, . . . , iK). Using this coordinate vector representation, for any ar-
ray x ∈ RI , xi is the number indexed by the coordinate i ∈ I . Also, the standard inner product
〈x,y〉 =∑

i∈I xiyi and the induced Euclidean norm are well defined for all x,y ∈ RI .
We use the following notational conventions. Let {xs, s ∈ S} be a set of vectors of possibly

different dimensions, indexed by some finite set S . We will denote by vec{xs, s ∈ S} the vector
obtained by staking the xs ’s one on top of each others in the same order as the elements of S . For
any d-dimensional Euclidean vector x, we write exp(x) = vec{exi , i = 1, . . . , d}, and logx =
vec{logxi, i = 1, . . . , d}. For a linear subspace A of the d-dimensional Euclidean space, we
denote with A⊥ the orthogonal complement of A. If B is another linear subspace orthogonal
to A, we write A ⊕ B for the linear subspace obtained as their direct sum. Similarly, for matrices
U1, . . . ,Un with the same number of rows r and number of columns c1, . . . , cn, respectively, we
denote the operation of adjoining them into one matrix of dimension r ×∑k ck with

⊕n
k=1 Uk =

[U1 · · ·Un].
Throughout the article, we will consider random vectors and functions of random vectors

whose probability distributions will always be clear from the context. As a result, we will use the
generic notation P(O) for the probability of an event O defined by such vectors and will write E

for the corresponding expectation operator.

2. Log-linear models

We will be considering the usual log-linear modeling setting, which we now describe. See (see
also Bishop, Fienberg and Holland [4], Haberman [17], Lauritzen [18]). The K categorical ran-
dom variables X1, . . . ,XK have an unknown joint distribution given by the strictly positive prob-
ability vector π in RI with coordinates

π i1,...,iK = P
(
(X1, . . . ,XK) = (i1, . . . , iK)

)
, (i1, . . . , iK) ∈ I.

The positivity of π is a crucial assumption, ruling out the case of structural zeros, that is, cells
that can never be observed.

We observe N independent and identically distributed realizations of the random vector
(X1, . . . ,XK). Their cross-classification results in a random integer-valued vector n ∈ RI , called
a contingency table, whose ith coordinate entry ni corresponds to the number of times the cell
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combination i = (i1, . . . , iK) was observed in the sample. The table n has a Multinomial(N,π)

distribution.
Log-linear model theory is concerned with drawing inferences on π based on the observed

table n. Specifically, let m = En = Nπ denote the (necessarily positive) cell mean vector of n
and set μ = log m. Notice that estimating μ is equivalent to estimating π . A log-linear model is
specified by prescribing a linear subspace M of RI containing the constant functions and then
requiring that μ belongs to M. Indeed, any point in M represents a different cell mean vector,
and, therefore, a different probability distribution over I .

Then, for a given table n the log-likelihood function �∗ at μ ∈ M is (see Haberman [17],
page 11)

�∗(μ) =
⎧⎨⎩
∑
i∈I

ni log
mi

〈m,1〉 + logN ! −
∑
i∈I

log ni !, if 〈m,1〉 = N,

undefined, otherwise,

where m = exp(μ) and 1 ∈ RI is the I -dimensional vector containing ones. Indeed, because of
the Multinomial sampling assumption, �∗ is only defined over the nonconvex set M̃ � M given
by

M̃ = {μ ∈ M: 〈m,1〉 = N}.
This parametrization is clearly quite inconvenient. Fortunately, it is possible to reparametrize the
log-likelihood function as concave function defined over the entire Rk , where k is the dimension
of M̃. Specifically, let R(1) be the one-dimensional subspace of RI spanned by 1 and consider
the linear subspace M ∩ R(1)⊥ ⊂ RI of dimension k = dim(M) − 1.

Lemma 2.1. Let U be any full-rank matrix whose columns span M ∩ R(1)⊥ and consider the
function

�(θ) = 〈U�n, θ〉 − N log〈exp(Uθ),1〉 + logN ! −
∑
i∈I

log ni !, θ ∈ Rk. (1)

Then, for each μ̃ ∈ M̃ there exists one θ ∈ Rk such that

exp(μ̃) = N

〈exp(Uθ),1〉 exp(Uθ) and �(θ) = �∗(μ̃) for each n, (2)

and, conversely, for each θ ∈ Rk there exists one μ̃ ∈ M̃ satisfying the above identities.

This reparametrization is essentially equivalent to reduction to minimal form of the underly-
ing exponential family of distributions for the cell counts via sufficiency. In fact, the previous
display shows that each log-linear model M specifies a full, regular exponential family of di-
mension k = dim(M) − 1, natural sufficient statistic U�n and natural parameter space Rk (see,
e.g., Brown [6]). Throughout the article, we take (1) as the operative definition of log-likelihood
function. Notice that the log-likelihood function depends on the choice of the design matrix U.
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2.1. Log-linear subspaces for hierarchical log-linear models

Although log-linear models are defined by generic linear manifolds of RI , in practice it is cus-
tomary to consider only very specific classes of linear subspaces, which are also characteristic
of ANOVA models and experimental design, yielding hierarchical log-linear. In this section, we
briefly describe such subspaces. See Darroch, Lauritzen and Speed [8], Appendix B in Lau-
ritzen [18] and Rinaldo [30] for details.

A rather intuitive way of specifying a certain dependence structure among the K variables of
interest is to provide a list of the interactions among them. Then, the associated statistical model
is representable as a class of subsets of K ≡ {1,2, . . . ,K}, each one indicating a different type
of interaction. In fact, every subset h of K can be given a straightforward ANOVA-type of an
interpretation, based on its cardinality |h|, so that h identifies an interaction of order |h| − 1
among the variables {i: i ∈ h}. For example, if |h| = 1, then h is a main effect, if h = ∅, then h

is the grand mean, and so on.
Formally, let 2K be the power set of K, which we view as a lattice with respect to the partial

order induced by the operation of taking subset inclusion.

Definition 2.2. A hierarchical log-linear model � is a collection of subsets of 2K such that
h ∈ � and h′ ⊂ h implies h′ ∈ �. An interaction model H is just a subset of 2K .

By definition, once an interaction term is part of �, all lower order interactions are included.
Notice that Definition 2.2 includes as special case the class of graphical and hierarchical models
(see, e.g., Lauritzen [18]). Though our analysis is valid also for the larger class of interaction
models, we focus only on hierarchical log-linear models, primarily because the interpretability
of interaction log-linear models is very limited.

To any given hierarchical model �, there corresponds one log-linear subspace M� ⊂ RI ,
constructed as the direct sums of subspaces of RI indexed by the subsets of K belonging to �.
Specifically,

M� =
⊕
h∈�

Uh, (3)

where {Uh,h ∈ 2K} are mutually orthogonal subspaces, called the subspaces of interactions. We
refer the reader to Lauritzen [18], Appendix B, for details on these subspaces. In particular, U∅

is the one-dimensional subspace R(1) and

dim(Uh) ≡ dh =
∏
k∈h

(Ik − 1), h ⊆ K, h �= ∅.

A design matrix for � can be constructed as follows. For each term h ⊆ K and factor k ∈ K,
define the matrix

Uh
k =

{
Zk, if k ∈ h,

1k, if k /∈ h,
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where Zk is a Ik × (Ik − 1) matrix with entries

Zk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · 1

0 0 0 0 · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

and 1k is the Ik-dimensional column vector of 1’s. Let

Uh =
K⊗

k=1

Uh
k , (5)

where ⊗ denotes the Kronecker product. Then, it is possible to show that, for each h ∈ 2K , Uh is
a (I × dh)-dimensional full-rank matrix whose columns span Hh. See Rinaldo [30], Section 3,
for details. Thus, the columns of

U� =
⊕

h∈�,h�=∅

Uh (6)

span M� ∩ R(1)⊥, and, therefore, U� is a full-rank design matrix for the log-linear model �.
By the same token, the columns of the matrix

U =
⊕

h∈2K,h�=∅

Uh

span the (I − 1)-dimensional subspace RI ∩ R⊥. As a result, any point μ ∈ RI ∩ R(1)⊥ can be
written as

μ = Uθ =
∑

h∈2K,h�=∅

Uhθh,

for some vector

θ = vec{θh,h ∈ 2K, h �= ∅} ∈ RI−1, (7)

where θh denotes the dh-dimensional sub-vector of θ corresponding to the sub-matrix Uh.

Remark. Throughout the document, we will be assuming that the elements of 2K are ordered
in some predefined way, and that any indexing by subsets of K is done accordingly. Then, using
such ordering, any vector θ ∈ RI−1 can be uniquely represented like in (7). Furthermore, we will
use the notation

∑
h to denote summation over all h ⊆ K with h �= ∅.
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3. The group-lasso estimator for log-linear models

In this section, we define the group-lasso estimator for the set of interactions of a given hierar-
chical log-linear model specified by a subspace M�.

Using (1), the log-likelihood function for the saturated (I − 1)-dimensional log-linear model
is

�(θ) =
∑

h∈2K,h�=∅

〈U�
h n, θh〉 − N log

〈
exp

( ∑
h∈2K,h�=∅

Uhθh

)
,1
〉

(8)
+ logN ! −

∑
i

log ni !, θ ∈ RI−1.

Notice that the one-dimensional sub-space R(1) corresponding to the empty set is not included,
because of the multinomial sampling restriction.

For any nontrivial model � with corresponding log-linear subspace M� (i.e., a model differ-
ent than {∅}, which encodes the uniform distribution over I ), let

H = H(�) = {h: h ∈ �,h �= ∅}, (9)

be the collections of sets representing all the interactions in �, or, equivalently, the collections of
factor interaction subspaces of M�, so that dim(M�)−1 =∑

h∈H dh ≡ dH. (Notice that H dif-
fers from � only because it does not contain the empty set). We will embed the natural parameter
space of �, i.e., RdH , as a linear subspace of RI−1 consisting of all vectors such that{‖θh‖ > 0, h ∈ H,

‖θh‖ = 0, h /∈ H.

The log-likelihood function for this model is still given by equation (8), where the summations
are now taken over the sets h in the class H.

Let �0 denote the true underlying log-linear model. Thus, there exists a vector of parameters
θ0 ∈ RI−1 such that ‖θ0

h‖ is positive for all h ∈ H(�0) and zero otherwise. Having observed a
contingency table n, we seek to recover �0. That is, our goal is to identify those block compo-
nents of θ0 having positive norms. To this end, we define the group-lasso estimator for log-linear
models to be the solution of the concave optimization problem

max
θ∈RI−1

P�(θ) ≡ max
θ∈RI−1

{
1

N
�(θ) − λ

∑
h

λh‖θh‖
}
, (10)

with �(·) defined as in (8) and � = {λ, {λh,h �= ∅}} a set of given tuning parameters. The pa-
rameter λ controls the overall effect of the penalty and should be a function of the sample size,
while the block parameters λh allows for specific penalties depending on the sizes of the indi-
vidual blocks. A reasonable choice for these tuning parameters is λh = √

dh, so that each block
of coefficients is penalized proportionally to its dimension, with larger blocks penalized more
heavily.
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The group-lasso penalty appearing in (10) was first proposed by Yuan and Lin [40] in the
context of linear Gaussian models under ANOVA settings (see also Nardi and Rinaldo [23]). It is
specifically designed to produce sparsity in the vector of estimated coefficients at the block level.
It is obtained as compositions of the �1 norm over quadratic norms of the individual blocks.
The quadratic norms of individual blocks promote non-sparsity, whereas the �1 norm applied
to the resulting block norms, promotes block sparsity. The group-lasso methodology of Yuan
and Lin [40] was further extended to logistic regression models by Meier, van der Geer and
Bühlmann [20] and to log-linear models by Dahinden et al. [7], which inspired our work.

Lemma 3.1. The vector θ̂ ∈ RI−1 is an optimizer of (10) if and only if there exists a vector
η̂ ∈ RI−1 such that, for any h,

− 1

N
U�

h (n − m̂) + λλhη̂h = 0, (11)

where

η̂ =
⎧⎨⎩

θ̂h

‖θ̂h‖2
, if θ̂h �= 0,

λĥzh, if θ̂h = 0

with ‖̂zh‖ ≤ 1, and m̂ = N

〈exp(Uθ̂ ),1〉 exp(Uθ̂ ). The solution is unique if ‖̂zh‖ < 1 for each h for

which θ̂h = 0.

Having obtained the group-lasso estimator θ̂ , the model selection step entails building an es-
timate of the true model �0 by extracting the blocks of θ̂ with positive norm and then build a
hierarchical model �̂ as illustrated in Table 1. There are two advantages in using the group-lasso
estimator for estimating �0 rather than traditional methods of model selection based on sequen-
tial testing of a potentially very large number of competing models. The first advantage is that
the methodology described in Table 1 only involves determining a penalized maximum likeli-
hood estimator of θ0 and thus requires solving only one convex optimization problem (albeit
a hard one, see the discussion below). In contrast, classical model selection procedure requires
fitting and comparing a number of different models which, even for tables with a small number
of variables, can be unfeasible. The second advantage is that the group-lasso estimator always
return a model for which the maximum likelihood estimate exists, a fact that is not guaranteed
by the computational procedures currently used in practice. See Fienberg and Rinaldo [12] for
more details.

Remark. Though motivated by model selection with hierarchical models, our analysis below
will actually show the log-linear group lasso estimator can asymptotically recover any log-linear
interaction subspace. This is the reason why in equation (9) we used the more general notation H
to encode the interactions of a hierarchial log-linear model �. Thus, the last step in the algo-
rithm described in Table 1, which forces the estimated model to be hierarchical, should not be
used if interested in general interaction models. Furthermore, while asymptotically this step is
unnecessary for a hierarchical model, we nonetheless believe it would improve the finite sample
performance of the algorithm.
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Table 1. The group-lasso model selection for hierarchical log-linear models

1. Obtain the log-linear group-lasso estimator,
θ̂ = argmaxθ∈RI−1 P�(θ).

2. Extract the set of non-zero blocks from θ̂ ,
Ĥ = {h: ‖θ̂h‖ > 0}.

3. Recover the hierarchical log-linear model from Ĥ,
�̂ = {h′: h′ ⊆ h, for some h ∈ Ĥ}.

Model complexity and computational considerations

We now make some remarks on the complexity of the class of log-linear models. The model
selection problem for log-linear models is characterized by a combinatorial explosion in the
number of possible models that is much larger than for linear and many generalized-linear mod-
els. Combined with the fact that the notion of sample size is also quite different, as it refers to
total number of counts N in our settings and to the total number of observed counts

∏
k Ik in

the linear and generalized linear model settings, a direct comparison between the computational
burden of our estimator versus the lasso or group-lasso procedure for those models is not entirely
adequate.

It follows from our combinatorial definition of a general log-linear model from Section 2.1
that, for a K-way table, log-linear models can be represented as subsets of the set of all the
2K − 1 possible interactions, except the one specified by the empty set. Table 2 displays the
number of log-linear models of different types as a function of K . For a given K , the number of
possible unrestricted log-linear model is 22K−1, which super-exponential in K . The number of
hierarchical models, for which no closed form expression is available, is much smaller, but still
appears to grow extremely fast (roughly exponentially) in K . For the even smaller subclasses of
graphical1 and decomposable models, the space of possible models is still extremely large, for
small values of K . For example, for a binary 5-dimensional table with a total of 32 observed
counts, there are 1233 decomposable models! Due to to this tremendous combinatorial com-
plexity, model selection by exhaustive model search is computationally prohibitive and, in fact,
unfeasible even for very small tables. Indeed, model selection techniques for log-linear models
must rely necessarily on very greedy algorithms and are often designed to consider only graphi-
cal or decomposable models. See, for instance, the Baysian procedure of Dobra and Massam [9],
and the frequentis model selection search based on asymptotic χ2 testing implemented in the
software MIM, described in Edwards [10].

In contrast, the group-lasso procedure we consider is parametrized, in both the likelihood and
the penalty part, by only 2K − 1 terms, which correspond to the direct sum decomposition of RI

into the orthogonal interaction subspaces. Although this number grows exponentially in K , it is
still order of magnitudes smaller than the possible number of models. Indeed, based on Table 2, it
appears to be loosely logarithmic in the number of possible models. As a result, even though the

1The number of possible graphical models is
∑K

i=0
(K

i

)
2(i

2).
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Table 2. Number of log-linear models of different types as a function of K . Source: Lauritzen [19]

K

Type 1 2 3 4 5

Unrestricted 2 8 128 32,768 2,147,483,648
Hierarchical 2 5 19 167 7580
Graphical 2 5 18 113 1450
Decomposable 2 5 18 110 1233

computational complexity of (10) may be high, it is significantly smaller than exhaustive model
selection and many greedy model selection algorithms.

To our knowledge, two algorithms for computing the group-lasso estimates are currently avail-
able: the block-coordinate descent method of Meier, van der Geer and Bühlmann[20], developed
for the specific case of logistic regression with grouped variables but immediately extendible
to our settings, and the path-following algorithm of Dahinden et al. [7] for general log-linear
models on binary variables. Both methods showed good performance on simulated data and
have been applied successfully to real-life datasets, with the tuning parameters chosen by cross-
validation. Those results corroborate our theoretical findings that group-lasso estimator possess
good theoretical properties and is a valuable alternative to greedy model selection procedures.
For completeness, we reference the more recent works by Roth and Fisher [32], Puig, Wiesel and
Hero [27], Yuan, Roshan, and Zou [39] and Friedman, Hastie and Tibshirani [13].

Nonetheless, we remark that the development of efficient computational methods for calculat-
ing the group-lasso solution (for log-linear as well as for linear model) with proven performance
particularly in very high-dimensional settings still remains an open problem.

4. Asymptotic analysis

In this section, we provide the main results of the paper. We perform here a ‘large p and large N ’
type of an asymptotic analysis of the model selection procedure described in Table 1 and of the
properties of the group-lasso estimator. We consider a rather general double-asymptotic frame-
work, in which we allow both the sample size and the complexity of the statistical model to
grow simultaneously. In particular, we assume a sequence of statistical experiments consisting
of log-linear models over an increasingly large set of cell combinations, implied by both a grow-
ing number of categorical variables and a growing number of levels for the variables, and with
increasing sample size. To formally represent this sequence of experiments, we will introduce a
‘time’ variable n, which serves merely as an index and is not necessarily a quantification of the
rate of increase of the sample size. Intuitively, the larger the index n, the bigger the contingency
table, the larger the sample size and the more complex the model selection problem.

To be specific, at time n,

• it is available a multinomial sample of size Nn from the joint distribution of Kn categorical
variables, each defined over a finite set Ikn = {1, . . . , Ikn}, kn = 1, . . . ,Kn; the support of
this distribution is the set In =⊗

kn
Ikn of all cell combinations, of cardinality In =∏

kn
Ikn ;
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• the true underlying distribution is defined by a hierarchical log-linear model �n, as de-
scribed in Section 2.1: the observed cell counts come from an exponential family distri-
butions with log-likelihood function (8) and true natural parameter θ0

n ∈ RIn−1, such that
‖θ0

hn
‖ > 0 for hn ∈ Hn and ‖θ0

hn
‖ = 0 for hn /∈ Hn, with Hn defined as in (9); the corre-

sponding vector of cell probabilities is denoted with π0
n ∈ RIn and the mean vector Nnπ

0
n

with m0
n;

• the vector of true parameters θ0
n is estimated by solving the program (10) with tuning pa-

rameters �n = {λn, {λhn,hn �= ∅}};
• the group-lasso estimate θ̂n is then used to estimate �n as described in Table 1, leading to

the optimal selected model �̂n.

In the rest of the article, we will use the notation {tn} ∈⊗Rkn to denote a sequence of vectors
such that tn ∈ Rkn , for every n.

We remark that the true model at each ‘time point’ n needs not be related with the true models
at different values of n. The sequential setting we adopt is a convenient device for representing
very generally an asymptotic framework for log-linear model selection with a diverging number
of parameters; in fact, there are many factors that may increase the complexity of a log-linear
model (e.g., number of variables, number of interactions in the model, number of levels for each
variable) that we found it convenient to just allow each of them to change at every n.

In our sequential setting, the probability spaces are allowed to change with n and, when we
speak of convergence in probability to a constant or of tightness with respect to the index n,
we explicitly refer to a sequence of different probability measures. Accordingly, we will use the
stochastic small and large order notation oPn and OPn respectively with an index n for the prob-
ability measures. This notation is well defined: see, for instance, Schervish ([33], Definition 7.11
and Lemma 7.12).

Projecting down the true parameter θ0
n into RdHn we write θ0

Hn
. One may take note that, for a

single observation, the Fisher information matrix at θ0
Hn

is

FHn
= U�

Hn

(
Dπ0

n
− π0

n(π
0
n)

�)UHn
,

with maximal and minimal eigenvalues denoted by lmax
n and lmin

n , respectively. The negative
Hessian of the log-likelihood function is

	Hn
= U�

Hn

(
Dm0

n
− m0

n(m
0
n)

�

Nn

)
UHn

= NnFHn
, (12)

which is the covariance matrix of the natural sufficient statistics U�
Hn

nn and the Fisher informa-
tion based on a i.i.d. sample of size N .

In the reminder of the article, we will study some of the asymptotic properties of the sequence
of group-lasso estimates {θ̂n}n generated according to the previous scheme. In Section 4.1, we
prove the that the group-lasso estimator is model selection consistent, that is,

lim
n

P(�̂n = �n) = 1. (13)

Finally, in Section 4.2 we give a central limit theorem for θ̂n.
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4.1. Model selection consistency

Here, we derive sufficient conditions for the property of model selection consistency (13). Our
method of analysis is based on linearizing the sub-gradient optimality conditions (11) via a Taylor
expansion around the sequence of true parameters θ0

n . As it turns out, norm (or l2) consistency is
necessary to guarantee enough stochastic control over the remainder term of that expansion. To
that end, we first establish norm consistency (in Lemma 4.1) concerning a related optimization
problem (see (17) below). The conditions we develop for model selection consistency are quite
similar in spirit to the ones arising from the study of sparse recovery of a linear signals under
Gaussian or white noise using the lasso penalty (see, in particular, Wainwright [37], Zhao and
Yu [41]).

Recall the definition of Hn from (9) and let Hc
n = 2Kn \ (Hn ∪ ∅), so that ‖θ0

hn
‖ > 0 for each

hn ∈ Hn and ‖θ0
wn

‖ = 0 for each wn ∈ Hc
n. Consider the sequence of events indexed by n

On = {‖θ̂hn‖ > 0,∀hn ∈ Hn} ∩ {‖θ̂wn‖ = 0,∀wn ∈ Hc
n}. (14)

Then, the model selection consistency property (13) of the group-lasso solutions θ̂n is equivalent
to convergence in probability of On, namely limn P(On) = 1. This in turn occurs if and only if

lim
n

P(‖θ̂hn‖ > 0,∀hn ∈ Hn) = 1 (15)

and

lim
n

P(‖θ̂wn‖ = 0,∀wn ∈ Hc
n) = 1. (16)

In this section, we will provide sufficient conditions for (15) and (16).
Our method of analysis relies on the primal-dual witness construction of Wainwright [37],

which we summarize below.

1. Solve a restricted group-lasso problem

θ̃n = argmax
θ∈R

dHn

P�(θ), (17)

where � = {λn,λh,h ∈ Hn(�0)}.
2. Choose a vector η̂Hn

that belongs to the subdifferential of group lasso penalty
λn

∑
h,h∈Hn

λh‖xh‖ evaluated at θ̃n, and solve for a (I − 1 − dHn
)-dimensional vector

η̂Hc
n
= vec{λwn ẑwn,wn ∈ Hc

n}
the optimality conditions (11). Check that ‖̂zwn‖ < 1, for all wn ∈ Hc

n.
3. The vector θ̂n = vec{θ̃n,0} ∈ RI−1 is the unique solution (see Lemma 3.1) of (11) and the

event in equation (14) holds.

Since the optimality conditions (11) are non-linear functions of θ ∈ RI−1, step 2. entails first
a linearization step to bound the difference between θ̃n and θ0

Hn
by a Taylor series expansion,

and then showing that the resulting remainder term vanished in probability. This, in turn, follows
from the next result, which established that θ̃n is a norm consistent estimator of θ0

Hn
.
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Lemma 4.1. Assume

1. [NC.1] dHn
= o(Nn);

2. [NC.2] 0 < Dmin < lmin
n ≤ lmax

n < Dmax < ∞, here lmin
n , lmax

n are the minimal and maximal
eigenvalue of the Fisher information matrix, respectively;

3. [NC.3] for any D > 0,

sup

{
|Eθn [〈a,U�

Hn
X〉]|: ‖θn − θ0

Hn
‖ ≤ D

√
dHn

Nn

,‖a‖ = 1

}
= O

(√
Nn

dHn

)
, (18)

where, for θn ∈ RdHn , Eθn denotes the expectation operator with respect to the distribution
Multinomial(1,πn), with

πn = exp(UHn
θn)

〈exp(UHn
θn),1〉 ;

4. [NC.4] λn = O( 1∑
hn∈Hn

λhn
).

Then,

‖θ̃n − θ0
Hn

‖ = OP 0
n

(√
dHn

Nn

)
= oP 0

n
(1). (19)

The proof of Lemma 4.1 relies on results of Portnoy [26]. Indeed, conditions [NC.1]
and [NC.2] are essentially derived from Portnoy [26], Theorem 2.1. The more technical con-
dition [NC.3], also derived from Portnoy [26], equation (2.4), is needed to establish some control
the order of magnitude of the remainder term in the local quadratic approximation of the log-
likelihood function around θ0

Hn
, uniformly over compact neighborhoods (see also Ghosal [14],

for similar conditions).
Armed with (19), we now proceed to prove the property of model selection consistency for the

group-lasso.

Theorem 4.2. Assume the conditions of Lemma 4.1. Then, equation (15) holds if

• [MSC.1] letting αn = minhn∈Hn
‖θ0

hn
‖,

1

αn

(√
dHn

Nn

+ λn

√ ∑
hn∈Hn

λ2
hn

)
→ 0, (20)

which, for λhn =√
dhn , simplifies to

√
dHn

αn
(

√
1

Nn
+ λn) → 0.

Equation (16) holds if

• [MSC.2] (‘almost’ parameter orthogonality) for some ε ∈ (0,1) and for each wn ∈ Hc
n,∥∥∥∥U�

wn

(
Dm0

n
− m0

n(m
0
n)

�

Nn

)
UHn

	−1
Hn

∥∥∥∥<
(1 − ε)

|Hc
n|

; (21)
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• [MSC.3]

lim
n

|Hn|maxhn∈Hn
λhn

|Hc
n|minwn∈Hc

n
λwn

≤ 1;

• [MSC.4] (
max

wn∈Hc
n

dwn

λ2
wn

)
log(In − 1 − dHn

)

Nλ2
n

→ 0,

which, for the choice λhn =√
dhn , becomes log(In−1−dHn )

Nλ2
n

→ 0,→ ∞.

Condition [MSC.2] implies that

‖Wn‖ =
∥∥∥∥U�

Hc
n

(
Dm0

n
− m0

n(m
0
n)

�

Nn

)
UHn

	−1
Hn

∥∥∥∥< (1 − ε),

which is the equivalent of the so-called irreducibility condition appearing in the growing lasso lit-
erature (e.g., Wainwright [37] and Zhao and Yu [41]). Condition [MSC.3] is a sparsity condition
and condition [MSC.4] provides some information on the rates of increase for the dimensions
for the subspaces of interactions not included in the true models (see equation (15) (a) in Wain-
wright [37]). Inspection of the proof will reveal that, using a simpler argument based on Cheby-
shev’s inequality only, and assuming λhn =√

dhn for all h, [MSC.4] reduces to λ2
nNn → ∞, so

that model selection consistency is obtained under conditions that do no depend on In.

4.2. A central limit theorem for the log-linear group-lasso estimator

Our final results concern the large sample properties of the distribution of lasso group esti-
mates {θ̂n}n. In addition to the conditions guaranteeing both norm and model selection con-
sistency, we need to impose further restrictions guaranteeing some form of asymptotic normality
under our double asymptotic framework. The main rationale behind retaining the set of assump-
tions for consistency is that they allow us to work only with the simpler and well-behaved se-
quence of events On defined in (14), which converges in probability.

In general, asymptotic normality under the double asymptotic settings obtains under stricter
assumptions than under standard (i.e., with fixed-dimensional parameter space) asymptotic prob-
lems. Below, we provide a series of conditions, each providing a sense that for large enough n,
the group-lasso estimates (appropriately rescaled and translated) are close to a standard Normal
distribution.

To state our result, we need to formulate some notation. Let J0
Hn

be a dHn
× dHn

block-
diagonal matrix whose hn-block is the dhn × dhn matrix

λhn

1

‖θ0
hn

‖
(

Idhn
− θ0

hn

‖θ0
hn

‖2

(
θ0
hn

‖θ0
hn

‖2

)�)
,
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with hn ∈ Hn and with Idhn
denoting the dhn -dimensional identity matrix. Below, Gn will denote

a k × dHn
matrix, where k is an arbitrary fixed number, such that

lim
n

GnG�
n = G (22)

for some k × k nonnegative and symmetric matrix G.

Theorem 4.3. Assume the conditions for norm and model selection consistency and let

Xn =√
NnF−1/2

Hn

(
(FHn

+ λnJ0
Hn

)(θ̂n − θ0
Hn

) + λnη
0

Hn

)
, (23)

where

η0
Hn

= vec

{
λhn

θ0
hn

‖θ0
hn

‖ , hn ∈ Hn

}
.

1. For each sequence {Gn} of k ×dHn
matrices satisfying (22), GnXn converges weakly to the

Nk(0,G) distribution if either the [CLT.LF] condition

dHn
= o(N

1/2
n )

or both the [CLT.Ma] condition

dHn
= o(Nn)

and [CLT.Mb] condition

max
i∈In

π0
i = O

(
1√

NndHn

)
.

hold.
2. If the [CLT.BE] condition

dHn
= o(N

2/7
n ),

holds, then

sup
An

|P(Xn ∈ An) − P(Zn ∈ An)| → 0,

where Zn has a NdHn
(0, IdHn

) distribution, the supremum is taken over the convex sets An

in RdHn and convergence occurs at the rate O(
d

7/2
Hn

Nn
).

The theorem indicates that the group-lasso estimate is asymptotically unbiased and inefficient.
In fact, equation (23) demonstrates that the asymptotic behavior of the group-lasso estimator is
affected by two terms. One is the bias term λnη

0
Hn

which depends on the gradient of the penalty

function at the true parameter. The other term J0
Hn

is the Hessian at the true parameter of the
penalty function, a positive definite matrix which inflates the inverse Fisher information. Both



960 Y. Nardi and A. Rinaldo

these terms are asymptotically significant and indicate that the group-lasso estimates may lack
asymptotic optimality. Note that this phenomenon is probably quite general (see also Fan and
Peng [11], Theorem 2).

Both Condition [CLT.LF] and conditions [CLT.Ma] and [CLT.Mb] guarantee the asymptotic
normality of a fixed number of linear combinations of the coordinates of θ̂n. In particular, it in-
cludes that case of Gn = [Ik O], where O is a k × (dHn

− k) matrix of zeros. For this choice,
the marginal asymptotic normality of any fixed number of coordinates of θ̂n is guaranteed. Con-
dition [CLT.LF] results from a simple Lindberg–Feller argument, whereas conditions [CLT.Ma]
and [CLT.Mb] follow by adapting and generalizing some proofs in Morris [22]. We note that
[CLT.Mb] may be replaced by maxi∈In

π0
i ≤ CI−1

n , for some positive constant C (see, e.g.,
Quine and Robinson [28], Theorem 1). Then, in order for the theorem to hold, one has to further
assume that In = o(

√
dHn

Nn), which is compatible with the conditions for norm consistency.
Condition [CLT.BE] is a full central limit type of results for the group-lasso estimator and is

based on a multivariate Barry–Esseen type of bound found in Bentkus [1]. As it is usual with
uniform results of this type, it is necessary to control the fluctuations of third order moments,
and, consequently, to have a rather large sample size. To our knowledge, this is the best rate
available. See also Portnoy [25] for a similar result requiring only a rate d2

Hn
= o(N

1/2
n ), whose

applicability and relevance to our problem is however unclear.

5. Conclusions

In this article, we studied some asymptotic properties of the group-lasso estimator. Our results
show that this estimator can be used to recover asymptotically the true underlying model under
conditions that allow for a model complexity increasing with the sample size and also for a
number of cells larger than N .

Our setting, analysis and results differ from existing analyses of �1 regularized least square
problems in a few aspects. Firstly, unlike the case of regularized least squares or Gaussian error
problems, the first order optimality conditions for the group-lasso program are nonlinear in the
parameters. As model selection consistency hinges upon establishing appropriate bounds for the
norms of the differences between the blocks of true and estimated parameters, our strategy was
to linearize the sub-gradient equations via a first order Taylor expansion. This expansion, in
turn, is valid provided one has enough control over the remainder term, which we achieved by
proving the norm consistency property for the group-lasso estimate. Thus, in our settings, norm
consistency is necessary for model selection consistency. In contrast, for quadratic problems,
whose first order conditions are linear in the parameters, norm consistency does not appear to be
needed, although, it may still be important for central limit results, like in our case.

Secondly, we did not concern ourselves with any form of consistency other than the model se-
lection consistency. However, other forms of consistency are also relevant for the class of models
presented here. In particular, we mention the general risk consistency and the �2 consistency of
the penalized estimators for generalized linear model and logistic regression models by van de
Geer [35,36] and Meier, van der Geer and Bühlmann [20], respectively, where non-asymptotic
bounds and oracle inequalities are available. Finally, a rather general framework for proving
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norm consistency of penalized maximum likelihood estimators under decomposable regularizers
which may be applicable to our problem is presented in Negahban et al. [24].

Finally, in our problem we do not need to worry about random design. In fact, as we are work-
ing with exponential families of distribution, the Fisher information matrix is data-independent.
Consequently, unlike for example the case of Gaussian ensembles, for model selection consis-
tency it is sufficient to impose analytic, and not stochastic, conditions on the asymptotic behavior
of the Fisher information. These conditions (namely, the almost parameter orthogonality’ condi-
tion [MSC.2]) correspond to the various irreducibility condition used in the lasso literature, that
we equivalently formulate in terms of the Fisher information.

6. Proofs

Proof of Lemma 2.1. We only provide a sketch of the proof and refer to Haberman [17], page 11,
and Rinaldo [30], Lemma 2.2, for more details. It is possible to show that the linear subspace
M ∩ R(1)⊥ and M̃ are homeomorphic sets, and the one-to-one mapping between μ̃ ∈ M̃ and
β ∈ M ∩ R(1)⊥ is given by

μ̃ = β + 1 log

(
N

〈exp(β),1〉
)

.

Furthermore, for any n, some algebra shows that

〈n,β〉 − N log〈exp(β),1〉 + logN ! −
∑
i∈I

log ni ! = �∗(μ̃),

for each pair of homeomorphic points β and μ̃. Then, for any full-rank matrix U with M ∩ R(1)⊥
as its column span, (1) and (2) both follow from the previous displays by noting that there exists
also a one-to-one correspondence between M ∩ R(1)⊥ and RI−1, given by β = Uθ .

�

Proof of Lemma 3.1. The first order optimality conditions for a vector θ ∈ RI−1 is 0 ∈ ∂P�(θ),
the subdifferential set of P�(θ). The gradient of � at a point θ ∈ RI−1 is

∇�(θ) = U�
(

n −
(

N

〈b,1〉
)

b
)

= U�(n − m), (24)

where b = exp(Uθ). As for the penalty term, which is not differentiable when some of the blocks
are zero, standard subgradient calculus (see, e.g., Bertsekas [2]) yields that for any θ ∈ RI−1, the
subdifferential of the function x �→∑

h λh‖xh‖ at θ is a subset of RI−1 comprised by vectors
whose h-block component is ⎧⎨⎩λh

θh

‖θh‖2
, if θh �= 0,

λhzh, if θh = 0,

(25)
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where ‖zh‖ ≤ 1 for each h such that θh = 0. Equations (24) and (25) imply (11).
As for uniqueness, we follow the proof of Lemma 2 in Wainwright [37]. Suppose θ̂ is an

optimal solution to (10). Then, by duality theory, given a subgradient η̂ ∈ RI−1 any optimal
solution θ̆ must satisfy η̂�θ̆ =∑

h λh‖θ̆h‖. This holds only if θ̆h = 0 for all h for which ‖η̂h‖ <

λh. Thus, if there exists a solution θ̆ to the problem (10) different than θ̂ , it must satisfy θ̆h = 0
for all h such that θ̂h = 0. Finally, uniqueness follows since � is strictly concave, though not
necessarily strongly concave. �

Proof of Lemma 4.1. With some abuse of notation we write OP 0
n

and oP 0
n

to refer to probabilistic

statements for the sequence of probability distributions indexed by {θ0
Hn

}n, with θ0
Hn

∈ RdHn

for each n. We will first analyze the asymptotic behavior of �(θn
Hn

) − �n(θ
0

Hn
), uniformly over

sequences of the form θn
Hn

= θ0
Hn

+
√

dHn

Nn
xn with ‖xn‖ ≤ D, for all n and some D > 0. To this

end, we follow the arguments used in Portnoy [26], Theorem 2.4. First off, notice that we can
write

n =
Nn∑
j=1

Xj ,

where X1, . . . ,XNn are i.i.d. vectors in RI distributed like a Multinomial(1,π0
n), with

π0
n = exp(UHn

θ0
Hn

)

〈exp(UHn
θ0

Hn
),1〉 .

By a Taylor series expansion, the term �n(θ
0

Hn
+
√

dHn

Nn
xn) − �n(θ

0
Hn

) is equal to

√
dHn

Nn

x�
n U�

Hn
(nn − m0

n) − 1

2

dHn

Nn

x�
n 	Hn

xn + Nn

6

(
dHn

Nn

)3/2

Eθ∗
n
[(〈xn,U�

Hn
X1〉)3], (26)

where θ∗
n is on the line joining θn

Hn
and θ0

Hn
. For the first term in (26), we have

E‖U�
Hn

(nn − m0
n)‖2

2 = tr

(
U�

Hn

(
Dm0

n
− m0

n(m
0
n)

�

Nn

)
UHn

)
≤ Nnl

max
n dHn

.

Thus, by Markov and Cauchy–Schwarz inequalities,∣∣∣∣∣
√

dHn

Nn

x�
n U�

Hn
(nn − m0

n)

∣∣∣∣∣= OP 0
n

(
dHn

√
lmax
n ‖xn‖

)= OP 0
n
(dHn

‖xn‖), (27)
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where the last identity follows from the eigenvalue assumption [NC.2]. Next, using the fact that
the Fisher information matrix is positive definite for each n, and once again [NC.2],

−1

2

dHn

Nn

x�
n 	Hn

xn ≤ −1

2

dHn

Nn

Nn‖xn‖2lnminx ≤ −1

2
O(dHn

‖xn‖2), (28)

which bounds the second term (26). Finally, the assumption [NC.3] yields (see Portnoy [26],
Theorem 2.4)

Nn

6

(
dHn

Nn

)3/2

Eθ∗
n

[∣∣∣∣〈 xn

‖xn‖ ,U�
Hn

X1

〉∣∣∣∣3]= O(dHn
‖xn‖).

Combining the previous display with (27), (28) and with (26), we obtain, by choosing D large
enough that, for each ε > 0, and all n large enough

P

(
sup

{xn,‖xn‖=C}
�n

(
θ0
n +

√
dHn

Nn

xn

)
− �n(θ

0
n) < 0

)
> 1 − ε.

The strict concavity of � (warranted by [NC.2]) further guarantees that, for all n large enough,
with probability tending to one, there are no other maximizers of � outside the ball {θn

Hn
: θn

Hn
=

θ0
Hn

+
√

dHn

Nn
xn}.

Next, we consider the difference in the penalty terms between θ0
Hn

and θn
Hn

≡ θ0
Hn

+
√

dHn

Nn
xn.

By a first order Taylor expansion,

Nnλn

(∑
h∈Hn

λh‖θn
h‖2 −

∑
h∈Hn

λh‖θ0
h‖2

)
= Nnλn

∑
hn∈Hn

λhn

√
dHn

Nn

(x∗
hn

)�
θ0
hn

‖θ0
hn

‖ ,

where x∗
n lies between 0 and xn. Using the Cauchy–Schwarz inequality, the absolute value of the

last quantity is bounded by

λn

√
NndHn

‖xn‖
(∑

h∈Hn

λh

)
.

Under the assumed conditions, we see that ‖θ̃n − θ0
Hn

‖ = OP 0
n
(

√
dHn

Nn
), as required. �

Proof of Theorem 4.2. We follow the primal-dual witness method of Wainwright [37] as de-
scribed in Section 4.1. Let θ̃n ∈ RdHn be the restricted group-lasso estimator (17) and define the
vector θ̂n ∈ RI−1, whose hn block is given by

θ̂hn =
{

θ̃hn , if hn ∈ Hn,

0, otherwise.
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Then, by construction, θ̂Hn
= θ̃n. Set also

m̂n = Nn

exp(Uθ̂n)

〈exp(Uθ̂n),1〉 = Nn

exp(UHn
θ̃n)

〈exp(UHn
θ̃n),1〉 .

Next, consider the random vector η̂ ∈ RI−1 = vec(̂ηHn
, η̂Hc

n
), where

η̂Hn
= vec

{
λhn

θ̂hn

‖θ̂hn‖
, hn ∈ Hn

}
and

η̂Hc
n
= vec{λwn ẑwn,wn ∈ Hc

n}, (29)

with the sub-vectors {̂zwn,wn ∈ Hc
n} to be chosen in an appropriate way as described below.

Notice also that η̂Hn
belongs to the subdifferential of λn

∑
h,h∈Hn

λh‖xh‖ evaluated at θ̃n.
The pair (θ̂Hn

, η̂Hn
) must satisfy the optimality conditions (11) for the blocks indexed by

hn ∈ Hn. Using this conditions along with a Taylor expansion of m̂n around m0
n, we obtain the

expression

θ̂Hn
= θ0

Hn
+ Nn	

−1
Hn

(
1

Nn

U�
Hn

(nn − m0
n) − 1

Nn

U�
Hn

Rn − λnη̂Hn

)
. (30)

Employing a similar strategy, we now consider the optimality conditions (11) for the remaining
blocks indexed by wn ∈ Hc

n and solve for {̂zwn,wn ∈ Hc
n} in terms of θ̂Hn

− θ0
Hn

. Eventually, we
are led to the expression

λnη̂Hc
n

= 1

Nn

U�
Hc

n
(nn − m0

n) − 1

Nn

U�
Hc

n
Rn

(31)

− Wn

(
1

Nn

U�
Hn

(nn − m0
n) − 1

Nn

U�
Hn

Rn − λnη̂Hn

)
,

where ‖Rn‖ = oP 0
n
(‖θ̂Hn

− θ0
Hn

‖), and

Wn = U�
Hc

n

(
Dm0

n
− m0

n(m
0
n)

�

Nn

)
UHn

	−1
Hn

.

Notice that, by Lemma 4.1, ‖Rn‖ = oPn
0
(1), so the remainder term in the above Taylor expansion

is negligible.
We then rely on equations (30) and (31) to show that the assumed conditions are sufficient to

guarantee that

lim
n

P(‖θ̂hn‖ > 0,∀hn ∈ Hn) = 1 (32)

and

lim
n

P
(

max
wn∈Hc

n

‖̂zwn‖ ≤ 1
)

= 1. (33)
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Because (32) is equivalent to (15) and (33) is equivalent to (16), model selection will follow.
We will deal with equations (32) and (33) separately.
Proof of equation (32). It is enough to show that

P

(∥∥∥∥Nn	
−1

Hn

(
1

Nn

U�
Hn

(nn − m0
n) − 1

Nn

U�
Hn

Rn − λnη̂Hn

)∥∥∥∥≤ αn

)
→ 1, (34)

where αn = minhn∈Hn
‖θ0

hn
‖. In fact, the former condition implies that the hn-block of the vector

inside the norm sign in the previous display is less than ‖θ0
hn

‖, ∀hn ∈ Hn, which, by the triangle
inequality, will produce the desired result.

First, we consider the term

	−1
Hn

U�
Hn

(nn − m0
n).

The vector U�
Hn

(nn − m0
n) has mean zero and covariance matrix 	Hn

. Furthermore, because of

[NC.2], letting γ min
Hn

= λmin(	Hn
), we have

γ min
Hn

1

Nn

≥ Dmin > 0 for all n. (35)

Combining these observations, and using the formula for the expected value of a quadratic form,
we arrive at

E‖	−1
Hn

U�
Hn

(nn − m0
n)‖2

2 = tr	−1
Hn

≤ dHn

γ min
Hn

≤ dHn

DminNn

,

where dHn
=∑

h∈Hn
dh. Then, Chebyshev inequality implies

‖	−1
Hn

U�
Hn

(nn − m0
n)‖ = OP 0

n

(√
dHn

Nn

)
. (36)

Next, using (35) for the operator norm of of 	Hn
, we get the upper bound

‖Nn	
−1

Hn
λnη̂Hn

‖ ≤ 1

Dmin
λn

√∑
hn∈H

λ2
hn

, (37)

which, for λhn =√
dhn , simplifies to 1

Dmin
λn

√
dHn

.
Finally, the norm of

	−1
Hn

U�
Hn

Rn

is no larger than

1√
DminNn

√
dHn

o(‖θ̂Hn
− θ0

Hn
‖) = oP 0

n

(
dHn

Nn

)
, (38)

because ‖UHn
‖ ≤√

dHn
.
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Using equations (36), (37) and (38), condition (34) is satisfied if MSC.1 holds.

Proof of equation (33). In equation (31) write η̂Hc
n

= �Hc
n
ẑHc

n
, where �Hc

n
is a dHc

n
-

dimensional diagonal matrix whose diagonal is vec{1wnλwn,wn ∈ Hc
n}, with 1hn denoting the

dhn -dimensional vector with entries all equal to 1. Then, (31) becomes

ẑHc
n

= 1

Nnλn

�−1
Hc

n
U�

Hc
n
(nn − m0

n) − 1

Nnλn

�−1
Hc

n
U�

Hc
n
Rn

− �−1
Hc

n
Wn

(
1

Nnλn

U�
Hn

(nn − m0
n) − 1

Nnλn

U�
Hn

Rn − η̂Hn

)
.

For any wn ∈ Hc
n, consider the corresponding block in the vector �−1

Hc
n
Wnη̂Hn

, that is, the
vector

1

λwn

U�
wn

	0
nUHn

(U�
Hn

	0
nUHn

)−1η̂Hn
. (39)

Because of assumption [MSC.2], the Euclidian norm of (39), for any choice of wn ∈ Hc
n, is

bounded by

(1 − ε)

|Hc
n|

∑
hn∈Hn

λhn

minwn∈Hc
n
λwn

,

which, in turn, is smaller that

(1 − ε)
|Hn|maxhn∈Hn

λhn

|Hc
n|minwn∈Hc

n
λwn

.

Then, under MSC.3 (39) will be eventually less than (1 − ε), uniformly over wn ∈ Hc
n.

Next, for wn ∈ Hc
n, we consider the vector

1

Nnλnλwn

[U�
wn

(nn − m0
n) − WwnU�

Hn
(nn − m0

n)]. (40)

The covariance matrix of the term inside the parenthesis is

U�
wn

(	0
n)1/2[IdHn

− (	0
n)1/2UHn

(U�
Hn

	0
nUHn

)−1U�
Hn

(	0
n)1/2](	0

n)1/2Uwn, (41)

where

	0
n = Dm0

n
− m0

n(m
0
n)

�

Nn

.

Since the largest eigenvalue of the matrix in (41) is smaller than the largest eigenvalue of the
covariance matrix of U�

wn
(nn − m0

n), by Chebyshev’s inequality it is enough to show that the �2
norm of

1

Nnλnλwn

U�
wn

(nn − m0
n)
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vanishes in order to conclude that (40) has vanishing �2 norm as well. To this end, notice that

1

Nnλnλwn

‖U�
wn

(nn − m0
n)‖ ≤

√
dwn

Nnλnλwn

‖U�
wn

(nn − m0
n)‖∞

≤
√

dwn

Nnλnλwn

‖U�
Hc

n
(nn − m0

n)‖∞.

Next, write

U�
Hc

n

(nn − m0
n)

Nn

=
Nn∑

jn=1

U�
Hc

n

(Xjn − π0
n)

Nn

,

where the vectors Xjn,1 ≤ jn ≤ Nn are i.i.d. Multinomial(1,π0
n). Since the entries of UHc

n
are

all −1, 0 or 1, by Bernstein’s inequality followed by a union bound, we get

P

{∥∥∥∥ 1

Nn

U�
Hc

n
(nn − m0

n)

∥∥∥∥∞
> c

λnλwn√
dwn

}
≤ 2 exp

{
− Nnc

2λ2
nλ

2
wn

/dwn

1/8 + (2/3)cλnλwn/
√

dwn

+ logdHc
n

}
,

which vanishes under [MSC.4]. As for the terms involving Rn, following the arguments used
above, it is easy to see that they both converge in probability to 0, so that (33) holds true. �

Proof of Theorem 4.3. All the claims in the proof are made on the event On. Because the norm
consistency assumptions are in force, On occurs in probability and, therefore, our claims hold

true within a set or probability converging to 1. In particular, ‖θ̂Hn
− θ0

Hn
‖ = OP 0

n
(

√
dHn

Nn
)(1 +

oP 0
n
(1)) = OP 0

n
(

√
dHn

Nn
). Reorganize equation (30) as

	
1/2

Hn
(θ̂Hn

− θ0
Hn

) = 	
−1/2

Hn
U�

Hn
(nn − m0

n) − 	
−1/2

Hn
Nnλnη̂Hn

− 	
−1/2

Hn
U�

Hn
Rn. (42)

By similar arguments used in the proof of Theorem 4.2, the term

	
−1/2

Hn
U�

Hn
Rn

is of order √
dHn

Nn

oP 0
n
(‖θ̂n − θ0

n‖) = oP 0
n

(
dHn

Nn

)
,

and therefore converges in probability to 0.
As for 	

−1/2
Hn

Nnλnη̂Hn
, notice that, on On, the vector η̂0

Hn
is a differentiable function of θ̂Hn

∈
RdHn . Then, using a Taylor expansion around θ0

Hn
,

	
−1/2

Hn
Nnλnη̂Hn

= 	
−1/2

Hn
Nnλn

(
η0

Hn
+ J0

Hn
(θ̂Hn

− θ0
Hn

) + oP 0
n

(√
dHn

Nn

))
. (43)
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The remainder term in equation (43) is of order

λnoP 0
n
(
√

dHn
),

which become negligible for λn = O( 1√
dHn

) (obviously, λn = O(1/
√

In) will do). Then us-

ing (42), we obtain

	
−1/2

Hn
U�

Hn
(nn − m0

n) = 	
−1/2

Hn

(
(	Hn

+ NnλnJ
0

Hn
)(θ̂n − θ0

n) + Nnλnη
0

Hn

)+ oP 0
n
(1). (44)

Thus, we only need to consider the term 	
−1/2

Hn
U�

Hn
(nn − m0

n). For 1 ≤ jn ≤ Nn, let

Yjn = 1√
Nn

F−1/2
n U�

Hn
(Xjn − π0

n),

where the variables Xjn are i.i.d. Multinomials with size 1 and probability vector π0
n. Then,

	
−1/2

Hn
U�

Hn
(nn − m0

n) =
∑
jn

Yjn,

where EYjn = 0, CovYjn = 1
Nn

IdHn
and

∑
jn

cov(Yjn) = IdHn
.

To show the result in part 1 it is sufficient to show that, under assumption [CLT.LF], the
multivariate Lindberg–Feller conditions hold, namely∑

jn

Eθ0
Hn

‖GnYjn‖2I{‖GnYjn‖≥ε} → 0

as n → ∞, where I{·} denotes the indicator function. The proof is quite standard (see also the
proof of Theorem 2 in Fan and Peng [11]) and we only sketch it.

Because the vectors Yjn ’s are identically distributed, and invoking the Cauchy–Schwarz in-
equality, it is sufficient to show that

Nn

(
E‖GnYjn‖4P(‖GnYjn‖ ≥ ε)

)1/2 → 0. (45)

By Chebychev inequality, for fixed ε > 0,

P(‖GnYjn‖ ≥ ε) ≤ tr(GnG�
n )

ε2Nn

= O

(
1

Nn

)
,

where tr(GnG�
n ) = O(1) because of (22). Similarly, using the fact that the minimal eigenvalue

of Fn is bounded away from zero,

E‖GnYjn‖4 ≤ O

(
1

N2
n

)
E‖U�

Hn
(Xjn − π0

n)‖4 = O

(
d2

Hn

N2
n

)
,
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where in the last step we use the fact that the entries of U�
Hn

(Xjn − π0
n) are bounded, uniformly

over n. Combining the last two displays, the left-hand side of (45) is of order

NnO

(√
dHn

Nn

1

Nn

)
= O

(
dHn

N
1/2
n

)
,

which, in virtue of assumption [CLT.LF], vanishes, as desired.
Next, we prove the result of part 1 under both [CLT.Ma] and [CLT.Mb]. We relax the assump-

tion [CLT.LF] by allowing the dimension of the parameter space to grow fatser. To this end,
we derive multi-dimensional analogs of Lemmas 2.1 and 2.2 and Theorem 2.1 in Morris [22].
In particular, our proof follows closely the proof of Morris [22], Lemma 2.2. We first obtain
joint limit law by using Lemma 6.2, and then establish the conditional limit law by using a
multi-dimensional version of condition (2.9) in Morris [22]. Note that the result in Steck [34]
about conditional limit laws is actually a multi-dimensional one, but somehow was formulated
in Morris [22], Theorem 2.1, as one-dimensional. The conditional law we are interested is the
distribution of Zn, defined below in (48).

Let γn = N−1
n Gn	

−1/2
Hn

U�
Hn

m0
n, and set An = Gn	

−1/2
Hn

U�
Hn

. Note that m0
n = Nnπ

0
n, thus

γn = Anπ
0
n. Denote the ith column of An by ai , i = 1, . . . , In. Then, the left-hand side of (44),

premultiplied by Gn, can be written as

Zn =
∑
i∈In

fi(ni),

where fi(ni) = (ai −γn)(ni −m0
i ). Let {Xi; i = 1, . . . , In} be independent Poisson random vari-

ables with mean m0
i = Nnπ

0
i , so that Efi(Xi) = 0 and

∑
i cov(fi(Xi),Xi) = 0, by construction.

Next, define

Vn = N
−1/2
n

∑
i

(Xi − m0
i ), (46)

Un = �
−1/2
n

∑
i

fi(Xi), (47)

where �n = ∑
i cov(fi(Xi)). A simple calculation though shows that �n = GnG�

n , a square
matrix of fixed dimensions k × k. The goal is to prove the asymptotic normality of Un given
{Vn = 0}, and then use the fact (underlying Morris’ method) that

L(�
−1/2
n Zn) = L(Un|Vn = 0), (48)

where L stands for law.
The random variables Vn have zero means and unit variances. Furthermore, by the same ar-

guments used in the early parts of (Morris [22], Lemma 2.2), assumption [CLT.Mb] guarantees
that the uan condition is satisfied, so the sequence Vn converge in distribution to a Gaussian
variable. Similarly, the random vector Un satisfies EUn = 0, cov(Un) = Ik , the identity matrix of
dimensions k × k, and, by construction, cov(Vn,Un) = 0. We argue below that Un satisfies the
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multi-dimensional Lindeberg condition. By Lemma (6.2), this will imply the asymptotic normal-
ity of the joint limit law of (Vn,Un).

By Schwartz inequality, for any ε > 0,∑
i

E[‖fi(Xi)‖2; ‖fi(Xi)‖ > ε] ≤
∑

i

[
E‖fi(Xi)‖4P

(‖fi(Xi)‖ > ε
)]1/2

. (49)

We will show that, for each ε > 0, the right-hand side of (49) tends to zero. Recall that fi(Xi) =
(ai −γn)(Xi −m0

i ). The length of γn can be bounded as follows, ‖γn‖ ≤ ‖Gn‖‖	−1/2
Hn

U�
Hn

π0
n‖ ≤

O(1)DminN
−1/2
n ‖U�

Hn
π0

n‖. Elements of U�
Hn

π0
n are absolutely bounded by a constant D1, thus

‖γn‖ ≤ DN
−1/2
n d

1/2
Hn

. Similarly, ‖ai‖ = ‖Anei‖ ≤ DN
−1/2
n d

1/2
Hn

, where ei is the standard unit

vector in RIn with ith coordinate equal to 1. Adding up, ‖ai − γn‖ = O(N
−1/2
n d

1/2
Hn

), which
tends to zero by assumption [CLT.Ma].

Next, we use the following large deviation result for Poisson random variables, due to Bobkov
and Ledoux [5] and based on a modified logarithmic Sobolev inequality:

Theorem 6.1. Let X be a Poisson random variable with parameter λ. Then, for every h : N → R,
with supx∈N |h(x + 1) − h(x)| ≤ 1,

P
(
h(X) − Eh(X) ≥ b

)≤ exp

{
−b

4
log

(
1 + b

2λ

)}
, (50)

for all b ≥ 0.

Then, using Theorem 50, for some constant D,

P(Xi − m0
i ≥ ε‖ai − γn‖−1)

≤ exp

{
−ε

4
‖ai − γn‖−1 log

(
1 + 1

2

ε

m0
i ‖ai − γn‖

)}
(51)

≤ exp

{
−εDN

1/2
n d

−1/2
Hn

log

(
1 + εD

1√
NndHn

maxi π
0
i

)}
= exp

(−O
(√

Nn/dHn

))
,

as n → ∞. The last inequality follows by condition [CLT.Mb]. The same result may be achieved
by applying a modified logarithmic Sobolev inequality to the left tail.

Finally,
∑

i (E‖fi(Xi)‖4)1/2 =∑
i ‖ai −γn‖2(m0

i +3(m0
i )

2)1/2, which is of the order of mag-
nitude of O(dHn

). This, together with (49) and (51) and assumption [CLT.Ma], shows that Un

satisfies the Lindeberg condition, as stated.
We turn now to consider the conditional limit law. As mentioned above, Theorem 2.1. in Mor-

ris [22] holds true also for multi-dimensional variables. We only need to replace condition (2.9)
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in Morris [22] by a multi-dimensional version. Specifically, we show that

lim
r→0

sup
n

sup
v

E

∥∥∥∥∑
i

[fi(Li + Mi) − fi(Li)]
∥∥∥∥2

= 0, (52)

where Ln = (L1, . . . ,LIn) and Mn = (M1, . . . ,MIn) are Multinomial random variables with

probability vector π0
n, and sample sizes Nn + vnN

1/2
n and rN

1/2
n , respectively, where the param-

eters vn = O(1) and r are specified as in Morris [22], Lemma 2.2. Notice that fi(Li + Mi) −
fi(Li) = (ai − γn)Mi . Thus,∥∥∥∥∑

i

(ai − γn)Mi

∥∥∥∥2

= ‖AnMn − rN
−1/2
n Anm0

n‖ = (Mn − EMn)
�Bn(Mn − EMn),

where EMn = rN
1/2
n π0, and Bn = A�

n An. Taking expectation yields

E(Mn − EMn)
�Bn(Mn − EMn) = r

√
Nn tr

(
Bn

(
Dπ0

n
− π0

n(π
0
n)

�))
= r

1√
Nn

tr

(
Bn

(
Dm0

n
− m0

n(m
0
n)

�

Nn

))
= O(1)r

1√
Nn

,

since

tr

(
Bn

(
Dm0

n
− m0

n(m
0
n)

�

Nn

))
= tr(GnG�

n ) = O(1).

Therefore,

E

∥∥∥∥∑
i

[fi(Li + Mi) − fi(Li)]
∥∥∥∥2

= O(1)
r√
Nn

→ 0,

which shows that condition (52) holds, and the statement in part 1 is proved.
Part 2 of the theorem follows in a straightforward way from the main theorem in Bentkus [1]

and the fact that E‖F−1/2
n U�

Hn
(Xjn − π0

n)‖3 is of order O(d
3/2

Hn
), by the same arguments used in

the proof of part 1. �

The following lemma is a multivariate analog of Lemma 2.1. in Morris [22].

Lemma 6.2. Let Sk = (S1k,Rk) = ∑k
i=1 Xik , where Rk = (S2k, . . . , Spk), Xik = (Xi1k,Yik),

and Yik = (Xi2k, . . . ,Xipk). Suppose that {Xik}ki=1 are independent random vectors, with
EXi1k = 0,EYik = 0, and Var(Sk) = Ip , the p × p identity matrix. Suppose S1k satisfies the

uan condition, i.e., max1≤i≤k VarXi1k = o(1) as k → ∞, and that S1k
w−→ N(0,1). Finally,
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suppose that Rk satisfies the (multi-dimensional) Lindeberg condition, i.e., for all ε > 0,

k∑
i=1

E[‖Yik‖2; ‖Yik‖2 > ε] = o(1) (k → ∞).

Then Sk
w−→ Np(0, Ip).

Proof. As in Morris’ proof, S1k satisfies the (one-dimensional) Lindeberg condition, i.e.,

k∑
i=1

E[X2
i1k;X2

i1k > ε] = o(1) (k → ∞).

Therefore,

k∑
i=1

E[‖Xik‖2; ‖Xik‖2ε] =
k∑

i=1

E[X2
i1k + ‖Yik‖2;X2

i1k + ‖Yik‖2ε]

≤ 2
k∑

i=1

E[max{X2
i1k,‖Yik‖2};max{X2

i1k,‖Yik‖2}ε/2]

≤ 2
k∑

i=1

E[X2
i1k;X2

i1k > ε/2] + 2
k∑

i=1

E[‖Yik‖2; ‖Yik‖2 > ε/2] = o(1).

Thus, Sk satisfies the (multi-dimensional) Lindeberg condition and the proof is complete (see,
e.g., Bhattacharya and Rao [3], pages 183–184). �
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