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Thermodynamics and concentration
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We show that the thermal subadditivity of entropy provides a common basis to derive a strong form of
the bounded difference inequality and related results as well as more recent inequalities applicable to con-
vex Lipschitz functions, random symmetric matrices, shortest travelling salesmen paths and weakly self-
bounding functions. We also give two new concentration inequalities.
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1. Introduction

Concentration inequalities bound the probabilities that random quantities deviate from their av-
erage, median or otherwise typical values. They are at the heart of empirical science and play an
important role in the study of natural and artificial learning systems.

An early concentration inequality for sums was given by Chebychev and Bienaymé in the
19th century [6] and allowed a rigorous proof of the weak law of large numbers. The subject
has since been developed by Bernstein, Chernoff, Bennett, Hoeffding and many others [1,9], and
results were extended from sums to more general and complicated nonlinear functions. During
the past few decades, research activity has been stimulated by the contributions of Michel Ta-
lagrand [22,23] and by the relevance of concentration phenomena to the rapidly growing field
of computer science. Some concentration inequalities, like the well-known bounded difference
inequality, have become standard tools in the analysis of algorithms [19]. Nevertheless, a unified
and elementary basis for the derivation of the many available results is still missing.

One of the more recent methods used to derive concentration inequalities, the so-called entropy
method, is rooted in the early investigations of Boltzmann [2] and Gibbs [7] into the foundations
of statistical mechanics. A general problem of statistical mechanics is to demonstrate the “equiv-
alence of ensembles”, which can be interpreted as an exponential concentration property of the
Hamiltonian, or energy function. While the modern entropy method evolved along a complicated
historical path via quantum field theory and the logarithmic Sobolev inequality of Leonard Gross
[8], its hidden simplicity was understood and emphasized by Michel Ledoux, who also recog-
nized the key role that the subadditivity of entropy can play in the derivation of concentration
inequalities [10,11]. Recently, Boucheron et al. [4] showed that the entropy method is sufficiently
strong to derive a form of Talagrand’s convex distance inequality.

The purpose of this paper is to advertise the subadditivity of entropy as a unified basis for the
derivation of concentration inequalities for functions on product spaces and to demonstrate the
benefits of formulating the concentration problem in the language of statistical thermodynamics,
an approach proposed by David McAllester [18].
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Our method consists of three steps. The first step (Theorem 1) expresses the log-Laplace trans-
form (or, more directly, the deviation probability) in terms of an integral of the thermal entropy
over a range of inverse temperatures. This step encapsulates the so-called Herbst argument.

The second step (Theorem 6) is the tensorization inequality, or, more properly, a thermal sub-
additivity property of entropy. It asserts that the entropy of a system is no greater than the thermal
average of the sum of entropies of the constituent subsystems.

The third step (Theorem 3) expresses the entropy of the subsystem in terms of thermal energy
fluctuations.

All three steps are elementary and their combination leads to a general concentration result
(Theorem 7) that can be used whenever we succeed in controlling the latter fluctuations.

We then use the method to first derive a strong form of the bounded difference inequality
and an inequality given by McDiarmid and related to Bennett’s inequality [19]. These results
are normally not associated with the entropy method. Then monotonicity properties of thermal
energy fluctuations, or bounds thereof, are exploited to derive two apparantly novel sub-Gaussian
tail-bounds and to give a new proof of an upper tail-bound in [16] that improves on some results
obtained from Talagrand’s convex distance inequality. Finally, we show how our method can be
extended in a generic way using self-boundedness and/or decoupling, and illustrate this extension
by deriving a concentration inequality that underlies the recent new proof of the convex distance
inequality [4].

Clearly statement and proof of all the results presented in this paper would be possible on
a purely formal basis without any reference to physics. The author believes, however, that posi-
tioning the subject in a broader scientific context highlights its historical connections and gives
access to a valuable source of intuition.

In the next section, we describe the connection between entropy and concentration and intro-
duce several thermodynamic functions. We then transfer these concepts to product spaces and
present the tensorization inequality. The remaining sections are dedicated to applications, and
we conclude with a tabular summary of the notation used in the paper.

2. Entropy and concentration

Let (�,�,μ) be a probability space and f ∈ L∞[μ] be a fixed function whose concentration
properties are to be studied.

We interpret the points x ∈ � as possible states of a physical system and f as the negative
energy (or Hamiltonian) function, so that −f (x) is the system’s energy in the state x. The mea-
sure μ models an a priori probability distribution of states in the absence of any constraining
information.

We will ignore questions of measurability. If it seems necessary to the reader, � may be taken
as a potentially very large finite set, the cardinality of which will play no role in our results. The
boundedness assumption is a simplification that is justified by the fact that most of our results
are vacuous for f /∈ L∞[μ]. In the remaining cases, we will mention optimal conditions on f .

For any g ∈ L∞[μ] we write E[g] = ∫
�

g dμ and σ 2[g] = E[(g − E[g])2].
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2.1. Thermal equilibrium and thermodynamic functions

Our function f defines a one-parameter family {Eβf : β ∈ R} of expectation functionals by

Eβf [g] = E[geβf ]
E[eβf ] , g ∈ L∞[μ].

In statistical thermodynamics, Eβf [g] is the thermal expectation of the observable g at tempera-
ture T = 1/β . The normalizing expectation is called the partition function,

Zβf = E[eβf ].
The corresponding probability measure on �,

dμβf = Z−1
βf eβf dμ,

is called the canonical ensemble. It describes a system in thermal equilibrium with a heat reser-
voir at temperature T = 1/β . The canonical ensemble has the density ρ = Z−1

βf eβf , which
maximizes the Kullback–Leibler divergence or relative entropy KL(ρ dμ,dμ) := E[ρ lnρ],
given the expected internal energy −E[ρf ]. The parameter β is the Lagrange multiplier cor-
responding to this constraint. For a constant c we have the obvious and important identity
Eβ(f +c)[g] = Eβf [g].

The corresponding maximal value of the Kullback–Leibler divergence is the canonical entropy

Sf (β) = KL(Z−1
βf eβf dμ,dμ) = βEβf [f ] − lnZβf . (2.1)

Note that S−f (β) = Sf (−β), a simple but very useful fact to pass from upper to lower tails.
For β �= 0 the Helmholtz free energy is defined by

Af (β) = 1

β
lnZβf .

Dividing (2.1) by β and writing U = Eβf [f ], we obtain the classical thermodynamic relation

A = U − T S,

which describes the macroscopically available energy A as the difference between the total ex-
pected energy U and an energy portion T S, which is inaccessible due to ignorance of the micro-
scopic state.

By L’Hôpital’s rule, we have limβ→0 Af (β) = E[f ], so the free energy Af extends continu-
ously to R by setting Af (0) = E[f ]. We find

A′
f (β) = 1

β
Eβf [f ] − 1

β2
lnZβf = β−2Sf (β).

Integrating this identity from zero to β and multiplying with β, we obtain:
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Theorem 1. For any β > 0 we have

lnE
[
eβ(f −Ef )

] = β

∫ β

0

Sf (γ )

γ 2
dγ

and, for t ≥ 0,

Pr{f − Ef > t} ≤ exp

(
β

∫ β

0

Sf (γ )

γ 2
dγ − βt

)
.

Proof.

lnE
[
eβ(f −Ef )

] = lnZβf − βE[f ] = β
(
Af (β) − Af (0)

)
= β

∫ β

0
A′

f (γ )dγ = β

∫ β

0

Sf (γ )

γ 2
dγ.

Combining this with Markov’s inequality gives the second assertion. �

The theorem shows how bounds on the canonical entropy can lead to concentration results. In
the following we present ways to arrive at such bounds.

2.2. Entropy and energy fluctuations

The thermal variance of a function g ∈ L∞[μ] is denoted σ 2
βf (g) and defined by

σ 2
βf (g) = Eβf

[
(g − Eβf [g])2] = Eβf [g2] − (Eβf [g])2.

For constant c we have σ 2
β(f +c)[g] = σ 2

βf [g].
We first give some simple results pertaining to the derivatives of the partition function and the

thermal expectations.

Lemma 2. The following formulas hold:

1. d
dβ

(lnZβf ) = Eβf [f ].
2. If h :β 	→ h(β) ∈ L∞[μ] is differentiable and (d/dβ)h(β) ∈ L∞[μ], then

d

dβ
Eβf [h(β)] = Eβf [h(β)f ] − Eβf [h(β)]Eβf [f ] + Eβf

[
d

dβ
h(β)

]
.

3. d
dβ

Eβf [f k] = Eβf [f k+1] − Eβf [f k]Eβf [f ].
4. d2

dβ2 (lnZβf ) = d
dβ

Eβf [f ] = σ 2
βf [f ].

Proof. 1 is immediate and 2 is a straightforward computation. 3 and 4 are immediate conse-
quences of 1 and 2. �
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The thermal variance of f itself corresponds to energy fluctuations. The next theorem repre-
sents entropy as a double integral of such fluctuations. The utility of this representation to derive
concentration results has been noted by David McAllester [18].

Theorem 3. We have for β > 0

Sf (β) =
∫ β

0

∫ β

t

σ 2
sf [f ]ds dt.

Proof. Using the previous lemma and the fundamental theorem of calculus, we obtain the for-
mulas

βEβf [f ] =
∫ β

0
Eβf [f ]dt =

∫ β

0

(∫ β

0
σ 2

sf [f ]ds + E[f ]
)

dt

and

lnZβf =
∫ β

0
Etf [f ]dt =

∫ β

0

(∫ t

0
σ 2

sf [f ]ds + E[f ]
)

dt,

which we subtract to obtain

Sf (β) = βEβf [f ] − lnZβf =
∫ β

0

(∫ β

0
σ 2

sf [f ]ds −
∫ t

0
σ 2

sf [f ]ds

)
dt

=
∫ β

0

(∫ β

t

σ 2
sf [f ]ds

)
dt. �

Since bounding σ 2
βf [f ] is central to our method, it is worth mentioning an interpretation in

terms of heat capacity, or specific heat. Recall that −Eβf [f ] is the expected internal energy.
The rate of change of this quantity with temperature T is the heat capacity. By conclusion 4 of
Lemma 2 we have

d

dT
(−Eβf [f ]) = 1

T 2
σ 2

βf [f ],
which exhibits the proportionality of heat capacity and energy fluctuations.

2.3. A variational entropy bound

While Theorem 3 is just an elementary way of rewriting the canonical entropy, the following
lemma is typically a strict inequality that leads to the modified logarithmic Sobolev inequality
proposed by Massart in [13]. To state it, we define the real function

ψ(t) = et − t − 1, (2.2)

which arises from deleting the first two terms in the power series expansion of the exponential
function.
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Lemma 4. If c ∈ R, then

Sf (β) ≤ Eβf

[
ψ

(−β(f − c)
)]

.

Proof. Using ln t ≤ t − 1, we get

βf − lnZβf = β(f − c) + ln
eβc

Zβf

≤ β(f − c) +
(

eβc

Zβf

− 1

)
.

Taking the thermal expectation then gives

Sf (β) ≤ Eβf [β(f − c)] + eβc

Zβf

− 1

= Eβf [β(f − c)] + E

[
e−β(f −c)eβf

Zβf

]
− 1

= Eβf

[
e−β(f −c) + β(f − c) − 1

]
. �

3. Product spaces

We now assume that � = ∏n
k=1 �k and μ = ⊗n

k=1 μk , where each μk is the probability measure
representing the distribution of some variable Xk in the space �k , where all the Xk are assumed
to be mutually independent. The Xk are irrelevant for the derivation of our inequalities, but they
are convenient in the discussion of applications.

If x = (x1, . . . , xn) ∈ � describes a state of a physical system, we can think of xk ∈ �k as
the state of the kth subsystem, which may be a particle or a more abstract object, such as a spin
assigned to the vertex of a graph. The a priori measure μ assigns independent probabilities μk to
the states of the subsystems. If the total energy is a sum of energies of the subsystems, f = ∑

fk ,
with fk ∈ L∞[μk], then this is also true for the canonical ensemble Zβf eβf dμ corresponding to
non-interaction of the subsystems.

3.1. Conditional expectations

For x ∈ �, 1 ≤ k ≤ n and y ∈ �k we use xy,k to denote the vector in �, which is obtained by
replacing xk with y. We also write, for g ∈ L∞[μ],

Ek[g](x) =
∫

�k

g(xy,k)dμk(y) =
∫

�k

g(x1, . . . , xk−1, y, xk+1, . . . , xn)dμk(y).

The operator Ek corresponds to an expectation conditional to all variables with indices dif-
ferent to k. We denote with Ak the sub-algebra of L∞[μ] consisting of those functions that
are independent of the kth variable. Ek is evidently a linear projection onto Ak . Also, the Ek

commute amongst each other and, for h ∈ L∞[μ] and g ∈ Ak , we have

E[[Ekh]g] = E[Ek[hg]] = E[hg]. (3.1)
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Replacing the operator E by Ek leads to the definition of conditional thermodynamic quanti-
ties, all of which are now members of the algebra Ak :

• the conditional partition function Zk,βf = Ek[eβf ],
• the conditional thermal expectation Ek,βf [g] = Z−1

k,βf Ek[geβf ] for g ∈ L∞[μ],
• the conditional entropy Sk,f (β) = βEk,βf [f ] − lnZk,βf ,

• the conditional free energy Ak,f (β) = β−1 lnZk,βf ,
• the conditional thermal variance σ 2

k,βf [g] = Ek,βf [(g − Ek,βf [g])2] for g ∈ L∞[μ]. As
β → 0, this becomes

• the conditional variance σ 2
k [g] = Ek[(g − Ek[g])2] for g ∈ L∞[μ].

If we fix all variables except xk, then Ek just becomes an ordinary expectation, and it becomes
evident that all the previously established relations also hold for the corresponding conditional
quantities; in particular, the conclusions of Theorem 3,

Sk,f (β) =
∫ β

0

∫ β

t

σ 2
k,sf [f ]ds dt,

and of Lemma 4,

Sk,f (β) ≤ Ek,βf

[
ψ

(−β(f − fk)
)]

if fk ∈ Ak.

Other members of Ak that will play a role in the sequel are:

• the conditional supremum (supk g)(x) = supy∈�k
g(xy,k) for g ∈ L∞[μ],

• the conditional infimum (infk g)(x) = infy∈�k
g(xy,k) for g ∈ L∞[μ] and

• the conditional range rank(g) = supk g − infk g for g ∈ L∞[μ].

3.2. Tensorization of entropy

In the non-interacting case, when the energy function f is a sum, f = ∑
fk, with fk ∈ L∞[μk],

it is easily verified that Sk,f (β)(x) = Sk,f (β) is independent of x and that

Sf (β) =
n∑

k=1

Sk,f (β). (3.2)

Equality no longer holds in the interacting, nonlinear case, but there is a subadditivity property
that is sufficient for the purpose of concentration inequalities.

The tensorization inequality states that the total entropy is no greater than the thermal average
of the sum of the conditional entropies. In 1975, Elliott Lieb [12] gave a proof of this result,
which was probably known some time before, at least in the classical setting relevant to our
arguments.

Lemma 5. Let h,g > 0 be bounded measurable functions on �. Then, for any expectation E,

E[h] ln
E[h]
E[g] ≤ E

[
h ln

h

g

]
.
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Proof. Define an expectation functional Eg by Eg[h] = E[gh]/E[g]. The function 	(t) = t ln t

is convex for positive t , since 	′′ = 1/t > 0. Thus, by Jensen’s inequality,

E[h] ln
E[h]
E[g] = E[g]	

(
Eg

[
h

g

])
≤ E[g]Eg

[
	

(
h

g

)]
= E

[
h ln

h

g

]
. �

Theorem 6.

Sf (β) ≤ Eβf

[
n∑

k=1

Sk,f (β)

]
. (3.3)

Proof. We denote the canonical density with ρ, so ρ = eβf /Zβf . Writing ρ = ρ/E[ρ] as a tele-
scopic product and using the previous lemma, we get

E

[
ρ ln

ρ

E[ρ]
]

= E

[
ρ ln

n∏
k=1

E1 · · ·Ek−1[ρ]
E1 · · ·Ek−1Ek[ρ]

]

=
∑

E

[
E1 · · ·Ek−1[ρ] ln

E1 · · ·Ek−1[ρ]
E1 · · ·Ek−1[Ek[ρ]]

]

≤
∑

E

[
ρ ln

ρ

Ek[ρ]
]

= E

[∑
Ek

[
ρ ln

ρ

Ek[ρ]
]]

.

From the definition of ρ, we then obtain

Sf (β) = βEβf [f ] − lnZβf = E

[
ρ ln

ρ

E[ρ]
]

≤ E

[∑
Ek

[
ρ ln

ρ

Ek[ρ]
]]

= E

[ n∑
k=1

(
Ek

[
eβf

Zβf

ln
eβf

Zβf

]
− Ek

[
eβf

Zβf

]
lnEk

[
eβf

Zβf

])]

= Z−1
βf

n∑
k=1

E[Ek[eβf ]Sk,f (β)] = Z−1
βf

n∑
k=1

E[eβf Sk,f (β)] by (3.1)

= Eβf

[
n∑

k=1

Sk,f (β)

]
.

�

3.3. The Efron–Stein–Steele inequality

Combining (3.3) with Theorem 3 and dividing by β2, we obtain

1

β2

∫ β

0

∫ β

t

σ 2
sf [f ]ds dt ≤ Eβf

[
n∑

k=1

1

β2

∫ β

0

∫ β

t

σ 2
k,sf [f ]ds dt

]
.



442 A. Maurer

Using the continuity properties of β 	→ σ 2
βf [f ], which follow from Lemma 2, we can take the

limit as β → 0 and multiply by 2 to obtain

σ 2[f ] ≤ E

[∑
k

σ 2
k [f ]

]
,

which is the well-known Efron–Stein–Steele inequality [21]. Observe that we may drop the as-
sumption f ∈ L∞[μ], but we still require the existence of exponential moments in an interval
containing zero, so the inequality so derived is slightly weaker than the inequality in [21].

3.4. A modified logarithmic Sobolev inequality

Suppose we have a sequence of functions fk ∈ Ak , so that fk is independent of the kth coordinate.
Combining (3.3) with Lemma 4 and using the identity Eβf Ek,βf = Eβf , we obtain

Sf (β) ≤ Eβf

[
n∑

k=1

ψ
(−β(f − fk)

)]
, (3.4)

which is the modified logarithmic Sobolev inequality proposed by Massart [13,14]. Many con-
sequences of this powerful inequality have been explored (e.g., [3–5,13,16]). Here we will con-
centrate on the consequences of combining the tensorization inequality with the fluctuation rep-
resentation of entropy in Theorem 3. Since the fluctuation representation is an identity, this com-
bination is stronger than (3.4) and leads to some results that apparently cannot be recovered from
(3.4). We will also re-derive some results that can be derived from (3.4) in cases where we believe
that the proposed method gives some additional insight.

3.5. Conditional thermal variance and exponential concentration

Theorems 1, 6 and 3 (applied to the conditional entropy) form the backbone of the proposed
method. Combining them, we obtain the following generic concentration result:

Theorem 7. For any β > 0 we have the entropy bound

Sf (β) ≤ Eβf

[
n∑

k=1

∫ β

0

∫ β

t

σ 2
k,sf [f ]ds dt

]
,

the bound on the log-Laplace transform

lnE
[
eβ(f −Ef )

] = β

∫ β

0

Sf (γ )

γ 2
dγ
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and the concentration inequality

Pr{f − Ef > t} ≤ exp

(
β

∫ β

0

Sf (γ )

γ 2
dγ − βt

)
.

The obvious strategy is to start by bounding the conditional thermal variance σ 2
k,sf [f ]. Typi-

cally, this leads to considerable simplifications and we will follow this method in the sequel.

4. Two classical concentration inequalities

We begin with the derivation of two classical results: the bounded difference inequality and a sim-
ilar result, which reduces to the familiar Bennett inequality when f is the sum of its arguments.
These inequalities are not new, but they are very useful. We obtain them in their strongest forms
and they provide a good illustration of our proposed method.

For a, b ∈ R, a < b define ζa,b : R → R by

ζa,b(t) = (b − t)(t − a).

We state some elementary facts without proof.

Lemma 8. (i) If X is a random variable with values in [a, b], then

σ 2[X] ≤ (b − EX)(EX − a) = ζa,b(EX) ≤ (b − a)2

4
.

(ii) The function ζa,b is non-increasing in [(a + b)/2,∞).

4.1. The bounded difference inequality

By Lemma 8(i), we get for all s ∈ R that σ 2
k,sf [f ] ≤ ran2

k(f )/4, so by the first conclusion of
Theorem 7,

Sf (γ ) ≤ 1

4

∫ γ

0

∫ γ

t

Eγf

[
n∑

k=1

ran2
k(f )

]
ds dt ≤ γ 2

8
Eγf [R2(f )], (4.1)

where we introduced the abbreviation R2(f ) := ∑n
k=1ran2

k(f ). Bounding the thermal expecta-
tion by the uniform norm, we obtain from the third conclusion of Theorem 7 that for all β > 0

Pr{f − Ef > t} ≤ exp

(
β

∫ β

0

Sf (γ )dγ

γ 2
− βt

)
≤ exp

(
β2

8
‖R2(f )‖∞ − βt

)
.

Substitution of the minimizing value β = 4t/‖R2(f )‖∞ gives

Pr{f − Ef > t} ≤ exp

( −2t2

‖R2(f )‖∞

)
,
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which is the well-known bounded difference inequality (with correct exponent) in the strong
version given by McDiarmid [19], Theorem 3.7, where the supremum is outside of the sum of
squared conditional ranges. Note that the result is vacuous for f /∈ L∞[μ].

4.2. A Bennett–Bernstein concentration inequality

The proof of the bounded difference inequality relied on bounding the thermal variance σk,βf (f )

uniformly in β , using constraints on the conditional range of f . We now consider the case where
we only use one constraint on the ranges, say f − Ek[f ] ≤ 1, but we use information on the
conditional variances. This leads to a Bennett-type inequality as in [19], Theorem 3.8. To state
it, we abbreviate the sum of conditional variances of f as

�2(f ) =
∑

σ 2
k (f ).

Again, we start with a bound on the thermal variance.

Lemma 9. Assume f − Ef ≤ 1. Then, for β > 0,

σ 2
βf (f ) ≤ eβσ 2(f ).

Proof.

σ 2
βf (f ) = σ 2

β(f −Ef )(f − Ef ) = Eβ(f −Ef )[(f − Ef )2] − (
Eβ(f −Ef )[f − Ef ])2

≤ Eβ(f −Ef )[(f − Ef )2] = E[(f − Ef )2eβ(f −Ef )]
E[eβ(f −Ef )]

≤ E
[
(f − Ef )2eβ(f −Ef )

]
use Jensen on denominator

≤ eβE[(f − Ef )2] use hypothesis. �

Next we bound the total entropy Sf (β).

Lemma 10. Assume that f − Ekf ≤ 1 for all k ∈ {1, . . . , n}. Then, for β > 0,

Sf (β) ≤ (βeβ − eβ + 1)Eβf [�2(f )].

Proof. Using the first conclusion of Theorem 7 and the previous lemma, we get

Sf (β) ≤ Eβf

[
n∑

k=1

∫ β

0

∫ β

t

σ 2
k,sf [f ]ds dt

]
≤

∫ β

0

∫ β

t

es ds dtEβf [�2(f )].
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The conclusion follows from the elementary formula

∫ β

0

∫ β

t

es ds dt =
∫ β

0
(eβ − et )dt = βeβ − eβ + 1. �

Now we can prove our version of Bennett’s inequality.

Theorem 11. Assume f − Ekf ≤ 1,∀k. Let t > 0 and denote V = ‖�2(f )‖∞. Then

Pr{f − E[f ] > t} ≤ exp
(−V

(
(1 + tV −1) ln(1 + tV −1) − tV −1))

≤ exp

( −t2

2V + 2t/3

)
.

Proof. Fix β > 0. Recall the definition of the function ψ in (2.2) and observe that

∫ β

0

γ eγ − eγ + 1

γ 2
dγ = β−1(eβ − β − 1) = β−1ψ(β),

because (d/dγ )(γ −1(eγ − 1)) = γ −2(γ eγ − eγ + 1) and limγ→0 γ −1(eγ − 1) = 1. Theorem 7
and Lemma 10 combined with a uniform bound then give

lnEeβ(f −Ef ) = β

∫ β

0

Sf (γ )dγ

γ 2

≤ β

(∫ β

0

γ eγ − eγ + 1

γ 2
dγ

)
‖�2(f )‖∞ = ψ(β)V .

So, by Markov’s inequality, we have for any β > 0 that Pr{f − E[f ] > t} ≤ exp(ψ(β)V − βt).
Substitution of β = ln(1 + tV −1) gives the first inequality; the second is Lemma 2.4 in [19]. �

Observe that f is assumed bounded above by the hypotheses of the theorem. The existence
of exponential moments E[eβf ] is needed only for β ≥ 0, so the assumption f ∈ L∞[μ] can be
dropped in this case.

5. Exploiting monotonicity

Sometimes an appropriately chosen bound on the conditional thermal variance σ 2
k,sf [f ] can be

shown to have a monotonicity property in the variable s, which can be used to find a bound
uniform in the the region of integration. The remaining part of the fluctuation integral then just
becomes β2/2, which leads to sub-Gaussian tail estimates, just as for the bounded difference
inequality. In this section, we give three examples.
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5.1. Functions with large conditional expectations

The following is our first novel result, the proof of which is hardly more difficult than that of
the bounded difference inequality. It depends on the assumption that the conditional expectations
are consistently in the upper halves of the conditional ranges for all k and all configurations
x1, . . . , xk−1, xk+1, . . . , xn of the conditioning data. If this condition is met, the result is much
stronger than the bounded difference inequality, and, for large deviations t , also much stronger
than Bennett’s inequality.

Theorem 12. Suppose that

Ek[f ] ≥ supk f + infk f

2
∀k ∈ {1, . . . , n} (5.1)

and let

A =
∥∥∥∥∑

k

(
sup
k

f − Ek[f ]
)(

Ek[f ] − inf
k

f
)∥∥∥∥∞

.

Then

Pr{f − Ef > t} ≤ e−t2/(2A).

Proof. By Lemma 2, the function β 	→ Ek,βf [f ] is non-decreasing, so for β ≥ 0 we have

Ek[f ] ∈
[

supk f + infk f

2
,Ek,βf [f ]

]
.

Since the function ζinfk f,supk f (of Lemma 8) is non-increasing in this interval, we get

σ 2
k,βf (f ) ≤ ζinfk f,supk f (Ek,βf [f ]) ≤ ζinfk f,supk f (Ek[f ]),

and, from the first conclusion of Theorem 7,

Sf (β) ≤ Eβf

[
n∑

k=1

∫ β

0

∫ β

t

σ 2
k,sf [f ]ds dt

]
≤ β2

2
Eβf

[
n∑

k=1

ζinfk f,supk f (Ek[f ])
]

≤ β2

2

∥∥∥∥∥
n∑

k=1

ζinfk f,supk f (Ek[f ])
∥∥∥∥∥∞

= β2A

2
.

The result now follows as in the proof of the bounded difference inequality. �

5.2. Monotonicity of variational bounds on the thermal variance

A related strategy first finds a simple variational bound on the conditional thermal variance. We
have

σ 2[g] = min
t∈R

E[(g − t)2] ≤ E[(g − c)2] ∀c ∈ R.
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Applied to the conditional thermal variance, this translates to

σ 2
k,βf [f ] ≤ Ek,βf [(f − fk)

2] ∀fk ∈ Ak. (5.2)

We will use infk f for fk and combine this observation with the following.

Proposition 13. The function β 	→ Ek,βf [(f − infk f )2] is non-decreasing.

Proof. Write h = f − infk f and define a real function ξ by ξ(t) = (max{t,0})2. Since h ≥ 0,

we have

Ek,βf

[(
f − inf

k
f

)2] = Ek,β(f −infk f )

[(
f − inf

k
f

)2] = Ek,βh[ξ(h)].
By Lemma 2, we obtain

d

dβ
Eβh[ξ(h)] = Eβh[ξ(h)h] − Eβh[ξ(h)]Eβh[h] ≥ 0,

where the last inequality uses the well-known fact that for any expectation E[ξ(h)h] ≥
E[ξ(h)]E[h] whenever ξ is a non-decreasing function. �

A first consequence is a lower tail bound somewhat similar to Bernstein’s inequality, Theo-
rem 11.

Theorem 14. Let t > 0 and denote

W =
∥∥∥∥∑

k

Ek

(
f − inf

k
f

)2
∥∥∥∥∞

.

Then

Pr{E[f ] − f > t} ≤ exp

(−t2

2W

)
.

Proof. We use inequality (5.2) and Proposition 13 to get for s ≥ 0

σ 2
k,−sf [f ] ≤ Ek,−sf

[(
f − inf

k
f

)2] ≤ Ek

[(
f − inf

k
f

)2]
.

We therefore obtain from Theorem 7

S−f (β) ≤ E−βf

[
n∑

k=1

∫ β

0

∫ β

t

σ 2
k,−sf [f ]ds dt

]
≤ β2

2
E−βf

[
n∑

k=1

Ek

(
f − inf

k
f

)2
]

≤ β2W

2

and then proceed as in the proof of the bounded difference inequality. �
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If we take the function f to be an average of real random variables, then Theorem 14 reduces
to an inequality given in [20] and [15]. In [15] it is argued that for very heterogeneous variables
this inequality is superior to Bernstein’s inequality. Similar arguments apply to the present, more
general case.

When we apply the same method to obtain upper tail bounds we arrive at a surprisingly pow-
erful result. To state it, we introduce worst-case variance proxies, which will play an important
role in the sequel.

Definition 1. Let g ∈ L∞[μ]. The worst-case variance proxy of g is the function Dg ∈ L∞[μ]
defined by

Dg =
∑

k

(
g − inf

k
g
)2

.

The function Dg is a local measure of the sensitivity of g to modifications of its individual
arguments.

Lemma 15. We have, for β > 0,

Sf (β) ≤ β2

2
Eβf [Df ].

Proof. We use inequality (5.2) and Proposition 13 to get for 0 ≤ s ≤ β

σ 2
k,sf [f ] ≤ Ek,sf

[(
f − inf

k
f

)2] ≤ Ek,βf

[(
f − inf

k
f

)2]
.

So, using Theorem 7 again,

Sf (β) ≤ Eβf

[
n∑

k=1

∫ β

0

∫ β

t

σ 2
k,sf [f ]ds dt

]
≤ β2

2
Eβf

[
n∑

k=1

Ek,βf

(
f − inf

k
f

)2
]

= β2

2
Eβf

[
n∑

k=1

(
f − inf

k
f

)2
]
,

where we used the identity Eβf Ek,βf = Eβf in the last equation. �

The usual arguments now immediately lead to the following.

Theorem 16. With t > 0,

Pr{f − E[f ] > t} ≤ exp

( −t2

2‖Df ‖∞

)
.
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In [16] this result was derived from inequality (3.4), and it is shown that it improves the ex-
ponent on upper tail bounds derived from Talagrand’s convex distance inequality in many cases,
as for shortest travelling salesmen paths, Steiner trees and the eigenvalues of random symmetric
matrices. Here we only give one example of how ‖Df ‖∞ may be bounded and consider a convex
Lipschitz function f defined on the cube [0,1]n. For simplicity, we assume f to be differentiable.

Let x ∈ [0,1]n and suppose that for some fixed k there is y ∈ [0,1] such that f (xy,k) ≤ f (x).
Then by convexity (using really only the fact that f is separately convex in each coordinate),

f (x) − f (xy,k) ≤ 〈x − xy,k, ∂f (x)〉Rn = (xk − y)∂kf (x) ≤ |∂kf (x)|.

We therefore have f (x) − infy f (xy,k) ≤ |∂kf (x)| and

Df (x) =
n∑

k=1

(
f (x) − inf

y
f (xy,k)

)2 ≤ ‖∂f (x)‖2
Rn ≤ ‖f ‖2

Lip.

In combination with Theorem 16 we obtain upper tail bounds for f with an exponent twice as
good as obtained from the convex distance inequality [11], Corollary 4.10, or an earlier applica-
tion of the entropy method [11], Theorem 5.9.

For a corresponding lower tail bound, we have to use an estimate similar to what was used in
the proof of Bennett’s inequality.

Lemma 17. If f − infk f ≤ 1,∀k, then for β > 0,

S−f (β) ≤ ψ(β)E−βf [Df ],

with ψ defined as in (2.2).

Proof. Let k ∈ {1, . . . , n}. We write hk := f − infk f . Then hk ∈ [0,1] and for s ≤ β

Ek,−shk
[h2

k] = Ek[h2
ke−βhk e(β−s)hk ]

Ek[e−βhk e(β−s)hk ] ≤ e(β−s) Ek[h2
ke−βhk ]

Ek[e−βhk ] = e(β−s)Ek,−βhk
[h2

k].

We therefore have∫ β

0

∫ β

t

Ek,−sf [h2
k]ds dt =

∫ β

0

∫ β

t

Ek,−shk
[h2

k]ds dt

≤
(∫ β

0

∫ β

t

eβ−s ds dt

)
Ek,−βhk

[h2
k] = ψ(β)Ek,−βf [h2

k],

where we used the formula ∫ β

0

∫ β

t

e−s ds dt = 1 − e−β − βe−β.
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Thus, using Theorem 7 and the identity E−βf Ek,−βf = E−βf ,

S−f (β) ≤ E−βf

[∑
k

∫ β

0

∫ β

t

σ 2
k,−sf [f ]ds dt

]
≤ E−βf

[∑
k

∫ β

0

∫ β

t

Ek,−sf [h2
k]ds dt

]

≤ ψ(β)E−βf

[∑
k

Ek,−βf [h2
k]

]
= ψ(β)E−βf [Df ].

�

Lemmas 15 and 17 together with Theorem 1 imply the inequalities

lnE
[
eβ(f −E[f ])] ≤ β

2

∫ β

0
Eγf [Df ]dγ (5.3)

and, if f − infk f ≤ 1 for all k, then

lnE
[
eβ(E[f ]−f )

] ≤ ψ(β)

β

∫ β

0
E−γf [Df ]dγ, (5.4)

where in the last inequality we also used the fact that γ 	→ ψ(γ )/γ 2 is non-decreasing. Bounding
the thermal expectation with the uniform norm and substitution of β = ln(1 + t‖Df ‖−1∞ ) gives
the following lower tail bound that can also be found in [16].

Theorem 18. If f − infk f ≤ 1 for all k, then for t > 0,

Pr{Ef − f > t} ≤ exp

(
−‖Df ‖∞

((
1 + t

‖Df ‖∞

)
ln

(
1 + t

‖Df ‖∞

)
− t

‖Df ‖∞

))

≤ exp

( −t2

2‖Df ‖∞ + 2t/3

)
.

The two inequalities (5.3) and (5.4) are the keys to obtaining concentration inequalities in
terms of the worst-case variance proxy Df . Both results can also be deduced from Massart’s
inequality (3.4) as shown in [16]. We do not claim that the derivations given above are per se
superior. We presented them because they follow the same principles as the proofs of the other
results given above (the bounded difference inequality and Theorems 11, 12 and 14), which do
not follow from inequality (3.4).

6. Self-boundedness and canonical decoupling

We conclude by presenting two general principles to extend the utility of the proposed method.
All the above applications of Theorem 7 involved a chain of inequalities of the form 5

Sεf (γ ) ≤ Eεγf

[
n∑

k=1

∫ γ

0

∫ γ

t

σ 2
k,εsf [f ]ds dt

]
≤ ξ(γ )Eεγf [G(f )],
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where ε = 1 for upper tail results and ε = −1 for lower tail results, ξ is some non-negative
real function and G(f ) is some function on � derived from f . For the bounded difference
inequality, for example, ξ(γ ) = γ 2/8 and G = R2(f ); for the Bennett inequality ξ(γ ) = γ eγ −
eγ + 1 and G(f ) = �2(f ); for Theorem 16 we had ξ(γ ) = γ 2/2 and G(f ) = Df ; while for the
corresponding lower tail bound, Theorem 18, we had ξ(γ ) = ψ(γ ) and also G(f ) = Df , etc.
Theorem 7 is then invoked to conclude that

lnEeεβ(f −Ef ) ≤ β

∫ β

0

ξ(γ )

γ 2
Eεγf [G(f )]dγ ≤ β‖G(f )‖∞

∫ β

0

ξ(γ )dγ

γ 2
. (6.1)

Here the uniform estimate Eεβf [G(f )] ≤ ‖G(f )‖∞, while being very simple, is somewhat
loose. We now sketch how it can sometimes be avoided by exploiting special properties of the
thermal expectation.

6.1. Self-boundedness

The first possibility we consider is that the function G(f ) can be bounded in terms of the func-
tion f itself, a property referred to as self-boundedness [4]. For example, if G(f ) ≤ f, then
Eγf [G(f )] ≤ Eγf [f ] = (d/dγ ) lnE[exp(γf )], and if the function ξ has some reasonable be-
havior, then the first integral in (6.1) above can be bounded by partial integration or even more
easily. As an example, we apply this idea in the setting of Theorems 16 and 18.

Theorem 19. Suppose that there are non-negative numbers a, b such that Df ≤ af + b. Then,
for t > 0, we have

Pr{f − E[f ] > t} ≤ exp

( −t2

2(aE[f ] + b + at/2)

)
.

If, in addition, a ≥ 1 and f − infk f ≤ 1,∀k ∈ {1, . . . , n}, then

Pr{E[f ] − f > t} ≤ exp

( −t2

2(aE[f ] + b)

)
.

Proof. We only prove the lower tail bound; for the upper tail we refer to [16]. As for the lower
tail, it follows from (5.4) and Lemma 2 that

lnE
[
eβ(E[f ]−f )

] ≤ aψ(β)

β

∫ β

0
E−γf [f ]dγ + bψ(β) = −aψ(β)

β
lnZ−βf + bψ(β)

= −aψ(β)

β
lnE

[
eβ(E[f ]−f )

] + ψ(β)(aE[f ] + b).

Rearranging gives

lnE
[
eβ(E[f ]−f )

] ≤ ψ(β)

1 + aβ−1ψ(β)
(aE[f ] + b) ≤ β2(aE[f ] + b)

2
,
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where one verifies that for β > 0 and a ≥ 1 we have ψ(β)(1 + aβ−1ψ(β))−1 ≤ β2/2. The usual
analysis with Markov’s inequality and optimization in β conclude the proof. �

Recently Boucheron et al. [4] have given a refined version of this result, where the condition
a ≥ 1 is improved to a ≥ 1/3 for the lower tail. There they also show that Theorems 19 and 16
together suffice to derive a version of the convex distance inequality that differs from Talagrand’s
original result only in that it has an inferior exponent.

It must be stressed that the same method of proof can be used to yield self-bounded versions
of all concentration inequalities derived from Theorem 7, such as the bounded-difference and
Bennett inequalities.

6.2. Decoupling

A second method to avoid the uniform bound on the thermal expectation uses decoupling. Recall
that for any two probability measures ν and μ and a measurable function g we have

Ex∼ν[g(x)] ≤ KL(ν,μ) + lnEx∼μeg(x),

which can be regarded as an instance of convex duality and easily verified directly from the
definition of the Kullback–Leibler divergence. Applying this inequality when ν is the canonical
ensemble and μ is the a priori measure, we obtain for any θ > 0

Sεf (β) ≤ ξ(β)θ−1Eεβf [θG(f )] ≤ ξ(β)θ−1(Sεf (β) + lnE[exp(θG(f ))]).
For values of β and θ where θ > ξ(β) we obtain

Sεf (β) ≤ ξ(β)

θ − ξ(β)
lnE[exp(θG(f ))].

Hence, if we can control the upwards deviations of G(f ) (or some suitable bound thereof), we
obtain concentration inequalities for f in terms of the expectation of G(f ) (or the bound thereof).
Again, this method, which was proposed in [3], can be applied to all the versions of G(f ) we
introduced above and combined with all methods to control the upwards deviation of G(f ),
which leads to a proliferation of concentration inequalities. Perhaps not all of these deserve to be
documented. We just quote a corresponding result in [17] that uses G(f ) = Df and combines
with self-boundedness.

Theorem 20. Suppose that there is g ∈ L∞[μ] and a ≥ 1 such that 0 ≤ f ≤ g, Df ≤ ag and
Dg ≤ ag. Then, for t > 0,

Pr{f − Ef > t} ≤ exp

( −t2

4aE[g] + 3at/2

)
.
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If, in addition, f − infk f ≤ 1 for all k, then

Pr{Ef − f > t} ≤ exp

( −t2

4aE[g] + at

)
.

In [17] the theorem is used to show that the concentration of eigenvalues (f ) of the Gram
matrix of a sample of independent, bounded random vectors in a Hilbert space is controlled by
the size of the largest eigenvalue (g).

7. A glossary of notation

We conclude with a tabular summary of notation.

� = ∏n
k=1 �k underlying (product-) probability space.

μ = ⊗n
k=1 μk (product-) probability measure on �.

Xk random variable distributed as μk in �k .
f ∈ L∞[μ] fixed function (negative energy) under investigation.
g ∈ L∞[μ] generic function.
E[g] = ∫

�
g dμ expectation of g in μ.

σ 2[g] = E[(g − E[g])2] variance of g in μ.
β = 1/T inverse temperature.
Eβf [g] = E[geβf ]/E[eβf ] thermal expectation of g.
Zβf = E[eβf ] partition function.
Sf (β) = βEβf [f ] − lnZβf . canonical entropy.
Af (β) = 1

β
lnZβf Helmholtz free energy.

σ 2
βf (g) = Eβf [(g − Eβf [g])2] thermal variance of g.

ψ(t) = et − t − 1
xy,k vector x ∈ � with xk replaced by y ∈ �k .
Ek[g](x) = ∫

�k
g(xy,k)dμk(y) conditional expectation.

Ak ⊂ L∞[μ] functions independent of kth variable.
Zk,βf = Ek[eβf ] conditional partition function.
Ek,βf [g] = Z−1

k,βf Ek[geβf ] conditional thermal expectation.
Sk,f (β) = βEk,βf [g] − lnZk,βf conditional entropy.
σ 2

k,βf [g] = Ek,βf [(g − Ek,βf [g])2] conditional thermal variance.
σ 2

k [g] = Ek[(g − Ek[g])2] conditional variance.
(supk g)(x) = supy∈�k

g(xy,k) conditional supremum.
(infk g)(x) = infy∈�k

g(xy,k) conditional infimum.
rank(g) = supk g − infk g conditional range.
R2(g) = ∑

kran2
k(g) sum of conditional square ranges.

�2(g) = ∑
k σ 2

k [g] sum of conditional variances.
Dg = ∑

k(g − infk g)2 worst case variance proxy.
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