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A set of independence statements may define the independence structure of interest in a family of joint
probability distributions. This structure is often captured by a graph that consists of nodes representing
the random variables and of edges that couple node pairs. One important class contains regression graphs.
Regression graphs are a type of so-called chain graph and describe stepwise processes, in which at each
step single or joint responses are generated given the relevant explanatory variables in their past. For joint
densities that result after possible marginalising or conditioning, we introduce summary graphs. These
graphs reflect the independence structure implied by the generating process for the reduced set of variables
and they preserve the implied independences after additional marginalising and conditioning. They can
identify generating dependences that remain unchanged and alert to possibly severe distortions due to direct
and indirect confounding. Operators for matrix representations of graphs are used to derive these properties
of summary graphs and to translate them into special types of paths in graphs.

Keywords: concentration graph; directed acyclic graph; endogenous variables; graphical Markov model;
independence graph; multivariate regression chain; partial closure; partial inversion; triangular system

1. Motivation, some previous and some of the new results

1.1. Motivation

Graphical Markov models are probability distributions defined for a dV × 1 random vector vari-
able YV whose component variables may be discrete, continuous or of both types and whose
joint density fV satisfies the independence statements specified directly by an associated graph
as well as those implied by the graph. The set of all such statements is the independence structure
captured by the graph.

One such type of graph was introduced for sequences of regression by Cox and Wermuth
(1993, 1996) for which special results have been derived by Drton (2009), Kang and Tian (2009),
Marchetti and Lupparelli (2011), Wermuth and Cox (2004), Wermuth, Wiedenbeck and Cox
(2006), Wermuth, Marchetti and Cox (2009), Wermuth and Sadeghi (2011).

A regression graph consists of nodes, say in set V , that represent random variables, and of
edges that couple node pairs such that a recursive order of the joint responses is reflected in
the graph. Associated discrete distributions have some desirable properties derived by Drton
(2009). Each defining independence constraint respects the given recursive ordering of the joint
responses; see Marchetti and Lupparelli (2011). This feature distinguishes regression graphs
from all other currently known types of chain graphs and permits one to model data from both
interventional and observational studies.
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Because of this property, regression graphs are particularly well suited to the study of effects
of hypothesized causes on sequences of joint responses; see Cox and Wermuth (2004). More
generally, they can model developmental processes, such as in panel studies. These provide data
on a group of individuals, termed the ‘panel’, collected repeatedly, say over years or decades.
Often one wants to compare corresponding analyses with results in other studies that have core
sets of variables in common, but that have omitted some of the variables or that were carried out
for subpopulations.

It is an outstanding feature of regression graph models that their implications can be derived
after marginalising over some variables, say in set M , or after conditioning on others, say in
set C. In particular, graphs can be obtained for node set N = V \ {C,M} that capture precisely
the independence structure implied by a generating graph in node set V for the distribution of
YN given YC .

Such graphs are called independence-preserving, when they can be used to derive the indepen-
dence structure that would have resulted from the generating graph by conditioning on a larger
node set {C,c} or by marginalising over a larger node set {M,m}. Two types of such classes are
known. One is the subclass of the much larger class of MC graphs of Koster (2002), which can
be generated by a regression graph in a larger node set. Another class contains the MAG’s (max-
imal ancestral graphs) of Richardson and Spirtes (2002). We speak of two corresponding graphs
if they result from a given generating graph relative to the same conditioning and marginalising
sets.

A third class of this type is the summary graph of Wermuth, Cox and Pearl (1994). This class
is presented in the current paper in simplified form together with proofs based on operators
for binary matrix representations of the graphs. In contrast to a MAG, a corresponding summary
graph can be used to identify those dependences of a given generating process for YV with V > N

that remain undistorted in the corresponding MAG model for YN given YC and those that may be
severely distorted. This is especially helpful at the planning stage of studies when alternative sets
M and C are considered given a hypothesized generating graph in V > N . Annotated, undirected
graphs of Paz (2007), for C empty, serve a similar purpose.

The warning signals for distortions provided by summary graphs are essential for understand-
ing consequences of a given data generating process with respect to dependences in addition to
independences. For this, some special properties of the types of generating graph will be intro-
duced as well as specific requirements on the types of generating process. These lead to families
of distributions that are said to be generated over parent graphs.

1.2. Some notation and concepts

Some definitions for graphs are almost self-explanatory. If pair i �= k of V is coupled by a directed
edge such that an arrow starts at node k and points to node i, then k is named a parent of i and
i the offspring of k. For two disjoint subsets α and β of V , an ik-arrow, i≺ k, is said to point
from β to α if the arrow starts at a node k in β and points to a node i in α. Nodes other than the
endpoint nodes are the inner nodes of a path; only the inner nodes have to be distinct. For three
or more nodes, an ik-path connects the path endpoint nodes i and k by a sequence of edges that
couple its inner nodes. An ik-path with i = k is a cycle.
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An edge is regarded as a path without inner nodes. Both a graph and a path are called directed
if all its edges are arrows. If all arrows of a directed ik-path point towards node i, then node k is
named an ancestor of i and i a descendant of k. Such a path is also called a descendant–ancestor
path.

Directed acyclic graphs form an important subclass of regression graphs. They arise from
stepwise generating processes of exclusively univariate response variables; see Section 2 below.
These graphs have no directed cycles.

As we shall show, two different types of undirected graph are subclasses of regression graphs,
named covariance graphs and concentration graphs. For joint Gaussian distributions, they give
models for zero constraints on covariances or on concentrations, respectively; see Wermuth and
Cox (1998) and (2.5) and (2.16) below. To distinguish between them in figures, edges in concen-
tration graphs are shown as full lines, i k, and in covariance graphs by dashed lines, i k.

Separation criteria provide what is called the global Markov property of a graph since it gives
all independence statements that belong to the graph’s independence structure.

Definition 1. A graph, consisting of a node set and of one or more edge sets, is an independence
graph if node pairs are coupled by at most one edge and each missing edge corresponds to at
least one independence statement.

Regression graphs and MAGs are independence graphs but, in general, summary graphs, an-
cestral graphs and MC graphs are not, even with at most one edge for each node pair; see the
discussion of Figure 3(b) below.

The same graph theoretic notion of separation applies to both types of undirected graph. Let
α and β be two non-empty, disjoint subsets of their node set V and let {α,β,m, c} partition
V , then we write Yα is conditionally independent of Yβ given Yc compactly as α ⊥⊥ β|c. In a
concentration graph, α is separated by c from β if every path from α to β has a node in c,
while in the covariance graph, α is separated by m from β if every path from α to β has a
node in m. Given separation of α and β by set c, a concentration graph implies α ⊥⊥ β|c; see
Lauritzen (1996). Given separation of α and β by set m, a covariance graph implies α ⊥⊥ β|c;
see Kauermann (1996), who expresses the result in a different but equivalent way.

When a graph is directed or contains different types of edge then its separation criterion is
more complex than the one for undirected graphs. For directed acyclic graphs, there are several
different separation criteria that permit us to obtain all independence statements implied by the
graph; see Marchetti and Wermuth (2009) for proofs of equivalence.

The criterion due to Geiger, Verma and Pearl (1990), has been extended in almost unchanged
form by Koster (2002) to the much larger class of MC graphs. A path-based proof, due to Sadeghi
(2009), is for the subclass of MC graphs that is of interest here, the MC graphs that can be derived
from a larger directed acyclic graph. For summary graphs, see Lemma 1 below.

A list of independence statements associated with the missing edges of an independence graph
gives a graph’s pairwise Markov property. Whenever it defines the graph’s independence struc-
ture, then the pairwise Markov property is said to be equivalent to the global Markov property.

For all disjoint subsets a, b, c, d of node set V , the following general definitions are relevant,
respectively, for combining pairwise independences in covariance graph and in concentration
graph models.
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Definition 2. The composition property is

a ⊥⊥ b|d and a ⊥⊥ c|d imply a ⊥⊥ bc|d.

Definition 3. The intersection property is

a ⊥⊥ b|cd and a ⊥⊥ c|bd imply a ⊥⊥ bc|d.

Given these properties, the independence structure of interest in a covariance or concentration
graph model can be specified in terms of independence constraints on a set of variable pairs. For
general searching discussions, see Dawid (1979), Pearl (1988), Lauritzen (1996) and Studený
(2005).

Necessary and sufficient conditions under which discrete and Gaussian distributions satisfy
the intersection property have been derived by San Martin, Mochart and Rolin (2005). They
show in particular that of the commonly specified sufficient conditions, some may be much too
strong – for instance, requiring exclusively positive probabilities for discrete distributions. For
joint Gaussian distributions, a positive definite joint covariance matrix is sufficient. In both cases,
no component of the involved random variables is degenerate.

Definition 4. A family of joint distributions is said to vary fully if its random variables contain
no degenerate components and it satisfies the intersection property.

Definition 5. In families of joint distributions with the composition property, pairwise indepen-
dent variables are also mutually independent.

For families of joint distributions with the composition property, in which a regression graph
with a complete concentration graph captures the independences of interest, the global and the
pairwise Markov property are equivalent; see also Kang and Tian (2009).

For a long time, only the family of Gaussian distributions was known to satisfy both the com-
position and the intersection property provided it varies fully. Under the same type of constraint,
this is now known to hold for the special family of distributions in symmetric binary variables
introduced by Wermuth, Marchetti and Cox (2009). More important, as we shall see, it holds for
families generated over so-called parent graphs.

The notion of completeness has been introduced and studied in quite different contexts [see
Lehmann and Scheffé (1955); Brown (1986), Theorem 2.12; and Mandelbaum and Rüschendorf
(1987)]. It means that the joint family of distribution of vector variable Y is such that a zero
expectation of any function g(y) implies that the function itself is zero with probability one, that
is, almost surely (a.s.).

Definition 6. Let f (y) denote the density of a member of a complete family of distributions and
g(y) be some function of Y . Then it holds that

∫
g(y)f (y)dy = 0 �⇒ g(y) = 0 a.s.
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For any trivariate family of distributions with precisely two associated variable pairs, say
(Y1, Y2) and (Y1, Y3), but 2 ⊥⊥ 3, completeness of the joint distribution is sufficient to conclude
that Y2 is conditionally dependent on Y3 given Y1. This follows from Corollary 3 of Wermuth
and Cox (2004) and properties of completeness. In this situation, the generating graph

2 �1≺ 3

is inducing a 2,3-edge in the summary graph obtained by conditioning on node 1 and a non-
vanishing conditional association for Y2, Y3 given Y1.

In Section 2, we define parent graphs as directed acyclic graphs with special properties and
corresponding types of stepwise generating processes such that edge-inducing paths are also
association-inducing. The families of distributions generated over parent graphs and the members
of the families satisfy the intersection and the composition property in addition to the general
laws of probability that govern independences in any joint family of distribution; for a discussion
of the latter see Studený (2005).

1.3. Definition and construction of summary graphs

In contrast to MC graphs and MAGs, regression graphs are not closed under marginalising and
conditioning, that is, one can get from a given regression graph outside the class of regression
graphs after marginalising and conditioning as illustrated with Figure 3 below. But the graph
resulting in this way from any regression graph is always within the class of summary graphs.
This explains partly why we study the larger class of summary graphs.

Definition 7. A summary graph, GN
sum, has node set N , which consists of disjoint subsets u,v,

ordered as (u, v). Within u, the graph has a mixture of a directed acyclic graph and of a covari-
ance graph and, within v, it has a concentration graph. Between u and v, only arrows point from
v to u.

The notions of parents, offsprings, ancestors and descendants remain unchanged in a summary
graph compared to a directed acyclic graph. As will be shown, every summary graph in node
set N can be generated from a directed acyclic graph in node set V = {◦} by conditioning on
C = { } and marginalising over M = { } so that N = V \ {C,M}. This graph is denoted by

G
V \[C,M]
sum , an associated density by fN |C that results from fV , the given density of the generating

graph, which factorizes according to this graph; see (1.3) below.
The density fN |C may concern discrete, continuous or mixed variables, as implied by fV . It

has a factorization according to (u, v) that is written compactly in terms of node sets as

fN |C = fu|vCfv|C. (1.1)

In the larger generating graph in node set V , every node in v and no node in u is an ancestor of
the conditioning set C. Thus, each component of Yv has been generated before Yu; see Figure 2
for an example.
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Table 1. Types of induced edge when each of m or c contains a single node in GN
sum

Types of induced edge when marginalising over the common neighbor node t

t �◦ t ◦ t≺ ◦ t ◦
◦≺ t ◦ ◦ ◦≺ ◦ ◦≺ ◦ ◦ ◦◦ t · ◦ ◦ ◦ ◦ ◦ �◦
and types of induced edge when conditioning on the common neighbor node s or on
one of the descendants of s

s≺ ◦ s ◦
◦ �s ◦ ◦ ◦ �◦◦ s · ◦ ◦

where the · notation indicates a symmetric entry.

Figures 1–3 illustrate how summary graphs may be generated. For this, the stepwise construc-
tion of a summary graph by marginalising over m = {t} or conditioning on c = {s} in GN

sum is
given in Table 1.

If a node t is coupled with both of the nodes i and k, then t is said to be their common neighbor.
In two-edge paths, the inner node is named a collision node for

◦ �◦≺ ◦, ◦ �◦ ◦, ◦ ◦ ◦,

Figure 1. (a) A summary graph with node 4 to be marginalised over and node 5 to be conditioned on,
(b) the graph of (a) including edges induced for conditioning on node 5, (c) the graph of (a) including edges

induced for marginalising over node 4, (d) G
N\[5,4]
sum .
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Figure 2. (a) A directed acyclic graph generating (b) a summary graph without semi-directed cycles;
u = {1,2,3,4} and v = {5,6,7,8}.

and a transmitting node, otherwise. A path for which all inner nodes are collision nodes is a
collision path and a path for which all inner nodes are transmitting nodes is a transmitting path.

Table 1 is taken from Wermuth, Cox and Pearl (1994). In the Appendix here, we show that
the types of edge are self-consistent when they are induced using Table 1. The table implies in
particular that a collision node is edge-inducing by conditioning on it while a transmitting node
is edge-inducing by marginalising over it.

Let a summary graph, GN
sum, be given and nodes s �= t of N be selected. Suppose one intends

to marginalise over node t and to condition on node s and ds denotes the ancestors of s within u

of GN
sum. Then, a new summary graph in node set N ′ = N \ {s, t} results by using the procedure

given in the following Proposition 1. The graph GN ′
sum has its concentration graph in v′ = v \{s, t}

whenever both nodes are in v, in v′ = v \ {s} for only s in v, in v′ = {v \ {t}, ds} for only t in v

and in v′ = {v, ds} for both nodes in u.

Proposition 1 (Generating a summary graph from GN
sum by operating on at most two

nodes). From GN
sum, the independence-preserving summary graph G

N\[s,t]
sum is generated, with

t the marginalising node and s the conditioning node, by inducing edges as prescribed in Ta-
ble 1:

(1) first for the neighbors of t , second for the neighbors of s and of all of its ancestors, ignor-
ing in the second step edges involving t ,

(2) changing each edge present within v′ into a full line and each edge present between u′
and v′ into an arrow pointing from v′ to u′,

(3) keeping for each node pair of several edges that are of the same kind just one and deleting
all nodes and edges involving s or t .

Section 3 contains proofs in terms of operators for matrix representations of graphs. The proofs
imply for any node subset {m,c} of N that G

N\[∅,m]
sum may be derived before conditioning on set

Figure 3. (a) A directed acyclic graph generating (b) a summary graph with v as the empty set and several
semi-directed cycles; the 4,4-path with inner nodes 1,2,3, the 6,6-path via inner node 5 and the double
edge for (6, 7).
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c, or G
N\[c,∅]
sum before marginalising over set m and that within sets c or m any order of the nodes

can be chosen. In particular, in step (1) one may first work on the neighbors of s and of all of its
ancestors and second on the neighbors of t , ignoring edges involving s in this second step.

The matrix formulations lead more directly to G
N\[c,m]
sum , but Proposition 1 gives an algorithm

for operating on one node at a time. It is also helpful for small graphs, as illustrated with Fig-
ures 1–3. Proposition 1 implies that no coupled pair ever gets uncoupled and that the two types
of path that may occur when constructing a summary graph are replaced in G

N\[j,t]
sum :

◦ �◦ ◦ by ◦ ◦ ◦,

◦ ◦ ◦ by ◦≺ ◦ ◦.

The starting summary graph of Figure 1 is in 1(a). For j = 5 and t = 4, Figure 1(b) shows
the edges induced by operating first on j , Figure 1(c) those induced by operating first on t and
Figure 1(d) displays G

N\[5,4]
sum .

By construction, a summary graph contains no directed cycle, but possibly semi-directed cy-
cles. These are direction-preserving cycles containing at least one undirected edge; see, for in-
stance, nodes 1,2,3,4 of Figure 3(b).

Corollary 1 (Regression graphs and summary graphs). A regression graph is a summary
graph without semi-directed cycles.

In contrast to a summary graph, a regression graph is an independence graph that has at most
one edge coupling any node pair; compare Figures 2(b) and 3(b). Figure 2(b) shows a regression
graph generated from a directed acyclic graph and Figure 3(b) a summary graph with semi-
directed cycles.

By replacing each dashed ik-edge by an ik-path i≺ �k, every summary graph has
a virtual generating directed acyclic graph for the nodes within u even though a dashed line
might actually have been generated by over-conditioning, that is, by including an offspring in the
conditioning set of two of its parents; see, for example, � ≺ as the inner nodes of
the 6, 7 path in Figure 3(a).

Similarly, cycles in four or more nodes within v may be generated from a larger directed
acyclic graph by including additional nodes, , in appropriate ways; see Cox and Wermuth
(2000). The summary graph in node set N is uniquely defined if generated from a directed acyclic
graph in node set V for given sets M,C, but typically many different directed acyclic graphs, in
node sets larger than N , may lead to the same summary graph.

1.4. Independence interpretation of summary graphs

A criterion to decide whether a given summary graph, G
V \[C,M]
sum , implies α ⊥⊥ β|cC is given

next. For this, the node set N is partitioned as N = {α,β, c,m}, where only subsets c or m may
be empty.
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Figure 4. Important special cases of summary graphs. The two pairs X,Y and Z,U are constrained given
YC ; with X ⊥⊥ Y |ZU in (a)–(c), with X ⊥⊥ Y |U in (d), (e) and with X ⊥⊥ Y in (f); with Z ⊥⊥ U in (c), (e),
(f), with Z ⊥⊥ U |Y in (b), (d) and with Z ⊥⊥ U |XY in (a).

Lemma 1 (Path criterion for the global Markov property [Koster (2002), Sadeghi (2009)]).
The graph G

V \[C,M]
sum implies α ⊥⊥ β|cC if and only if it has no ik-path between α and β such

that every inner collision node is in c or has a descendant in c and every other inner node is
outside c.

In addition to the directly described path, Lemma 1 specifies many special types of forbidden
path. We name a path of n > 2 nodes an a-line path if all inner nodes are within set a. The
marginalising set for α ⊥⊥ β|cC in G

V \[C,M]
sum is implicitly defined by m = N \ {α,β, c}. Then, in

G
V \[C,M]
sum , there should be for node i in α and node k in β no ik-edge, no m-line transmitting

ik-path, no c-line collision ik-path and no ik-path with all inner transmitting nodes in m and all
inner collision nodes in c.

Corollary 2 (Active ik-paths). An ik-path in GN
sum is active relative to [c,m] if and only if it is

an ik-edge or every inner transmitting node is in m and every inner collision node is in c or has
a descendant in c.

If an active ik-path relative to [c,m] has uncoupled endpoints, the path is closed by an ik-
edge in G

N\[c,m]
sum . If an active ik-path has coupled endpoints, the path is edge-inducing in the

construction process of G
N\[c,m]
sum . Thus, we sometimes replace ‘active’ by the more concrete

term ‘edge-inducing’.
Figure 2(b) represents a regression graph, hence each missing edge corresponds to at least one

independence statement. This contrasts with Figure 3(b), which has semi-directed cycles and no
independence statement is implied for pairs (1,5), (5,7), (5,8), (6,8). For pair (1,5), we give
more detailed arguments.

In the graph of Figure 2(b), node 3 has no descendants and is an inner collision node in every
path connecting 1 and 5. Hence, when node 3 is marginalised over, 1 ⊥⊥ 5|C is implied. In the
graph of Figure 3(b), pair (1,5), is connected by a descendant–ancestor path with inner nodes in
{2,3,4}. Therefore, a 1, 5-edge is induced by marginalising over nodes 2,3,4 and hence 1 ⊥⊥ 5|C
is not implied. A 1,5-edge is induced by conditioning on node 4 or on any of its descendants in
{1,2,3} so that 1 ⊥⊥ 5|cC is not implied, c �= ∅.

Figure 4 shows special cases of summary graphs, noting that C and one of u, v may be empty
sets. Figure 4 shows that summary graphs cover all six possible combinations of independence
constraints on two non-overlapping pairs of four variables X,Z,U,Y . Substantive research ex-
amples with well-fitting data to linear models of Figure 4 have been given by Cox and Wermuth
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(1993) to the concentration graph in Figure 4(a), the directed acyclic graph in Figure 4(b), the
graph of seemingly unrelated regression graph in Figure 4(d) and the covariance graph in Fig-
ure 4(f).

1.5. Markov equivalence

The notion of Markov equivalence is important, because for any given set of data one cannot
distinguish between two Markov equivalent graph models on the basis of goodness-of-fit tests.

Definition 8. Two different graphs in node set N are Markov equivalent if they capture the same
independence structure.

Since a different set of two independence statements is associated with each of the graphs in
Figure 4, none of the six graphs are Markov equivalent.

Known conditions, under which a concentration graph or a covariance graph is Markov equiv-
alent to a directed acyclic graph, may be proven by orienting the graphs, that is, by changing each
edge present into an arrow. The same type of argument can be extended to other independence
graphs such as to regression graphs; see also Proposition 2 below. For this, we need a few more
definitions for graphs.

For a ⊂ N , the subgraph induced by a is obtained by keeping all nodes in a and all edges
coupling nodes within a. A subgraph induced by three nodes that has two edges is named a V-
configuration or simply a V. A path is said to be chordless if each inner node forms a V with its
two neighbors.

For V’s of a regression graph that are collision paths with endpoints i and k, the inner node
is excluded from the conditioning set of every independence statement for Yi, Yk implied by the
graph. In contrast, for V’s of a regression graph that are transmitting paths, the inner node is
included in the conditioning set of every independence statement for Yi, Yk implied by the graph.
Thus, the independence structure of the graph would be changed whenever any collision V were
exchanged by a transmitting V.

A concentration graph with a chordless 4-cycle, as in Figure 4(a), or with any larger chordless
cycle, is not Markov equivalent to a directed acyclic graph; see Dirac (1961) and Lauritzen
(1996). The reason is that it is impossible to orient the graph, that is, to replace each edge by an
arrow, without obtaining either a directed cycle or at least one collision V.

Similarly, a covariance graph is not Markov equivalent to a directed acyclic graph if it contains
a chordless collision path in four nodes; see Pearl and Wermuth (1994). The reason is that it
is impossible to orient each edge without obtaining at least one transmitting V. There are the
following three types of chordless collision paths in four nodes in a regression graph:

◦ �◦ ◦≺ ◦, ◦ ◦ ◦≺ ◦, ◦ ◦ ◦ ◦.

The next result in Proposition 2 explains why, in general, three types of edge are needed after
marginalising and conditioning in a directed acyclic graph.
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Proposition 2 (Lack of Markov equivalence). If a regression graph contains a chordless colli-
sion path in four distinct nodes or a chordless cycle in n ≥ 4 nodes within v, then it is not Markov
equivalent to any directed acyclic graph in the same node set.

Proof. It is impossible to orient the graph with any one of the above chordless collision paths
in four nodes into edges of a directed acyclic graph without switching between the two types
of inner nodes in at least one V, that is, between a collision and a transmitting node. And,
for the chordless cycle in n ≥ 4 nodes, the above result for concentration graphs due to Dirac
applies. �

Currently, one knows how to generate three types of independence-preserving graphs from
a given directed acyclic graph in node set V for the same disjoint subsets M and C of V . In
an MC graph, four types of edge may occur in combination, i≺ k, i �k, i k and i k.
A summary graph may have only one type of double edge, i≺ k and three types of single edges,
i≺ k, i k and i k, while the maximal ancestral graph is an independence graph with up
to three types of single edges, i≺ k, i k and i k, where, traditionally, the edge i k is
drawn as a double-headed arrow. For proofs of Markov equivalence of the three corresponding
types of graphs, see Sadeghi (2009). In Section 3.6 below, the unique MAG corresponding to a
given summary graph is constructed.

1.6. Families of distribution generated over parent graphs

A distribution and its joint density fV is said to be generated over a directed acyclic graph when-
ever fV factorizes recursively into univariate conditional densities that satisfy the independence
constraints specified with the graph. Any full ordering of V is compatible with a given directed
acyclic graph if, for each node i, all ancestors of i are in {i + 1, . . . , dV }. The set of parent nodes
of i is denoted by pari .

For V = (1, . . . , dV ) specifying a compatible ordering of node set V , a defining list of con-
straints for a directed acyclic graph is

fi|i+1,...,dV
= fi|pari ⇐⇒ i ⊥⊥ {i + 1, . . . , dV } \ pari |pari (1.2)

and the factorization of the density generated over the graph is

fV =
dV∏
i=1

fi|pari . (1.3)

To generate fV recursively, one can take any compatible ordering of V .

Definition 9. For a recursive generating process of fV , one starts with the marginal density fdV

of YdV
, proceeds with the conditional density of YdV −1 given YdV

, continues to fi|i+1,...,dV
and

ends with the conditional density of Y1 given Y2, . . . , YdV
.
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To let a directed acyclic graph represent one of such recursive generating processes, the graph
is to capture both independences and dependences.

Definition 10. A directed acyclic graph, with a given compatible ordering of V , is edge-minimal
for fV generated over it if

fi|pari �= fi|pari \l for each l ∈ pari .

Under this condition of edge-minimality of the generating graph for fV , all relevant explana-
tory variables are included for each Yi and no edge can be removed from the graph without
changing the independence statements satisfied by Yi given its past, psti = {i + 1, . . . , dV }.

An edge-minimal graph may represent a research hypothesis in a given substantive context. For
such a hypothesis, those dependences are considered that are strong enough to be of substantive
interest while others are translated into independence statements; see Wermuth and Lauritzen
(1990).

Definition 11. A recursive generating process of fV in the order V = (1, . . . , dV ) is said to con-
sist of freely chosen components Yi if each Yi can be discrete or continuous and the parameters
of fi|psti are variation independent of those of fpsti . The form of the family of distribution of Yi

given Ypsti may be of any type.

For exponential families of distributions, variation-independent factorizations of fi,psti =
fi|psti fpsti coincide with the notion of a cut given by Barndorff-Nielsen (1978), page 50. These
types of factorization imply that the overall likelihood function can be maximized by maximizing
each factor fi|psti separately.

In families of distribution with fV consisting of freely chosen components that satisfy the
defining independences (1.2) of the given graph, some further constraints on each fi|pari are
possible such as no-higher-order interactions or such as requiring Yi to have dependences of
equal strength on several of its explanatory variables, that is, on several components of Ypari .
Excluded are, for instance, constraints across conditional distributions, such as dependences of Yi

on some of Ypari to be equal to those of Yk on some of Ypark .
Freely chosen components Yi are in general incompatible with distributions that are to be faith-

ful to a generating directed acyclic graph. The notion was introduced by Spirtes, Glymour and
Scheines (1993). It means that the independence structure of fV coincides with the independence
structure captured by the graph and it leads in general to complex constraints on the parameter
space for distributions generated over parent graphs; see Figure 1 of Wermuth, Marchetti and
Cox (2009) for a simple example with three binary variables. In contrast, variation independence
permits special constellations of parameter values that may lead to independences in fV that are
additional to those implied by the graph.

For research hypotheses, defined in terms of recursive constraints on the independence struc-
ture and on dependences of fV , appropriate specifications and resulting properties can now be
given. For this, only connected graphs are considered, those with each node pair connected by at
least one path.
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Definition 12. A connected, directed, acyclic graph is named a parent graph, GV
par when one

ordering of its node set V = (1, . . . , dV ) is given for the recursive generating process of fV and
it is edge-minimal for fV .

Definition 13. A family of distributions is said to be generated over a given parent graph if it
varies fully and each component of fV is freely chosen in the recursive generating process of fV .

Proposition 3 (General properties of families of distribution generated over GV
par). A family

of distributions generated over GV
par and each of its members satisfies the intersection and the

composition property. Every ik-path present in GV
par that induces an ik-edge by marginalising or

conditioning is also association-inducing for Yi, Yk .

Proof. The intersection property holds by the definition of fully varying distributions. The com-
position property holds by the definition of a parent graph since pairwise independences without
mutual independence cannot result for edge-minimal, connected graphs that are directed and
acyclic. More precisely, let i < k, and c, d be disjoint subsets of psti \k, then both of i ⊥⊥ c|d and
k ⊥⊥ c|d can be in the defining list of independences only if the statement i ⊥⊥ c|kd is also satis-
fied. In this case, fikc|d = fi|kdfk|d = fik|d so that ik ⊥⊥ c|d is implied. Finally, edge-minimality
of a connected GV

par and freely chosen densities fi|psti assure that each edge-inducing path is also
association-inducing. �

Excluded are incomplete families of distributions in which the independence statement asso-
ciated with each V is not unique. For instance, for an uncoupled node pair i, k with transition V,
i≺ j≺ k and γ ⊆ pstk , it is impossible that

∫
fij |γ fjk|γ /fj |γ dyj = fi|γ fk|γ , or equivalently

∫
(fi|jγ − fi|γ )fj |kγ dyj = 0.

1.7. Using summary graphs to detect distortions of generating dependences

In a MAG, the dependence corresponding to an ik-arrow may differ, without any warning, qual-
itatively from the generating dependence of Yi on Yk in fV . In particular, it may change the

Figure 5. (a) Generating graph for Gaussian relations in standardized variables, leading for vari-
able Y4 unobserved to (b) the summary graph and (c) the maximal ancestral graph for the ob-
served variables; with the generating dependences attached to the arrows in (a), simple correlations
ρ12 = α + γ δ, ρ13 = αλ, ρ23 = λ and θ = γ δ/(1 − λ2) are implied.
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sign but stay a strong dependence. If this remained undetected, one would come to qualitatively
wrong conclusions when interpreting the parameters measuring the conditional dependence of
Yi on Yk in fu|vC .

The summary graph corresponding to a MAG detects, whether and for which of the generating
dependences, i≺ k, having both of i, k within u, such distortions can occur due to direct or in-
direct confounding; see Wermuth and Cox (2008) and Corollary 4, Lemma 1 below. We illustrate
here direct confounding with Figure 5 and indirect confounding with Figure 6.

For a joint Gaussian distribution, the distortions are compactly described in terms of regression
coefficients for variables Yi standardized to have mean zero and variance one. For Figure 5(a),
the generating equations are

Y1 = αY2 + δY4 + ε1, Y2 = λY3 + γ Y4 + ε2, Y3 = ε3, Y4 = ε4. (1.4)

With residuals having zero means and being uncorrelated, the equations of the summary graph
model that result from (1.4) for Y4 unobserved have one pair of correlated residuals

Y1 = αY2 + η1, Y2 = λY3 + η2, Y3 = η3,

η1 = δY4 + ε1, η2 = γ Y4 + ε2, η3 = ε3, cov(η1, η2) = γ δ.

The equation parameters of the standardized Gaussian associated with the MAG of Figure 5(c)
are instead defined via

E(Y1|Y2 = y2, Y3 = y3), E(Y2|Y3 = y3),

with all residuals in the recursive equations being uncorrelated. The generating dependence α is
retained in the summary graph model.

The parameter for the dependence of Y1 on Y2 in the MAG model, expressed in terms of the
generating parameters of Figure 5(a), is α + γ δ/(1 −λ2). The summary graph in Figure 5(b) is a
graphic representation of the simplest type of an instrumental variable model, used in economet-
rics [see Sargan (1958)] to separate a direct confounding effect, here γ δ, from the dependence of
interest, here α.

In general, possible distortions due to direct confounding in parameters of dependence in MAG
models are recognized in the corresponding summary graph by a double edge i≺ k. In the
following example of Gaussian standardized variables, there is no direct confounding of the
generating dependence α but there is indirect confounding of α while λ remains undistorted.

To simplify the figures, the coefficient attached to 2≺ 3 is not displayed in any of the three
graphs of Figure 6. The generating graph in Figure 6(a) is directed and acyclic so that the corre-
sponding linear equations in standardized Gaussian variables, defined implicitly by Figure 6(a),
have uncorrelated residuals. The example is adapted from Robins and Wasserman (1997). The
summary graph in Figure 6(b) shows with a dashed line the induced association for pair Y1, Y3
that results by marginalising fV over Y5.

The equations of the summary graph model, obtained for Y5 unobserved, have precisely one
pair of correlated residuals, cov(η1, η3) = γ δ and

Y1 = λY2 + αY4 + η1, Y2 = ρ23Y3 + η2, Y3 = τY4 + η3, Y4 = η4.
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Figure 6. (a) Generating graph for linear relations in standardized variables, leading for variable Y5 unob-
served to (b) the summary graph and (c) the maximal ancestral graph for the observed variables; with the
generating dependences attached to the arrows in (a) implied are: θ = γ δ/(1 − τ2); generating dependence
λ undistorted in both models to the graphs (b), (c); generating dependence α preserved with (b), distorted
with (c).

The summary graph model preserves both λ and α as equation parameters.
In the corresponding MAG model, represented by the graph in Figure 6(c), the equation param-

eters associated with arrows present in the graph are unconstrained linear least-squares regression
coefficients. These coefficients, expressed in terms of the generating parameters of Figure 6(a),
are shown next to the arrows in Figure 6(c). Thus, the generating coefficient λ is preserved, while
α is changed into α − τθ , with θ = γ δ/(1 − τ 2).

Direct confounding of a generating dependence of Yi on Yk is avoided in intervention studies,
such as experiments and controlled clinical trials, by randomized allocation of individuals to
the levels of Yk , but severe indirect confounding may occur nevertheless; see Wermuth and Cox
(2008).

Then, the set of ancestors of node i in GV
par be denoted by anci . Then, the set of ancestors of

node i in G
V \[C,M]
sum within u is ci = u ∩ anci since no additional ancestor of i is ever generated

within u. Then, by conditioning Yi on Yv and Yci
, one marginalises implicitly over the nodes in

set mi = {{1, . . . , i}, {u ∩ psti \ci}} and indirect confounding may result.

Corollary 3 (Lack of confounding in measures of conditional dependence). A generating
dependence i≺ k present in GV

par is undistorted in the MAG model in nodes V \ {C,M}: (1) by

direct confounding if in GV
par there is no active ik-path relative to {C,M} and (2) by indirect

confounding if in G
V \[C,M]
sum there is no active ik-path relative to {ci,mi}.

In distributions generated over GV
par, every active path is association-inducing, hence a gener-

ating dependence will be confounded unless the distortion is cancelled by other edge-inducing
paths. When a distortion is judged to be severe depends on the subject matter context. To detect
indirect confounding, we name k a forefather of i if it is an ancestor but not a parent of i and
three dots indicate more edges and nodes of the same type.

Lemma 2 (A graphical criterion [Wermuth and Cox (2008)]). For i≺ k of GV
par, indirect

confounding in the absence of direct confounding is generated in the MAG model by marginalis-
ing over M = {l > k, l+1, . . . , dV } if and only if in the corresponding summary graph G

V \[∅,M]
sum ,

which is without double edges, associations for Yi, Yk do not cancel that result by conditioning
on all ancestors of node i, that is, from the following types of collision ik-paths that have as
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inner nodes only forefathers of node i:

i · · · k, i · · · ≺ k. (1.5)

An example of such a path of indirect confounding is given with Figure 6(b) above, where for
1≺ 4, it is the path 1 3≺ 4.

In the following two sections, we give further preliminary results and those proofs of new
results for which we use more technical arguments.

2. Further preliminary results

The edge matrix A of a parent graph is a dV × dV unit upper-triangular matrix, that is, a matrix
with ones along the diagonal and zeros in the lower triangular part, such that for i < k, element
Aik of A satisfies

Aik = 1 if and only if i≺ k in GV
par. (2.1)

Because of the triangular form of the edge matrix A of GV
par, a density fV generated over a given

parent graph has also been called a triangular system of densities.

2.1. Linear triangular systems

A linear triangular system is given by a set of recursive linear equations for a mean-centered
random vector variable Y of dimension dV × 1 having cov(Y ) = �, that is, by

AY = ε, (2.2)

where A is a real-valued dV × dV unit upper-triangular matrix, given by

Elin(Yi |Yi+1 = yi+1, . . . , YdV
= ydV

) = −Ai,pari ypari ,

and Elin(·) denotes a linear predictor. The random vector ε of residuals has zero mean and
cov(ε) = 
, a diagonal matrix. A Gaussian triangular system of densities is generated if the
distribution of each residual εi is Gaussian and the corresponding joint Gaussian family varies
fully if 
ii > 0 for all i.

The covariance and concentration matrix of Y are, respectively, using (A−1)T = A−T

� = A−1
A−T, �−1 = AT
−1A. (2.3)

Linear independences that constrain the equation (2.2) are defined by zeros in the triangular
decomposition, (A,
−1), of the concentration matrix. For joint Gaussian distributions

Aik = 0 ⇐⇒ i ⊥⊥ k|pari for k ∈ psti \pari .
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The edge matrix A of GV
par coincides for Gaussian triangular systems generated over GV

par with
the indicator matrix of zeros in A, that is, A = In[A], where In[·] changes every non-zero entry
of a matrix into a one. Furthermore, since the parent graph in node set V is edge-minimal for fV ,
we have

Aik = 0 ⇐⇒ Aik = 0.

Edge matrices expressed in terms of components of a set of given generating edge matrices
are called induced. Simple examples of edge matrices induced by A of (2.1) are the overall
covariance and the overall concentration graph; see Wermuth and Cox (2004). These two types
of graphs have as induced edge matrices, respectively,

SV V = In[A−A−T] and S V V = In[AT A], (2.4)

where A− has all ones of A and an additional one in position (i, k) if and only if k is a forefather
of node i in GV

par. In the graph with edge matrix A−, every forefather k of i is turned into a
parent, that is, i≺ k is inserted.

By writing the two matrix products in (2.4) explicitly, one sees that for an uncoupled node pair
i, k in the parent graph, there is an additional edge in the induced concentration graph of YV if
and only if the pair has a common offspring in GV

par. With a zero in position i, k of A−, there
is an additional ik-edge in the induced covariance graph if and only if an uncoupled pair has a
common parent in the directed graph with edge matrix A−.

Both of these induced matrices are symmetric. The covariance and the concentration matrix,
implied by a linear triangular system and given in (2.3), contain all zeros present in the corre-
sponding induced edge matrices, but possibly more. This happens for (i, k) whenever the asso-
ciations that are induced for Yi, Yk by several edge-inducing ik-paths cancel precisely. For such
particular parametric constellations in Gaussian distributions generated over parent graphs, see
Wermuth and Cox (1998). In data analyses, near cancellations are encountered frequently.

By contrast, the induced edge matrices capture consequences of the generating independence
structure. They contain structural zeros. These are zeros that occur for all permissible parametri-
sations, or, expressed differently, that occur for each member of a family fV generated over a
given GV

par.

For distributions generated over parent graphs, a zero in position (i, k) of SV V and of S V V

means, respectively, that

i ⊥⊥ k, i ⊥⊥ k|V \ {i, k} (2.5)

is implied by GV
par. Thus, in contrast to the global Markov property, the induced graphs answer

all queries concerning sets of these two types of independence statements at once.
More complex induced edge matrices arise, for instance, in regression graphs and in summary

graphs derived from A. For transformations of linear systems, we use the operator called partial
inversion, which is introduced next; for proofs and discussions see Wermuth, Wiedenbeck and
Cox (2006), Marchetti and Wermuth (2009), Wiedenbeck and Wermuth (2010).
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2.2. Partial inversion

Let F be a square matrix of dimension dV with principal submatrices that are all invertible. This
holds for every A of (2.2) and for every covariance matrix of a Gaussian distribution that varies
fully, so that Y has no degenerate component.

For any subset a of V and b = V \ a, by applying partial inversion to the linear equations
FY = η, say, these are modified into

invaF

(
ηa

Yb

)
=

(
Ya

ηb

)
. (2.6)

By applying partial inversion to b of V in equation (2.6), one obtains Y = F−1η. Thus, full
inversion is decomposed into two steps of partial inversion.

Partial inversion extends the sweep operator for symmetric, invertible matrices to non-
symmetric matrices F

inva F =
(

F−1
aa −F−1

aa Fab

FbaF
−1
aa Fbb.a

)
with Fbb.a = Fbb − FbaF

−1
aa Fab. (2.7)

Lemma 3 (Some properties of partial inversion [Wermuth, Wiedenbeck and Cox (2006)]).
Partial inversion is commutative, can be undone and is exchangeable with selecting a submatrix.
For V partitioned as V = {a, b, c, d}:

(1) inva invb F = invb inva F ,
(2) invab invbc F = invac F,

(3) [inva F ]J,J = inva FJJ for J = {a, b}.

In contrast, the sweep operator cannot be undone; see Dempster (1972). Example 1 shows how
the triangular equations in (2.2) are modified by partial inversion on a, where a consists of the
first da components of Y . Instead of the full recursive order V = (1, . . . , dV ) with uncorrelated
residuals, a block-recursive order V = (a, b) results, where residuals within a are correlated, but
uncorrelated with the unchanged residuals within b.

Example 1 (Partial inversion applied to a linear triangular system (2.2) with an order-
respecting split of V ). For a = {1, . . . , da}, b = {da + 1, . . . , dV }

inva A =
(

A−1
aa −A−1

aa Aab

0 Abb

)
gives with Ya = −A−1

aa AabYb + A−1
aa εa,

the implied form of linear least-squares regression of Ya on Yb , where

Elin(Ya |Yb = yb) = �a|byb, Ya|b = Ya − �a|bYb, cov(Ya|b) = �aa|b

and

�a|b = −A−1
aa Aab, �aa|b = A−1

aa 
aaA
−T
aa .
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Example 2 shows how the triangular equations contained in (2.2) are modified by partial in-
version on b, where V = (a, b, c) so that b consists of intermediate components of Y . To use the
matrix formulation in (2.7) directly, one sets b := (a, c), a := b and leaves components within a

and b unchanged to obtain Ã, which is not block-triangular in (a, b). After partial inversion of Ã

on a, the original order is restored for the results presented in Example 2.

Example 2 (Partial inversion applied to a linear triangular system (2.2) for an order-respecting
partitioning V = (a,b, c)). With a = {1, . . . , da}, b = {da + 1, . . . , (da + db)} and c = {(da +
db) + 1, . . . , dV },

invb A =
⎛
⎝Aaa AabA

−1
bb Aac.b

0 A−1
bb −A−1

bb Abc

0 0 Acc

⎞
⎠ gives Ya = −A−1

aa Aac.bYc + ηa,

the implied form of the linear least-squares regression of Ya on Yc, with

ηa = A−1
aa εa + �a|b.cA

−1
bb εb, �a|bc = (�a|b.c,�a|c.b) = −A−1

aa (Aab,Aac).

For �a|c , a special form of Cochran’s recursive definition of regression coefficients results, see
also Wermuth and Cox (2004),

�a|c = �a|c.b + �a|b.c�b|c = −A−1
aa (Aac − AabA

−1
bb Abc) = −A−1

aa Aac.b.

For cov(Ya|c), Anderson’s recursive definition of covariance matrices results:

�aa|c = A−1
aa 
aaA

−T
aa + �a|b.c(A

−1
bb 
bbA

−T
bb )�T

a|b.c = �aa|bc + �ab|c�−1
bb|c�ba|c.

For b, c, the result in Example 2 is as in Example 1. For Ya , the original recursive regres-
sions given Yb,Yc are modified into recursive regressions given only Yc . The residuals between
Ya,Yb are correlated since cov(Ya|c, Yb|c) = �ab|c but remain uncorrelated from those in c. In the
modified equations, Yb can be removed without affecting any of the other remaining relations.

For a more detailed discussion of the three different types of recursion relations of linear
association measures due to Cochran, Anderson and Dempster, see Wiedenbeck and Wermuth
(2010).

For Example 3, one starts with equation (2.2) premultiplied by AT
−1 and obtains linear
equations in which the equation parameter matrix, �−1, coincides with the covariance matrix of
the residuals, that is, one starts with

�−1Y = AT
−1ε. (2.8)

Example 3 (Partial inversion with any split of V applied to �−1). The covariance matrix � and
the concentration matrix �−1 of Y are written, partitioned according to (a, b) for a any subset
of V , as

� =
(

�aa �ab

· �bb

)
, �−1 =

(
�aa �ab

· �bb

)
,
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where the · notation indicates symmetric entries. Partial inversion of �−1 on a leads to three dis-
tinct components, �a|b , the population coefficient matrix of Yb in linear least-squares regression
of Ya on Yb; the covariance matrix �aa|b of Ya|b; and the marginal concentration matrix �bb.a of
Yb

inva �−1 =
(

�aa|b �a|b
∼ �bb.a

)
, (2.9)

where the ∼ notation denotes entries that are symmetric except for the sign.
Since (2.6) and (2.7) give inva �−1 = invb � directly, several well-known dual expressions for

the three submatrices in (2.9) result:
(

(�aa)−1 −(�aa)−1�ab

∼ �bb − �ba(�aa)−1�ab

)
=

(
�aa − �ab�

−1
bb �ba �ab�

−1
bb

∼ �−1
bb

)
,

where the explicit form of �−1
bb = �bb.a is Dempster’s recursive definition of concentration ma-

trices.

A more complex key result is that, for any block-triangular system of linear equations for Y ,
with equation parameter matrix H and with possibly correlated residuals obtained from W =
cov(HY), the implied form of inva �−1 can be expressed in terms of partially inverted matrices
H and W .

Linear equations in a mean-centered vector variable Y are block-triangular in two ordered
blocks (a, b) with a positive-definite �−1 = HTW−1H if

HY = η, with Hba = 0, E(η) = 0, cov(η) = W positive-definite. (2.10)

For K = inva H and Q = invb W, direct computations give

inva(H
TW−1H)=

(
KaaQaaK

T
aa Kab + KaaQabKbb

∼ HT
bbQbbHbb

)
. (2.11)

A simple special case is the triangular linear system (2.2). Example 4 shows how regressions in
blocks (a, b) result from it.

Example 4. For (2.10) with H = A of (2.2), W = 
 diagonal and a = 1, . . . , da ,

inva(H
T
−1H) =

(
�aa|b �a|b

∼ �−1
bb

)
=

(
Kaa
aaK

T
aa Kab

∼ AT
bb


−1
bb Abb

)
.

Other special cases of linear block-triangular systems (2.10) are Gaussian summary graph
models; see Section 3.

2.3. Partial closure

Let F be a binary edge matrix for node set V = {1, . . . , dV } associated with F . The operator
called partial closure transforms F into zera F so that in the corresponding graph a-line paths
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of a special type become closed. For instance, applied to A, every a-line ancestor of node i is
turned into a parent of i and, applied to the edge matrix of an undirected graph, such as S V V ,
every a-line path is closed. Zeros in the new binary matrix zera F are the structural zeros that
remain of inva F .

In matrix form, with n − 1 = da and Iaa a da × da identity matrix,

zera F = In

[(
F −

aa F −
aa Fab

Fba F −
aa Fbb.a

)]
with Fbb.a = In[Fbb + Fba F −

aa Fab], (2.12)

F −
aa = In[(nIaa − Faa)

−1]. (2.13)

The inverse in (2.13) assures non-negative entries in F −
aa and is a type of regularization; see

Tikhonov (1963). It generalizes limits of scalar geometric series; see Neumann (1884), page 29.

Lemma 4 (Some properties of partial closure [Wermuth, Wiedenbeck and Cox (2006)]).
Partial closure is commutative, cannot be undone and is exchangeable with selecting a submatrix.
For V partitioned as V = {a, b, c, d}:

(1) zera zerb F = zerb zera F ,
(2) zerab zerbc F = zerabc F,

(3) [zera F ]J,J = zera FJJ for J = {a, b}.

Given Gaussian parameter matrix components after partial inversion, such as in equa-
tion (2.11), the corresponding induced edge matrices are obtained using Lemma 5, provided
each component matrix belongs to the model of the starting graph and the expressions are mini-
mal, that is, condensed in such a way that they do not contain any parameter matrices that cancel,
as, for instance, AaaA

−1
aa would.

Lemma 5 (Edges induced by a starting graph obtained with minimal matrix expressions
of Gaussian parameter matrices [Marchetti and Wermuth (2009)]). Edge matrices replace
corresponding parameter matrices after:

(1) changing each negative sign to a positive sign,
(2) replacing in the resulting expressions each diagonal matrix by an identity matrix or delet-

ing it if it arises within a matrix product, and then applying the indicator function.

For instance, the matrix formulation of partial inversion in (2.12) can be viewed as arising
from (2.7) by use of Lemma 5.

Example 1 (Continued). Let Kaa = A−
aa and Kab = A−

aa Aab . After partial closure in GV
par on a,

there are two induced edge matrix components. For directed edges, it is zera A, and for undirected
dashed line edges, it is Saa|b

zera A = In

[(
Kaa Kab

0 Abb

)]
, Pa|b = In[Kab], Saa|b = In[Kaa KT

aa].
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The induced graph of two components is a regression graph.

Example 2 (Continued). By marginalising over the intermediate node set b of V = (a, b, c) in
GV

par, a directed acyclic graph results. The induced Gaussian parameter and edge matrices are,
for N = V \ b, respectively,

[invb A]N,N =
(

Aaa Aac.b

0 Acc

)
, [zerb A]N,N = In

[(
Aaa Aac.b

0 Acc

)]
.

Example 3 (Continued). A concentration graph has for joint Gaussian distributions �−1 as the
parameter matrix and S V V as the edge matrix. By partial closure on a of S V V given any split
V = {a, b}, every a-line path is closed. Three edge matrix parts result: Saa|b, Pa|b and S bb.a .
They give the structural zeros in the corresponding parameter matrices �aa|b,�a|b and �bb.a . In
general, the edge matrix S bb.a is for the marginal concentration graph of Yb .

When the generating graph is GV
par, then a concentration graph is induced for the node set that

contains ancestors of C outside C. In Example 4, the three components of inva �V V are directly
expressed in terms of the triangular decomposition (A,
−1).

Example 4 (Continued). For the order-respecting split, V = (a, b), and Kaa = A−
aa and Kab =

A−
aa Aab , a parent graph GV

par induces a regression graph for fa|b and fb with the following three
edge matrix components

(
Saa|b Pa|b

· S bb.a

)
= In

[(
Kaa KT

aa Kab

· AT
bb Abb

)]
. (2.14)

The result combines the one in (2.4) in slightly modified form with the above continuation of
Example 1 by considering the consequences of a given parent graph for the distributions of Ya

given Yb and of Yb .
For the more complex generating graphs connected with block-triangular linear systems (2.10)

and given edge matrices H, W , the three edge matrix components in the induced regression graph
of just two components are with

K = zera H, Q = zerb W ,(
Saa|b Pa|b

· S bb.a

)
= In

[(
Kaa Qaa KT

aa Kab + Kaa Qab Kbb

· HT
bb Qbb Hbb

)]
. (2.15)

From (2.15) for a = {α, δ}, the edge matrices induced by GV
par for fα|b are

Sαα|b = [Saa|b]α,α, Pα|b = [Pa|b]α,b,

and with a split of b as {β,γ }, the edge matrix induced for fβ|γ and for the dependence of Yα|γ
given Yβ|γ are

S ββ.a = [S bb.a]β,β and Pα|β.γ = [Pa|b]α,β .
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In general, the induced graphs of (2.14) or (2.15) with dashed lines for Saa|b , arrows for Pa|b
and full lines for S bb.a will not be independence-preserving graphs. In both graphs, the global
Markov property of Lemma 1 implies the meaning of a missing ik-edge as

i ⊥⊥ k|b in Saa|b, i ⊥⊥ k|b \ k in Pa|b, i ⊥⊥ k|b \ {i, k} in S bb.a. (2.16)

Whenever every edge-inducing path is association-inducing, conditional dependences corre-
spond to edges present in the graph in the resulting families of densities of Ya|b , Yb and also in
a given member of the family unless associations cancel that are due to several edge-inducing
paths.

3. Summary graphs and associated models

3.1. Gaussian summary graph models

Starting from a Gaussian triangular system (2.2) generated over a parent graph in node set V ,
marginalising over M and conditioning on C gives a linear system of equations for YN |C for
N = (u, v) = V \ {C,M} of the following form, where for the equations in the ancestors v of C

that are outside of C, the equation parameter matrix and the covariance matrix coincide with a
concentration matrix, as in (2.8).

Definition 14 (Gaussian summary graph model). A Gaussian summary graph model is a system
of equations HYN |C = η that is block-triangular and orthogonal in (u, v) with

(
Huu Huv

0 �vv.uM

)(
Yu|C
Yv|C

)
=

(
ηu

ζv

)
, cov

(
ηu

ζv

)
=

(
Wuu 0

· �vv.uM

)
, (3.1)

where Huu is unit upper-triangular, Wuu and �−1
vv|C = �vv.uM are symmetric and each of ηu

and ζv have freely varying joint Gaussian distributions. The independence structure is given by
a summary graph in node set N ; see Definition 6 and Section 3.2 below.

For Yv|C , equation (3.1) specifies a Gaussian concentration graph model. These models had
been studied under the name of covariance selection by Dempster (1972); see also Speed and
Kiiveri (1986). For each member of the this family of models, the likelihood function has a
unique maximum.

With Wuv = 0, the residuals of Yu|C and Yv|C are uncorrelated, therefore the system of equa-
tion (3.1) is said to be orthogonal in (u, v). Because of this orthogonality, �u|v.C = −H−1

uu Huv

is the population least-squares regression coefficient matrix in linear regression of Yu|C on Yv|C ;
see Example 1 above. In econometrics, the equation in Yu|C resulting by premultiplication with
H−1

uu from the first equation of (3.1) is called the reduced form.
The equation in Yu|C of (3.1) can equivalently be written as a recursive system in endogenous

variables Yu|vC = Yu|C − �u|v.CYv|C:

HuuYu|vC = ηu with cov(ηu) = Wuu, (3.2)
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where the equation parameter matrix Huu is, as in the linear triangular system (2.2), of unit
upper-triangular form, but some of the residuals ηu are correlated. For estimation, one speaks in
econometrics of the endogeneity problem; see Drton, Eichler and Richardson (2009) for a recent
discussion.

Identification is an issue for estimating the equation parameters Huu in (3.2). No necessary and
sufficient condition is known yet; see Kang and Tian (2009). One general sufficient condition is
the absence of any double edge in the summary graph; see Brito and Pearl (2002). This says that
for any pair i, k within u, either Hik = 0, or Wik = 0, or both hold.

However, some models with double edges in the GN
sum correspond to identified instrumental

variable models; see the above example to Figure 5(b). For the identifiability of latent variable
models, which arise here via larger hypothesized generating processes, the notion of complete-
ness is again relevant; see San Martin and Mochart (2007).

3.2. Generating G
V \[C,M]
sum from GV

par

The summary graph G
V \[C,M]
sum has four edge matrix components. With S vv.uM a concentration

graph results in node set v, with Huu a directed acyclic graph within u, with Wuu a covariance
graph of the residuals ηu and with Huv a bipartite graph for dependence of Yu|C on Yv|C .

Starting from a Gaussian triangular system in (2.2) with parent graph GV
par, the choice of any

conditioning set C leads to an ordered split V = (O,R), where we think of R = {C,F } as the
nodes to the right of O; see equation (3.3). Every node in F is an ancestor of a node in C outside
C, so that we call F the set of foster nodes of C. No node in O has a descendant in R so that O

is said to contain the outsiders of R. Equations, orthogonal and block-triangular in (O,R), are
in unchanged order (

AOO AOR

0 ARR

)(
YO

YR

)
=

(
εO

εR

)
. (3.3)

After conditioning on YC and marginalising over YM , the resulting system preserves block-
triangularity and orthogonality with u ⊆ O , v ⊆ F .

Proposition 4 (Linear equations obtained from AY = ε after conditioning on YC and
marginalising over YM ). Given a Gaussian triangular system (2.2) generated over GV

par, con-
ditioning set C, marginalising set M = (p, q) with

p = O \ u, q = F \ v,

and partially inverted parameter matrices arranged in the appropriate order,

D = invp Ã, invq �̃FF.O =
(

�qq|vC �q|v.C

∼ �vv.qO

)
,

the induced linear equation (3.1) in YN |C have equation parameters

Huu = Duu, Huv = Duv + Duq�q|v.C, �vv.uM (3.4)
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and covariance matrices

Wuu = (
uu + Dup
ppDT
up) + (Duq�qq|vCDT

uq), �vv.uM. (3.5)

Proof. Equation (3.3) in Y are first modified into equations for YO|C and YF |C . As for Example 3
above, one takes ζR = ARR
−1

RRεR . After noting that

�−1
FF |C = [�RR.O ]F,F = �FF.O

and by the orthogonality in (O,R), these equations can be written as

AOOYO|C + AOF YF |C = εO, �FF.OYF |C = ζF .

Partial inversion on M = (p, q) gives, after appropriate ordering,

invM

(
ÃOO ÃOF

0 �̃FF.O

)⎛
⎜⎝

εp

Yu|C
ζ ′
q

Yv|C

⎞
⎟⎠ =

⎛
⎜⎝

Yp|C
εu

Yq|C
ζ ′
v

⎞
⎟⎠ , (3.6)

where, after deleting the equations in YM|C , the uncorrelated residuals are

ηu = (εu − Dupεp) − Duq�qq|vCζq, ζv = ζ ′
v + �T

q|v.Cζ ′
q .

Thus, the equation parameter matrices of (3.4) and the covariance matrices of (3.5) result, where
�−1

vv|C = �vv.qO = �vv.uM . �

It is instructive to check the relations of the parameter matrices in (3.4) and (3.5) to regression
coefficients and to conditional covariance matrices. With �u|R = −D−1

uu (Duv,Duq,DuC), one
may write

−Duu�u|v.C = Duv + Duq�q|v.C, Duu(Yu|C − �u|v.CYv|C) = DuuYu|vC,

and for Wuu defined in (3.2) and specialized in (3.5)

D−1
uu WuuD

−T
uu = �uu|vqC + �u|q.vC�qq|vC�T

u|q.vC = �uu|vC,

so that the required covariance matrix of Yu|vC is obtained.
The summary graph in node set N , induced by the generating parent graph in node set V ,

results now directly with Lemma 5 applied to equations (3.4) and (3.5), as is stated in Corollary 4.

Corollary 4 (Generating the edge matrix of G
V \[C,M]
sum from the edge matrix of a parent

graph). With the partially closed edge matrices corresponding to Proposition 4 and arranged
in the appropriate order

D = zerp Ã, zerq S̃ FF.O =
(

Sqq|vC Pq|v.C

· S vv.qO

)
,
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the induced edge matrix components of the summary graph G
V \[C,M]
sum are

Huu = Duu, Huv = In[Duv + Duq Pq|v.C], S vv.uM, (3.7)

Wuu = In[(Iuu + Dup DT
up) + (Duq Sqq|vC DT

uq)]. (3.8)

3.3. Non-Gaussian models associated with summary graphs

As noted before, the density fN |C of YN given YC is well defined since it is obtained from a
density of YV generated over a parent graph by marginalising over YM and conditioning on YC .
As we have seen, this leads to the factorization of fN |C into fu|vC and fv|C . The independence
structure of Yv given YC is captured by a concentration graph.

Corresponding models for discrete and continuous random variables have been studied by
Lauritzen and Wermuth (1989), extending the Gaussian covariance selection models and the
graphical, log-linear interaction models for discrete variables. Maximum likelihood estimation
is considerably simplified for variation-independent parameters; see Frydenberg and Lauritzen
(1989).

For a joint Gaussian density fV , the induced density fu|vC is again Gaussian, but in general, the
form and parametrization of the density fu|vC induced by fV may be complex. Nevertheless, we

conjecture that the parameters associated with G
V \[C,M]
sum may often be obtained via the notional

stepwise generating process described in Section 1.3, that is, by introducing latent variables that
are mutually independent and independent of Yv,YC .

If the additional latent variables are taken to be discrete and to have a large number of levels,
then it should be possible to generate, or at least to approximate closely enough, any association
corresponding to i k that does not depend systematically on third variables. For discrete vari-
ables, this follows with Theorem 1 of Holland and Rosenbaum (1989) and otherwise presumably
by using Proposition 5.8 of Studený (2005), but a proof is pending.

3.4. Generating a summary graph from a larger summary graph

Let a summary graph in node set N ′ be given, where the corresponding model, actually or only
notionally, arises from a parent graph model by conditioning on Yc and by marginalising over
variables Ym.

Then, the starting linear parent graph model is the triangular system of equation (2.2) in a
mean-centered Gaussian variable Y where

AY = ε, cov(ε) = 
 diagonal, A unit upper-triangular.

With Proposition 4, one obtains for V \ {c,m} = (μ, ν) the following equations in Yμ|c , Yν|c ,
which coincide in form with equation (3.1) with H ′

νN
′ = B

νN
′

(
Bμμ Bμν

0 �νν.μm

)(
Yμ|c
Yν|c

)
=

(
η′

μ

ζν

)
, cov

(
η′

μ

ζν

)
=

(
W ′

μμ 0
· �νν.μm

)
. (3.9)
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With added conditioning on a set cν ⊆ ν, no additional ancestors of cν are defined, since every
node in ν is already an ancestor of c. But, with added conditioning on cμ ⊆ μ, the set μ \ cμ is
split into foster nodes fμ of cμ and into outsiders o of {r, ν}, where r = {cμ,fμ}.

The equations for Yμ are always block-triangular in (o, r). But, by contrast to the split of V

into (O,R) in equation (3.3), these equations are not orthogonal in (o, r) so that conditioning on
cμ in the summary graph is more complex than conditioning directly on a set in the parent graph.

Proposition 5 (Linear equations obtained from (3.9) after conditioning on Ycμ , Ycν and

marginalising over Yh, Yl). Given (3.9) to G
V \{c,m}
sum , where o contains all outsiders of

{cμ,fμ, ν}, equations for Yμ are block-triangular in

μ = (o, r), where r = {cμ,fμ}.
The additional conditioning set {cμ, cν}, and additional marginalising sets h ⊆ o and l ⊆
{fμ, ν \ cν} give C = {c, cμ, cν} and M = {m,h, l}. With ψ = (r, ν), the new equations are
block-triangular and orthogonal in (u, v), where

u = o \ h, φ = ψ \ {cμ, cν}, v = φ \ l.

With orthogonalised residuals ξo = η′
o − Qorη

′
r , orders μ = (h,u, r), φ = (l, v) and

Qμμ = invr W̃ ′
μμ, Coψ = Boψ − QorBrψ, K = invhl

(
B̃oo C̃oφ

0 �̃φφ.om

)
,

the linear summary graph model to G
V \[C,M]
sum is

(
Kuu Kuv

0 �vv.uM

)(
Yu|C
Yv|C

)
=

(
ηu

ζv

)
, ηu = ξu − Kuhξh − Kul�ll|vCζl, (3.10)

and coincides with the linear model obtained from the triangular system (2.2) by directly condi-
tioning on YC and marginalising over YM .

Proof. The conditioning set cμ splits the set of nodes μ into (o, r), where o is without any
descendant in r = {cμ,fμ} and every node in fμ has a descendant in c. This implies a block-
triangular form of Bμμ in (o, r) in the equations of Yμ|νc , however, with correlated residuals η′

o

and η′
r .

For ψ = (r, ν), block-orthogonality with respect to (o,ψ) in the equations in Yo|c and Yψ |c is
achieved by subtracting from η′

o the value predicted by linear least-squares regression of η′
o on

η′
r and ζν . This reduces, because of the orthogonality of the equations in (μ, ν), to subtracting

Qorη
′
r from η′

o.
The matrix of equation parameters of Yψ |c coincides with the concentration matrix of Yψ |c

given by

�ψψ.om = �−1
ψψ |c =

(
BT

rrQrrBrr BT
rrQrrBrν

· �−1
νν|c + BT

rνQrrBrν

)
. (3.11)
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By the block-triangularity and orthogonality in (o,ψ), the equations in Yo|c can be replaced
by equations in Yo|C . For the equations in Yφ|C , the matrix of equation parameters is �−1

φφ|C =
[�−1

ψψ |c]φ,φ = �φφ.om. The resulting equations give the Gaussian linear model to the summary
graph in node set V \ {C,m} = (o,φ).

In the linear model to GV \[C,m], marginalising over Yh|C , where h ⊆ o, and over Yl|C , where
l ⊆ φ, is achieved by partial inversion on h, l of the block-triangular matrix of equation parame-
ters and by keeping only the equations in Yu|C and Yv|C .

In the resulting equation (3.10), one knows by the commutativity and exchangeability of partial
inversion for m = (g, k), p = {g,h}, q = {k, l} that

Kuu = [invh invg A]u,u = [invp A]u,u,

so that Kuu = Duu, where D is defined for Proposition 4. Furthermore, by the properties of
reduced form equations

−Kuu�u|v.C = Kuv = Duv + Duq�q|v.C,

so that the parameter matrices of Yu|C and Yv|C given in (3.10) coincide with those in (3.4) and
(3.5) of Proposition 4 – that is, they give the Gaussian linear model to the summary graph in node
set V \ {C,N} = (u, v). �

Since partial closure has the same exchangeability property as partial inversion and both opera-
tors are commutative, the same type of proof holds for the edge matrix expression corresponding
to (3.10).

Corollary 5 (Generating the edge matrix of G
V \[C,M]
sum from the edge matrix of a summary

graph). For c ⊂ C and m ⊂ M , edge matrix components of the summary graph GV \[C,M] re-
sult from the edge matrix components Bμμ, Bμν , W ′

μmu and S νν.μm of GV \[c,m] by using the
transformed edge matrices

Qμμ = zerr W̃ ′
μμ, Coψ = In[Boψ + Qor Brψ ], K = zerhl

(
B̃oo C̃oφ

0 S̃ φφ.om

)

to obtain Kuu, Kuv directly, S vv.uM as the edge matrix to (3.11), and

Wuu = In[Quu + KuhQhhKT
uh + Kul Sll|vC KT

ul]. (3.12)

3.5. Path results derived from edge matrix transformations

If one starts with the summary graph G
V \[c,m]
sum and conditions by using Corollary 5, edges are

induced by r-line collision paths, where we let r = {cμ,fμ} = { }:
(a) ◦μ ◦μ results with ◦μ · · · ◦μ,

(b) ◦ψ ◦ψ results with ◦ψ � · · · ≺ ◦ψ,
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(c) ◦μ≺ ◦ψ results with ◦μ · · · ≺ ◦ψ.

The corresponding relevant edge matrix expressions are, respectively, Qμμ = zerr Wμμ,
In[BT

rψQrrBrψ ] and In[Qor Brψ ]. For each pair, one keeps one edge of several of the same

kind. The subgraph induced by nodes (o,φ) is GV \[C,m].
By marginalising next over m′ = (h, l) = ( h, l) in the graph G

V \[C,m]
sum , three types of edges

are induced when closing m′-line transmitting paths:

(d) ◦φ ◦φ results with ◦φ l · · · l ◦φ,

(e) ◦o≺ ◦o results with ◦o≺ h · · · h≺ ◦o,

(f) ◦o≺ ◦φ results with ◦o≺ h · · · h≺ l l · · · l ◦φ,

(g) ◦u ◦u results with ◦u≺ h h �◦u,

(h) ◦u ◦u results with ◦u≺ l l �◦u.

The corresponding edge matrix expressions are, respectively, Kφφ , Koo, Koφ , In[KuhQhhKT
uh]

and In[Kul Sll|vC KT
ul]. After keeping just one edge of several of the same kind, the subgraph

induced by nodes (u, v) is GV \[C,M].
Notice that the effect of the indicator function is to reduce several edges of the same kind to

just one. The closed form expressions of the edge matrix results imply that some of the paths are
to be closed in the given order.

The edge matrices In[Qor Brψ ] and Koφ correspond in a Gaussian summary graph model to
orthogonalising, that is, to removing some residual correlations. By the associated steps, (c) or
(f), ik-arrows may be generated for which node k is not an ancestor of i in the generating graph.

In contrast, for the outsiders of the conditioning set, such as set o in the summary graph in
nodes (o,φ), there is an ik-arrow if and only if k is a parent or a forefather of node i in the larger
generating parent graph because the only arrow-inducing paths for the subset o are those in (e).

Since a summary graph results after conditioning with steps (a)–(c) and also after marginal-
ising with steps (d)–(h), summary graphs are said to be closed under marginalising and condi-
tioning and one may reverse the order of conditioning and marginalising. The following example
illustrates such reversed stepwise constructions.

Example 5 (Path constructions of G
V \[C,M]
sum for M = q and p = ∅∅∅). The node set of the parent

graph is V = (1, . . . ,8). The conditioning set is C = {2,4} and the marginalising set is M =
{6,7}. The foster nodes of C, are in F = {3,5,6,7,8} and u = O = {1}, v = {3,5,8}.

Figure 7. (a) The generating graph GV
par, (b) G

V \[C,∅]
sum , (c) G

V \[∅,M]
sum , (d) GN

sum.
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In this example with graphs in Figure 7, the summary graph model is equivalent to a triangular
system in N = (1,3,5,8) even though G

V \[∅,M]
sum is not Markov equivalent to any directed acyclic

graph since it contains the chordless collision path 3 �2 5≺ 8. It is typical that further
marginalising or conditioning may again lead to simpler graphs and models.

With just one node in the marginalising set, the paths (d)–(h) have just two edges. In addition,
by the properties of partial inversion and partial closure, the paths (a)–(c) can be closed by re-
peatedly closing paths of just two edges. This leads to operating on one node at a time in any
order; see also the Appendix, Table 1 and Proposition 1.

3.6. The MAG corresponding to G
V \[C,M]
sum and local Markov properties

The keys to deriving the MAG corresponding to G
V \[C,M]
sum are the definition of the variables in

the Gaussian MAG model and the result (2.15). For Yv , the summary graph and the MAG specify
the same concentration graph, and dependences to arrows pointing from v to u also coincide.

A full order of the nodes in u of G
V \[C,M]
sum may sometimes be given by the arrows, such as

in Figure 3(b). Sometimes there is none, as in Figure 2(b). More often there is a partial order,
such as in Figure 1(d) or 7(c). Then one may take any compatible full ordering of the nodes in
u in which the ancestors within u of each node i in G

V \[C,M]
sum are in the past of i, that is, in

{i + 1, . . . , du}.
For each node i, we let ci ⊆ {i + 1, . . . , du} denote the ancestors of i in G

V \[C,M]
sum and c̄i =

{i +1, . . . , du}\ci . Next, we derive for each node pair i, k with k in ci and each node pair i, l with
l in c̄i , the edges in the MAG corresponding to G

V \[C,M]
sum by applying (2.15) to equation (3.2).

For a = (1, . . . , i, c̄i ) and b = ci , the vector Pi|b = In[Kib + Qib Kbb] gives zeros and ones for
the dependence of Yi on Yci

given Yv , YC and

in the MAG, i≺ k for In[Pi|k.b\k] = 1, i, k uncoupled, otherwise. (3.13)

Similarly, for i, l we let eil = ci ∪ cl and ēil = {i + 1, . . . , du} \ eil , take a = (1, . . . , i, l, ēil)

and b = eil . With Saa|b = In[Kaa Qaa Kaa] of (2.15), Kil = 0 and Wuu the edge matrix of the

covariance graph of G
V \[C,M]
sum :

in the MAG, i l for In[Wil.b] = 1, i, l uncoupled, otherwise. (3.14)

The corresponding MAG results after inserting or replacing edges in G
V \[C,M]
sum according to

(3.13) and (3.14) and keeping just one of several same edges.

Proposition 6 (Local Markov properties of summary graphs). Let the edge matrix compo-
nents, HuN , Wuu and S vv.uM of G

V \{C,M}
sum be given from Corollary 5. Let node l and sets ci, eil be

defined as above, but their subscripts dropped. Let further β denote subsets of nodes uncoupled
to node i, then:

(1) i ⊥⊥ β|Cv \ {i, β} ⇐⇒ S iβ.uM = 0 for i ∈ v and β ⊂ v.
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(2) i ⊥⊥ β|Cv \ β ⇐⇒ Hiβ.c = 0 for i ∈ u and β ⊂ v.
(3) i ⊥⊥ l|Cve ⇐⇒ (Wil = 0 and Wie W −

eeWel = 0) for i ∈ u, and l ∈ c̄.
(4) i ⊥⊥ β|Cvc \ β ⇐⇒ (Hiβ = 0 and Wic W −

cc Hcβ = 0) for i ∈ uand β ⊂ c.

Notice that pairwise independences result if β’s contain single elements.

Proof of Proposition 6. The independences in (1) within v are those of a concentration graph;
see also (2.16) in Example 4. The independences in (2) are those obtained when regressing Yi|C
on Yv|C ; see also Example 2. The independences in (3) and (4) are reformulations of (3.14) and
(3.13), respectively. �

4. Discussion

The common attractive feature of a maximal ancestral graph and of the corresponding summary
graph is that they elucidate consequences of a possibly much larger generating graph regarding
independences. The smaller graphs capture the independence structure implied by the generating
graph and they can be used to understand additional consequences of the generating graph for
independences that result after additional marginalising and conditioning.

An advantage of the MAG is that each edge corresponds to a conditional association, each
missing edge to a conditional independence. A disadvantage of a MAG is that a dependence,
say to i≺ k, may be severely distorted compared to the dependence to i≺ k in the generat-
ing process. With the corresponding summary graph, one can identify which of the conditional
dependences in the MAG remain undistorted and which do not.

Given the summary graph, the corresponding MAG is derived in a few steps. But in general,
one cannot obtain from a given MAG the corresponding summary graph or the information about
distortions. Both types of graph may contain semi-directed cycles. These are typically of interest
only in connection with a larger generating process.

In contrast, their common subclass of regression graphs gives a substantial and much needed
enlargement of the types of research hypotheses that can be formulated with directed acyclic
graphs. They model stepwise generating processes not only in univariate but also in joint re-
sponses. This leads to a corresponding recursive factorization of the joint density in these vector
variables.

In addition, every independence constraint for a component of a joint response is conditional
on variables in the past of the joint response. This is an important distinction from all other types
of currently known chain graphs and is in line with research in many substantive fields where the
study of dependences on past variables is judged to be more fruitful than those of associations
and of independences among variables arising at the same time.

For Gaussian regression graph models, properties of estimators and test statistics have been
quite well understood for a considerable time. For discrete random variables, all regression graph
models are smooth; see Drton (2009). Such smooth models are curved exponential families (see
Cox (2006), Section 6.8) so that they have desirable properties regarding estimation and asymp-
totic properties of tests.



876 N. Wermuth

Much less is known for joint responses of discrete and continuous random components. Thus,
though we now can derive important consequences of any type of regression graph model, more
results on equivalence, identification, estimation and goodness-of-fit criteria are needed.

However, if the regression graph model can be generated, as discussed, via special types of
hidden variables in a larger parent graph model, then its independence structure is defined by
a list of independence statements for variable pairs. This permits local fitting with univariate
generalized linear models, with checks for linearity, interaction and conditional independence
based on observed associations of variable pairs and triples.

This requires no knowledge about the form of the joint distribution and it permits us to formu-
late research hypotheses that are compatible with a given set of data and that are to be investigated
in further empirical studies.

Appendix: Two-edge paths of summary graphs

The following arguments show that the types of induced edges of Table 1 are self-consistent:
A node to be marginalised over is again denoted by and a node to be conditioned on by .

The three types of edge-inducing, two-edge paths (1)–(3) in a parent graph that have as an inner
node a transition, a source or a sink node, respectively, are defined to generate the following three
different types of edges:

(1) ◦≺ ≺ ◦ �⇒ ◦≺ ◦,

(2) ◦≺ �◦ �⇒ ◦ ◦,

(3) ◦ � ≺ ◦ �⇒ ◦ ◦.

The arrow has one, the dashed line two and the full line no edge endpoints that define a collision
node when the edge is mirrored at the same node. Dashed lines denote edges in covariance graphs
and full lines in concentration graphs. Closing paths in such graphs are defined to preserve the
type of edge:

(4) ◦ ◦ �⇒ ◦ ◦,

(5) ◦ ◦ �⇒ ◦ ◦.

The next two paths, (6) and (7), and both induce an arrow:

(6) ◦ ≺ ◦ �⇒ ◦≺ ◦,

(7) ◦≺ ◦ �⇒ ◦≺ ◦.

Paths (4)–(7) arise from active alternating paths in a parent graph for which inner source nodes
in { } alternate with inner sink nodes in { }:

Figure 8. Active alternating paths that generate two-edge paths (a) of type (4) inducing ◦ ◦, (b) of
type (5) inducing ◦ ◦, (c) of type (6) or (7) inducing ◦≺ ◦.
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The two-edge paths (4)–(7) result from Figure 8 as follows: path (4) from (a) by only marginal-
ising, path (5) from (b) by only conditioning, path (6) from (c) by only marginalising and path
(7) from (c) by only conditioning. The paths (a)–(c) of Figure 8 generalize paths (2), (3) and (1),
respectively.

The three remaining edge-inducing paths of two edges in G
V \[C,M]
sum are

(8) ◦≺ ◦ �⇒ ◦ ◦,

(9) ◦ ≺ ◦ �⇒ ◦ ◦,

(10) ◦ ◦ �⇒ ◦≺ ◦.

The three active paths of Figure 9 result by substituting the undirected edges in (8)–(10) by the
appropriate generating components (2) or (3).

Figure 9. Active paths that generate two-edge paths (a) of type (8) inducing ◦ ◦, (b) of type (9)
inducing ◦ ◦, and (c) of type (10) inducing ◦≺ ◦.

By marginalising over the transition node in Figure 9(a)–(c), one generates, respectively,
path (2), path (3) and the path in Figure 8(c).

The construction of the summary graph simplifies considerably for special types of parent
graphs – for instance, for the graphs to the lattice conditional independence models studied by
Andersson et al. (1997), and for the graphs corresponding to labeled trees, studied by Castelo
and Siebes (2003).
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