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We consider a nonlinear polynomial regression model in which we wish to test the null hypothesis of
structural stability in the regression parameters against the alternative of a break at an unknown time. We
derive the extreme value distribution of a maximum-type test statistic which is asymptotically equivalent
to the maximally selected likelihood ratio. The resulting test is easy to apply and has good size and power,
even in small samples.
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1. Introduction

Testing for structural changes has become a focus of attention in statistics and econometrics,
reflected in the broadening of possible settings under consideration and the multitude of test
statistics developed to investigate them. For recent references, see Dufour and Ghysels (1996)
and Banerjee and Urga (2005). In the present paper, we focus on the (nonlinear) polynomial
regression model

yi = xT
i βi + εi, i = 1, . . . , n, (1.1)

where {εi} is an error sequence that will be specified below, {β i} are (p + 1)-dimensional deter-
ministic vectors and

xi = (1, i/n, . . . , (i/n)p)T .

In this setting, we are interested in testing the null hypothesis of structural stability against the
alternative of a regime switch at an unknown time, that is,

H0 :βi = β0, i = 1, . . . , n;
HA : There is a k∗ ≥ 1 such that

β i = β0, i = 1, . . . , k∗,

β i = βA, i = k∗ + 1, . . . , n,
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with β0 �= βA. The parameters before and after the change, β0 and βA, as well as the change-
point, k∗, are unknown.

Pioneering steps to analyze the structural stability for linear models were carried out by
Quandt (1958, 1960). His contributions were subsequently refined and extended by, for exam-
ple, Hawkins (1989), Andrews (1993), Horváth (1995) and Bai et al. (1998). For comprehensive
reviews, we refer to Csörgő and Horváth (1997) and Perron (2006). While there is an extensive
body of literature available for the asymptotic theory in linear models, one of the key assump-
tions in this setting requires the regressors {xi} to be stationary or to satisfy regularity conditions
such as

1

n

�rn�∑
i=1

xixT
i → Cr, for all r ∈ (0,1), as n → ∞, (1.2)

where C is a (p + 1) × (p + 1)-dimensional positive definite matrix and �·� denotes the inte-
ger part. Thus, limit results obtained for linear models do not directly apply to the polynomial
regression addressed here.

Groundbreaking work for polynomial regression models is due to MacNeill (1978), who de-
rived, under H0, the asymptotic distribution of partial sums obtained from regression residuals.
In the same paper, he also proposed two test statistics to distinguish between stability and regime
switches, and studied linear and quadratic functionals of residual partial sums. MacNeill’s (1978)
results assume independent, identically distributed errors {εi}. For further work in this setting,
see Jandhyala (1993) and Jandhyala and MacNeill (1989, 1997). The assumptions on the error
sequence were relaxed by Kuang (1998) who requires {εi} to obey a functional central limit the-
orem. He introduced a generalized fluctuation test based on comparions of recursive estimates
with benchmark estimates by mimicking the test procedure of Kuang and Hornik (1995). The
new test statistic is compared to MacNeill’s (1978) versions in an extensive simulation study.
Hušková and Picek (2005) considered bootstrap methods for more general settings, which in-
clude polynomial regression models as a special case. Here, the regresssion function is assumed
to be smooth. Our work, however, is more akin to the contributions of Jarušková (1998, 1999)
and Albin and Jarušková (2003). In the case p = 1, these papers obtain extreme value asymptot-
ics for a test statistic designed to find changes in the regression line by explicitly computing the
design matrices appearing in (1.2).

The paper is organized as follows. In Section 2, we precisely state assumptions on the innova-
tions {εi}, introduce a maximum-type test statistic, formulate the main extreme value asymptotic
and motivate the proofs which are given in Sections 4 and 5. Section 3 is devoted to the practical
application of our theory.

2. Model assumptions and results

In what follows, we study the polynomial regression model as specified in (1.1), in which we
wish to distinguish between the structural stability null hypothesis H0 and the breakpoint alter-
native HA. Assuming for the moment that the error sequence consists of independent, identically
distributed normal variables with the same known variance σ 2, and that the time of change is
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k∗ = k, twice the logarithm of the likelihood ratio for this two-sample problem is given by

�n(k) = nσ−2(σ̂ 2
n − [σ̂ 2

k,1 + σ̂ 2
k,2]), (2.1)

where

nσ̂ 2
k,1 =

k∑
i=1

(yi − xT
i β̂k)

2 and nσ̂ 2
k,2 =

n∑
i=k+1

(yi − xT
i β̂

∗
k)

2

denote the sum of the squared residuals for the first, respectively, second sample, and

nσ̂ 2
n =

n∑
i=1

(yi − xT
i β̂n)

2

the sum of the squared residuals for the whole sample. Therein, β̂k and β̂
∗
k are the least squares

estimators for β based on the first k and the last n − k observations. Elementary algebra implies
that, under H0, we have

σ̂ 2
n − [σ̂ 2

k,1 + σ̂ 2
k,2] = 1

n
ST

k C−1
k CnC̃−1

k Sk,

where

Ck =
k∑

i=1

xixT
i , C̃k =

n∑
i=k+1

xixT
i

and

Sk =
k∑

i=1

xiyi − CkC−1
n

n∑
i=1

xiyi =
k∑

i=1

xi (yi − xT
i β̂n).

Since, in general, the time of change k∗ is unknown, we reject the null hypothesis H0 for large
values of

Tn = 1

σ 2
max

p<k<n−p
ST

k C−1
k CnC̃−1

k Sk. (2.2)

Note that, as a straightforward computation shows, the value of Tn does not change if xi =
(1, i/n, . . . , (i/n)p)T is replaced by x∗

i = (1, i, . . . , ip)T .
Still assuming that the errors are independent, identically normal, but also that the common

variance σ 2 is unknown, the resulting likelihood ratio is

�̂n(k) = (σ̂−2
n [σ̂ 2

k,1 + σ̂ 2
k,2])n/2,

in the case where the time of change is exactly k = k∗ (see Andrews (1993) and Csörgő and
Horváth (1997), Section 3.1.1). If k∗ is unknown, the stability of the regression coefficients is
rejected for large values of

T̂n = max
p<k<n−p

[−2 log �̂n(k)]. (2.3)
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Hansen (2000) studied the asymptotic distribution of the trimmed version

Tn,δ = 1

σ̂ 2
n

max�nδ�≤k≤n−�nδ� ST
k C−1

k CnC̃−1
k Sk

with some 0 < δ < 1. The limit distribution of Tn,δ is the supremum of quadratic forms of (p +
1)-dimensional Gaussian processes with a complicated covariance structure. To state the limit
theorem for the truncated statistic Tn,δ , we introduce the matrices

C(t) =
(∫ t

0
xi+j dx : 0 ≤ i, j ≤ p

)

and

C̃(t) =
(∫ 1

t

xi+j dx : 0 ≤ i, j ≤ p

)
.

Furthermore, for t ≥ 0, let �(t) = (
∫ t

0 xi dW(x) : 0 ≤ i ≤ p), where {W(t) : t ≥ 0} denotes a
standard Brownian motion. The proof of the following theorem is due to Hansen (2000).

Theorem 2.1. If (1.1) and (2.2)–(2.6) hold, then, under H0,

Tn,δ
D−→ sup

δ≤t≤1−δ

�T (t)C−1(t)C(1)C̃(t)�(t)

for all δ ∈ (0,1/2), where �(t) = �(t) − C(t)C−1(1)�(1) and t ≥ 0.

The use of the truncated statistic Tn,δ requires choosing δ and so a priori excludes changes
close to the end-points of the sample. More importantly, the computation of the asymptotic criti-
cal values for Tn,δ is a non-trivial numerical task. A practical use of Theorem 2.1 would require
tables for a range of values of δ and p, and we are not aware of any such tables.

In contrast, the definition of Tn allows, at least in principle, to detect changes anywhere in the
sample, and asymptotic critical values can be easily computed using Theorem 2.2 below. The
theory needed to establish Theorem 2.2 is, however, far from trivial. We are following previous
work of Jarušková (1998, 1999) and Albin and Jarušková (2003). These contributions utilize
the theory of high level exceedence probabilities for stationary Gaussian processes developed in
Albin (1990, 1992, 2001) to obtain extreme value asymptotics. For classical results in the field,
see Leadbetter et al. (1983); for a more recent survey on extreme value theory with applications
in telecommunication and the environment, see Finkenstaedt and Rootzén (2003).

While, for motivational reasons, all test statistics in this section have been introduced and
explained for normal error sequences, the resulting test procedures are sensitive with respect to
changes in the regression parameters in a much more general setting. We assume that the errors
have constant variance and are uncorrelated, that is,

Eεi = 0, Eε2
i = σ 2 and Eεiεj = 0 (i �= j), (2.4)
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and that there are two independent standard Brownian motions (standard Wiener processes)
{W1,n(s) : s ≥ 0} and {W2,n(s) : s ≥ 0} such that

max
1≤k≤n/2

1

k1/2−�

∣∣∣∣∣
k∑

i=1

εi − σW1,n(k)

∣∣∣∣∣ =OP (1) (n → ∞) (2.5)

and

max
n/2<k<n

1

(n − k)1/2−�

∣∣∣∣∣
n∑

i=k+1

εi − σW2,n(n − k)

∣∣∣∣∣ =OP (1) (n → ∞) (2.6)

with some � > 0.
Sequences {εi} satisfying the invariance principles (2.5) and (2.6) include many weakly depen-

dent processes including GARCH-type sequences (Aue et al. (2006)), mixing sequences (Shao
(1993)) and martingale differences (Eberlein (1986)). Note, also, that the assumptions on the
error sequence could be further relaxed along the lines of Qu and Perron (2007).

Let �(t) = ∫ ∞
0 e−yyt−1 dy denote the Gamma function. The main results are the following

limit theorems which establish the asymptotic behavior of Tn, T̂n and Tn,δ .

Theorem 2.2. If (1.1) and (2.4)–(2.6) hold, then, under H0, the statistic Tn (2.2) satisfies, for
all x,

lim
n→∞P

{
Tn ≤ x + 2 log logn + (p + 1) log log logn − 2 log

(
2(p+1)/2�((p + 1)/2)

p + 1

)}

= exp(−2e−x/2).

The following corollary to Theorem 2.2 is useful in its practical application.

Corollary 2.1. If (1.1) and (2.4)–(2.6) hold, then, under H0, the statistic T̂n (2.3) satisfies, for
all x,

lim
n→∞P

{
T̂n ≤ x + 2 log logh(n) + (p + 1) log log logh(n) − 2 log

(
2(p+1)/2�((p + 1)/2)

p + 1

)}

= exp(−2e−x/2),

where h(n) = n(logn)γ with an arbitrary real γ .

Instead of the statistics T̂n (2.3), the following statistics can be used:

Tn,1 = 1

σ̂ 2
n

max
p<k<n−p

ST
k C−1

k CnC̃−1
k Sk;

Tn,2 = max
p<k<n−p

1

σ̂ 2
k,1 + σ̂ 2

k,2

ST
k C−1

k CnC̃−1
k Sk;
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Tn,3 =
(

min
p<k<n−p

[σ̂ 2
k,1 + σ̂ 2

k,2]
)−1

max
p<k<n−p

ST
k C−1

k CnC̃−1
k Sk.

Indeed, using the Taylor expansion of log(1+x), −1 < x < 1, it is easily verified that, under H0,

|T̂n − Tn,i | =OP

(
1

n

)
T 2

n,i , i = 1,2,3.

The statistics Tn,1, Tn,2 and Tn,3 differ only in the built-in estimation of the variance parame-
ter σ 2. Under the assumptions of Theorem 2.2 and further mild regularity conditions,

|σ̂ 2
n − σ 2| = oP

(
1

log logn

)

and

max
p<k<n−p

|σ̂ 2
k,1 + σ̂ 2

k,2 − σ 2| = oP

(
1

log logn

)

as n → ∞. Hence, the results of Theorem 2.1, Theorem 2.2 and Corollary 2.1 also apply to the
test statistics Tn,1, Tn,2 and Tn,3.

The proof of Theorem 2.2 and its corollary is prepared in Section 4 and completed in Section 5.
In Section 4, we show that the error sequence can be replaced with independent, identically
distributed normal random variables. It will be shown that the limit distribution of Tn is related
to the maximum of the sum of squares obtained from continuous-time Gaussian processes which
are integrals of Legendre polynomials with respect to the same Brownian motion. The extreme
value asymptotics can then be derived utilizing a result of Aue et al. (2007). Next, however, we
discuss the practical application of our theory.

3. Application to finite samples

The goal of this section is twofold: to explain the application of the test procedure and to give an
idea of its performance in finite samples.

By Corollary 2.1, the test rejects the null hypothesis at level α if T̂n > c(n,α), where the
critical value c(n,α) is computed via

c(n,α) = −2 log
(−0.5 log(1 − α)

) + g(n,p, γ ),

where, setting h(n) = n(logn)γ ,

g(n,p, γ ) = 2 log logh(n) + (p + 1) log log logh(n) − 2 log

(
2(p+1)/2�((p + 1)/2)

p + 1

)
.

The symbol log stands for the natural logarithm, p is the order of the polynomial regression to
be fitted and γ is a real constant used to calibrate the size (see below).
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The statistic T̂n is easy to compute in any statistical software package. Denote by ŝn, ŝk,1 and
ŝk,2 the residual standard deviations obtained from fitting a polynomial regression to, respec-
tively, the whole data set, the first k observations and the last n − k observations. Then, after
some simple algebra, we obtain

T̂n = −n

[
min

p<k<n−p

{
log

(
(k − p)ŝ2

k,1 + (n − k − p)ŝ2
k,2

)} − log(n − p) − 2 log(ŝn)

]
. (3.1)

We recommend reducing the range over which the minimum is taken by one data point on each
side, that is, to use the minimum over k = p + 2, . . . , n − p − 2. An implementation in R (for
p = 2) is displayed in Figure 1.

The test described above has good size, even in small samples. We considered the linear re-
gression yi = β0 + β1xi + εi and the quadratic regression yi = β0 + β1xi + β2x

2
i + εi with i.i.d.

standard normal errors εi . In both cases, we set β0 = 1. For the linear regression, we varied the
slope β1. For the quadratic regression, we set β1 = 0 and varied the coefficient β2 of the quadratic
term. The empirical sizes based on one thousand replications are displayed in Table 1 – they are
within two standard errors of the nominal sizes. Note that for the linear regression we used γ = 0,
as suggested by our main Theorem 2.2, but for the quadratic regression, we used γ = 1. If γ = 0
is used for p = 2, the rejection rates exceed the nominal size by a few percentage points for the
samples sizes we considered.

To assess the power, we used the same general setting as for the size study and considered the
following change-point models:

p = 1 :β0 = 1, β1 = 1 for i ≤ k∗;
β0 = 0, β1 = 0 for i > k∗;

hT2=function(Y) #p=2, Y - responses
{
n=length(Y); X1=(1:n)/n; X2= X1*X1
v=rep(-1, n)
for(k in 4:(n-4) )

{
lmk1=lm(Y[1:k]∼X1[1:k]+X2[1:k])
lmk2=lm(Y[(k+1):n]∼X1[(k+1):n]+X2[(k+1):n])
sk1=summary(lmk1)$sigma
sk2=summary(lmk2)$sigma
v[k]=(k-2)*sk1*sk1+(n-k-2)*sk2*sk2

}
v=v[4:(n-4)]
lmA=lm(Y X1+X2); sA=summary(lmA)$sigma
-n*(min(log(v)) - log(n-2) - 2*log(sA))
}

Figure 1. R code for computing the statistic T̂n (2.3) for p = 2.
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Table 1. Empirical size (in percent) of the test derived from Corollary 2.1

p = 1 (γ = 0) p = 2 (γ = 1)

β1 = 0.5 β1 = 1.0 β1 = 2.0 β2 = 0.5 β2 = 1.0 β2 = 2.0

n 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

50 10.3 5.3 10.2 6.4 09.5 5.4 10.9 6.7 11.7 7.0 09.4 5.1
100 10.2 5.2 10.0 5.7 11.4 6.4 09.5 5.9 08.7 5.8 10.0 5.9
200 11.7 6.3 11.4 6.0 09.3 6.2 10.9 5.3 10.2 5.6 10.4 6.6

p = 2 :β0 = 1, β1 = 0, β2 = 2 for i ≤ k∗;
β0 = 0, β1 = 0, β2 = 0 for i > k∗.

We considered k∗ = n/2 and k∗ = n/5.
Even though these changes appear large, one must keep in mind that they are, in fact, small

relative to the standard deviation of the errors. Examples of scatterplots of the simulated data are
shown in Figures 2 and 3. It is seen that in many cases, a change-point is not apparent without
prior information on its existence. For example, in Figure 2, n = 200, k∗ = 40, the data appears
to fit a linear regression with a negative slope. A visual examination of the remaining panels
reveals that the changes we consider are difficult to identify by eye. Nevertheless, Table 2 shows
that these changes can be detected with non-trivial power. As for most change-point detection
procedures, it is easier to detect a change in the middle of the sample.

In summary, the results of this section show that our procedure is very easy to use in practice
and gives good results, even in small samples.

4. Asymptotic representation of the test statistic

The aim of this section is to derive a more convenient version of the test statistic Tn, which
includes (a) a transformation that uses only the range of those time-lags k contributing to the
extreme value asymptotic, and (b) a continuous-time modification which involves the integration
of normalized Legendre polynomials with respect to standard Brownian motion. Throughout, we
work under the null hypothesis H0.

The following auxiliary lemma will prove useful. It is a consequence of the approximations
assumed in (2.5) and (2.6).

Lemma 4.1. Under assumptions (2.5) and (2.6), for all 0 ≤ i ≤ p,

sup
1≤t≤n/2

1

t i−�+1/2

∣∣∣∣∣
�t�∑
j=1

j iεj − σ

∫ t

0
xi dW1,n(x)

∣∣∣∣∣ = OP (1), (4.1)

sup
n/2≤t≤n−1

1

(n − t)i−�+1/2

∣∣∣∣∣
n∑

j=�t�
j iεj − σ

∫ n

t

xi dW2,n(x)

∣∣∣∣∣ = OP (1) (4.2)
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Figure 2. Scatterplots for linear regressions with change-points.

as n → ∞. Also, for each n,

{∫ s

0
xi dW1,n(x) : s ≥ 0

}
D=

{
W

(
s2i+1

2i + 1

)
: s ≥ 0

}
, (4.3)

{∫ n

s

xi dW2,n(x) : 0 ≤ s ≤ n − 1

}
D=

{
W

(
(n − s)2i+1

2i + 1

)
: 0 ≤ s ≤ n − 1

}
. (4.4)
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Figure 3. Scatterplots for quadratic regressions with change-points.

Proof. Note that, by the modulus of continuity of a Brownian motion (see Csörgő and Révész
(1981), Theorem 1.21), condition (2.5) can be rewritten as

sup
1≤t≤n/2

1

t1/2−�

∣∣∣∣∣
�t�∑
j=1

εj − σW1,n(t)

∣∣∣∣∣ =OP (1) (n → ∞).
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Table 2. Empirical power (in percent) of the test derived from Corollary 2.1

p = 1 (γ = 0) p = 2 (γ = 1)

k∗ = n/2 k∗ = n/5 k∗ = n/2 k∗ = n/5

n 10% 5% 10% 5% 10% 5% 10% 5%

50 45.4 34.1 40.1 29.0 36.5 28.5 16.6 10.2
100 80.5 71.6 67.1 56.6 68.0 57.9 24.2 17.1
200 99.2 98.7 94.3 91.4 96.1 94.2 46.4 35.1
400 100 100 100 98.2 100 100 78.7 71.0

Applying integration by parts hence yields (4.1). The proof of (4.2) follows in a similar fashion
from the approximation in (2.6).

The statements given in (4.3) and (4.4) follow from computing the corresponding covariance
functions. This suffices since the integral processes in (4.1) and (4.2) are Gaussian with mean
zero. �

Observe that, by definition, Cn = Ck + C̃k . Therefore,

ST
k C̃−1

k CnC̃−1
k Sk = ST

k C̃−1
k Sk + ST

k C−1
k Sk,

with the two terms on the right-hand side being the subject of study in the following. Let ‖ · ‖
denote the maximum norm of both vectors and matrices. We obtain the following orders of
magnitude for the matrices Ck and the inverse matrices C̃−1

k .

Lemma 4.2. As n → ∞,

max
1≤k≤n

∥∥∥∥1

k
Ck

∥∥∥∥ =O(1) and max
1≤k≤n/2

‖C̃−1
k ‖ = O

(
1

n

)
. (4.5)

Proof. The first statement in (4.5) follows directly from the definition of Ck . For the second
statement, elementary approximations of sums with integrals imply

sup
0≤t≤1/2

∥∥∥∥1

n
C̃�nt� − C̄t

∥∥∥∥ = o(1) (n → ∞),

where, for t ∈ [0,1/2], the matrix C̄t = {C̄t (i, j) : 0 ≤ i, j ≤ p} is defined by

C̄t (i, j) =
∫ 1

t

xi+j dx = 1

i + j + 1
(1 − t i+j+1).

By definition, C̄t is continuous on [0,1/2]. Observe, moreover, that C̄t is the covariance matrix of
the random variables

∫ 1
t

xi dW(x), 0 ≤ i ≤ p, where {W(s) : s ≥ 0} denotes a standard Brownian



648 A. Aue et al.

motion. Since these variables are linearly independent, C̄t is non-singular for any t ∈ [0,1/2].
Hence, the proof is complete. �

Next, observe that the vector Sk can be decomposed into a partial sum vector of εi ’s, each of
the latter random variables weighted with the corresponding polynomial regressor xi (1 ≤ i ≤ k)
and a second term consisting of Ck and the difference β̂n − β , that is,

Sk = vk − Ck(β̂n − β), vk =
k∑

i=1

xiεi . (4.6)

To investigate the contributing range of indices k, let α,β > 0 and define

a(n) = logα n and b(n) = n

logβ n
(n ≥ 1).

We obtain the following lemma which shows that the term ST
k C̃−1

k Sk is asymptotically negligible.

Lemma 4.3. If (2.5) and (2.6) hold, then, as n → ∞,

max
1≤k≤n/2

ST
k C̃−1

k Sk = OP (1), (4.7)

max
a(n)≤k≤b(n)

ST
k C̃−1

k Sk = OP (1) log−β n. (4.8)

Proof. By Lemma 4.2 and (4.6), as n → ∞,

max
1≤k≤n/2

ST
k C̃−1

k Sk = OP

(
1

n

)
max

1≤k≤n/2
‖Sk‖2

= OP

(
1

n

)(
max

1≤k≤n/2
‖vk‖2 + ‖β̂n − β‖2 max

1≤k≤n/2
‖Ck‖2

)
.

Now, the central limit theorem applied to the sequence {β̂n − β} implies that

∥∥√
n(β̂n − β)

∥∥ =OP (1) (n → ∞). (4.9)

Hence, by Lemma 4.2,

‖β̂n − β‖2 max
1≤k≤n/2

‖Ck‖2 =OP (n) (n → ∞).

On using Lemma 4.1, we get (see the proof of (4.8) below and proceed in the same way)

max
1≤k≤n/2

‖vk‖2 =OP (n) (n → ∞),

completing the proof of (4.7).
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Similarly, by Lemma 4.2,

max
1≤k≤b(n)

ST
k C̃−1

k Sk = OP

(
1

n

)(
max

1≤k≤b(n)
‖vk‖2 +OP

(
1

n

)
max

1≤k≤b(n)
‖Ck‖2

)

= OP

(
1

n

)
max

1≤k≤b(n)
‖vk‖2 +OP (log−2β n).

Applying Lemma 4.1 yields that

max
1≤k≤b(n)

‖vk‖ = σ max
0≤i≤p

max
1≤k≤b(n)

1

ni

∣∣∣∣
∫ k

0
xi dW1,n(x)

∣∣∣∣
+OP (1) max

0≤i≤p
max

1≤k≤b(n)
n−i (b(n))1/2+i−�,

where, inserting the definition of b(n), the second term can be estimated by

max
0≤i≤p

1

ni

(
n

logβ n

)1/2+i−�

≤
(

n

logβ n

)1/2−�

.

Since, for all 0 ≤ i ≤ p,

1

(b(n))i+1/2
max

0≤t≤b(n)

∣∣∣∣
∫ t

0
xi dW(x)

∣∣∣∣ D= 1√
2i + 1

sup
0≤t≤1

∣∣∣∣
∫ t

0
xi dW(x)

∣∣∣∣,
we get that

max
0≤i≤p

max
0≤t≤b(n)

1

ni

∣∣∣∣
∫ t

0
xi dW1,n(x)

∣∣∣∣
=OP (1) max

0≤i≤p
max

0≤t≤b(n)

1

ni

(
n

logβ n

)i+1/2

=OP (1)

(
n

logβ n

)1/2

,

completing the proof of (4.8). �

It remains to examine the term ST
k C−1

k Sk . Applying the expression for Sk obtained in (4.6)
leads to the refined decomposition

ST
k C−1

k Sk = (
vT
k − (β̂n − β)T Ck

)
C−1

k

(
vk − Ck(β̂n − β)

)
= vT

k C−1
k vk − 2(β̂n − β)T vk + (β̂n − β)T Ck(β̂n − β).

Orders of magnitude of quantities appearing on the right-hand side of the latter equation array
are provided in the following lemma. We restrict the discussion to the range k ≤ n/2, the other
half of the observations, for which k > n/2, will be dealt with after Lemma 4.12, repeating the
arguments developed now.
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Lemma 4.4. If (2.5) and (2.6) hold, then, as n → ∞,

max
1≤k≤n/2

(β̂n − β)T Ck(β̂n − β) = OP (1), (4.10)

max
1≤k≤b(n)

(β̂n − β)T Ck(β̂n − β) = OP (1) log−β n, (4.11)

max
1≤k≤n/2

(β̂n − β)T vk = OP (1), (4.12)

max
1≤k≤b(n)

(β̂n − β)T vk = OP (1) log−β/2 n. (4.13)

Proof. Using Lemma 4.2 and (4.9), we conclude that statement (4.10) holds. For (4.11), it can
be similarly obtained that

max
1≤k≤b(n)

(β̂n − β)T Ck(β̂n − β) =OP

(
b(n)

n

)
(n → ∞).

Lemma 4.2 implies that, as n → ∞,

1√
n

max
1≤k≤n/2

‖vk‖ = OP (1) and
1√
b(n)

max
1≤k≤b(n)

‖vk‖ = OP (1).

Therefore, statements (4.12) and (4.13) follow from Lemma 4.1 and (4.9). �

Next, we consider the maximum of ST
k C−1

k Sk on three different ranges determined by a(n)

and b(n). To this end, we write

max
1≤k≤n/2

ST
k C−1

k Sk = max{zn,1, zn,2, zn,3}

with

zn,1 = max
1≤k≤a(n)

ST
k C−1

k Sk, zn,2 = max
a(n)≤k≤b(n)

ST
k C−1

k Sk

and

zn,3 = max
b(n)≤k≤n/2

ST
k C−1

k Sk.

Lemma 4.5 provides approximations of zn,1, zn,2 and zn,3 using the partial sum vectors vk intro-
duced in (4.6). It turns out that the maximum on all three ranges is completely determined by the
maximum of the quadratic form vT

k C−1
k vk .

Lemma 4.5. If (2.5) and (2.6) hold, then, as n → ∞,

zn,1 = max
1≤k≤a(n)

vT
k C−1

k vk +OP (1),

zn,2 = max
a(n)≤k≤b(n)

vT
k C−1

k vk +OP (log−β/2 n),
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zn,3 = max
b(n)≤k≤n/2

vT
k C−1

k vk +OP (1).

Proof. All three approximations follow immediately from the foregoing Lemma 4.4. �

Introducing the notation

sT
k = (sk,0, . . . , sk,p), sk,i =

k∑
j=1

j iεj ,

Bn = {Bn(i, j) : 0 ≤ i, j ≤ p},
(4.14)

Bn(i, i) = n−i , Bn(i, j) = 0 (i �= j),

D−1
k = BnC−1

k Bn,

we obtain, for all 1 ≤ k < n,

vT
k C−1

k vk = sT
k BnC−1

k Bnsk = sT
k D−1

k sk.

The diagonal matrix Bn simplifies the partial sums vk by taking out the norming factor n−i ,
returning the partial sums sk which are used to rewrite the quadratic form, as done in the last
display above. Note that the vectors sk possess covariance matrix σ 2Dk .

We now transform sk into a new vector s̃k which has uncorrelated components via an appli-
cation of the Gram–Schmidt orthonormalization. To define s̃k = (s̃k,0, . . . , s̃k,p)T , let s̃k,0 = sk,0
and set, recursively, for 1 ≤ i ≤ p,

s̃k,i = sk,i − αk,i,0s̃k,0 − · · · − αk,i,i−1s̃k,i−1. (4.15)

The coefficients αk,i,j are given as projections of sk,i onto the new variables s̃k,j (j < i), that is,

αk,i,j = Esk,i s̃k,j√
Es̃2

k,j

, 0 ≤ j < i ≤ p.

Consequently, Es̃k,1s̃k,j = 0 for 0 ≤ i �= j ≤ p. According to Rao (1973), the matrices σ−1D−1/2
k

are related to the Gram–Schmidt orthonormalization in (4.15) via the equality

sT
k σ−1D−1/2

k =
(

s̃k,0√
Var s̃k,0

, . . . ,
s̃k,p√

Var s̃k,p

)
. (4.16)

Next, we study moments of sk,i and s̃k,i . Note that the precise limits given in the following lemma
will be specified in Lemma 4.10 below.

Lemma 4.6. If assumption (2.4) is satisfied, then, for all 0 ≤ i ≤ p,

lim
k→∞

Es2
k,i

k2i+1
= σ 2

2i + 1
, (4.17)
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lim
k→∞

Es̃2
k,i

ki+1
= βi > 0. (4.18)

Furthermore, for all 0 ≤ j < i ≤ p,

lim
k→∞

Esk,i s̃k,j

ki+j+1
= βi,j , (4.19)

lim
k→∞

αk,i,j

ki−j
= αi,j . (4.20)

Proof. Since, by assumption (2.4) on the errors {εi},

Es2
k,i = σ 2

k∑
�=1

�2i ,

(4.17) follows after elementary calculations. Relations (4.18)–(4.20) can be established using
mathematical induction and the definition of the coefficients αk,i,j . Since the precise limits are
obtained below, we only show here that, in (4.18), the limit βi > 0. To this end, writing

s̃k,i =
k∑

�=1

(�i − αk,i,0 − αk,i,1� − · · · − αk,i,i−1�
i−1)ε�,

assumption (2.4) yields that

Es̃2
k,i = σ 2

k∑
�=1

(�i − αk,i,0 − αk,i,1� − · · · − αk,i,i−1�
i−1)2.

Therefore,

lim
k→∞

Es̃2
k,i

k2i+1
=

∫ 1

0
(t i − αi,0 − αi,1t − · · · − αi,i−1t

i−1)2 dt

so that βi > 0, since the integrand is a non-negative, non-constant polynomial. �

Lemma 4.7. If (2.4)–(2.6) hold, then, as n → ∞,

max
1≤k≤a(n)

sT
k D−1

k sk = OP (log log logn), (4.21)

max
b(n)≤k≤n/2

sT
k D−1

k sk = OP (log log logn) (4.22)

and

zn,1 = OP (log log logn), (4.23)

zn,3 = OP (log log logn). (4.24)
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Proof. According to Lemma 4.5, it is enough to prove (4.21) and (4.22). Using Lemma 4.1 and
the Darling–Erdős law for Brownian motions (cf. Csörgő and Révész (1981)), we get, for all
0 ≤ i ≤ p,

max
1≤k≤a(n)

1

ki+1/2

∣∣∣∣∣
k∑

�=1

�iε�

∣∣∣∣∣ =OP

(√
log loga(n)

)
(n → ∞).

Hence, (4.22) follows from (4.15), (4.16) and Lemma 4.6. �

(4.23) and (4.24) imply that, for any c > 0,

max{zn,1, zn,3} − c log logn
P−→ −∞ (n → ∞)

so that it suffices to consider the asymptotics for the remaining term zn,2. In what follows, we are
going to approximate sT

k D−1
k sk with a quadratic form consisting of normal random vectors. To

this end, set Ni = Ni,n = W1,n(i)−W1,n(i − 1), where {Wn,1(s) : s ≥ 0} is the Brownian motion
defined in assumption (2.5). Let

nT
k = (nk,0, . . . , nk,p), nk,i =

k∑
�=1

�iNi.

Lemma 4.8. If (2.4)–(2.6) hold, then, as n → ∞,

1

σ 2
max

a(n)≤k≤b(n)
sT
k D−1

k sk = max
a(n)≤k≤b(n)

nT
k D−1

k nk +OP

(
log−α� n

√
log logn

)
.

Proof. For k ≥ 1, set ñk,0 = nk,0 and define, recursively, for 1 ≤ i ≤ p,

ñk,i = nk,i − αk,i,0ñk,0 − · · · − αk,i,i−1ñk,i−1. (4.25)

Following the arguments leading to (4.15) and (4.16), we get that

nT
k D−1/2

k =
(

ñk,0√
Eñ2

k,0

, . . . ,
ñk,p√
Eñ2

k,p

)
. (4.26)

From the proof of Lemma 4.1, we obtain, as n → ∞,

max
1≤k≤n/2

1

ki+1/2−�

∣∣∣∣∣
1

σ

k∑
�=1

�iε� −
k∑

�=1

�iNi

∣∣∣∣∣ =OP (1). (4.27)

Combining (4.15), (4.16) and (4.26) with Lemma 4.6 leads to

max
a(n)≤k≤n/2

‖(σ−1sT
k − nT

k )D−1/2
k ‖ = OP (log−α� n).
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By the Darling–Erdős law for the Wiener process and Lemma 4.1, we get

max
1≤k≤n/2

‖σ−1sT
k D−1/2

k ‖ = OP

(√
log logn

) = max
1≤k≤n/2

‖σ−1nT
k D−1/2

k ‖.

Therefore, the lemma is proved. �

Next, we replace the discrete normal partial sums nk,i with continuous integrals. Define

qT
n (t) = (qn,0(t), . . . , qn,p(t)), qn,i(t) =

∫ t

0
xi dW1,n(x),

with {W1,n(s) : s ≥ 0} being the Brownian motion defined in (2.5).

Lemma 4.9. If (2.5) and (2.6) hold, then, as k → ∞,

max
k≤t<k+1

|qn,i(t) − nk,i | =OP

(
ki

√
logk

)
.

Proof. Using the modulus of continuity of a Brownian motion (cf. Csörgő and Révész (1981),
Theorem 1.2.1) and integration by parts, we obtain that

max
k≤t<k+1

∣∣∣∣
∫ t

0
xi d

(
W1,n(x) − W1,n(�x�))

∣∣∣∣
≤ sup

k≤t<k+1
t i |W1,n(t) − W1,n(�t�)| +

∣∣∣∣
∫ 1

0
xi dW1,n(x)

∣∣∣∣
+ sup

k≤t<k+1

∣∣∣∣
∫ t

0
ixi−1(W1,n(x) − W1,n(�x�))dx

∣∣∣∣

=OP

(
ki

√
logk

) +OP (1)

∫ k

0
xi−1

√
log(|x| + 2)dx

=OP

(
ki

√
logk

)
,

proving the result. �

Copying the arguments leading to (4.15), we define q̃n,0(t) = qn,0(t) and, recursively, for
1 ≤ i ≤ p,

q̃n,i(t) = qn,i − αi,0(t)q̃n,0 − · · · − αi,i−1(t)q̃i,i−1(t).

Observe that since the distribution of {W1,n(s) : s ≥ 0} is independent of n, so are the coeffcients
αi,j (t). By construction, Eq̃n,i (t)q̃n,j (t) = 0 for 0 ≤ i �= j ≤ p because, clearly,

αi,j (t) = Eqn,i(t)q̃n,j (t)

Eq̃2
n,i(t)

, 0 ≤ j < i ≤ p.
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Denote by

D̄t = {D̄t (i, j) : 0 ≤ i, j ≤ p}, D̄t (i, j) =
∫ t

0
xi+j dx,

the covariance matrix of the random vector qn(t).

Lemma 4.10. If (2.4) holds, then

αi,j (t) = t i−jαi,j , 0 ≤ j < i ≤ p,

where αi,j are constants.

Proof. This is easily verified using mathematical induction or the scale transformation of Brown-
ian motions. �

Lemma 4.11. If (2.4)–(2.6) hold, then, as n → ∞,

sup
a(n)≤t≤n/2

∣∣nT�t�D−1/2
�t� − qT

n (t)D−1/2
t

∣∣ =OP

(
log−α/2

√
log logn

)
.

Proof. Recall (4.26) and note that the difference between the coefficients αk,i,j and αi,j (t) is
that the first expressions are defined as Riemann sums which approximate the integrals defining
the latter. It can, hence, be easily verified that

sup
k≤t<k+1

|αi,j (t) − αk,i,j |
αk,i,j

=O
(

1

k

)
(k → ∞).

The result now follows from Lemmas 4.8–4.10. �

Define

q̂n(t) = (q̂0(t), . . . , q̂p(t)), q̂i(t) =
∫ t

0 gi,t (x)dW1,n(x)

(E[∫ t

0 gi,t (x)dW1,n(x)]2)1/2
,

where {W1,n(s) : s ≥ 0} is defined in (2.5) and

gi,t (x) = xi − αi,0t
i − αi,1t

i−1x − · · · − αi,i−1tx
i−1.

Note that the distribution of q̂n(t) does not depend on n. Thus, we arrive at the following result.

Lemma 4.12. If (2.4)–(2.6) hold, then, as n → ∞,

σ−2zn,2 = sup
a(n)≤t≤b(n)

q̂T
n (t)q̂n(t) +OP

(√
log logn[log−α� n + logn−α/2n]).
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Proof. This follows on combining the results of the foregoing lemmas. �

On summarizing what has been proven thus we conclude that, restricted to 1 ≤ k ≤ n/2, the
test statistic Tn introduced in (2.2) can be asymptotically characterized by the supremum (over a
restricted range determined by a(n) and b(n)) of the inner product q̂T

n (t)q̂n(t), where the vectors
q̂n(t) have components given by the (normalized) integrals

∫ t

0 gi,t (x)dW1,n(x). Clearly, the func-
tions gi,t (x) are polynomials of order i, whose leading coefficient (i.e., the coefficient assigned
to the monomial xi ) is 1 and, by construction, they possess the property

∫ t

0 gi,t (x)gj,t (x)dx = 0
if i �= j . So, the functions gi,t (x) are exactly the Legendre polynomials on the interval [0, t] with
normalized coefficient for the monomial xi . This completes the proof for the range 1 ≤ k ≤ n/2.

In the remainder of the subsection, we consider maxn/2<k<n ST
k C−1

k Sk , adapting the arguments
developed before. First, observe that

Sk = C̃kC−1
n

n∑
i=1

xiyi −
n∑

i=k+1

xiyi .

Let

c(n) = n − n

logβ n
and d(n) = n − logα n.

Along the lines of the proofs of Lemmas 4.1 and 4.2–4.7, one can establish the following orders
of magnitude:

max
n/2≤k≤c(n)

ST
k C−1

k Sk = OP (log log logn);

max
d(n)≤k<n−p

ST
k C−1

k Sk = OP (log log logn).

Let

rT
k = (rk,0, . . . , rk,p), rk,i =

n−1∑
j=k+1

j iεj

and R−1
k = BnC̃−1

k Bn, with Bn defined in (4.14). As in Lemma 4.5, we obtain that

max
c(n)≤k≤d(n)

ST
k C−1

k Sk = max
c(n)≤k≤d(n)

rT
k R−1

k rk +OP (log−β/2 n).

Repeating the arguments that lead to the statements contained in Lemmas 4.6–4.12 here yields

1

σ 2
max

c(n)≤k≤d(n)
rT
k R−1

k rk = sup
c(n)≤t≤d(n)

eT (t)R̂−1
t e(t),

where, using the Brownian motion {W2,n(s) : s ≥ 0} specified in assumption (2.6),

eT (t) = (e0(t), . . . , ep(t)), ei(t) =
∫ n

t

xi dW2,n(x), (4.28)
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R̂t = {R̂t (i, j) : 0 ≤ i, j ≤ p}, R̂t (i, j) =
∫ n

t

xi+j dx.

If we finally define

ẽT (t) = (ẽ0(t), . . . , ẽp(t)), ẽi(t) =
∫ t

0
(n − x)i dW(x),

R̃t = {R̂t (i, j) : 0 ≤ i, j ≤ p}, R̃t (i, j) =
∫ t

0
(n − x)i+j dx,

where {W(s) : s ≥ 0} denotes a standard Brownian motion, then

sup
c(n)≤t≤d(n)

eT (t)R̂−1
t e(t) D= sup

a(n)≤t≤b(n)

ẽT (t)R̃−1
t ẽ(t).

The orthonormalization in ẽT (t)R̃−1/2
t starts with W(t) and the coordinates are uncorrelated, the

ith coordinate being the integral of an ith order polynomial with respect to {W(s) : s ≥ 0}. Hence,
we are again on the restricted range determined by c(n) and d(n), integrating the Legendre
polynomials on [0, t] with respect to the Brownian motion {W(s) : s ≥ 0}.

The final lemma establishes that the suprema taken over the first part, a(n) < k < b(n), and
second part, c(n) < k < d(n), have the same distribution, but are independent.

Lemma 4.13. For each n, there are {ẽn(t),0 ≤ t ≤ n} = {ẽ(t),0 ≤ t ≤ n} such that

sup
a(n)≤t≤b(n)

ẽT
n (t)R̃−1

t ẽn(t)
D= sup

a(n)≤t≤b(n)

q̂T
n (t)q̂n(t),

where the first and second suprema are independent. Moreover, as n → ∞,

max
c(n)≤k≤d(n)

ST
k C−1

k Sk = sup
a(n)≤t≤b(n)

ẽT
n (t)R̃−1

t ẽn(t)

+OP ((logn)−β/2) +OP

(√
log logn[log−α� n + log−α n]).

Proof. This is immediate. �

5. Proofs of Theorem 2.2 and Corollary 2.1

The final section completes the proof of Theorem 2.2 and its corollary by combining the results
obtained in the previous section with the extreme value theory for stochastic integrals of Legendre
polynomials with respect to Brownian motions as developed in Aue et al. (2007).

Proof of Theorem 2.2. Let

c(n, x) = x + 2 log logn + (p + 1) log log logn − 2 log

(
2(p+1)/2�((p + 1)/2)

p + 1

)
,
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where �(t) denotes the Gamma function. If follows from Lemmas 4.3–4.13 that, as n → ∞,
∣∣P {Tn ≤ c(n, x)} − P

{
max{ξn,1, ξn,2} ≤ c(n, x)

}∣∣ → 0

for all x, where ξn,1 and ξn,2 are independent, identically distributed random variables satisfying

ξn,1
D= ξn,2

D= sup
a(n)≤t≤b(n)

q̂T
n (t)q̂n(t).

Therein, the quantities q̂n(t) are the Gaussian processes introduced in Lemma 4.12. An applica-
tion of the main result in Aue et al. (2007) implies that

lim
n→∞P {ξn,i ≤ c(n, x)} = exp(−e−x/2), i = 1,2,

and, consequently, the assertion of Theorem 2.2 follows readily. �

Proof of Corollary 2.1. We need only observe that

log logn − log logh(n) = log

([
1 + γ

log logn

logn

]−1)
→ 0 (n → ∞)

and

log log logn − log log logh(n) = log

(
1 + log logn − log logh(n)

log logh(n)

)
→ 0

since log logn − log logh(n) → 0 and log logh(n) → ∞ as n → ∞. �
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