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The conventional definition of a depth function is vector-based. In this paper, a novel projection depth
(PD) technique directly based on tensors, such as matrices, is instead proposed. Tensor projection depth
(TPD) is still an ideal depth function and its computation can be achieved through the iteration of PD.
Furthermore, we also discuss the cases for sparse samples and higher order tensors. Experimental results
in data classification with the two projection depths show that TPD performs much better than PD for data
with a natural tensor form, and even when the data have a natural vector form, TPD appears to perform no
worse than PD.
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1. Introduction

In the last ten years, statistical depth functions have increasingly served as a useful tool in multi-
dimensional exploratory data analysis and inference. The depth of a point in the multidimensional
space measures the centrality of that point with respect to a multivariate distribution or a given
multivariate data cloud. Depth functions have been successfully used in many fields, such as qual-
ity indices [17,20], multivariable regression [24], limiting p values [18], robust estimation [3],
nonparametric tests [4] and discriminant analysis [6,11,12,14]. Some common statistical depths
which have been defined include half-space depth [25], simplicial depth [19], projection depth
[7,8,23,29], spatial depth [26], spatial rank depth [10] and integrated dual depth [5]. Compared
to the others, projection depth (PD) is preferable because of its good properties such as robust-
ness, affine invariance, maximality at center, monotonicity relative to deepest point, vanishing at
infinity and so on.

However, almost all the depths proposed in the literature are defined over the vector space by
now, and the fact is that not all of the observations are naturally in vector form. In the real world,
the extracted feature of an object often has some specialized structures, and such structures are in
the form of a second, or even higher order tensor. For example, this is the case when a captured
image is a second-order tensor, that is, a matrix, and when the sequential data, such as a video
sequence for event analysis, is in the form of a third-order tensor. It would be desirable to keep
the underlying structures of the data unchanged during the data analysis.

Most of the previous work on depth has first transformed the input tensor data into vectors,
which in fact changes the underlying structure of the data sets. At the same time, such a trans-
formation often leads to the curse of dimensionality problem and the small sample size problem
since most depth functions (such as Mahalanobis depth) require the covariance matrix to be pos-
itive definite.
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Therefore, it is necessary to extend the definition of depth to tensor spaces in order to pro-
cess the data sets directly with tensors without modifying the structures of them. In fact, many
tensor-based methods in discriminant analysis have been proposed and have led to many nice re-
sults [2,27,28]. In this paper, informed by the aforementioned works, we propose a tensor-based
projection depth (TPD) in order to extend the definition of projection depth to tensor spaces. We
will prove that TPD is still an ideal depth according to the criteria [30]. Also, we will explore
the characteristics of high order tensor projection depth in theory. We will demonstrate that TPD
allows us to avoid the above two problems when using vector representation.

The paper is organized as follows. Section 2 briefly introduces tensor algebra. Section 3 in-
troduces the projection depth and gives the solution to the Rayleigh projection depth. Section 4
gives the definition of tensor projection depth and discusses its properties. Section 5 supplies the
algorithm for TPD and analyzes its convergence. Section 6 analyzes the special case of sparse
samples. Section 7 discusses the TPD for higher order tensors. Section 8 gives numerical results
for TPD. Section 9 concludes the paper, and proofs of selected theorems and propositions are
given in the Appendix.

2. Tensor algebra

A tensor T of order k is a real-valued multilinear function on k vector spaces [13]:

T : Rn1 × · · · × R
nk → R.

A multilinear function is linear as a function of each variable considered separately. The set
of all kth-order tensors on R

ni , i = 1, . . . , k, denoted by T k , is a vector space under the usual
operations of pointwise addition and scalar multiplication:

(aT )(a1, . . . ,ak) = a(T (a1, . . . ,ak)),

(T + T ′)(a1, . . . ,ak) = T (a1, . . . ,ak) + T ′(a1, . . . ,ak),

where ai ∈ R
ni .

Given two tensors, S ∈ T k and T ∈ T l , their product,

S ⊗ T : Rn1 × · · · × R
nk+l → R,

is defined as

S ⊗ T (a1, . . . ,ak+l) = S(a1, . . . ,ak)T (ak+1, . . . ,ak+l).

It is immediate from the multilinearity of S and T that S ⊗ T depends linearly on each argument
ai separately, so it is a (k + l)th-order tensor.

First-order tensors are simply vectors on R
n1 . That is, T1 = Rn1 , where Rn1 is the dual space

of R
n1 . A second-order tensor space is a product of two first-order tensor spaces, that is, T 2 =

Rn1 ⊗ Rn2 . Let e1, . . . , en1 be the standard basis of R
n1 and ε1, . . . , εn1 be the dual basis [21] of
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Rn1 which is formed from coordinate functions with respect to the basis of Rn1 . Likewise, let
ẽ1, . . . , ẽn1 be a basis of R

n2 and ε̃1, . . . , ε̃n1 be the dual basis of Rn2 . We have

εi(ej ) = δij and ε̃i (ẽj ) = δij ,

where δij is the Kronecker delta function. Thus, {εi ⊗ ε̃j } (1 ≤ i ≤ n1,1 ≤ j ≤ n2) forms a basis
for Rn1 ⊗ Rn2 . For any second-order tensor T , we can write

T =
∑
i,j

Tij εi ⊗ ε̃j .

Given two vectors a = ∑n1
k=1 akek ∈ R

n1 and b = ∑n2
l=1 bl ẽl ∈ R

n2 , we have

T (a,b) =
∑
ij

Tij εi ⊗ ε̃j

(
n1∑

k=1

akek,

n2∑
l=1

bl ẽl

)

=
∑
ij

Tij εi

(
n1∑

k=1

akek

)
ε̃j

(
n2∑
l=1

bl ẽl

)
(2.1)

=
∑
ij

Tij aibj = aT T b.

This shows that every second-order tensor in Rn1 ⊗ Rn2 uniquely corresponds to an n1 × n2
matrix.

Note that in this paper, our primary interest is focused on second-order tensors. However,
most of our conclusions for second-order TPD can be naturally extended to higher orders. We
will discuss this question in Section 7.

3. Projection depth

According to [29], the definition of projection depth can be expressed as follows.

Definition 3.1. Let μ and σ be univariate location and scale measures, respectively. Define the
outlyingness of a point x ∈ R

p with respect to a given function F of X in R
p , p ≥ 1, as

O(x,F ) = sup
‖u‖=1

|uT x − μ(Fu)|
σ(Fu)

, (3.1)

where Fu is the distribution of uT X. Then, O(x,F ) is defined to be 0 if uT x −μ(Fu) = σ(Fu) =
0. The projection depth (PD) of a point x ∈ R

p with respect to the given F,PD(x,F ), is then
defined as

PD(x,F ) = 1

1 + O(x,F )
. (3.2)
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Remark 3.1. Here, we also assume that μ and σ exist uniquely, μ is translation and scale equiv-
ariant, and σ is scale equivariant and translation invariant, that is, μ(FsY+c) = sμ(FY ) + c and
σ(FsY+c) = |s|σ(FY ), respectively, for any scalars s, c and random variable Y ∈ R

1.

The most popular outlying function is defined as

O(x,F ) = sup
‖u‖=1

|uT x − Med(Fu)|
MAD(Fu)

, (3.3)

where Fu is the distribution of uT X,Med(Fu) is the median of Fu and MAD(Fu) is the median
of the distribution of |uT X − Med(Fu)|.

Apart from the good properties of a statistical depth function, this version of PD is more robust
compared with other depths. However, it is hard to compute for high-dimensional samples.

Obviously, the variance and mean are also natural choices for σ and μ, respectively. It is easy
to prove that such a projection-based depth is also an ideal depth function. And, most importantly,
its computation is very simple.

Theorem 3.1 (Rayleigh projection depth). Let (μ,σ ) = (mean, variance), and suppose that
the second moments of X exist and that X ∼ F . The solution of the outlying function (3.1) is then
that of a Rayleigh quotient problem,

OR(x,F ) = sup
‖u‖=1

|uT x − E(uT X)|√
E(uT X − E(uT X))2

(3.4)

=
√

uT
1 Au1

uT
1 Bu1

= √
λ1,

where A is the matrix (x − EX)(x − EX)T , B is E(X − EX)(X − EX)T , λ1 is the largest
eigenvalue of the generalized eigenvalue problem

Az = λBz, z 
= 0,

and u1 is the corresponding eigenvector of λ1.
We call this projection depth the Rayleigh projection depth.

Remark 3.2. In this paper, for the convenience of computation, the examples in the experiments
are all based on the Rayleigh projection depth, that is, (μ,σ ) = (mean, varance).

Remark 3.3. Obviously, RPD requires the covariance B to be positive. To avoid this situation,
for the sparse samples, we simply project the samples into their nonzero subspace using principal
component analysis (PCA).
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4. Tensor projection depth

Before describing tensor projection depth, we first review the terminology associated with tensor
operations [15,16]. The inner product of tensors A and B (with the same orders and dimensions)
is 〈A,B〉 = ∑

i,j Aij Bij . The norm of a tensor A is defined as its Frobenius norm, that is, ‖A‖ =√〈A,A〉, and the distance between two tensors A and B in Rn1 ⊗ Rn2 is defined as ‖A − B‖,
where A − B = (Aij − Bij )n1×n2 .

From the tensorial viewpoint, if we take X as a random variable in the first-order tensor space
Rn1 , then the outlyingness of the projection depth in Definition 3.1 can be expressed as

O(x,X) = sup
‖u‖=1

|x(u) − μ(X(u))|
σ(X(u))

.

Thus, if X ∈ Rn1 ⊗ Rn2 is a random variable, then, according to the formula (2.1), the outlying
function in the tensor space Rn1 ⊗ Rn2 can be naturally defined as

O(X, X ) = sup
‖u‖=‖v‖=1

|X(u,v) − μ(X (u,v))|
σ(X (u,v))

= sup
‖u‖=‖v‖=1

|uT Xv − μ(uT X v)|
σ(uT X v)

, (4.1)

where u ∈ R
n1 and v ∈ R

n2 .

Definition 4.1 (Tensor projection depth). The projection depth with outlying function given by
formula (4.1) is called tensor projection depth.

For a given univariate location (or “center”) measure μ, a distribution function FX is called
μ-symmetric about the point θ ∈ Rn1 ⊗ Rn2 if μ(uT X v) = uT θv for any pair of unit vectors
u ∈ R

n1,v ∈ R
n2 . We have the following theorem.

Theorem 4.1. Suppose that θ in Rn1 ⊗ Rn2 is the point of symmetry of a distribution F(X ) with
respect to a given notion of symmetry. The tensor projection depth function TPD(X, X ) is:

1. convex;
2. symmetric for μ-symmetric F ;
3. affine invariant;
4. monotonic relative to the deepest point;
5. vanishing at infinity, that is, TPD(X, X ) → 0 as ‖X‖ → ∞;
6. maximized at the center of μ-symmetric F .

Remark 4.1. Theorem 4.1 shows that TPD is still an ideal depth according to the criteria [30].
Furthermore, we can easily obtain many other properties of TPD beyond those of the PD in [29],
such as the properties of its sample versions and its medians. However, these are not the key
points of this paper and so we omit any detailed discussion here.
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5. Algorithm

Suppose that the elements of Sn = {X1, . . . ,Xn} are generated from F (where Fn is its empirical
distribution) and that X is a fixed tensor. The TPD of X with respect to Fn can then be computed
by the following algorithm:

1. Initialization: Let u = (1, . . . ,1)T .
2. Computing v: Let xi = XT

i u and F u
n = uT Fn. Then, v can be computed by solving the

vector-based projection depth

sup
‖v‖=1

|vT x − μ(F u
n v)|

σ(F u
n v)

. (5.1)

3. Computing u: Once v is obtained, let x̃i = Xiv and F v
n = Fnv. Then, u can be computed

by solving the following optimization problem:

sup
‖u‖=1

|uT x̃ − μ(uT F v
n )|

σ(uT F v
n )

. (5.2)

4. Iteratively computing u and v: Using steps 2 and 3, we can iteratively compute u and v
until they tend to converge.

Remark 5.1. The optimization problems (5.1) and (5.2) are the same as (3.3) in the vector-based
projection depth algorithm. Thus, any computational method for the projection depth can also be
used here.

The following theorem shows that the above algorithm converges.

Theorem 5.1. The iterative procedure to solve the optimization problems (5.1) and (5.2) will
monotonically increase the objective function value in (4.1), hence the algorithm converges.

Remark 5.2. Furthermore, if the optimization problem (3.1) is convex, then the solution of (4.1)
is also globally optimal. For instance, if (μ,σ ) = (mean, variance) (the Rayleigh projection
depth), then its solution is also globally optimal.

6. Sparse samples

As with RPD, TPD based on RPD also faces the problem of sparse samples. From formulas (5.1)
and (5.2), we know that for any sample set Sn = {X1, . . . ,Xn} and its corresponding empirical
distribution Fn, the algorithm in the previous section requires the covariance matrices of F u

n and
F v

n to be positive for any u ∈ R
n1 and v ∈ R

n2 . However, in practice, the tensor data usually do
not satisfy such requirements.

There are two factors that can lead to such non-positiveness. First, the sample size is too small,
that is, the size of Sn is less than n1 or n2. Second, the data have some common columns or rows
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(e.g., the images have identical color edges or patterns). In the vector space, we usually use PCA
to remove the redundant null space of the samples and therefore we can use the tensor PCA
proposed by Cai et al. [1] to reduce the dimensionality of the tensor samples.

Suppose that MX = 1
n

∑n
i=1 Xi ,

MV =
n∑

i=1

(
(Xi − MX)(Xi − MX)T

)
,

MU =
n∑

i=1

(
(Xi − MX)T (Xi − MX)

)
,

where the columns of V are the eigenvectors of MV , and U are the eigenvectors of MU . Thus,
the new mappings of Fn can be expressed as

F (r1,r2)
n = {V T

r1
X1Ur2, . . . , V

T
r1

XnUr2}, (6.1)

where r1 and r2 are the mapping dimensions, and Vr1 and Ur2 are the first r1 and r2 columns of
V and U , respectively. Here, we take r1 and r2 to be the ranks of MV and MU .

Theorem 6.1. For any u ∈ R
r1 , v ∈ R

r2 with ‖u‖ = ‖v‖ = 1, the covariance matrices of
uT F

(r1,r2)
n and F

(r1,r2)
n v are always positive.

7. Higher order tensors

The algorithm described above takes second-order tensors (i.e., matrices) as input data. However,
the algorithm can also be extended to higher order tensors. In this section, we briefly describe
the TPD algorithm for higher order tensors.

Let Sn = {Xi , i = 1, . . . , n} denote the sample set and Fn its empirical distribution, where
Xi ∈ Rn1 ⊗ · · · ⊗ Rnk . The outlying function of TPD is then

O(X, X )
.= sup

‖u1‖=···=‖uk‖=1

|X(u1, . . . ,uk) − μ(Fn(u1, . . . ,uk))|
σ(Fn(u1, . . . ,uk))

, (7.1)

where ui ∈ R
ni .

Before stating the algorithm, we first introduce an item of notation which we will need. If
T ∈ Rn1 ⊗ · · · ⊗ Rnk , then for any al ∈ R

nl , 1 ≤ l ≤ k, we use T ×l al to denote a new tensor in
Rn1 ⊗ · · · ⊗ Rnl−1 ⊗ Rnl+1 ⊗ · · · ⊗ Rnk , namely

T ×l al =
nl∑

il=1

Ti1,...,il−1,...,il+1,...,ik · ail . (7.2)

Thus, the algorithm for higher order tensors can naturally be expressed as follows:

1. Initialization: Let u0
i = (x1, . . . , xni

)T , xj ∈ R, j = 1, . . . , ni , i = 1, . . . , k − 1.



Tensor-based projection depth 1393

2. Computing u0
k : If we let xk = X ×1 u0

1 ×2 u0
2 × · · · ×k−1 u0

k−1, then u0
k can be computed by

solving the vector-based projection depth

sup
‖u0

k‖=1

|u0
k

T
xk − μ(Fn ×1 u0

1 ×2 u0
2 × · · · ×k−1 u0

k−1)|
σ(Fn ×1 u0

1 ×2 u0
2 × · · · ×k−1 u0

k−1)
. (7.3)

3. Computing u1
k−1: Once u0

k is obtained, we let xk−1 = X ×1 u0
1 × · · · ×k−2 u0

k−2 ×k u0
k and

u1
k−1 can be computed by solving the optimization problem

sup
‖u1

k−1‖=1

|u1T
k−1xk−1 − μ(Fn ×1 u0

1 × · · · ×k−2 u0
k−2 ×k u0

k)|
σ(Fn ×1 u0

1 × · · · ×k−2 u0
k−2 ×k u0

k)
. (7.4)

4. Iteratively computing ui , i = 1, . . . , k, until they tend to converge.

Remark 7.1. It is easy to prove that TPD in a higher order tensor space still satisfies the above
theorems and that its convergence is also guaranteed by Theorem 5.1.

8. Experiments

First, we use data classification to demonstrate the validity of the TPD. Consider a multivariate
data set C that is partitioned into given classes C1, . . . ,Cq . An additional data point x has to be
assigned to one of several given classes of object. Suppose that there are q classes. The most
natural classifier provided by [14] is then

classd(x) = arg max
j

D(x|Cj ), (8.1)

where D(x|Cj ) is the depth of the x with respect to class Cj , i = 1, . . . , q . This assigns x to the
class Cj in which x is deepest.

The Columbia Object Image Library (COIL-20) [22] is a database of grayscale images of
20 objects. The objects were placed on a motorized turntable against a black background. The
turntable was rotated through 360 degrees to vary the object pose with respect to a fixed camera.
Images of the objects were taken at pose intervals of 5 degrees. This corresponds to 72 images
with the dimensions of 32 × 32 pixels per object. Here, we only take the first 10 objects as
examples.

In the experiments, recognition rates under different training sizes are computed by means of
the following steps:

1. Select the test sets: Randomly select p test sets Xj
test from the object set Xj for each class,

where j = 1, . . . ,10.
2. for each training size nk

for each repeating round t :
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Figure 1. Recognition rates of TPD and PD under different training sample sizes.

• Randomly select the training sets: Randomly select nk training sets from Xj /Xj
test (the

left samples of Xj ) for each j , j = 1, . . . ,10.
• Compute the recognition rate. Compute the correctly recognized number �j for each

test set Xj
test by using the formula (8.1) and compute the glossary recognition rate by

ηt = ∑10
j=1 �j /10p.

3. Compute the mean and variance of ηt .

Here, p = 7 and the training number equals 25, 30, 35, 40, 45, 50, 55, respectively. The results
are shown in Figure 1 and Table 1.

From Figure 1 and Table 1, we can see that for such samples with intrinsic tensor form, TPD
performs better than PD. A question then naturally arises: If the data sets are naturally in vector
form, how does TPD perform compared with PD? We will answer the question by means of the
following experiment.

We consider the famous Iris data [9], which contains measurements of four different features
(sepal length, sepal width, petal length and petal width) for each of 150 observations from three
different types of iris plant: (1) setosa; (2) virginica; (3) versicolor. We randomly choose 10 ob-
servations from each class to construct the test sets and then randomly select 10, 15, 20, 25, 30,
35, 40 samples from the remaining observations as the respective training sets. For the computa-
tion of TPD, the samples are reshaped as 2 × 2.
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Table 1. The mean, deviation and variance of the recognition rates by TPD and PD with the COIL-20 set

Training
Tensor projection depth Projection depth

size Mean Min. Max. Variance Mean Min. Max. Variance

25 0.3638 0.2571 0.4143 0.0018 0.0695 0.0286 0.1571 0.0017
30 0.6571 0.5286 0.7429 0.0028 0.1333 0.0571 0.2429 0.0028
35 0.7857 0.7000 0.8571 0.0017 0.1526 0.0429 0.2571 0.0044
40 0.8390 0.7714 0.9000 0.0010 0.3010 0.1714 0.3714 0.0029
45 0.8610 0.7714 0.9429 0.0019 0.4410 0.3571 0.5571 0.0041
50 0.8990 0.8429 0.9286 0.0008 0.5124 0.4429 0.6000 0.0017
55 0.9086 0.8714 0.9571 0.0006 0.5419 0.4429 0.6286 0.0021

From Table 2 we can see that there is no apparent difference between the two results. There-
fore, data from vector spaces can be converted into tensors and we can perform the depth pro-
cession with TPD.

9. Discussion and conclusion

In this paper, tensor projection depth is proposed as an extension of the definition of depth to
tensor spaces. We show that, according to the criteria [30], TPD satisfies all four desirable prop-
erties. TPD has the advantages of avoiding the curse of dimensionality and keeping the natural
structures of the data sets invariant. For sparse samples, we use tensor PCA to remove their null
space and compute the TPD in the subspace. The numerical results show that TPD performs
better than PD for data which are naturally in tensor form.

Data sets which are naturally in vector form can also be processed using TPD, which converts
the data into tensor form. Although such processing will actually change the structure of the data
sets to some extent, numerical results show that there are no apparent differences in the out-

Table 2. The mean, deviation and variance of the recognition rates by TPD and PD with the Iris set

Training
Tensor projection depth Projection depth

size Mean Min. Max. Variance Mean Min. Max. Variance

10 0.9698 0.8571 1.0000 0.0016 0.9476 0.7619 1.0000 0.0041
15 0.9889 0.9524 1.0000 0.0004 0.9841 0.9524 1.0000 0.0005
20 0.9952 0.9048 1.0000 0.0004 0.9921 0.8571 1.0000 0.0008
25 0.9984 0.9524 1.0000 0.0001 0.9984 0.9524 1.0000 0.0001
30 0.9984 0.9524 1.0000 0.0001 0.9984 0.9524 1.0000 0.0001
35 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000
40 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000
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come. For some (μ,σ ), such tensor-based processing can effectively decrease the computational
complexity of PD caused by the dimensionality.

Appendix: Proofs

Proof of Theorem 4.1. Convexity. We will show that the outlying function (4.1) is still convex.
Let X1,X2 ∈ Rn1 ⊗ Rn2 be two arbitrary points, 0 < λ < 1, and for the point X0

.= (1 − λ)X1 +
λX2, we have

|uT X0v − μ(uT X v)|
= ∣∣(1 − λ)

(
uT X1v − μ(uT X v)

) + λ
(
uT X2v − μ(uT X v)

)∣∣
≤ (1 − λ)|uT X1v − μ(uT X v)| + λ|uT X2v − μ(uT X v)|

and

O(X0, X ) = sup
‖u‖=‖v‖=1

|uT X0v − μ(uT X v)|
σ(uT X v)

≤ sup
‖u‖=‖v‖=1

(1 − λ)|uT X1v − μ(uT X v)| + λ|uT X2v − μ(uT X v)|
σ(uT X v)

= (1 − λ)O(X1, X ) + λO(X2, X ).

Thus,

TPD(X0, X ) ≥ (1 − λ)TPD(X1, X ) + λTPD(X2, X ).

Symmetry. This is straightforward.
Affine invariance. Suppose that An1×n1 and Bn2×n2 are any two non-singular matrices. We

then have

O(AXB,AX B) = sup
‖u‖=‖v‖=1

|uT AXBv − μ(uT AX Bv)|
σ(uT AX Bv)

.

For fixed X, suppose that

(u0,v0) = arg sup
‖u‖=‖v‖=1

O(X, X ).

Thus, if we fix v = v0 and let

u1 = arg sup
‖u‖=1

|uT A(Xv0) − μ(uT A(X v0))|
σ(uT A(X v0))

,
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then, according to Theorem 2.1 in [29],

sup
‖u‖=1

|uT A(Xv0) − μ(uT A(X v0))|
σ(uT A(X v0))

= sup
‖u‖=1

|uT (Xv0) − μ(uT (X v0))|
σ(uT (X v0))

.

Thus, u1A = λu0, where λ ∈ R, and we have

sup
‖v‖=1

|uT
1 A(Xv) − μ(uT

1 A(X v))|
σ(uT

1 A(X v))
= sup

‖v‖=1

|λuT
0 (Xv) − μ(λuT

0 (X v0))|
σ(λuT

0 (X v))

= sup
‖v‖=1

|uT
0 (Xv) − μ(uT

0 (X v0))|
σ(uT

0 (X v))
.

Therefore,

v1 = arg sup
‖v‖=1

|uT
1 A(Xv) − μ(uT

1 A(X v))|
σ(uT

1 A(X v))
= v0.

Similarly,

sup
‖v‖=1

|uT
1 AXv − μ(uT

1 AX v)|
σ(uT

1 AX v)
= sup

‖v‖=1

|uT
1 AXBv − μ(uT

1 AX Bv)|
σ(uT

1 AX Bv)

= sup
‖u‖=‖v‖=1

|uT AXBv − μ(uT AX Bv)|
σ(uT AX Bv)

= |uT
0 AXBv0 − μ(uT

0 AX Bv0)|
σ(uT

0 AX Bv0)
.

The result then follows.
Monotonicity relative to deepest point. Suppose that X1,X2,Xc ∈ Rn1 ⊗ Rn2 , Xc is the deep-

est tensor and X1 = λX2 + (1 − λ)Xc, λ ∈ [0,1]. Then, since

O(X1, X ) ≤ (1 − λ)O(X2, X ) + λO(Xc, X ),

we have

O(X1, X ) − λO(Xc, X ) ≤ (1 − λ)O(X1, X ) ≤ (1 − λ)O(X2, X ).

Thus, O(X1, X ) ≤ O(X2, X ) and TPD(X1, X ) ≥ TPD(X2, X ), that is, the tensor projection
depth decreases monotonically along any ray emanating from the deepest point.

Maximality at center. Suppose that F is θ -symmetric about a unique point Xc ∈ Rn1 × Rn2 .
Then, for any pair of unit vectors u,v, we have μ(uT X v) = uT Xcv and the result follows.

Vanishing at infinity. This is straightforward. �
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Proof of Theorem 5.1. Define

f (u,v) = sup
‖u‖=‖v‖=1

|uT Xv − μ(Fn(u,v))|
σ(Fn(u,v))

.

Let u0 be the initial value. Fixing u0, we get v0 by solving the optimizations (5.1) and (5.2).
Likewise, fixing v0, we get u1 by solving the optimization problem (5.2). Thus, we have

f (u0,v0) ≤ f (u1,v0).

Finally, we get

f (u0,v0) ≤ f (u1,v0) ≤ f (u1,v1) ≤ f (u2,v1) · · · .
Since f is bounded, it converges. �
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