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of martingales and non-negative
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In the paper we study sharp maximal inequalities for martingales and non-negative submartingales: if f , g

are martingales satisfying

|dgn| ≤ |dfn|, n = 0,1,2, . . . ,

almost surely, then ∥∥∥sup
n≥0

|gn|
∥∥∥
p

≤ p‖f ‖p, p ≥ 2,

and the inequality is sharp. Furthermore, if α ∈ [0,1], f is a non-negative submartingale and g satisfies

|dgn| ≤ |dfn| and |E(dgn+1|Fn)| ≤ αE(dfn+1|Fn), n = 0,1,2, . . . ,

almost surely, then ∥∥∥sup
n≥0

|gn|
∥∥∥
p

≤ (α + 1)p‖f ‖p, p ≥ 2,

and the inequality is sharp. As an application, we establish related estimates for stochastic integrals and Itô
processes. The inequalities strengthen the earlier classical results of Burkholder and Choi.
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1. Introduction

The purpose of the paper is to provide the best constants in some maximal inequalities for martin-
gales and non-negative submartingales. Let us start with introducing the necessary notation. Let
(�, F ,P) be a non-atomic probability space, equipped with a filtration (Fn)n≥0, that is, a non-
decreasing family of sub-σ -fields of F . Let f = (fn) and g = (gn) be adapted, real-valued inte-
grable processes. The difference sequences df = (dfn) and dg = (dgn) of f and g are defined
by the equations

fn =
n∑

k=0

dfk, gn =
n∑

k=0

dgk, n = 0,1,2, . . . .
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We are particularly interested in those pairs (f, g) for which a certain domination relation is
satisfied. Following Burkholder [6], we say that g is differentially subordinate to f if, for any
n ≥ 0, we have

P(|dgn| ≤ |dfn|) = 1.

As an example, let g be a transform of f by a predictable sequence v = (vn) bounded in absolute
value by 1; that is, we have P(|vn| ≤ 1) = 1 and dfn = vn dgn, n ≥ 0. Here, by predictability, we
mean that v0 is F0-measurable and vn is Fn−1-measurable for n ≥ 1. In the particular case when
each vn is deterministic and takes values in {−1,1}, we will say that g is a ±1 transform of f .

Another domination we will consider is the so-called α-strong subordination, where α is a
fixed non-negative number. This notion was introduced by Burkholder in [10] in the special case
α = 1 and extended to a general case by Choi [12]: The process g is α-strongly subordinate to f

if it is differentially subordinate to f and, for any n ≥ 0,

|E(dgn+1|Fn)| ≤ α|E(dfn+1|Fn)|
almost surely.

There is a vast literature concerning the comparison of the sizes of f and g under the as-
sumption of one of the dominations above and the further condition that f is a martingale or
non-negative submartingale; we refer the interested reader to the papers [6,9,10,12,15,16,18–
21] and the references therein. In addition, these inequalities have found their applications in
many areas of mathematics: Banach space theory [4,5]; harmonic analysis [8,13,14]; functional
analysis [6,7,20]; analysis [1,2]; stochastic integration [6,11,17,20,21]; and more. To present our
motivation, we state here only two theorems. Let us start with a fundamental result of Burkholder
[6]. We use the notation ‖f ‖p = supn ‖fn‖p , p ∈ [1,∞].

Theorem 1.1 (Burkholder). Assume that f , g are martingales and g is differentially subordi-
nate to f . Then, for any 1 < p < ∞,

‖g‖p ≤ (p∗ − 1)‖f ‖p, (1.1)

where p∗ = max{p,p/(p − 1)}. The constant p∗ − 1 is the best possible; it is already the best
possible if g is assumed to be a ±1 transform of f .

Here, by the optimality of the constant, we mean that for any r < p∗ − 1 there exists a martin-
gale f and its ±1 transform g, for which ‖g‖p > r‖f ‖p .

The submartingale version of the estimate above is the following result of Choi [12].

Theorem 1.2 (Choi). Assume that f is a non-negative submartingale and g is α-differentially
subordinate to f , α ∈ [0,1]. Then for any 1 < p < ∞,

‖g‖p ≤ (p∗
α − 1)‖f ‖p, (1.2)

where p∗
α = max{(α + 1)p,p/(p − 1)}. The constant is the best possible.
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In the paper we deal with a considerably harder problem and determine the optimal constants
in the related moment estimates involving the maximal functions of f and g. For n ≥ 0, let
f ∗

n = sup0≤k≤n |fk| and f ∗ = supk≥0 |fk|. Here is our first main result.

Theorem 1.3. Let f , g be martingales with g being differentially subordinate to f . Then for any
p ≥ 2,

‖g∗‖p ≤ p‖f ‖p (1.3)

and the constant p is the best possible. It is already the best possible in the following weaker
inequality: If f is a martingale and g is its ±1 transform, then

‖g∗‖p ≤ p‖f ∗‖p. (1.4)

Note that the validity of the estimates (1.3) and (1.4) is an immediate consequence of (1.1)
and Doob’s bound ‖f ∗‖p ≤ p

p−1‖f ‖p , p > 1. The non-trivial (and quite surprising) part is the
optimality of the constant p.

Now let us state the submartingale version of the theorem above.

Theorem 1.4. Fix α ∈ [0,1]. Let f be a non-negative submartingale and g be real valued and
α-strongly subordinate to f . Then for any p ≥ 2,

‖g∗‖p ≤ (α + 1)p‖f ‖p (1.5)

and the constant (α + 1)p is the best possible. It is already the best possible in the weaker
estimate

‖g∗‖p ≤ (α + 1)p‖f ∗‖p. (1.6)

There is a natural question: What is the best constant in the inequalities above in the case
1 < p < 2? Unfortunately, we have been unable to answer it; our reasoning works only for the
case p ≥ 2.

The proof of (1.5) is based on a technique invented by Burkholder in [11]. It enables us to
translate the problem of proving a maximal inequality for martingales to that of finding a certain
special function, an upper solution to a corresponding nonlinear problem. The method can be
easily extended to the submartingale setting (see [17]) and we construct the function in Section 3.
For the sake of construction, we need a solution to a differential equation that is analyzed in
Section 2. The next two sections are devoted to the proofs of the announced results: Section 4
contains the proof of the estimate (1.5) and the final part concerns the optimality of the constants
appearing in (1.4) and (1.6). In the final section, we present some applications: sharp estimates
for stochastic integrals and Itô processes.
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2. A differential equation

For a fixed α ∈ (0,1] and p ≥ 2, let C = Cp,α = [(α + 1)p]p(p − 1). A central role in the paper
is played by a certain solution to the differential equation

γ ′(x) = −1 + C(1 − γ (x))γ (x)xp−2

1 + C(1 − γ (x))xp−1
. (2.1)

Lemma 2.1. There is a solution γ : [((α + 1)p)−1,∞) → R of (2.1), satisfying the initial con-
dition

γ

(
1

(α + 1)p

)
= 1 − [(α + 1)p]−1. (2.2)

The solution is non-decreasing, concave and bounded from above by 1.

Proof. Let γ be a solution to (2.1), satisfying (2.2) and extended to a maximal subinterval I of
[((α + 1)p)−1,∞). It is convenient to split the proof into a few steps.

Step 1: I = [((α + 1)p)−1,∞). In view of the Picard–Lindelöf theorem, this will be estab-
lished if we show that γ < 1 on I . To this end, suppose that the set {x ∈ I :γ (x) = 1} is non-
empty and let y denote its smallest element. Then, by (2.1), we have γ ′(y) = −1, which, by
minimality of y, implies γ (((α + 1)p)−1) > 1 and contradicts (2.2).

Step 2: Concavity of γ . Suppose that the set {x ∈ I :γ ′′(x) > 0} is non-empty and let z denote
its infimum. Consider the functions F,G : (((α + 1)p)−1,∞) → R given by

F(x) = γ (x) − xγ ′(x),

G(x) = (
1 − γ (x)

)
xp−2.

Observe that

G > 0 on I and F > 0 on
((

(α + 1)p
)−1

, z + ε
)

(2.3)

for some ε > 0. The statement about G is clear, while the positivity of F follows from

F ′(x) = −xγ ′′(x) ≥ 0, x ∈ ((
(α + 1)p

)−1
, z

]

and

F
((

(α + 1)p
)−1+) = 1

p
> 0.

Now multiply (2.1) throughout by 1 + C(1 − γ (x))xp−1 and differentiate both sides. We obtain
an equality that is equivalent to

γ ′′(x)
(
1 + CxG(x)

) = CF(x)G′(x), x >
1

(α + 1)p
. (2.4)
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As a first consequence, we have z > ((α +1)p)−1. To see this, tend with x down to ((α +1)p)−1

and observe that F and G have strictly positive limits; furthermore,

G′(x) = xp−3[(p − 2)
(
1 − γ (x)

) − xγ ′(x)
] =: xp−3J (x) (2.5)

with J (((α + 1)p)−1) = −α(p−1)
(α+1)p

< 0. Combining (2.3) and (2.4) we see that, for some ε > 0,
G′ ≤ 0 on (z − ε, z) and G′ > 0 on (z, z + ε). Consequently, by (2.5), J ≤ 0 on (z − ε, z) and
J > 0 on (z, z + ε). This implies J ′(z) > 0 and since J ′(z) = −(p − 1)γ ′(z), we get γ ′(z) < 0.
However, this contradicts G′(z) = 0, in view of (2.5) and γ (z) < 1. Let us stress that here, in the
last passage, we use the inequality p ≥ 2.

Step 3: γ is non-decreasing. It follows from (2.4), the concavity of γ and positivity of F and
G, that G′ ≤ 0, or, by (2.5),

(p − 2)
(
1 − γ (x)

) − xγ ′(x) ≤ 0. (2.6)

The claim follows. �

Let us extend γ to the whole half-line [0,∞) by

γ (x) = [(p − 1)(α + 1) − 1]x + 1

p
, x ∈

[
0,

1

(α + 1)p

)
.

It can be verified readily that γ is of class C1 on (0,∞). For the sake of reader’s convenience,
the graph of γ , corresponding to p = 3 and α = 1, is presented on Figure 1.

Let H : [((α + 1)p)−1,∞) → [1,∞) be given by H(x) = x + γ (x) and let h be the inverse
to H . Clearly, we have

x − 1 ≤ h(x) ≤ x, x ≥ 1. (2.7)

Figure 1. The graph of γ (the bold line) in the case p = 3, α = 1. Note that γ is linear on [0,1/6] and
solves (2.1) on (1/6,∞).



1332 A. Osȩkowski

We conclude this section by providing a formula for h′ to be used later. As

h′(x) = 1

H ′(h(x))
= 1

1 + γ ′(h(x))
, x > 1, (2.8)

it can be derived that, in view of (2.1),

h′(x) = 1 + ((α + 1)p)p(p − 1)(h(x) − x + 1)h(x)p−1

((α + 1)p)p(p − 1)(h(x) − x + 1)h(x)p−2x
. (2.9)

3. The special function

Throughout this section, α ∈ (0,1] and p ≥ 2 are fixed. Let S denote the strip [0,∞) × [−1,1].
Consider the following subsets of S.

D0 = {(x, y) ∈ S : |y| ≤ γ (x)},
D1 = {(x, y) ∈ S : |y| > γ (x), x + |y| ≤ 1},
D2 = {(x, y) ∈ S : |y| > γ (x), x + |y| > 1}.

Introduce the function u :S → R by

u(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − [(α + 1)p]pxp on D0,

1 −
(

px + p|y| − 1

p − 1

)p−1[
p
(
p(α + 1) − 1

)
x − p|y| + 1

]
on D1,

1 − [(α + 1)p]ph(x + |y|)p−1[px − (p − 1)h(x + |y|)] on D2.

Let U : [0,∞) × R × (0,∞) → R be given by

U(x, y, z) = (|y| ∨ z)pu

(
x

|y| ∨ z
,

y

|y| ∨ z

)
.

As we will see below, the function U is the key to the inequality (1.5). Let us study the
properties of this function.

Lemma 3.1. The function U is of class C1. Furthermore, there exists an absolute constant K

such that, for all x > 0, y ∈ R, z > 0, we have

U(x, y, z) ≤ K(x + |y| + z)p (3.1)

and

Ux(x, y, z) ≤ K(x + |y| + z)p−1, Ux(x, y, z) ≤ K(x + |y| + z)p−1. (3.2)

Proof. The continuity of the partial derivatives can be verified readily. The inequality (3.1) is
evident for those (x, y, z), for which ( x

|y|∨z
,

y
|y|∨z

) ∈ D0 ∪ D1; for the remaining (x, y, z), it



Maximal inequalities 1333

suffices to use (2.7). Finally, the inequality (3.2) is clear if ( x
|y|∨z

,
y

|y|∨z
) ∈ D0 ∪ D1. For the

remaining points one applies (2.7) and (2.8), the latter inequality implying h′ < 1. �

Now let us deal with the following majorization property.

Lemma 3.2. For any (x, y, z) ∈ [0,∞) × R × (0,∞), we have

U(x, y, z) ≥ (|y| ∨ z)p − [(α + 1)p]pxp. (3.3)

Proof. The inequality is equivalent to u(x, y) ≥ 1 − [(α + 1)p]pxp and we need to establish
it only on D1 and D2. On D1, the substitutions X = px and Y = p|y| − 1 (note that Y ≥ 0)
transform it into

(α + 1)pXp ≥
(

X + Y

p − 1

)p−1[(
p(α + 1) − 1

)
X − Y

]
.

This inequality is valid for all non-negative X, Y . To see this, observe that by homogeneity we
may assume X + Y = 1, and then the estimate reads

F(X) := (α + 1)pXp − (p − 1)−p+1[p(α + 1)X − 1] ≥ 0, X ∈ [0,1].
Now it suffices to note that F is convex on [0,1] and satisfies

F

(
1

(p − 1)(α + 1)

)
= F ′

(
1

(p − 1)(α + 1)

)
= 0.

It remains to show the majorization on D2. It is dealt with in a similar manner: Setting s =
x + |y| > 1, we see that (3.3) is equivalent to

G(x) := xp − h(s)p−1[px − (p − 1)h(s)] ≥ 0, s − 1 < x < h(s).

It is easily verified that G is convex and satisfies G(h(s)) = G′(h(s)) = 0. This completes the
proof of (3.3). �

The main property of the function U is the concavity along the lines of slope belonging to
[−1,1].

Lemma 3.3. For fixed y, z satisfying z > 0, |y| ≤ z, and any a ∈ [−1,1], the function � =
�y,z,a : [0,∞) → R given by

�(t) = U(t, y + at, z)

is concave.

Before we turn to the proof, let us first establish some useful consequences.



1334 A. Osȩkowski

Corollary 3.4. (i) The function U has the following property: For any x, y, z, kx, ky such that
x, x + kx ≥ 0, z > 0, |y| ≤ z and |ky | ≤ |kx |, we have

U(x + kx, y + ky, z) ≤ U(x, y, z) + Ux(x, y, z)kx + Uy(x, y, z)ky (3.4)

(for x = 0, we replace Ux(0, y, z) by right-sided derivative Ux(0+, y, z)).
(ii) For any x ≥ 1, we have

U(x,1,1) ≤ 0. (3.5)

Proof. (i) This follows immediately.
(ii) We have �0,1,x−1(0) = U(0,0,1) = 1 and �0,1,x−1(((α + 1)p)−1) = U(((α + 1)p)−1,

x−1((α + 1)p)−1,1) = 0, since (((α + 1)p)−1, x−1((α + 1)p)−1,1) ∈ D0. Since x ≥ 1 > ((α +
1)p)−1, the lemma above gives U(x,1,1) = �0,1,x−1(x) ≤ 0. �

Proof of Lemma 3.3. By homogeneity, we may assume z = 1. As � is of class C1, it suffices to
verify that �′′(t) ≤ 0 for those t , for which (t, y +at) lies in the interior of D0, D1, D2 or outside
the strip S. Since U(x, y, z) = U(x,−y, z), we may restrict ourselves to the case y + at ≥ 0. If
(t, y + at) belongs to Do

0 , the interior of D0, then �′′(t) = −[(α + 1)p]p · p(p − 1)tp−2 < 0,
while for (t, y + at) ∈ Do

1 we have

�′′(t) = −p3(pt + p(y + at) − 1)p−3(1 + a)

(p − 1)p−2
(I1 + I2),

where

I1 = pt
[
(p − 2)(1 + a)

(
p(α + 1) − 1

) + 2
(
p(α + 1) − 1 − a

)] ≥ 0,

I2 = (
p(y + at) − 1

)
(2α + 1 − a) ≥ 0.

The remaining two cases are a bit more complicated. If (t, y + at) ∈ Do
2 , then

�′′(t)
Cp(1 + a)2

= J1 + J2 + J3,

where

J1 = h(t + y + at)p−2h′′(t + y + at)[h(t + y + at) − t],
J2 = h(t + y + at)p−3[h′(t + y + at)]2[(p − 1)h(t + y + at) − (p − 2)t],
J3 = − 2

a + 1
h(t + y + at)p−2h′(t + y + at).

Now if we change y and t, keeping s = t + y + at fixed, then J1 + J2 + J3 is a linear function of
t ∈ [s − 1, h(s)]. Therefore, to prove it is non-positive, it suffices to verify this for t = h(s) and
t = s − 1. For t = h(s), we have

J1 + J2 + J3 = h(s)p−2h′(s)
[
h′(s) − 2

a + 1

]
≤ 0,
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since 0 ≤ h′(s) ≤ 1 (see (2.8)). If t = s − 1, rewrite (2.9) in the form

Cs
(
h(s) + 1 − s

)
h(s)p−2h′(s) = 1 + C

(
h(s) + 1 − s

)
h(s)p−1

and differentiate both sides; as a result, we obtain

Cs

[
J1 + J2 + J3 + h(s)p−2h′(s)

(
2

a + 1
− 1

)]

= Ch(s)p−2[(h′(s) − 1
)
h(s) + (p − 2)

(
h(s) + 1 − s

)
h′(s)

]
.

As h′ ≥ 0 and 2/(a + 1) ≥ 1, we will be done if we show the right-hand side is non-positive.
This is equivalent to

h′(s)
[
h(s) + (p − 2)

(
h(s) + 1 − s

)] ≤ h(s).

Now use (2.8) and substitute h(s) = r , noting that h(s) + 1 − s = 1 − γ (r), to obtain

r + (p − 2)
(
1 − γ (r)

) ≤ r
(
1 + γ ′(r)

)
,

or rγ ′(r) ≥ (p − 2)(1 − γ (r)), which is (2.6).
Finally, suppose that y + at > 1. For such t we have �(t) = (y + at)pu(t/(y + at),1), hence,

setting X = t/(y + t), Y = y + at , we easily check that �′′(t) equals

Yp−2[p(p − 1)a2u(X,1) + 2a(p − 1)(1 − aX)ux(X,1) + (1 − aX)2uxx(X,1)].
First let us derive the expressions for the partial derivatives. Using (2.9), we have

ux(X,1) = p

X + 1

[
1 + C

(
h(X + 1) − X

)
h(X + 1)p−1] − Cph(X + 1)p−1

p − 1
,

uxx(X,1) = p(p − 1)

(X + 1)2

[
1 + C

(
h(X + 1) − X

)
h(X + 1)p−1]

− Cph(X + 1)p−1

X + 1
− Cph(X + 1)p−2h′(X + 1)

X + 1
.

Now it can be checked that

�′′(t)Y 2−p/p = K1 + K2 + K3,

where

K1 = (p − 1)

(
a + 1

X + 1

)2[
1 + C

(
h(X + 1) − X

)
h(X + 1)p−1],

K2 = −Ch(X + 1)p−1

X + 1
(1 + 2a − a2X),
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K3 = −
(

1 − aX

X + 1

)2

· 1 + C(h(X + 1) − X)h(X + 1)p−1

h(X + 1) − X

≤ −
(

1 − aX

X + 1

)2

· Ch(X + 1)p−1.

We may write

K2 + K3 ≤ −Ch(X + 1)p−1

(X + 1)2
[(1 + 2a − a2X)(X + 1) + (1 − aX)2]

= −Ch(X + 1)p−1(a + 1)

(X + 1)2
[2 + X(1 − a)] ≤ −

(
a + 1

X + 1

)2

Ch(X + 1)p−1,

where, in the last passage, we used a ≤ 1. On the other hand, as h is non-decreasing, we have

1 = Ch(1)p

p − 1
≤ Ch(X + 1)p−1h(1)

p − 1
.

Moreover, since x �→ h(x + 1) − x is non-increasing (see (2.8)), we have h(X + 1) − X ≤ h(1).
Combining these two facts, we obtain

K1 ≤ (p − 1)

(
a + 1

X + 1

)2

[1 + Ch(1)h(X + 1)p−1]

≤
(

a + 1

X + 1

)2

Ch(X + 1)p−1[h(1) + (p − 1)h(1)]

≤
(

a + 1

X + 1

)2

Ch(X + 1)p−1,

as ph(1) = (α + 1)−1 ≤ 1. This implies K1 + K2 + K3 ≤ 0 and completes the proof. �

The final property we will need is the following.

Lemma 3.5. For any x, y, z such that x ≥ 0, z > 0 and |y| ≤ z, we have

Ux(x, y, z) ≤ −α|Uy(x, y, z)| (3.6)

(if x = 0, then Ux is replaced by a right-sided derivative).

Proof. It suffices to show that for fixed y, z, |y| ≤ z, and a ∈ [−α,α], the function � =
�y,z,a : [0,∞) → R given by �(t) = U(t, y + at, z) is non-increasing. Since α ≤ 1, we know
from the previous lemma that � is concave. Hence all we need is �′(0+) ≤ 0. By symmetry, we
may assume y ≥ 0. If y ≤ 1/p, then the derivative equals 0; in the remaining case, we have

�′(0+) = −p2(py − 1)p−1

(p − 1)p−1
(α − a) ≤ 0. �
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4. The proof of (1.5)

First let us observe that it suffices to show (1.5) for strictly positive α. This is an immediate
consequence of the fact that α-strong subordination implies α′-strong subordination for α < α′.

Suppose f , g are as in Theorem 1.4. We may restrict ourselves to the case ‖f ‖p < ∞. Hence,
by Choi’s inequality (1.2), we have ‖g‖p < ∞. It suffices to show that for any n = 0,1,2, . . . we
have

E[(g∗
n)p − (α + 1)pppf

p
n ] ≤ 0.

Clearly, we may assume that P(g0 > 0) = 1, simply replacing f , g by f + ε, g + ε if nec-
essary (here ε is a small positive number). In particular, this implies f0 > 0 almost surely. In
view of the majorization (3.3), we will be done if we show that the expectation EU(fn, gn, g

∗
n)

is non-positive for any n. As a matter of fact, we will show more; namely, that the process
(U(fn, gn, g

∗
n)n≥0) is a supermartingale and EU(f0, g0, g

∗
0) ≤ 0.

To this end, fix n ≥ 1 and observe that g∗
n ≤ |g0|+ |g1|+ · · ·+ |gn|, so g∗

n belongs to Lp . Thus,
by Lemma 3.1 and Hölder’s inequality, the variables U(fn, gn, g

∗
n), Ux(fn−1, gn−1, g

∗
n−1)dfn

and Uy(fn−1, gn−1, g
∗
n−1)dgn are integrable. Moreover, by definition of U and the inequality

(3.4),

E(U(fn, gn, g
∗
n)|Fn−1) = E(Un(fn, gn, g

∗
n−1)|Fn−1)

= E
(
U(fn−1 + dfn, gn−1 + dgn, g

∗
n−1)|Fn−1

)
≤ E[U(fn−1, gn−1, g

∗
n−1) + Ux(fn−1, gn−1, g

∗
n−1)dfn

+ Uy(fn−1, gn−1, g
∗
n−1)dgn|Fn−1]

≤ U(fn−1, gn−1, g
∗
n−1).

The latter inequality is the consequence of the following. By (3.6) and the submartingale property
of f ,

E(Ux(fn−1, gn−1, g
∗
n−1)dfn|Fn−1) = Ux(fn−1, gn−1, g

∗
n−1)E(dfn|Fn−1)

≤ −α|Uy(fn−1, gn−1, g
∗
n−1)|E(dfn|Fn−1)

≤ −Uy(fn−1, gn−1, g
∗
n−1)E(dgn|Fn−1)

= −E(Uy(fn−1, gn−1, g
∗
n−1)dgn|Fn−1),

where the second inequality is due to α-domination.
To complete the proof, it suffices to show that EU(f0, g0, g

∗
0) ≤ 0. However, U(f0, g0, g

∗
0) =

U(f0, g0, g0) = g
p

0 U(f0/g0,1,1) almost surely and the estimate follows from Corollary 3.4(ii).

5. Sharpness

We start with inequality (1.4) and restrict ourselves to the case when g is a ±1 transform of f .
Suppose the best constant in this estimate equals β > 0. This implies the existence of a function
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W : R × R × [0,∞) × [0,∞) → R, which satisfies the following properties:

W(1,1,1,1) ≤ 0, (5.1)

W(x,y, z,w) = W(x,y, |x| ∨ z, |y| ∨ w), if x, y ∈ R,w, z ≥ 0, (5.2)

(|y| ∨ w)p − βp(|x| ∨ z)p ≤ W(x,y, z,w), if x, y ∈ R,w, z ≥ 0 (5.3)

and, furthermore,

aW(x + t1, y + εt1, z,w) + (1 − a)W(x + t2, y + εt2, z,w) ≤ W(x,y, z,w)
(5.4)

for any |x| ≤ z, |y| ≤ w, ε ∈ {−1,1}, a ∈ (0,1) and t1, t2 with at1 + (1 − a)t2 = 0.

Indeed, one puts

W(x,y, z,w) = sup{E(g∗
n ∨ w)p − βp

E(f ∗
n ∨ z)p}, (5.5)

where the supremum is taken over all integers n and all martingales f , g satisfying P((f0, g0) =
(x, y)) = 1 and dfk = ±dgk , k = 1,2, . . . (see [11] for details). This formula allows us to assume
that W is homogeneous: W(tx, ty, tz, tw) = tW(x, y, z,w) for all x, y ∈ R, z,w ≥ 0 and t > 0.

Now the idea is to exploit the above properties of W to get β ≥ p. To this end, let δ be a small
number belonging to (0,1/p). By (5.4) applied to x = 0, y = w = 1, z = δ/(1 + 2δ), ε = 1 and
t1 = δ, t2 = −1/p, we obtain

W

(
0,1,

δ

1 + 2δ
,1

)
≥ pδ

1 + pδ
W

(
− 1

p
,1 − 1

p
,

δ

1 + 2δ
,1

)
(5.6)

+ 1

1 + pδ
W

(
δ,1 + δ,

δ

1 + 2δ
,1 + δ

)
.

Now, by (5.2) and (5.3),

W

(
− 1

p
,1 − 1

p
,

δ

1 + 2δ
,1

)
= W

(
− 1

p
,1 − 1

p
,

1

p
,1

)
≥ 1 −

(
β

p

)p

. (5.7)

Furthermore, by (5.2),

W

(
δ,1 + δ,

δ

1 + 2δ
,1 + δ

)
= W(δ,1 + δ, δ,1 + δ),

which, by (5.4) (with x = z = δ, y = w = 1 + δ, ε = −1 and t1 = −δ, t2 = 1
p

+ δ( 1
p

− 1)), can
be bounded from below by

pδ

1 + δ
W

(
1 + δ

p
,1 − 1

p
+ δ

(
2 − 1

p

)
, δ,1 + δ

)
+ 1 + δ − pδ

1 + δ
W(0,1 + 2δ, δ,1 + δ).
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Using (5.3), we get

W

(
1 + δ

p
,1 − 1

p
+ δ

(
2 − 1

p

)
, δ,1 + δ

)
≥ (1 + δ)p

[
1 −

(
β

p

)p]
.

Furthermore, by (5.2) and the homogeneity of W ,

W(0,1 + 2δ, δ,1 + δ) = W(0,1 + 2δ, δ,1 + 2δ) = (1 + 2δ)pW

(
0,1,

δ

1 + 2δ
,1

)
.

Now plug all the above estimates into (5.6) to get

W

(
0,1,

δ

1 + 2δ
,1

)[
1 − (1 + δ − pδ)(1 + 2δ)p

(1 + δ)(1 + pδ)

]
(5.8)

≥ pδ

1 + pδ

[
1 −

(
β

p

)p](
1 + (1 + δ)p−1).

Now it follows from the definition (5.5) of W that

W

(
0,1,

δ

1 + 2δ
,1

)
≤ W(0,1,0,1).

Furthermore, one easily checks that the function

F(s) = 1 − (1 + s − ps)(1 + 2s)p

(1 + s)(1 + ps)
, s > − 1

p
,

satisfies F(0) = F ′(0) = 0. Hence

1 −
(

β

p

)p

≤ W(0,1,0,1) · F(δ) · (1 + pδ)

pδ(1 + (1 + δ)p−1)

and letting δ → 0 yields 1 − (
β
p
)p ≤ 0, or β ≥ p.

The reasoning for the inequality (1.6) is essentially the same: suppose the best constant in the
estimate equals γ > 0. Introduce the function V : [0,∞) × R × [0,∞) × [0,∞) → R by

V (x, y, z,w) = sup{E(g∗
n ∨ w)p − γ p

E(f ∗
n ∨ z)p},

where the supremum is taken over all integers n, all non-negative submartingales f and all
integrable sequences g satisfying P((f0, g0) = (x, y)) = 1 and, for k = 1,2, . . . ,

|dfk| ≥ |dgk|, αE(dfk|Fk−1) ≥ |E(dgk|Fk−1)|
with probability 1. We see that V is homogeneous and satisfies the properties analogous to (5.1)–
(5.4) (with obvious changes: in (5.2) and (5.3) one must assume x ≥ 0; in (5.3) the number β
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is replaced by γ ; and, in (5.4), we impose x, x + t1, x + t2 ≥ 0). In addition, there is an extra
property of V , which corresponds to the fact that we deal with the inequality for submartingales:

V (x + d, y + αd, z,w) ≤ V (x, y, z,w), if x ≥ 0, y ∈ R,w, z ≥ 0, d ≥ 0. (5.9)

Now fix δ ∈ (0,1/p) and apply this property with x = 0, y = w = 1, z = δ/(1+ (α +1)p), d = δ

and then use (5.2) to obtain

V

(
0,1,

δ

1 + (α + 1)δ
,1

)
≥ V

(
δ,1 + αδ,

δ

1 + (α + 1)δ
,1

)
(5.10)

= V (δ,1 + αδ, δ,1 + αδ).

Using (5.2), (5.3) and (5.4) as above, we have

V (δ,1 + αδ, δ,1 + αδ) ≥ δ(α + 1)p

1 + αδ
(1 + αδ)p

[
1 −

(
γ

(α + 1)p

)p]

+ 1 + αδ − δ(α + 1)p

1 + αδ

(
1 + (α + 1)δ

)p
V

(
0,1,

δ

1 + (α + 1)δ
,1

)
,

which, combined with (5.10), gives

V

(
0,1,

δ

1 + (α + 1)δ
,1

)[
1 − 1 + αδ − δ(α + 1)p

1 + αδ

(
1 + (α + 1)δ

)p
]

≥ δ(α + 1)p(1 + αδ)p−1
[

1 −
(

γ

(α + 1)p

)p]
.

Now it suffices to use

V

(
0,1,

δ

1 + (α + 1)δ
,1

)
≤ V (0,1,0,1)

and the fact that the function

G(s) = 1 − 1 + αs − s(α + 1)p

1 + αs

(
1 + (α + 1)s

)p
, s > −1/α,

satisfies G(0) = G′(0) = 0, to obtain

1 −
(

γ

(α + 1)p

)p

≤ V (0,1,0,1)G(δ)

δ(α + 1)p(1 + αδ)p−1
.

Letting δ → 0 gives 1 − (
γ

(α+1)p
)p ≤ 0, or γ ≥ (α + 1)p. This completes the proof.

6. Inequalities for stochastic integrals and Itô processes

In this section we present applications of the results above. Theorem 1.4 in the special case α = 1
yields an interesting inequality for the stochastic integrals. Suppose (�, F ,P) is a complete
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probability space, filtered by a non-decreasing right-continuous family (Ft )t≥0 of sub-σ -fields
of F . In addition, let F0 contain all the events of probability 0. Suppose X = (Xt )t≥0 is an
adapted non-negative right-continuous submartingale with left limits and let Y be the Itô integral
of H with respect to X,

Yt = H0X0 +
∫

(0,t]
Hs dXs, t ≥ 0.

Here H is a predictable process with values in [−1,1]. Denote ‖X‖p = supt≥0 ‖Xt‖p and X∗ =
supt≥0 |Xt |. We will establish the following extension of Theorem 1.4.

Theorem 6.1. Under the above conditions, we have, for any p ≥ 2,

‖Y ∗‖p ≤ 2p‖X‖p, (6.1)

and the constant 2p is the best possible. It is already the best possible in the weaker estimate

‖Y ∗‖p ≤ 2p‖X∗‖p.

Proof. The constant 2p is optimal even in the discrete-time setting, so all we need is to show
(6.1). This is a consequence of the approximation results of Bichteler [3]. We proceed as follows:
Consider the family Y of all processes Y of the form

Yt = H0X0 +
n∑

k=1

hk[Xτk∧t − Xτk−1∧t ], (6.2)

where n is a positive integer, hk belongs to [−1,1] and the stopping times τk take only a finite
number of finite values, with 0 = τ0 ≤ τ1 ≤ · · · ≤ τn. Let

f = (Xτ0 ,Xτ1, . . . ,Xτn,Xτn, . . .)

and let g be the transform of f by (H0, h1, h2, . . . , hn,0,0, . . .). In virtue of Doob’s optional
sampling theorem, f is a submartingale. Therefore, by Theorem 1.4, if τn ≤ t almost surely,
then for Y as in (6.2),

‖Y ∗
t ‖p = ‖g∗

n‖p ≤ 2p‖fn‖p ≤ 2p‖Xt‖p.

Now we have that X and H satisfy the conditions of Proposition 4.1 of Bichteler [3]. Thus by
(2) of that proposition, if Y is as in the statement of the theorem above, then there is a sequence
(Y j ) of elements of Y such that limj→∞(Y j −Y)∗ = 0 almost surely. Hence, by Fatou’s lemma,

‖Y ∗
t ‖p ≤ 2p‖Xt‖p.

Now take t → ∞ to complete the proof. �

The result above can be further strengthened. Assume that X is a non-negative submartingale
and X = X0 + M + A stands for its Doob–Meyer decomposition, uniquely determined by the



1342 A. Osȩkowski

condition that A is predictable. Let α ∈ [0,1] be fixed and suppose φ, ψ are predictable processes
satisfying |φs | ≤ 1 and |ψs | ≤ α for all s. Consider the Itô process Y such that |Y0| ≤ X0 and

Yt = Y0 +
∫ t

0+
φs dMs +

∫ t

0+
ψs dAs

for all t ≥ 0. We have the following sharp bound.

Theorem 6.2. For X, Y as above, we have

‖Y ∗‖p ≤ (α + 1)p‖X‖p

and the inequality is sharp. So is the weaker estimate

‖Y ∗‖p ≤ (α + 1)p‖X∗‖p.

This result can be established using essentially the same approximation arguments as above;
we omit the details. We would only like to mention here that there is an alternative way of proving
Theorems 6.1 and 6.2, based on Itô’s formula applied to the function u (as the function is not
of class C2, one needs some additional “smoothing” arguments to overcome this difficulty). See
[19] or [20] for similar reasoning.
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