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We present a general principle for estimating a regression function nonparametrically, allowing for a wide
variety of data filtering, for example, repeated left truncation and right censoring. Both the mean and the me-
dian regression cases are considered. The method works by first estimating the conditional hazard function
or conditional survivor function and then integrating. We also investigate improved methods that take ac-
count of model structure such as independent errors and show that such methods can improve performance
when the model structure is true. We establish the pointwise asymptotic normality of our estimators.
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1. Introduction

This paper concerns the nonparametric estimation of a regression function g(x) that regresses Y

on X = x, where the nonnegative variable Y is subject to various filtering schemes and where X

is an observed vector of regressors. We consider both the mean and the median regression case.
A common particular case is the standard censored regression model Y = g(X) + ε, where X

is an observed d-dimensional vector of regressors, Y is subject to random right censoring and ε

is an unobserved error satisfying E(ε|X) = 0. We make two contributions. First, we present a
completely nonparametric estimation methodology. This is done under more general censoring
patterns than in previous papers. Second, we assume that the error is independent of the covariate
and we show how to construct a more efficient estimator that takes account of the common shape.

Parametric and semiparametric estimators of censored regression models include Heckman
[15], Buckley and James [6], Koul, Susarla and Van Ryzin [23], Powell [32–34], Duncan [9],
Fernandez [13], Horowitz [20,21], Ritov [36], Honoré and Powell [19], Buchinsky and Hahn
[5] and Heuchenne and Van Keilegom [16]. Many of these authors either assume g(x) = β�x

or some other parametric form, provide estimates of average derivatives only up to an unknown
scale or assume that the error distribution is parametric. The fully nonparametric g(x) model we
consider is important because of the sensitivity of the parametric and semiparametric estimators
to misspecification of functional form. A small number of estimators exist for nonparametric
censored regression models, in most cases focusing on the standard random censoring model.
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Dabrowska [8] and Van Keilegom and Veraverbeke [42] proposed nonparametric censored re-
gression estimators based on quantile methods. Lewbel and Linton [24] considered the above
standard censoring model, except that the censoring time C is taken to be a degenerate random
variable (i.e., it is constant), while Heuchenne and Van Keilegom [17,18] considered the standard
model when it is supposed that ε is independent of X.

In this paper, we propose a unified approach to the estimation of the regression function from
filtered data. Filtering, for example, left truncation or right censoring, means that even though
some information is available about Y , Y itself is sometimes not observed, even though X is
observed. It is imperative for us that our estimation principles are natural and well known in the
simple case of independent identically distributed errors with no filtering. Our approach makes
use of tools from the field of counting process theory; see [2] and [14].

First, we recognize that the generic regression model can be reformulated through the counting
process N(y) = I (Y < y) such that Y = ∫ ∞

0 I (Y > y)dy = ∫ ∞
0 yN(dy). The advantage of the

counting process approach is that it readily lends itself to quite general filtering mechanisms,
allowing for complicated left truncation and right censoring patterns.

We reformulate the regression model in terms of a counting process N having stochastic in-
tensity function

λ(y) = αX(y)Z(y)

with respect to the increasing, right-continuous and complete filtration Fy = {X,N(u) | 0 < u ≤
y}. Here, Z(y) = 1 − N(y) and αx(y) is the conditional hazard function of Y given that X = x.
With these definitions, we have that the conditional mean is given by

gmn(x) = E(Y |X = x) = −
∫ ∞

0
ySx(dy) =

∫ ∞

0
uαx(u) exp

(
−

∫ u

0
αx(v)dv

)
du (1)

and the conditional median is given by

gmed(x) = S−1
x (0.5), (2)

where the relation between the conditional survival function Sx(·) and the conditional hazard
function αx(·) is given by

Sx(y) = exp

{
−

∫ y

0
αx(u)du

}
.

This connection between the hazard function and the regression function is the basis of our
estimation.

For the first contribution of this paper, we consider αx(y) as estimated from a local constant
least-squares principle or a local linear least-squares principle. Plugging these estimators into the
expressions (1) and (2) results in, respectively, a local constant ĝC and a local linear estimator
ĝL of the conditional mean or median. It is important to note that in the absence of filtering, the
traditional local constant and local linear kernel regression estimators are special cases of the
estimators ĝC and ĝL.

The second contribution of this paper is concerned with the estimation of the functions gmn(·)
and gmed(·) when some structure is imposed on the model. If there is a substantial level of fil-
tering, then one can envision areas where truncation or censoring imply that we do not have
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local information on the entire shape of the error distribution around every x. One can alleviate
this by imposing assumptions on the shape of these local error distributions. The simplest model
assumption in this connection is the multiplicative regression model

Y = g(X)ε0, (3)

where the error term ε0 is independent of X and has mean or median equal to one, and where
g(X) is either gmn(X) or gmed(X). Under this model,

αε0|x ≡ α0 (4)

for some function α0, where αε0|x is the conditional hazard function of ε0 given that X = x.
If model (3) is true, then it can be used to improve estimation, even in the case without filter-

ing; see [38]. Our estimation strategy in this case is sequential. We first obtain the unrestricted
estimator ĝ(·) = ĝmn(·) or ĝmed(·) described above. We then use the relation

αx(y) = 1

g(x)
α0

(
y

g(x)

)
(5)

or, equivalently, α0(u) = g(x)αx(ug(x)) to obtain an estimate for α0(·). We use a minimum chi-
squared approach to do this optimally, which involves replacing g(x) by ĝ(x) and αx(y) by the
completely nonparametric estimator α̂x(y). Given an estimator of α0(·), we then obtain a new
estimator of g(x) using the minimum chi-squared approach, again based on the relation αx(y) =
α0(y/g(x))/g(x), but now replacing α0(u) by α̂0(u) and αx(y) by α̂x(y). We will argue that our
estimator fulfills a local efficiency criterion. Van Keilegom and Akritas [41] and Heuchenne and
Van Keilegom [17,18] discuss estimation of Sx(y) and E(Y |X = x), respectively, in the additive
error model when Y −E(Y |X) is independent of X. In the first two papers, Sx(y) or E(Y |X = x),
respectively, is written as a functional of the error distribution and of the distribution of the
covariates. The estimator is based on plugging in estimates of these distributions. In the last paper,
censored observations are replaced by synthetic data points. In all three of these papers, efficiency
issues are not discussed and the analysis is restricted to the case of random right censoring.

The outline of the paper is as follows. In Section 2, we describe the theoretical background
in terms of the counting process formulation, including the important special case of filtered
data. In Section 3, we introduce our approach to regression based on filtered data in the general
situation, where we do not restrict the functional form of the error distribution. We present the
local constant case in detail; the local linear case is given in the Appendix. The more efficient
estimator (at least when the assumption is correct) based on the assumption on the functional
form (assumption (4)) is introduced in Section 4, where we also give its asymptotic distribution.
In Section 5, we present a small simulation study. In the Appendix, we give the proofs of the
main distribution results contained in the text.

2. The counting process framework

Let (Xi, Yi), i = 1, . . . , n, be n i.i.d. replications of the random vector (X,Y ), where the response
Yi is subject to filtering and therefore possibly unobserved, and the covariate Xi = (Xi1, . . . ,Xid)

is completely observed.
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2.1. The unfiltered case

Define Ni(y) = I (Yi < y) for all y in the support of Yi . Then N = (N1, . . . ,Nn) is an n-
dimensional counting process with respect to possibly different, increasing, right-continuous,
complete filtrations F i

y ; see [2], page 60. We assume that with respect to the filtration, Ni has
stochastic intensity

λi(y) = αXi
(y)Zi(y), (6)

where Zi(y) = I (Yi ≥ y) is a predictable process taking values in {0,1}. We have not restricted
the conditional distribution of SXi

and the functional form of the conditional hazard function
αXi

is likewise unrestricted. With these definitions, λi is predictable, and the processes Mi(y) =
Ni(y)−�i(y), i = 1, . . . , n, and compensators �i(y) = ∫ y

0 λi(s)ds, are square-integrable local
martingales on the support of Yi .

We can allow this extremely general model description since the martingale central limit the-
orem dating back to Rebolledo [35] can be applied in this context; see [2], pages 82–85. Our
framework is sufficiently general to include a number of interdependencies, including a variety
of time series analyses.

2.2. The filtered case

In this section, we follow Andersen [1], page 50. Let Ci(y) be a predictable process taking values
in {0,1}, indicating (by the value 1) when the ith individual is at risk. Note that the predictability
condition of Ci(y) allows it to depend on Xi = (Xi1, . . . ,Xid) in every possible way. Let

Ni(y) =
∫ y

0
Ci(s)dNi(s)

be the filtered counting process and introduce the filtered filtration F y = σ(N(s),X,CZ(s); s ≤
y). The random intensity process λi is then

λi(y) = αXi
(y)Ci(y)Zi(y)

and the integrated random intensity process is

�i(y) =
∫ y

0
λi(s)ds =

∫ y

0
αXi

(s)Ci(s)Zi(s)ds =
∫ y

0
Ci(s)d�i(s).

With these definitions, Mi(y) = Ni(y)−�i(y) is a square-integrable martingale with respect to
the filtration (F y)y≥0. Note that, in the filtered case, Zi(y) = I (Yi ≥ y) is not always observed,
but the product (CiZi)(y) is always observable.
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3. Estimation under the completely nonparametric model

In this section, local constant and local linear estimators under the general nonparametric model
are given. These estimators take the local constant and the local linear marker-dependent ker-
nel hazard estimators of Nielsen and Linton [31] and Nielsen [30] as their starting point. In the
special case of no filtering, this results in the convenient property that the regression estimator
based on the local constant hazard estimator is the well-known local constant regression esti-
mator, the Nadaraya–Watson estimator, and the local linear hazard estimator results in the local
linear regression estimator; see, for example, [12].

Let K be a d-dimensional kernel, k be a one-dimensional kernel, b = (b1, . . . , bd) be a d-
dimensional bandwidth vector and h be a one-dimensional bandwidth. For any real u and any
d-dimensional vector x = (x1, . . . , xd), define kh(u) = k(u/h)/h and Kb(x) = |b|−1K(x/b),

where x/b = (x1/b1, . . . , xd/bd) and |b| = ∏d
j=1 bj . The estimator suggested by Nielsen and

Linton (1995) is

α̂x,C(y) = OC
x,y

EC
x,y

, (7)

where

OC
x,y = n−1

n∑
i=1

∫
Kb(x − Xi)kh(y − u)dNi(u),

EC
x,y = n−1

n∑
i=1

∫
Kb(x − Xi)kh(y − u)Ci(u)Zi(u)du.

This estimator was identified as a local constant least-squares estimator in [30]. The su-
per/subscript C stands for local constant smoothing. Below, we will also introduce estimators
based on local linear smoothing. This will be indicated by a super/subscript L in the notation.

We wish to estimate the conditional integrated hazard Ax(y) = ∫ y

0 αx(u)du. We could just
integrate α̂x,C(y) with respect to y, but a better strategy is to first let the bandwidth h → 0,

which eliminates redundant smoothing. The resulting estimator is

Âx,C(y) = lim
h→0

∫ y

0
α̂x,C(u)du =

n∑
i=1

Kb(x − Xi)

∫ y

0

dNi(u)∑n
j=1 Kb(x − Xj)Cj (u)Zj (u)

. (8)

Note that Âx,C(y) equals the estimator of Ax(y) proposed by Beran [3] and Dabrowska [7] in
the case of random censoring. We then estimate the conditional survivor function Sx(y) by the
product limit estimator of Johansen and Gill [22]; see [2], that is,

Ŝx,C(y) =
∏

0≤w≤y

{1 − Âx,C(dw)} (9)
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for y ≤ T , where T satisfies assumption (A) below. The local constant estimator of gT
mn(x) =

E(YI (Y ≤ T )|X = x) is

ĝT
C,mn(x) = −

∫ T

0
yŜx,C(dy). (10)

A local constant estimator of gmed(x) = med(Y |X = x) is given by

ĝC,med(x) = Ŝ−1
x,C(0.5),

where for any 0 < p < 1, Ŝ−1
x,C(p) = inf{y : Ŝx,C(y) ≤ 1 − p}.

Another option would have been to define Sx(y) = exp{−Âx,C(y)} in the above formula. The
advantage of the weighted product limit estimator is that we arrive at exactly the extension of
the Kaplan–Meier estimator to filtered data in the absence of covariates and at the weighted
empirical distribution function [37] in the absence of filtering. As a consequence, (10) reduces
to the well-known Nadaraya–Watson estimator when T = ∞ and when all data are completely
observed.

In a similar way, the local linear estimators of Sx(y), gT
mn(x) and gmed(x), denoted Ŝx,L(y),

ĝT
L,mn(x) and ĝL,med(x), respectively, can be defined. We refer to the Appendix for their precise

definitions.
For the asymptotic properties of the unrestricted estimators ĝT

C,mn(x) and ĝT
L,mn(x) of gT

mn(x),
we need to assume the following for x ∈ RX , where RX is a bounded interval in the interior of the
support of X. All of our results are stated for the special case of a one-dimensional covariate X,
d = 1. The results can be easily generalized to a multivariate setting.

(D1) The derivatives ∂2αx(u)

∂x2 and ∂αx(u)
∂x

exist and are uniformly continuous in x ∈ RX,u ∈
[0, T ].

(D2) The kernel K is symmetric, continuous and has bounded support. The bandwidth b

satisfies b → 0, nb → ∞ and nb5 = O(1).
(D3) The truncation variable T is such that infx∈RX,u∈[0,T ] ϕx(u) > 0.
(D4) There exists a continuous function ϕx(y) such that

sup
y∈[0,T ]

∣∣∣∣∣1

n

n∑
i=1

Kb(x − Xi)Ci(y)Zi(y) − ϕx(y)

∣∣∣∣∣ P→ 0,

sup
y∈[0,T ]

∣∣∣∣∣1

n

n∑
i=1

(x − Xi)
2

b2
Kb(x − Xi)Ci(y)Zi(y) − 1

2
μ2(K)ϕx(y)

∣∣∣∣∣ P→ 0,

where μ2(K) = ∫
u2K(u)du.

(D5) The derivative ∂ϕx(y)
∂x

exists and is continuous. It holds that

sup
y∈[0,T ]

∣∣∣∣∣1

n

n∑
i=1

(Xi − x)b−2Kb(x − Xi)Ci(y)Zi(y) − μ2(K)
∂ϕx(y)

∂x

∣∣∣∣∣ P→ 0.
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(D6) For A ∈ {C,L}, it holds that

sup
y∈[0,T ]

|Ŝx,A(y) − Sx(y)| P→ 0,

sup
y∈[0,T ]

|S∗
x,A(y) − Sx(y)| P→ 0.

Here, S∗
x,A(y) is defined as Ŝx,A(y) in (8), (9), (15) and (16), but with Ni(y) replaced

by �i(y). (An explicit definition of S∗
x,C(y) is also given in the proof of Theorem 3.1.)

These assumptions are rather standard smoothing assumptions. Assumptions (D4)–(D6) are
low-level assumptions. We chose them instead of high-level assumptions to avoid more specific
assumptions on the censoring. For the unfiltered case, these assumptions are classical smoothing
results. For the filtered case, consider first the case of random right censoring. Then

n−1
n∑

i=1

Kb(x − Xi)Ci(y)Zi(y) = n−1
n∑

i=1

Kb(x − Xi)I (Y ∗
i > y),

where Y ∗
i is the minimum of the survival time Yi and the censoring time Ci , which are supposed

to be independent of each other given Xi . It is easily seen that the latter quantity converges to
ϕx(y) := f (x)P (Y ∗ > y|X = x) uniformly in x ∈ RX and y ∈ [0, T ]. Other examples of filtering
(including, e.g., left and/or right truncation and/or censoring) can be handled in a similar way.
Assumption (D5) is only needed for the asymptotic result based on local constant smoothing and
not for local linear smoothing.

Theorem 3.1. Suppose that assumptions (D1)–(D6) hold. There then exist bounded continuous
functions βA and vA, A ∈ {C,L}, such that for all x ∈ RX ,

√
nb

(
ĝT

A,mn(x) − gT
mn(x) − b2βA(x)

) �⇒ N(0, vA(x)),

where

βC(x) = 1

2
μ2(K)

∫ T

0
Sx(y)

∫ y

0

{
∂2αx(u)

∂x2
+ 2

∂αx(u)

∂x

∂ϕx(u)

∂x

}
dudy,

βL(x) = 1

2
μ2(K)

∫ T

0
Sx(y)

∫ y

0

∂2αx(u)

∂x2
dudy,

vC(x) = ‖K‖2
2

∫
αx(u)

ϕx(u)

{∫ T

u

Sx(y)dy

}2

du,

vL(x) = vC(x).
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To be consistent with the theory for kernel regression estimators, it must be that in the absence
of filtering,

vC(x) = ‖K‖2
2
σ 2(x)

f (x)
,

where σ 2(x) = var[Y |X = x] and f (x) is the covariate density. Note that

var[Y |X = x] = 2
∫

uSx(u)du −
(∫

Sx(u)du

)2

.

In the absence of filtering, ϕx(u) = f (x)Sx(u). Therefore, it should be the case that∫
αx(u)

Sx(u)

{∫
u

Sx(y)dy

}2

du = 2
∫

uSx(u)du −
(∫

Sx(u)du

)2

.

This follows by integration by parts.
For gmed(x), it has been shown in [42] that ĝC,med(x) is asymptotically normal when the data

are subject to random right censoring. It can be shown that this result continues to hold true for
general filtering patterns.

4. Estimation under common shape of the error distribution

Under some circumstances, it may be plausible to assume that the error distribution, when ad-
justed for the mean or the median, is generated by the same underlying shape. If there is a
substantial level of filtering, then one can envision areas where truncation or censoring imply
that we do not have local information on the entire shape of the error distribution around every x.

One can alleviate this by imposing assumptions on the shape of these local error distributions.
The simplest assumption in this connection is simply that αε0|x does not depend on x, where ε0
is the error term in model (3). This is

αε0|x(u) ≡ α0(u) (11)

for some α0 and all u ≥ 0. If this assumption is true, then it can be used to improve estimation,
even in the case without filtering, as we now discuss. The notion of efficiency is here tied to
asymptotic variance, which yields mean-squared error holding bias constant, and comes from
the classical parametric theory of likelihood. The local likelihood method was introduced in [38]
and has been applied in many other contexts. Tibshirani [38], Chapter 5, presents the justification
for the local likelihood method (in the context of an exponential family): the author shows that its
asymptotic variance is the same as the asymptotic variance of the maximum likelihood estimator
(MLE) of a correctly specified parametric model at the point of interest using the same number of
observations as the local likelihood method. This type of result has been shown in other settings,
for example, Linton and Xiao [28] establish efficiency of a local likelihood estimator in the
context of nonparametric regression with additive errors. In generalized additive models, Linton
[25,26] shows the improvement according to variance obtainable by the local likelihood method.

In what follows, g(x) is either gmn(x) or gmed(x) and similarly for the estimators of g(x).
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4.1. Oracle estimation of the location g(x)

First, we note that both the local constant and the local linear kernel estimator of the full marker-
dependent hazard model have the form

α̂x,A(y) = OA
x,y

EA
x,y

,

where A equals C for the local constant case and A equals L for the local linear case. Let
us suppose that an oracle told us what α0 is. We define the local constant estimator and the
local linear estimators of g based on the assumption (4) to be any minimizer ĝo

A of the criterion
function ∫ ∫ [

α̂x,A(y) − 1

g(x)
α0

{
y

g(x)

}]2

{α̂x,A(y)}−1EA
x,yw(x, y)dx dy,

where w(x,y) is an appropriate weight function. This is motivated by the theory of minimum
chi-squared estimation [4], in which efficiency is achieved by weighting a least-squares criterion
with the inverse of the asymptotic variance of the unrestricted estimator (in this case, α̂x,A(y),

which has asymptotic variance αx(y)/ϕx(y), where ϕx(y) is the probability limit of the exposure
EA

x,y). For a fixed x, this expression is minimized by minimizing the pointwise criterion

l̂α0(θ;x) =
∫ [

α̂x,A(y) − 1

θ
α0

{
y

θ

}]2

{α̂x,A(y)}−1EA
x,yw(x, y)dy (12)

with respect to θ and setting ĝo
A(x) = θ̂ = arg minθ∈� l̂α0(θ;x) for some compact set � not

containing 0. This is a nonlinear estimator, not obtainable in closed form.
Define

l(θ;x) =
∫ ∞

0

[
αx(y) − 1

θ
α0

{
y

θ

}]2

{αx(y)}−1ϕx(y)w(x, y)dy

and let θ0 = g(x).

For the asymptotic result below, we need to assume the following:

(A1) (i) The weight function w(x,y) is continuous and satisfies w(x,y) = 0 for (x, y) /∈ I

and 0 ≤ w(x,y) ≤ a for all (x, y) ∈ I , where 0 < a < ∞ and I = {(x, y) :x ∈ RX, τx ≤
y ≤ Tx}, where τx and Tx are continuous functions and where, as in (D1)–(D5), RX is a
bounded interval in the interior of the support of X.
(ii) There exists a continuous function ϕx(·) with inf(x,y)∈I ϕx(y) > 0 such that the con-
vergence statements in (D4) and (D5) hold with the supremum running over (x, y) ∈ I

instead of y ∈ [0, T ]. The function ϕx(y) is twice continuously differentiable in y for
(x, y) ∈ I .

(A2) The function αx(y) = g(x)−1α0[g(x)−1y] is twice continuously differentiable in
(x, y) ∈ I and inf(x,y)∈I αx(y) > 0.
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(A3) The probability density functions K and k are symmetric around 0 and have support
[−1,1], ∫

uK(u)du = ∫
uk(u)du = 0,

∫
u2K(u)du �= 0,

∫
u2k(u)du �= 0, and K and

k are twice continuously differentiable.
(A4) For all ε > 0, inf|θ−θ0|>ε |l(θ;x) − l(θ0;x)| > 0, l(θ, x) is twice differentiable with re-

spect to θ in a neighborhood of θ0 and l′′(θ0;x) > 0.
(A5) The bandwidths h and b satisfy h → 0, b → 0, nhb → ∞, nh4b = O(1) and nb5 =

O(1).

Conditions (A2), (A3) and (A5) are standard smoothing assumptions. Assumption (A1) is
stated uniformly in x because such a uniform version is required in the later Theorems 4.2
and 4.3.

Theorem 4.1. Suppose that assumptions (A1)–(A5) hold. There then exist bounded continuous
functions βo

A1 and βo
A2, A ∈ {C,L}, such that for all x ∈ RX ,

√
nb

(
ĝo

A(x) − g(x) − h2βo
A1(x) − b2βo

A2(x)
) �⇒ N(0, vo

A(x)),

where, with s0(u) = 1 + uα′
0(u)/α0(u),

vo
C(x) = g(x)3‖K‖2

2

[∫
s2

0

(
y

g(x)

)
α0

(
y

g(x)

)
ϕx(y)w(x, y)dy

]−1

,

vo
L(x) = vo

C(x).

In the absence of filtering, the optimal estimator of g(x), given the knowledge of α0(·) or,
equivalently, of the density fε(·) of ε0, is the local likelihood estimator that maximizes

l(θ) =
n∑

i=1

Kb(x − Xi)

{
lnfε

(
Yi

θ

)
− ln θ

}
,

which has score function

sθ = −1

θ

n∑
i=1

Kb(x − Xi)

{
εi(θ)

f ′
ε

fε

(εi(θ)) + 1

}
,

where εi(θ) = Yi/θ. The object sε(u) = u(f ′
ε/fε)(u) + 1 is known as the Fisher scale score and

I2(fε) = ∫
s2
ε (u)fε(u)du is the corresponding information. One can show that the asymptotic

variance of this oracle local likelihood estimator is

‖K‖2
2g(x)2

f (x)I2(fε)
. (13)

Supposing that we had kn = �nbf (x)/‖K‖2
2� observations from the model Y = g(x)ε, the MLE

of θ0 = g(x) would have asymptotic variance g(x)2/I2(fε)kn. In this sense, the local likelihood
method has the efficiency of the MLE from a sample of size kn.



70 Linton, Mammen, Nielsen and Van Keilegom

By Efron and Johnstone [10], we have

I2(fε) =
∫ (

1 + u
α′

0(u)

α0(u)

)2

fε(u)du,

which explains the form of the asymptotic variance above. Suppose that we take w(x,y) = 1,
make a change of variables y → u = y/g(x) in vo

C(x) and make use of the fact that, under no
filtering, ϕx(y) = f (x)Sx(y) and so α0(u)ϕx(ug(x)) = fε(u)f (x). Then vo

C(x) = (13). This
shows that ĝo

A(x) is asymptotically equivalent to the oracle local likelihood method, that is,
efficient in this sense.

4.2. Estimation with unknown α0

For a given g(·), an estimator of α0 can be based on the minimization principle

α̂o
0,A = arg min

α(·)

∫ ∫ [
α̂x,A(y) − 1

g(x)
α

{
y

g(x)

}]2

{α̂x,A(y)}−1EA
x,yw(x, y)dx dy,

where the choice of weighting function is again motivated by efficiency considerations. Changing
variables y �→ u = y/g(x), the objective function becomes

∫ ∫ [
α̂x,A(ug(x)) − 1

g(x)
α(u)

]2

g(x){α̂x,A(ug(x))}−1EA
x,ug(x)w(x,ug(x))dx du

=
∫ ∫

[g(x)α̂x,A(ug(x)) − α(u)]2
EA

x,ug(x)

g(x)α̂x,A(ug(x))
w(x,ug(x))dx du,

ignoring support considerations. Then, because α does not depend on x, we can replace it by the
pointwise criteria

l̂g(α;u) =
∫

[g(x)α̂x,A(ug(x)) − α]2
EA

x,ug(x)

g(x)α̂x,A(ug(x))
w(x,ug(x))dx

for each u, whence we obtain the closed form solution

α̂o
0,A(y) =

∫
EA

x,yg(x)w(x, yg(x))dx∫
(EA

x,yg(x)w(x, yg(x))/(g(x)α̂x,A(yg(x))))dx
.

In practice, one computes α̂0,A(y) as (14) with g(x) replaced by a preliminary completely non-
parametric estimator g̃, that is,

α̂0,A(y) =
∫

EA
x,yg̃(x)

w(x, yg̃(x))dx∫
(EA

x,yg̃(x)
w(x, yg̃(x))/(g̃(x)α̂x,A(yg̃(x))))dx

. (14)
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Let y be a fixed value, that is, such that τ ≤ y ≤ T , where τ > infx∈RX

τx

g(x)
and T <

supx∈RX

Tx

g(x)
(and where we assume that infx∈RX

g(x) > 0). We require the following assump-
tions:

(B1) The preliminary estimator g̃(·) satisfies supx∈RX
|g̃(x) − g(x)| = OP ((nb)−1/2 ×

(logn)1/2).
(B2) The function g(x) is twice continuously differentiable in x ∈ RX and infx∈RX

g(x) > 0.
(B3) The bandwidths h and b satisfy h → 0, b → 0, nhb → ∞, nb4h = O(1), nh5 = O(1)

and nh2b(logn)−1 → ∞.

Theorem 4.2. Suppose that assumptions (A1)–(A3) and (B1)–(B3) hold. There then exist
bounded continuous functions bA1 and bA2, A ∈ {C,L}, such that for all τ ≤ y ≤ T ,

√
nh

(
α̂0,A(y) − α0(y) − h2bA1(y) − b2bA2(y)

) �⇒ N(0, sA(y)),

where

sC(y) = ‖k‖2
2

1

Bo(y)2
E{E[C(yg(X))|Y = yg(X),X]fX(yg(X))w2(X,yg(X))},

sL(y) = sC(y),

Bo(y) = E[(CZ){yg(X)}w{X,yg(X)}]/α0(y).

Finally, we compute a new estimate of g using the estimate of α0. Specifically, define the
weighted least-squares objective function

l̂α̂(θ;x) =
∫ [

α̂x,A(y) − 1

θ
α̂0

{
y

θ

}]2

{α̂x,A(y)}−1EA
x,yw(x, y)dy

with A = C or A = L, and with α̂0 equal to α̂0,C , α̂0,L or another estimator of α0. Then let

ĝ2−step(x) = arg min
θ∈In(x)

l̂α̂(θ;x),

where the argmin runs over a shrinking neighborhood In(x) of a consistent estimator of g(x).
In the next theorem, we state that under some conditions on the estimator α̂0, we obtain the
same variance and bias as in the oracle case. One possibility is to use the estimator of g given
in Section 3 as preliminary estimator and to base the final estimation of g on the method of the
above Section 4.1, but replacing the oracle α0 by α̂0,A. We make use of the following additional
assumptions:

(C1) For a neighborhood J (x) of the closed interval [τx/g(x), Tx/g(x)], it holds uniformly
for z ∈ J (x) that

α̂0(z) − α0(z) = OP (δ0,n),

α̂′
0(z) − α′

0(z) = OP (δ1,n),

α̂′′
0 (z) − α′′

0 (z) = OP (δ2,n)
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for sequences δ0,n, δ1,n and δ2,n with δ0,n = o((logn)−1/2h1/2), δ1,n = o(1), δ2,n =
o((nbh)1/2(logn)−1/2), δ0,nδ2,n = o(1), δ1,nδ2,n = o(1) and δ0,nδ1,n = o(n−2/5).

(C2) With a bounded function γ (x), it holds that

∫
[α̂(y) − α0(y)]ρ0

{
y

g(x)

}
1

g(x)2

EC
x,y

αx(y)
w(x, y)dy − h2γ (x) = oP

(
(nb)−1/2),

where ρ0(u) = α0(u) + uα′
0(u).

(C3) The bandwidths h and b satisfy nhb → ∞, nh5 = O(1), nb5 = O(1) and 1/(nb5) =
O(1).

These assumptions are rather weak. Assumption (C1) is fulfilled for a standard one-
dimensional kernel smoother which fulfills the conditions with δ0,n = (logn)1/2n−2/5, δ1,n =
(logn)1/2n−1/5 and δ2,n = (logn)1/2. The assumption is fulfilled under much slower rates of
convergence. The assumption could be replaced by another type of condition using the general
approach of Mammen and Nielsen [29] based on cross-validation arguments. Assumption (C2)
is a standard property of kernel smoothers: kernel smoothers are local weighted averages. Inte-
gration of the estimator leads to a global weighted average with stochastic part of parametric rate
n−1/2. Typically, the rate of the bias part does not change.

Theorem 4.3. Suppose that assumptions (A1)–(A5) and (C1)–(C3) hold. There then exist
bounded continuous functions β2−step and v2−step such that for all x ∈ RX ,

√
nb

(
ĝ2−step(x) − g(x) − b2β2−step(x)

) �⇒ N(0, v2−step(x)),

where v2−step(x) = vo
C(x) = vo

L(x).

This shows that the two-step estimator achieves the desired oracle property.

5. Numerical results

In this section, we look at the small-sample performance of our estimators. The design involves
a combination of commonly occurring features in the literature: we take the true underlying
regression function to be identical to that of Fan and Gijbels [11], but our disturbance term has a
different distribution and we also consider a different censoring mechanism. Thus,

Yi = gmn(Xi)εi,

gmn(x) = 4.5 − 64x2(1 − x)2 − 16(x − 0.5)2,

where Xi ∼ U [0,1], εi ∼ U [0.5,1.5], while Xi and εi are independent and E(εi) = 1. The
censoring time mechanism is independent of the covariate and constructed as follows:

Ui =
{

Vi if Wi < 0.5,
+∞ otherwise,



Nonparametric regression with filtered data 73

Figure 1. Plot of the mean of the estimated regression curve.

where Vi ∼ Beta(1,3), Wi ∼ Beta(1,0.75) and we observe {Yi ∧ Ui, δi = 1(Yi < Ui),Xi}, that
is, an example of right censoring.

We employ two methods of estimation of gmn(X): the simple local constant estimation of
Section 3 and the feasible oracle estimation, as discussed in Section 4.2. For the purposes
of illustration, we use Silverman’s rule of thumb bandwidth and the built-in minimization
routine based on the golden section search and parabolic interpolation. For the more effi-
cient estimator, we note that using the one-dimensional grid search gives a very similar esti-
mate.

We use a sample of size 250 and 15 replications over 200 evenly spaced grids on [0,1]. In
this example, approximately 25% of the 200 observations are censored. Figure 1 displays the
average (over replications) of the two estimates. The true regression function chosen possesses
a high degree of curvature, with the function increasing less steep to the right of 0.5 than to the
left of 0.5. Both estimates are capable of capturing the basic structure of the true curve. The
efficient estimate appears to adapt better at both peaks and troughs, and the quality of fit declines
with the steepness of the true curve. Although it is not shown here, the relative performance
of the simple local constant estimator improves toward the feasible oracle estimates when the
true regression function has lower degree variation. Figures 2 and 3 are the QQ-plots for the
efficient and inefficient estimates, respectively (i.e., (ĝ − Eĝ)/std(ĝ)). The linear trends in the
QQ-plots are distinct with the efficient estimates performing a little better away from the sample
means. Figure 4 plots the interquartile range (divided by 1.3) and the standard deviation (across
replications) for the efficient estimate against grid points. Performance clearly worsens in the
boundary region.

Since it is widely perceived that the Silverman’s rule of thumb bandwidth tends to oversmooth,
we also performed some experiments with smaller bandwidths. Smaller bandwidth leads to much
larger simulation time during optimization, due to higher variance. In terms of goodness of fit, it
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Figure 2. QQ-plot of standardized efficient estimates versus standard normal.

does not make a big difference with the feasible oracle estimation. However, the improvement of
fit for the simple local constant estimation is more pronounced. In that case, the feasible oracle
estimation still performs better than the simple estimator, as expected.

Figure 3. QQ-plot of standardized inefficient estimates versus standard normal.
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Figure 4. Normalized interquartile range and standard deviation plots for efficient estimates.

Appendix

A.1. Local linear estimation

In this section, we first define the local linear marker-dependent estimator, α̂x,L(y), as defined in
[30], page 118,

α̂x,L(y) = OL
x,y

EL
x,y

, (15)

where, with w = (wj )
d+1
j=1 = (x, y) and Wi(u) = (Wij (u))d+1

j=1 = (Xi, u) (to simplify the notation,
we consider the same kernel and bandwidth for x and y),

OL
x,y = n−1

n∑
i=1

∫
Kw,b{w − Wi(u)}dNi(u), EL

x,y = c0 − cT
1 D−1c1,

Kw,b(v) = {Kb(v) − Kb(v)vT D−1c1} (v ∈ Rd+1),

c0 = n−1
n∑

i=1

∫
Kb{w − Wi(u)}Ci(u)Zi(u)du, (16)

c1j = n−1
n∑

i=1

∫
Kb{w − Wi(u)}{wj − Wij (u)}Ci(u)Zi(u)du,

djk = n−1
n∑

i=1

∫
Kb{w − Wi(u)}{wj − Wij (u)}{wk − Wik(u)}Ci(u)Zi(u)du,
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and c1 = (c1j )
d+1
j=1 and D = (djk)

d+1
j,k=1. We then consider the local linear estimator of the inte-

grated conditional hazard function, obtained when we undersmooth in the y-direction. First, we
define the necessary kernel constants:

Kx,b(v) = {Kb(v) − Kb(v)vT D
−1

c1}/(c0 − cT
1 D

−1
c1) (v ∈ Rd),

c0 = n−1
n∑

i=1

Kb(x − Xi),

c1j = n−1
n∑

i=1

Kb(x − Xi)(xj − Xij ),

djk = n−1
n∑

i=1

Kb(x − Xi)(xj − Xij )(xk − Xik).

We then get that the local linear estimator of the integrated hazard is

Âx,L(y) =
∫ y

0

∑n
i=1 Kx,b(x − Xi)∑n

j=1 Kx,b(x − Xj)Cj (u)Zj (u)
dNi(u).

We estimate correspondingly the conditional survival function Sx(y) and the regression functions
gT

mn(x) and gmed(x) by

Ŝx,L(y) =
∏

0≤w≤y≤T

{1 − dÂx,L(w)},

ĝT
L,mn(x) = −

∫ T

0
y dŜx,L(y),

ĝL,med(x) = Ŝ−1
x,L(0.5).

A.2. Proof of results

We restrict attention in the proofs to the case of local constant smoothing (i.e., when A = C).
The case of local linear smoothing (A = L) can be considered in a very similar way and is
therefore omitted. Throughout this section, we use the notation An � Bn to indicate that An =
Bn(1 + oP (1)).

First, we state a useful lemma. Its simple proof is omitted. Let h(y−) be the limit from the left
at y for any cadlag function h.

Lemma A.1. Suppose A1 and A2 are cadlag functions. Let S1(y) = ∏
w≤y{1 − dA1(w)},

S2(y) = ∏
w≤y{1 − dA2(w)} and

Q(y) = S1(y−)

S2(y−)
− 1.
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Then

dQ(y) = S1(y−)

S2(y−)
d(A1 − A2)(y).

Proof of Theorem 3.1. Define

A∗
x,C(y) =

n∑
i=1

Kb(x − Xi)

∫ y

0

d�i(u)∑n
j=1 Kb(x − Xj)Cj (u)Zj (u)

.

Then

Âx,C(y) − A∗
x(y) =

n∑
i=1

Kb(x − Xi)

∫ y

0

dMi(u)∑n
j=1 Kb(x − Xj)Cj (u)Zj (u)

.

Let S∗
x (y) = ∏

w≤y{1 − dA∗
x(w)}. We then divide our analysis into an analysis of the variable

part

Vx(y) = Ŝx,C(y) − S∗
x (y) (17)

and of the stable part

Bx(y) = S∗
x (y) − Sx(y). (18)

Note that Vx(y) = S∗
x (y)QV

x (y), where QV
x (y) = Ŝx,C(y)/S∗

x (y) − 1, Bx(y) = Sx(y)QB
x (y)

and QB
x (y) = S∗

x (y)/Sx(y) − 1. Using integration by parts, we obtain

ĝT
mn(x) − gT

mn(x) = −
∫ T

0
y[Ŝx,C(dy) − Sx(dy)] =

∫ T

0
[Ŝx,C(y) − Sx(y)]dy = V (x) + B(x),

where V (x) = ∫ T

0 Vx(y)dy and B(x) = ∫ T

0 Bx(y)dy. By Lemma A.1, we have

V (x) =
∫ T

0
S∗

x (y)

∫ y

0
dQV

x (u)dy

=
∫ T

0
S∗

x (y)

∫ y

0

Ŝx,C(u−)

S∗
x (u−)

d{Âx,C(u) − A∗
x,C(u)}dy

=
∫ T

0
S∗

x (y)

∫ y

0

Ŝx,C(u−)

S∗
x (u−)

n∑
i=1

Kb(x − Xi)
dMi(u)∑n

j=1 Kb(x − Xj)Cj (u)Zj (u)
dy

=
n∑

i=1

∫ T

0
ĥi

x(u)dMi(u),

where

ĥi
x(u) =

∫ T

u

S∗
x (y)

Ŝx,C(u−)

S∗
x (u−)

Kb(x − Xi)
1∑n

j=1 Kb(x − Xj)Cj (u)Zj (u)
dy

= Ŝx,C(u−)

S∗
x (u−)

Kb(x − Xi)∑n
j=1 Kb(x − Xj)Cj (u)Zj (u)

∫ T

u

S∗
x (y)dy.
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Let

Ṽ(x) =
n∑

i=1

∫ T

0
hi

x(u)dMi(u),

hi
x(u) = n−1 Kb(x − Xi)

ϕx(u)

∫ T

u

Sx(y)dy.

Then V (x) = Ṽ (x) + op(1) and by Nielsen and Linton [31], Proposition 1, (nb)1/2 Ṽ (x) �⇒
N(0, v(x)), where

v(x) = p lim
n→∞nb

n∑
i=1

∫
hi

x(u)2 d〈Mi(u)〉

= p lim
n→∞mn−1b

n∑
i=1

Kb(x − Xi)
2
∫

1

ϕx(u)2

{∫ T

u

Sx(y)dy

}2

αXi
(u)Ci(u)Zi(u)du

= ‖K‖2
2

∫
αx(u)

ϕx(u)

{∫ T

u

Sx(y)dy

}2

du.

The results given in Theorem 3.1 on the variable part follow from standard martingale theory;
see, among many others, [31].

We now turn to the bias. Using (D4)–(D6), we have

B(x) =
∫ T

0
Sx(y)

∫ y

0
dQB

x (u)dy

=
∫ T

0
Sx(y)

∫ y

0

S∗
x (u−)

Sx(u−)
d{A∗

x(u) − Ax(u)}dy

=
∫ T

0
Sx(y)

∫ y

0

S∗
x (u−)

Sx(u−)

n∑
i=1

Kb(x − Xi)
Ci(u)Zi(u){αXi

(u) − αx(u)}du∑n
j=1 Kb(x − Xj)Cj (u)Zj (u)

dy

= 1

2
μ2(K)b2

∫ T

0
Sx(y)

∫ y

0

{
∂2αx(u)

∂x2
+ 1

2

∂αx(u)

∂x

∂ϕx(u)

∂x

}
dudy + oP (b2).

The derivation of the asymptotic theory of the local linear case parallels the local constant
case. While the variable part has the same asymptotic distribution, the stable part changes due to
the bias properties of the local linear hazard estimator. By checking the derivation of the stable
part of the local linear kernel hazard estimation of Nielsen [30], page 119, it is easy to see that
the stable part of the local linear estimator can be written as

bL(x) = 1

2
μ2(K)b2

∫ T

0
Sx(y)

∫ y

0

∂2αx(u)

∂x2
dudy. �
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Proof of Theorem 4.1. Consistency of θ̂ follows from condition (A1) and the fact that

sup
θ∈�

|l̂α0(θ;x) − l(θ;x)| P→ 0 (19)

(see, e.g., [40], Theorem 5.7, page 45). The result (19) follows from assumption (A2) and the
uniform consistency of α̂x,C(y); this is established in [31], Theorem 2. Actually,

l̂α0(θ;x) − l(θ;x)

=
∫ [

α̂x,C(y) − 1

θ
α0

{
y

θ

}]2

{α̂x,C(y)}−1EC
x,yw(x, y)dy

−
∫ [

αx(y) − 1

θ
α0

{
y

θ

}]2

{αx(y)}−1ϕx(y)w(x, y)dy

=
∫

[α̂x,C(y) − αx(y)]2{αx(y)}−1ϕx(y)w(x, y)dy

+ 2
∫

[α̂x,C(y) − αx(y)]
[
αx(y) − 1

θ
α0

{
y

θ

}]
{αx(y)}−1ϕx(y)w(x, y)dy

+
∫ [

α̂x,C(y) − 1

θ
α0

{
y

θ

}]2

× [{α̂x,C(y)}−1EC
x,y − {αx(y)}−1ϕx(y)]w(x,y)dy

and this converges to zero in probability, uniformly in θ ∈ �.
We next establish asymptotic normality. First, we consider the Taylor expansion

0 = l̂′α0
(θ̂;x) = l̂′α0

(θ0;x) + l̂′′α0
(θ∗;x)(θ̂ − θ0), (20)

where θ∗ lies between θ̂ and θ0. We have

l̂′α0
(θ;x) = 2

∫ [
α̂x,C(y) − 1

θ
α0

{
y

θ

}]
ρ0

{
y

θ

}
1

θ2

EC
x,y

α̂x,C(y)
w(x, y)dy,

where ρ0(u) = α0(u) + uα′
0(u) and

l̂′′α0
(θ;x) = 2

∫
ρ2

0

{
y

θ

}
1

θ4

EC
x,y

α̂x,C(y)
w(x, y)dy

− 2
∫ [

α̂x,C(y) − 1

θ
α0

{
y

θ

}]
ρ′

0

{
y

θ

}
y

θ4

EC
x,y

α̂x,C(y)
w(x, y)dy

− 4
∫ [

α̂x,C(y) − 1

θ
α0

{
y

θ

}]
ρ0

{
y

θ

}
1

θ3

EC
xy

α̂x,C(y)
w(x, y)dy.
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We first establish the properties of l̂′α0
(θ0;x). Recall from [31] that

α̂x,C(y) − αx(y) = Vx,y + Bx,y

EC
x,y

, (21)

where

Vx,y = 1

n

n∑
i=1

∫
Kb(x − Xi)kh(y − y′)dMi(y

′),

Bx,y = 1

n

n∑
i=1

∫
Kb(x − Xi)kh(y − y′)[αXi

(y′) − αx(y)]Ci(y
′)Zi(y

′)dy′.

Therefore,

l̂′α0
(θ0;x) = 2

∫
[α̂x,C(y) − αx(y)]ρ0

{
y

g(x)

}
1

g(x)2

EC
x,y

α̂x,C(y)
w(x, y)dy

= 2
∫

ρ0

{
y

g(x)

}
1

g(x)2

Vx,y

α̂x,C(y)
w(x, y)dy

+ 2
∫

ρ0

{
y

g(x)

}
1

g(x)2

Bx,y

α̂x,C(y)
w(x, y)dy

� 2
∫

ρ0

{
y

g(x)

}
1

g(x)2

Vx,y

αx(y)
w(x, y)dy

+ 2
∫

ρ0

{
y

g(x)

}
1

g(x)2

Bx,y

αx(y)
w(x, y)dy,

where the last line follows from [27], Lemma 3. Consider∫
ρ0

{
y

g(x)

}
1

g(x)2

Vx,y

αx(y)
w(x, y)dy

= 1

n

n∑
i=1

Kb(x − Xi)

∫ [∫
ρ0

{
y

g(x)

}
1

g(x)2

1

αx(y)
kh(y − y′)w(x, y)dy

]
dMi(y

′)

�
n∑

i=1

∫
hni(x,u)dMi(u),

where hni(x,u) = n−1Kb(x − Xi)ρ0(u/g(x))w(x,u)/{g(x)2αx(u)}. By the central limit theo-
rem for martingales, one gets (see, e.g., [31], Proposition 1)

(nb)1/2
n∑

i=1

∫
hni(x,u)dMi(u) �⇒ N(0, σ 2),
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σ 2 = p lim
n→∞nb

n∑
i=1

∫
h2

ni(u)d〈Mi(u)〉

= p lim
n→∞n−1b

n∑
i=1

K2
b (x − Xi)

∫
ρ2

0(u/g(x))

αx(u)2g(x)4
w(x,u)αXi

(u)Ci(u)Zi(u)du

= ‖K‖2
2

∫
ρ2

0(u/g(x))

αx(u)g(x)4
ϕx(u)w(x,u)du.

Furthermore,∫
ρ0

{
y

g(x)

}
1

g(x)2

Bx,y

αx(y)
w(x, y)dy

= 1

n

n∑
i=1

Kb(x − Xi)

∫ ∫
ρ0

{
y

g(x)

}
w(x,y)

αx(y)g(x)2
kh(y − y′)

× [αXi
(y′) − αx(y)]Ci(y

′)Zi(y
′)dy′ dy

and it is easily seen that this can be written as a bias term of order O(h2)+ O(b2), plus a remain-
der term of order oP ((nb)−1/2).

Finally, note that for any sequence δn → 0, we have

sup
|θ−θ0|≤δn

|l̂′′α0
(θ;x) − l′′(θ0;x)| = oP (1), (22)

where

l′′(θ0;x) = 2
∫

ρ2
0

{
u

g(x)

}
w(x,u)

g(x)4

ϕx(u)

αx(u)
du

and l′′(θ0;x) > 0.

From (20), we then obtain

ĝo
C(x) − g(x) = −{l′′(θ0;x)}−1 l̂′α0

(θ0;x){1 + oP (1)}
and the asymptotic distribution follows. �

Proof of Theorem 4.2. We first consider the infeasible estimator α̂o
0,A(y). Consider the follow-

ing decomposition:

α̂o
0,A(y) =

∫
EA

x,yg(x)w(x, yg(x))dx∫
(EA

x,yg(x)w(x, yg(x))/(g(x)α̂x,A(yg(x))))dx

= Âo(y)

B̂o(y)
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= Âo(y)∫
B̂o

1x(y)/B̂o
2x(y)dx

(say)

=
[

Âo(y)

Bo(y)
− Ao(y)

Bo(y)2

∫
B̂o

1x(y)

Bo
2x(y)

dx + Ao(y)

Bo(y)2

∫
Bo

1x(y)B̂o
2x(y)

Bo
2x(y)2

dx

](
1 + oP (1)

)
,

where Ao(y) = E[(CZ){yg(X)}w{X,yg(X)}], Bo(y) = E[(CZ){yg(X)}w{X,yg(X)}]/α0(y),
Bo

1x(y) = E[(CZ){yg(x)}w{x, yg(x)}|X = x] and Bo
2x(y) = α0(y) are the limits of the corre-

sponding quantities with hats.
Straightforward calculations show that

Âo(y) = n−1
n∑

i=1

(CiZi){yg(Xi)}w{Xi, yg(Xi)} + oP ((nh)−1/2) + O(h2) + O(b2)

and ∫
B̂o

1x(y)

Bo
2x(y)

dx = α0(y)−1n−1
n∑

i=1

(CiZi){yg(Xi)}w{Xi, yg(Xi)}

+ oP ((nh)−1/2) + O(h2) + O(b2).

Next, we consider the term
∫

Bo
1x(y)B̂o

2x(y)Bo
2x(y)−2 dx. Decomposing α̂x,A(yg(x)) = OA

x,yg(x)/

EA
x,yg(x) in B̂o

2x(y) in a similar way as above, we obtain, after some calculations, that

∫
Bo

1x(y)B̂o
2x(y)

Bo
2x(y)2

dx

= Bo(y) + 1

α0(y)
n−1

n∑
i=1

kh{yg(Xi) − Yi}Ci(Yi)w(Xi, yg(Xi))

− 1

α0(y)
n−1

n∑
i=1

(CiZi){yg(Xi)}w{Xi, yg(Xi)} + oP ((nh)−1/2) + O(h2) + O(b2).

Putting the three terms together, we get that

α̂o
0,A(y) = 1

Bo(y)
n−1

n∑
i=1

kh{yg(Xi) − Yi}Ci(Yi)w(Xi, yg(Xi))

+ oP ((nh)−1/2) + O(h2) + O(b2).

We now consider the feasible estimator α̂0,A(y). Write

α̂o
0,A(y) − Eα̂o

0,A(y) = 1

Bo(y)

∫
kh{yg(u) − v}w(u,yg(u))d

(
F̂ o(u, v) − Fo(u, v)

)
= No(y)

Bo(y)
(say),
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where F̂ o(u, v) = n−1 ∑n
i=1 I (Xi ≤ u,Yi ≤ v,Ci(Yi) = 1) and Fo(u, v) = E[F̂ o(u, v)]. There-

fore,

[α̂0,A(y) − Eα̂0,A(y)] − [α̂o
0,A(y) − Eα̂o

0,A(y)]
(23)

=
[

1

B(y)
− 1

Bo(y)

]
N(y) + 1

Bo(y)
[N(y) − No(y)],

where B(y) and N(y) are defined by replacing g(·) in the formulas of Bo(y) and No(y) by ĝ(·),
and where Eα̂0,A(y) is the expected value of α̂0,A(y) with ĝ considered as fixed. Write

No(y) = h−1
∫

k(z)w(u, v + hz)d
([F̂ o − Fo](u,yg(u) − hz

))
.

Hence,

N(y) − No(y) = O
(
h−1 sup

u,|t2−t1|≤C(nb)−1/2(logn)1/2
|F̂ o(u, t1) − Fo(u, t1)

− F̂ o(u, t2) + Fo(u, t2)|
)

= OP (h−1n−1/2(nb)−1/4(logn)1/4) = oP ((nh)−1/2),

provided nh2b(logn)−1 → ∞. Next, note that N(y) = OP ((nh)−1/2), B(y) − Bo(y) =
OP ((nb)−1/2) = oP (1) and hence (23) is oP ((nh)−1/2). Since it can be easily seen that
Eα̂0,A(y) − Eα̂o

0,A(y) = O(b2) + O(h2), it follows that α̂0,A(y) and α̂o
0,A(y) are asymptotically

equivalent.
Finally, we consider the calculation of the asymptotic variance of α̂0,A(y):

AsVar(α̂0,A(y)) = n−1

Bo(y)2
Var[kh{yg(X) − Y }C(Y )w(X,yg(X))]

= n−1

Bo(y)2

∫ ∫
k2
h{yg(x) − t}E[C(t)|Y = t,X = x]dFx(t)

× w2(x, yg(x))dF(x)
(
1 + o(1)

)
= (nh)−1

Bo(y)2

∫
k2(u)duE{E[C(yg(X))|Y = yg(X),X]

× fX(yg(X))w2(X,yg(X))}(1 + o(1)
)
. �

Proof of Theorem 4.3. Consistency of θ̂ = ĝ2−step(x) follows similarly as in the proof of The-
orem 4.1 from condition (A1), (19) and the fact that

sup
θ∈In(x)

|l̂α̂(θ;x) − l̂α0(θ;x)| P→ 0. (24)
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Equation (24) follows from assumption (C1) and the uniform consistency of α̂x,C(y); see the
proof of Theorem 4.1. For the proof of Theorem 4.3, it remains to show for θ0 = g(x) that for
some γ ∗,

l̂′α̂(θ0;x) = l̂′α0
(θ0;x) + h2γ ∗ + oP ((nb)−1/2), (25)

l̂′′α̂(θ;x) = l̂′′α0
(θ;x) + oP (1), (26)

uniformly for θ in a neighborhood of θ0. Claim (26) follows immediately from assumption (C1).
For the proof of (25), note first that

l̂′
α̂
(θ0;x) − l̂′α0

(θ0;x)

= 2
∫ [

α̂x,C(y) − 1

θ0
α0

(
y

θ0

)]
(ρ̂0 − ρ0)

(
y

θ0

)
1

θ2
0

EC
x,y

α̂x,C(y)
w(x, y)dy

+ 2
∫ [

1

θ0
(α̂0 − α0)

(
y

θ0

)]
(ρ̂0 − ρ0)

(
y

θ0

)
1

θ2
0

EC
x,y

α̂x,C(y)
w(x, y)dy

+ 2
∫ [

1

θ0
(α̂0 − α0)

(
y

θ0

)]
ρ0

(
y

θ0

)
1

θ2
0

EC
x,y

α̂x,C(y)
w(x, y)dy,

where ρ̂0(u) = α̂0(u) + uα̂′
0(u). It follows from (C1) that the second term of the right-hand side

is of order oP (n−2/5). From (C1) and (C2), we get that up to a deterministic term of order O(h2),
the third term is also of order oP (n−2/5). The first term is equal to Tn + oP (n−2/5), where

Tn = 2
∫ [

α̂x,C(y) − 1

θ0
α0

(
y

θ0

)]
(ρ̂0 − ρ0)

(
y

θ0

)
1

θ2
0

EC
x,y

αx(y)
w(x, y)dy.

For the proof of Theorem 4.3, it remains to show that

Tn = oP (n−2/5). (27)

By application of (21), we can write Tn = Tn,1 + Tn,2, where

Tn,1 = 2
∫

Vx,y(ρ̂0 − ρ0)

(
y

θ0

)
1

θ2
0

1

αx(y)
w(x, y)dy,

Tn,2 = 2
∫

Bx,y(ρ̂0 − ρ0)

(
y

θ0

)
1

θ2
0

1

αx(y)
w(x, y)dy.

It can be easily checked that Tn,2 = oP (n−2/5) (cf. the proof of Theorem 4.1). The term Tn,1
can be decomposed into Tn,11 + Tn,12, where

Tn,11 =
n∑

i=1

∫
hni(x,u)dMi(u), Tn,12 =

n∑
i=1

∫
gni(x,u)dMi(u),
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with

hni(x,u) = 2

n
Kb(x − Xi)

∫ [∫
(α̂0 − α0)

{
y

θ0

}
1

θ2
0

1

αx(y)
kh(y − u)w(x, y)dy

]
,

gni(x,u) = 2

n
Kb(x − Xi)

∫ [∫ {
y

θ0

}
(α̂′

0 − α′
0)

{
y

θ0

}
1

θ2
0

1

αx(y)
kh(y − u)w(x, y)dy

]
.

We now show that Tn,12 = oP (n−2/5). The claim Tn,11 = oP (n−2/5) can be shown by similar
methods. For the proof, we apply [39], Lemma 5.14. This lemma gives a bound on the increments
of the empirical process applied to function classes that depend on the sample size. We apply the
lemma with a fixed value of x, conditional on the event that the number of values of Xi in the
support of Kb is equal to m, where m is of the same order as nb. We consider the class of
functions g :J (x) → R such that, with a sufficiently large constant C, for all z ∈ J (x), |g(z) −
α′

0(z)| ≤ Cδ1,n and |g′(z)| ≤ Cδ2,n. We apply the lemma with α = β = 1 and M = Cδ2,n. We
get that

sup

∣∣∣∣∣1

n

n∑
i=1

Kb(x − Xi)

∫ [∫ (
y

θ0

)
g

(
y

θ0

)
1

θ2
0

1

αx(y)
kh(y − u)w(x, y)dy

]
dMi(u)

∣∣∣∣∣
is of order OP (δ

1/2
1,n δ

1/2
2,n (nb)−1/2 + δ2,n(nb)−1) = oP ((nb)−1/2). This shows that Tn,12 =

oP (n−2/5) and thus concludes the proof of Theorem 4.3. �
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