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Generalizing to higher dimensions the classical gambler’s ruin estimates, we give pointwise estimates

for the transition kernel corresponding to a spatially inhomogeneous random walk on the half-space.

Our results hold under some strong but natural assumptions of symmetry, boundedness of the

increments, and ellipticity. Among the most important steps in our proof are: discrete variants of the

boundary Harnack estimate, as proven by Bauman, Bass and Burdzy, and Fabes et al., based on

comparison arguments and potential-theoretical tools; the existence of a positive ~LL-harmonic function

globally defined in the half-space; and some Gaussian inequalities obtained by a treatment inspired by

Varopoulos.
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1. Introduction and statement of results

An interesting modification of the gambler’s ruin problem from classical random walk

theory can be formulated in the following way. Imagine that the gambler is not forced to

make the same wager with the same probabilities at each step but rather with transition

probabilities which depend on his current fortune. How does this affect his probability of

survival? In addition, physical applications of the classical ruin problem suggest the more

flexible interpretation in terms of the motion of a particle on a half-line. This interpretation

leads in a natural way to various generalizations, a typical example being the replacing of

the half-line by the half-space.

Let us denote by

Zd
þ ¼ fx ¼ (x1, . . . , xd�1; xd) ¼ (x9; xd) 2 Zd ¼ Zd�1 3 Z, xd . 0g,

the upper half-space and let (S j) j2N denote a spatially inhomogeneous random walk with

bounded symmetric increments in Zd . More precisely, let ˆ � Zd be a finite set such that

e 2 ˆ implies �e 2 ˆ and let � : Zd 3 ˆ ! [0, 1] such that

X
e2ˆ

�(x, e) ¼ 1, �(x, e) ¼ �(x, �e), e 2 ˆ, x 2 Zd :

Then we let (S j) j2N be the Markov chain defined by
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P S jþ1 ¼ x þ e j S j ¼ x
� �

¼ �(x, e), e 2 ˆ, x 2 Zd , j ¼ 0, 1, . . . :

To avoid unnecessary and trivial complications we shall also assume that ˆ contains 0

and all unit vectors in Zd , that is, all e with jej ¼ 1 where j � j denotes the Euclidean norm.

This eliminates periodic chains, that is, chains that live in a sublattice. Furthermore, it is

vital for the considerations that follow that we should impose the following ellipticity

condition:

�(x, e) > Æ, x 2 Zd , e 2 ˆ, (1:1)

for some Æ . 0.

The random walks (S j) j2N that satisfy condition (1.1) are the discrete analogues of

elliptic second-order operators in non-divergence form (cf. Kozlov 1985: 78, Table 1). They

were studied in Lawler (1991), Kuo and Trudinger 1998 and more recently in Varopoulos

(2000, 2001, 2003a, 2003b, 2005) and Mustapha (2006).

We shall denote by � the first exit time from Zd
þ, that is,

� ¼ inff j ¼ 0, 1, . . . , S j 62 Zd
þg,

and we shall consider the transition kernel corresponding to the random walk (S j) j2N with

killing outside of Zd
þ:

pn(x, y) ¼ Px Sn ¼ y, � . n½ �, n ¼ 1, 2, . . .; x, y 2 Zd
þ:

The object of our study is to gain as much information as possible about the kernel

pn(x, y). We shall see that precise estimates for pn(x, y) can be given in terms of two

important ‘functions’: a global adjoint solution m and a positive normalized adjoint solution

u vanishing on the boundary @Zd
þ (see Section 2 for a precise definition of the boundary

@Zd
þ). In one dimension, these estimates generalize the classical Gambler’s ruin estimates.

To define the two functions m and u we need to introduce some notation. We shall

denote by L the generator corresponding to the chain (S j) j2N, that is, the difference

operator defined by

Lf (x) ¼
X
e2ˆ

�(x, e) f (x þ e) � f (x)ð Þ, f : Zd ! R:

It was shown in Mustapha (2006: Section 3.2) that there exists a positive measure

(m(x))x2Zd which is invariant for the chain (S j) j2N. This invariant measure is unique (up to

a multiplicative constant) and satisfies the adjoint equation

X
e2ˆ

�(x � e, e)m(x � e) ¼ m(x), x 2 Zd : (1:2)

It was also shown in Mustapha (2006: Section 3.2) that the measure (m(x))x2Zd satisfies

the doubling property of the volume

v(x, r) ¼
X

y2Br(x)

m(y),

for the balls Br(x) ¼ fy 2 Zd , jy � xj , rg (x 2 Zd , r . 0). More precisely, we have

( )
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v(x, 2r) < Cv(x, r), x 2 Zd , r . 0: (1:3)

The fact that (1.2) holds opens up an important possibility. It enables us to define a

normalized adjoint process (S�j ) j2N by setting

P S�jþ1 ¼ x þ e j S�j ¼ x
h i

¼ ��(x, e), j ¼ 0, 1, . . .; x 2 Zd , e 2 Zd ,

where

��(x, e) ¼
�(x þ e, e)

m(x þ e)

m(x)
, e 2 ˆ,

0, otherwise:

8<
:

Observe that the generator of this process is the adjoint of L with respect to the invariant

measure (m(x))x2Zd :

~LL f (x) ¼
X
e2ˆ

��(x, e) f (x þ e) � f (x)ð Þ, f : Zd ! R:

We shall prove that there exists one and only one (up to a multiplicative constant) positive

solution u(�) of the equation

~LLu(x) ¼
X
e2ˆ

��(x, e) u(x þ e) � u(x)ð Þ ¼ 0, x 2 Zd
þ,

vanishing on the boundary @Zd
þ.

We can now state our main estimates.

Theorem 1. Let (S j) j2N be a spatially inhomogeneous random walk with bounded symmetric

increments as above. Then the transition kernel pn(x, y) satisfies:

pn(x, y) <
Cxd m(y)ffiffiffi
n

p
v(x,

ffiffiffi
n

p
)

exp � jx � yj2
Cn

� �
,

n > 1, x ¼ (x9; xd), y ¼ (y9; yd) 2 Zd
þ, yd > C

ffiffiffi
n

p
, (1:4)

pn(x, y) <
Cxd u(y)m(y)ffiffiffi

n
p

v(x,
ffiffiffi
n

p
)u(y9; C[

ffiffiffi
n

p
])

exp � jx � yj2
Cn

� �
,

n > 1, x ¼ (x9; xd), y ¼ (y9; yd) 2 Zd
þ, yd < C

ffiffiffi
n

p
, (1:5)

where C . 0 is an integer constant depending only on d, ˆ, Æ. Here [
ffiffiffi
n

p
] denotes the

greatest integer <
ffiffiffi
n

p
.

The following remarks will help to clarify this theorem. Firstly, the doubling property

(1.3) implies that the volume factor v(x,
ffiffiffi
n

p
) in (1.4) and (1.5) can be symmetrized and

replaced by the factor (v(x,
ffiffiffi
n

p
)v(y,

ffiffiffi
n

p
))1=2. Secondly, the upper estimate (1.5) points to

the important role played by the positive normalized adjoint solution u vanishing on the

boundary @Zd
þ. This function u is the multidimensional analogue of the positive solution of
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the Wiener–Hopf equation which plays a crucial role in fluctuation theory (cf. Spitzer

(1976: Chapters 18, 19 and 27)).

Thirdly, in the homogeneous case, that is, the case where �(x, e) ¼ �(y, e), x, y 2 Zd ,

e 2 ˆ, it is easy to see that m(y) � 1, v(x,
ffiffiffi
n

p
) � nd=2 and u(y) ¼ yd . The upper estimates

of Theorem 1 can be rewritten in this case as follows:

pn(x, y) <
Cxd yd

n1þd=2
exp � jx � yj2

Cn

� �
, x, y 2 Zd

þ, n > 1:

This estimate follows also from the general results of Varopoulos (2003a). An approach

which allows similar estimates to be obtained for inhomogeneous random walks on Lipschitz

domains is formulated in Varopoulos (2003a). Our proof uses some ideas from Varopoulos

(2003a).

Fourthly, let us consider, in the one-dimensional case, the spatially inhomogeneous

discrete heat operator defined by the difference operator

D f½ �(k) ¼ Æk f (k þ 1) þ f (k � 1)ð Þ � 2Æk f (k), k 2 Z, (1:6)

where we assume that the coefficients Æk satisfy

0 , Æ < Æk , 1=2, k 2 Z:

The function m can be explicitely computed in this case and we obtain

m(k) ¼ Æ0

Æk

, k 2 Z:

It then follows that the volume function v(k,
ffiffiffi
n

p
) satisfies v(k,

ffiffiffi
n

p
) � ffiffiffi

n
p

. On the other

hand, one can easily show that the function u is given by

u(k) ¼ k, k 2 Zþ ¼ f1, 2, . . .g:

The discrete half-line heat kernel pn(k, l) generated by (1.6) therefore admits the bound

pn(k, l) <
Ckl

n3=2
exp � (l � k)2

Cn

� �
, l, k 2 Zþ, n ¼ 1, 2, . . . :

This shows that the classical gambler’s ruin estimate (cf. Feller 1966; Spitzer 1976) is still

valid when we deal with spatially inhomogeneous walks.

Finally, the upper estimates (1:4) and (1:5) can easily be extended to more general half-

spaces of the type

—Z ¼ fx 2 Zd , hZ, xi . 0g,

where Z 2 Zdnf0g is fixed and where h:, :i denotes the standard Euclidean scalar product on

Rd . It is routine to generalize the considerations of Sections 2 and 3 to prove the existence of

a unique (up to a multiplicative constant) positive solution of the equation ~LLu ¼ 0 vanishing

on @—Z . If we denote by uZ this function and by pZ
n (x, y) the iterated transition kernel with

killing at the boundary in —Z then our estimates take the following form:
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pZ
n (x, y) <

ChZ, xim(y)ffiffiffi
n

p
v(x,

ffiffiffi
n

p
)

exp � jx � yj2
Cn

� �
,

n > 1; x, y 2 —Z , hZ, yi > C
ffiffiffi
n

p
,

pZ
n (x, y) <

ChZ, xiuZ(y)m(y)ffiffiffi
n

p
v(x,

ffiffiffi
n

p
)uZ([�(y)] þ C[

ffiffiffi
n

p
]Z)

exp � jx � yj2
Cn

� �
,

n > 1; x, y 2 —Z , hZ, yi < C
ffiffiffi
n

p
,

where the constant C . 0 depends only on d, ˆ, Æ and Z. Here � denotes the orthogonal

projection � : —Z ! fx 2 Rd , hZ, xi ¼ 0g and [�(y)] is a point of @—Z which minimizes

the distance between �(y) and @—Z .

2. Notation and known results

Two points in Zd will be said to be adjacent if the distance between them is unity. A subset

A of cardinality jAj > 2 will be called connected if for any two points of A there is a path

consisting of segments of unit length connecting them in such a manner that the end-points

of these segments are all in A. A set of points is a domain if it is connected. The symbol A

will be used in the following to denote a domain of Zd . We define the boundary @A of

A by

@A ¼ fx 2 Ac, x ¼ z þ e, for some z 2 A and e 2 ˆg,

ˆ being as in the previous section. The closure of A will be denoted by A and defined by

A ¼ A [ @A:

For a subset B ¼ A 3 fa < k < bg � Zd 3 Z where a , b 2 Z, we define the lateral

boundary and the parabolic boundary of B by

@ l B ¼
[

a,k,b

@A 3 fkg, @ p B ¼ @ l B [ A 3 fag
� �

,

and we let

B ¼ B [ @ p B:

We say that u: A ! R is L-harmonic in A � Zd if

Lu(x) ¼
X
e2ˆ

�(x, e) u(x þ e) � u(x)ð Þ ¼ 0, x 2 A:

We say that u : B ! R, where B ¼ A 3 fa < k < bg � Zd 3 Z is L-caloric in B if

Lu(x, k) ¼
X
e2ˆ

�(x, e)u(x þ e, k) � u(x, k þ 1) ¼ 0, (x, k) 2 A 3 fa < k , bg:

The following theorem (cf. Kuo and Trudinger 1998) is a random walk version of the
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well-known and fundamental result in the potential theory of second-order equations in non-

divergence form (for an elliptic version, see Lawler 1991).

Theorem 2 (Parabolic Harnack principle). Let u be a non-negative L-caloric function in

B2r(y) 3 fs � 4r2 < k < sg, (y, s) 2 Zd 3 Z, r > 1. Then

supfu(x, k); x 2 Br(y), s � 3r2 , k , s � 2r2g (2:1)

< C inf u(x, k); x 2 Br(y), s � r2 , k , s
� 	

,

where C ¼ C(d, Æ, ˆ) . 0.

In the proof of Theorem 1, together with Theorem 2, we need the following boundary

Harnack principle. Let Q ¼ Zd
þ 3 Z, let Y ¼ (y, s) 2 @Zd

þ 3 Z, and let r > 2diam(ˆ). We

shall write

Cr(Y ) ¼ Br(y) 3 fs � r2 < k < sg, Qr(Y ) ¼ Q \ Cr(Y ),

Yr ¼ (yr, s þ 2[r]2), Y r ¼ (yr, s � 2[r]2),

where yr ¼ y þ (0; [r]) 2 Zd
þ.

Theorem 3 (Boundary Harnack principle). Let Y ¼ (y, s) 2 @Zd
þ 3 Z. Let r > 2diam(ˆ).

Let K . 0 large enough. Assume that u and v are two non-negative L-caloric functions in

Q \ (B3Kr(y) 3 fs � 9K2 r2 < k < s þ 9K2 r2g) and u ¼ 0 on (@Zd
þ 3 Z) \ (B2Kr(y) 3

fs � 4K2 r2 < k < s þ 4K2 r2g). Then

sup
Qr(Y )

u

v
< C

u(YKr)

v(Y Kr)
, (2:2)

where C ¼ C(d, Æ, ˆ) . 0.

The estimate (2.2) is a discrete variant of the boundary Harnack estimate for non-

negative solutions of second-order equations in non-divergence form (Bauman 1984; Bass

and Burdzy 1994; Fabes et al. 1999). The proof of this estimate is a straightforward

adaptation of the proof of the corresponding estimate for the boundary behaviour of non-

negative L-caloric functions in cylindrical domains given in Mustapha (2006).

Let us finally denote by

hn(x, y) ¼ Px[Sn ¼ y], n ¼ 1, 2, . . .; x, y 2 Zd , (2:3)

the global transition kernel corresponding to the chain (S j) j2N. We have (cf. Mustapha 2006):

Theorem 4. There exists C . 0, depending only on d, ˆ and Æ, such that

hn(x, y) <
Cm(y)

v(x,
ffiffiffi
n

p
)

exp(� jx � yj2
Cn

), n > 1; x, y 2 Zd : (2:4)

We shall use throughout the usual convention f � g to indicate that C�1 < f =g < C for
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an appropriate constant C . 0; C and c will denote different positive constants which

depend only on d, Æ, diam(ˆ).

3. Potential theory

Let D � Zd denote a bounded domain and a , b 2 Z. We say that v ¼
v(y, t) : D 3 fa < t < bg ! R is a parabolic adjoint solution of L in D 3 fa < t < bg,

if v satisfies the equation

v(y, t þ 1) ¼
X
e2ˆ

�(y � e, e)v(y � e, t), t ¼ a, . . . , b � 1; y 2 D:

Let v be a parabolic adjoint solution in D 3 fa < t < bg; the function

~vv(y, t) ¼ v(y, t)

m(y)
, (y, t) 2 D 3 fa < t < bg,

where m is the global adjoint solution defined in (1.2), is called a normalized parabolic

adjoint solution of L in D 3 fa < t < bg (cf. Mustapha 2006). It is easy to see that every ~LL-

caloric function, that is, a function u such that

~LLu(x, k) ¼
X
e2ˆ

��(x, e)u(x þ e, k) � u(x, k þ 1) ¼ 0, (x, k) 2 D 3 fa < k , bg,

defines a normalized parabolic adjoint solution of L in D 3 fa < t < bg.

The adjoint Harnack principle established in Mustapha (2006) therefore implies the

following parabolic Harnack principle for ~LL-caloric functions.

Theorem 5. Suppose that u is a non-negative ~LL-caloric function in B2r(y) 3 fs � 4r2 <

k < sg, where y 2 Zd and r > 1. Then there exists a constant C . 0, depending only on

d, Æ, ˆ, such that

supfu(x, k); x 2 Br(y), s � 3r2 , k , s � 2r2g < C inf u(x, k); x 2 Br(y), s � r2 , k , s
� 	

:

(3:1)

On the other hand, the following maximum principle for ~LL-caloric functions is

immediate:

Theorem 6 (Maximum principle). Let B ¼ A 3 fa < k < bg � Zd 3 Z, where a , b 2 Z

and A is a bounded domain in Zd, and let u : B ! R be an ~LL-caloric function in B which

satisfies u > 0 on @ p B. Then u > 0 in B.

3.1. Behaviour at the boundary of non-negative ~LL-caloric functions

The proofs of Theorem 3 and estimate (5.6) of Mustapha (2006) (the Carleson estimate) are

based only on the parabolic Harnack principle and the maximum principle. According to
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Theorems 5 and 6, ~LL-caloric functions satisfy both of these principles. The proofs given in

Mustapha (2006) therefore apply when we deal with ~LL-caloric functions.

With the notation of Section 2, we have:

Theorem 7 (Carleson estimate). Let Y ¼ (y, s) 2 @Zd
þ 3 Z. Assume that u is a non-negative

~LL-caloric function in Q \ (B3r(y) 3 fs � 9r2 < k < s þ 9r2g) and u ¼ 0 on (@Zd
þ 3

Z) \ (B2r(y) 3 fs � 4r2 < k < s þ 4r2g). Then

supfu(X ), X 2 Qr(Y )g < Cu(Yr), r > C, (3:2)

where C ¼ C(d, Æ, ˆ) . 0.

Theorem 8 (Boundary Harnack principle). Let Y ¼ (y, s) 2 @Zd
þ 3 Z. Assume that u and

v are two non-negative ~LL-caloric functions in Q \ B3Kr(y) 3 fs � 9K2 r2 < k <ð
s þ 9K2 r2gÞ and u ¼ 0 on (@Zd

þ 3 Z) \ B2Kr(y) 3 fs � 4K2 r2 < k < s þ 4K2 r2gð Þ, where

K is large enough. Then

sup
Qr(Y )

u

v
< C

u(YKr)

v(Y Kr)
, r > C, (3:3)

where C ¼ C(d, Æ, ˆ) . 0.

3.2. The ~LL-harmonic function u(x)

Theorem 9. There exists a positive ~LL-harmonic function u defined globally in Zd
þ and

vanishing on @Zd
þ. This solution is unique up to a multiplicative constant.

Proof. Let

U l(y) ¼ Æ l Glþ1(1, y) � Gl(1, y)½ �, y 2 B2 l (0) \ Zd
þ, l ¼ 1, 2, . . . ,

where Gl(1, :) is the Green function of (S�j ) j2N in B2 l (0) \ Zd
þ, l ¼ 1, 2, . . . , with pole at

1 ¼ (0, . . . , 0; 1) and where the Æ l are chosen so that

U l(1) ¼ 1, l ¼ 1, 2, . . . : (3:4)

It is easy to see that the ellipticity condition (1.1) implies a local Harnack principle for the

non-negative ~LL-harmonic functions. This local Harnack principle, combined with the

Carleson estimate (3.2) and the normalization condition (3.4), implies that the U l satisfy

U l(y) < C, y 2 B2 k (0) \ Zd
þ, l > k,

with a constant C ¼ C(k) depending only on k. The diagonal process then allows us to

deduce the existence of a positive ~LL-harmonic function u defined globally on Zd
þ and

vanishing on @Zd
þ.

To prove uniqueness, let us consider u1 and u2, two positive ~LL-harmonic functions in Zd
þ

vanishing on @Zd
þ. By the boundary Harnack principle (3.3) we have
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1

C

u1(x)

u1(0; R)
<

u2(x)

u2(0; R)
< C

u1(x)

u1(0; R)
, x 2 BR(0) \ Zd

þ, R > C: (3:5)

If we assume that u1 and u2 satisfy the normalization condition (3.4), then it follows that

1

C
u1(0; R) < u2(0; R) < Cu1(0; R), R > C: (3:6)

Putting (3.5) and (3.6) together, we deduce that

1

C2
<

u1(x)

u2(x)
< C2, x 2 Zd

þ:

We shall assume that C . 1 and define

u3(x) ¼ u1(x) þ 1

C2 � 1
u1(x) � u2(x)ð Þ, x 2 Zd

þ:

We have

u3(x) ¼ C2

C2 � 1
u1(x) � 1

C2
u2(x)

� �
> 0, x 2 Zd

þ:

Clearly we also have

~LLu3(x) ¼ 0, x 2 Zd
þ; u3(x) ¼ 0, x 2 @Zd

þ; u3(1) ¼ 1:

We can iterate and define u p(x) (x 2 Zd
þ)

u p(x) ¼ u p�1(x) þ 1

C2 � 1
u p�1(x) � u2(x)
� �

, p ¼ 4, 5, . . . ,

with

u p(x) > 0, x 2 Zd
þ; ~LLu p(x) ¼ 0, x 2 Zd

þ;

u p(x) ¼ 0, x 2 @Zd
þ; u p(1) ¼ 1,

and

1

C2
<

u p(x)

u2(x)
< C2, x 2 Zd

þ:

We also have

1

C2
<

u p(x)

u1(x)
< C2, x 2 Zd

þ: (3:7)

On the other hand, it is easy to see that

u p(x) ¼ u1(x) þ C p(u1(x) � u2(x)), x 2 Zd
þ, p ¼ 3, 4, . . . , (3:8)

where C p ! 1 as p ! 1. Putting (3.7) and (3.8) together, we obtain

1

C2
< 1 þ C p 1 � u2(x)

u1(x)

� �
< C2, x 2 Zd

þ, p ¼ 3, 4, . . . ,
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and, letting p ! 1, we deduce that

u2(x) ¼ u1(x), x 2 Zd
þ:

h

4. Proofs of the estimates

4.1. The upper Gaussian estimate (1.4)

We first observe that in the case xd=
ffiffiffi
n

p
> C, the upper estimate (1.4) is an immediate

consequence of the estimate (2.4). This is simply due to the obvious inequality

pn(x, y) < hn(x, y), x, y 2 Zd
þ, (4:1)

where hn(x, y) denotes the global transition kernel as in (2.3).

Let us assume that xd < C
ffiffiffi
n

p
. Let p�n (x, y), x, y 2 Zd

þ, n ¼ 1, 2 . . . , denote the

transition kernel corresponding to the chain (S�j ) j2N with killing outside of Zd
þ. It is easy to

check that this kernel satisfies

p�n (x, y) ¼ pn(y, x)
m(y)

m(x)
, x, y 2 Zd

þ: (4:2)

Let us now fix y ¼ (y9; yd) 2 Zd
þ such that

yd > C
ffiffiffi
n

p
: (4:3)

By using the boundary Harnack principle (2.2) to compare the two L-caloric functions,

u1(x, s) ¼ xd ; u2(x, s) ¼ ps(x, y), x 2 Zd
þ, s ¼ 1, 2, . . . ,

and (2.1), we obtain

pn(x, y) <
Cxdffiffiffi

n
p inf

z2Bc
ffiffi
n

p (x)
pCn(z, y), (4:4)

where x ¼ x þ (0, C[
ffiffiffi
n

p
]). Substituting (4.2) into (4.4) gives

pn(x, y) <
Cxdffiffiffi

n
p inf

z2Bc
ffiffi
n

p (x)

p�Cn(y, z)m(y)

m(z)
,

from which it follows by multiplying by m(z) and taking the sum over z 2 Bc
ffiffiffi
n

p (x) that

pn(x, y)
X

z2Bc
ffiffi
n

p (x)

m(z) <
Cxd m(y)ffiffiffi

n
p

X
z2Bc

ffiffi
n

p (x)

p�Cn(y, z):

Using the obvious estimate

X
z2Br(x)

p�n (y, z) ¼ P y[S�n 2 Br(x)] < 1, x, y 2 Zd
þ, r . 0, n ¼ 1, 2, . . . ,

S. Mustapha140



we deduce that

pn(x, y) <
Cxd m(y)ffiffiffi
n

p
v(x, c

ffiffiffi
n

p
)

, n ¼ 1, 2, . . . : (4:5)

On the other hand, we have

B ffiffiffi
n

p (x) � BC=n(x):

This, combined with the doubling property (1.3), gives

1

v(x, c
ffiffiffi
n

p
)
<

C

v(x,
ffiffiffi
n

p
)
: (4:6)

Putting (4.5) and (4.6) together, we deduce that

pn(x, y) <
Cxd m(y)ffiffiffi
n

p
v(x,

ffiffiffi
n

p
)

, n ¼ 1, 2, . . . : (4:7)

Let us now assume that

jx � yj < C
ffiffiffi
n

p
:

This estimate implies that the Gaussian factor

exp(� jx � yj2
Cn

) � 1, (4:8)

and the estimate (4.7) can therefore be rewritten

pn(x, y) <
Cxd m(y)ffiffiffi
n

p
v(x,

ffiffiffi
n

p
)

exp � jx � yj2
Cn

� �
, n ¼ 1, 2, . . . :

It remains to consider the case

jx � yj > C
ffiffiffi
n

p
: (4:9)

In this case, we first use the parabolic Harnack estimate (3.1) to obtain

p�n (y, x) < C inf
z2Bc

ffiffi
n

p ( y)
p�Cn(z, x):

This is possible because of (4.3).

Using (4.2), we then deduce that

pn(x, y)

m(y)
< C inf

z2Bc
ffiffi
n

p ( y)

pCn(x, z)

m(z)
,

from which it follows that

pn(x, y)

m(y)
v(y, c

ffiffiffi
n

p
) < C

X
z2Bc=n( y)

pCn(x, z): (4:10)

We should also observe that
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1

v(y, c
ffiffiffi
n

p
)
<

C

v(x,
ffiffiffi
n

p
)

(1 þ jx � yjffiffiffi
n

p )C , x, y 2 Zd
þ: (4:11)

This is an immediate consequence of the doubling property (1.3). On the other hand, if

z 2 Bc
ffiffiffi
n

p (y) then (4.9) implies that

jz � xj > cjx � yj: (4:12)

Combining (4.10), (4.11) and (4.12), we obtain

pn(x, y) <
Cm(y)

v(x,
ffiffiffi
n

p
)

1 þ jx � yjffiffiffi
n

p
� �C X

z2Zd
þ ,jz�xj>cjx� yj

pCn(x, z): (4:13)

The next step is to prove the following estimate

X
z2Zd

þ ,jz�xj>cjx� yj

pCn(x, z) <
Cxdffiffiffi

n
p exp(� jx � yj2

Cn
), x 2 Zd

þ, n ¼ 1, 2, . . . : (4:14)

We follow Varopoulos (2003a: Section 3). Let m0 ¼ Cn and let k ¼ 1, 2 . . . defined by

2k , m0 < 2kþ1. Let m1 ¼ 2k�1. We have

X
z2Zd

þ ,jz�xj>cjx� yj

pm0
(x, z) ¼

X
z2Zd

þ ,jz�xj>cjx� yj

X
�2Zd

þ

pm1
(x, �) pm0�m1

(�, z)

0
@

1
A (4:15)

¼
X

z2Zd
þ ,jz�xj>cjx� yj

X
�2Zd

þ ,j��xj.cjx� yj=2

pm1
(x, �) pm0�m1

(�, z)

0
@

1
A

þ
X

z2Zd
þ ,jz�xj>cjx� yj

X
�2Zd

þ ,j��xj<cjx� yj=2

pm1
(x, �) pm0�m1

(�, z)

0
@

1
A:

We estimate the first sum on the right hand side of (4.15) as follows:

X
z2Zd

þ ,jz�xj>cjx� yj

X
�2Zd

þ ,j��xj.cjx� yj=2

pm1
(x, �) pm0�m1

(�, z)

0
@

1
A (4:16)

<
X

�2Zd
þ,j��xj>cjx� yj=2

pm1
(x, �)

X
z2Zd

þ

pm0�m1
(�, z)

<
X

z2Zd
þ ,jz�xj>cjx� yj=2

pm1
(x, z):
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Concerning the second sum, we observe that

X
z2Zd

þ,jz�xj>cjx� yj

X
�2Zd

þ ,j��xj<cjx� yj=2

pm1
(x, �) pm0�m1

(�, z)

0
@

1
A (4:17)

<
X
�2Zd

þ

pm1
(x, �)

X
z2Zd

þ,jz��j>cjx� yj=2

hm0�m1
(�, z)

<
X
z2Zd

þ

pm1
(x, �)

0
@

1
A3 sup

�2Zd
þ

X
z2Zd

þ ,jz��j>cjx� yj=2

hm0�m1
(�, z)

2
4

3
5,

where we have used the estimate (4.1).

The boundary Harnack principle (2.2) used to compare the two L-caloric functions,

u1(x, s) ¼ xd ; u2(x, s) ¼
X
z2Zd

þ

ps(x, z), x 2 Zd
þ, s ¼ 1, 2, . . . ,

gives

X
z2Zd

þ

pn(x, z) <
Cxdffiffiffi

n
p , x 2 Zd

þ, n ¼ 1, 2, . . . (4:18)

(notice that the boundary Harnack principle in needed only in the case xd=
ffiffiffi
n

p
< C,

otherwise (4.18) is obvious). On the other hand, the upper Gaussian estimate (2.4) implies

easily that

X
z2Zd

þ ,jz��j>cjx� yj=2

hm0�m1
(�, z) < C exp � jx � yj2

C(m0 � m1)

� �
, � 2 Zd

þ: (4:19)

Putting (4.15)–(4.19) together, we deduce that

X
z2Zd

þ ,jz�xj>cjx� yj

pm0
(x, z) <

X
z2Zd

þ,jz�xj>cjx� yj=2

pm1
(x, z)

þ Cxdffiffiffiffi
m

p
1

exp � jx � yj2
C(m0 � m1)

� �
:

Now set m2 ¼ 2k�2, m3 ¼ 2k�3, . . . , mk ¼ 1. Iterating the previous reasoning, we obtain:
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X
z2Zd

þ ,jz�xj>cjx� yj

pm0
(x, z) <

X
z2Zd

þ,jz�xj>cjx� yj=2

pm1
(x, z) þ Cxdffiffiffiffi

m
p

1

exp � jx � yj2
C(m0 � m1)

� �

<
X

z2Zd
þ ,jz�xj>cjx� yj=3

pm2
(x, z) þ Cxdffiffiffiffi

m
p

1

exp � jx � yj2
C(m0 � m1)

� �
þ

ffiffiffi
2

p
exp � jx � yj2

4C(m1 � m2)

� �� �

<
X

z2Zd
þ ,jz�xj>cjx� yj=4

pm3
(x, z) þ Cxdffiffiffiffi

m
p

1

exp � jx � yj2
C(m0 � m1)

� �
þ

ffiffiffi
2

p
exp � jx � yj2

4C(m1 � m2)

� ��

þ 2 exp � jx � yj2
9C(m2 � m3)

� ��

< . . .

<
Cxdffiffiffi

n
p

Xk�1

j¼0

2 j=2 exp � jx � yj2
C( j þ 1)2(m j � m jþ1)

� �

þ
X

z2Zd
þ,jz�xj>cjx� yj=log(n)

p1(x, z):

On the other hand, by using (4.9) and the bounded increments assumption on (S j) j2N, we see

that

X
z2Zd

þ ,jz�xj>cjx� yj=log(n)

p1(x, z) ¼ 0:

We finally obtain

X
z2Zd

þ ,jz�xj>cjx� yj

pm0
(x, z) <

Cxdffiffiffi
n

p
X1
j¼0

2 j=2 exp � 2 jjx � yj2
Cn( j þ 1)2

� �

<
Cxdffiffiffi

n
p exp � jx � yj2

Cn

� �
:

This completes the proof of (4.14). The upper estimate (1.4) in the case jx � yj > C
ffiffiffi
n

p
is an

immediate consequence of (4.13) and (4.14).

4.2. The upper Gaussian estimate (1.5)

Let us fix x 2 Zd
þ and y ¼ (y9; yd) 2 Zd

þ such that

yd < C
ffiffiffi
n

p
:

By the boundary Harnack estimate (3.3) we have
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p�n (y, x)

p�Cn(y, x)
< C

u(y)

u(y9; C[
ffiffiffi
n

p
])

,

where y ¼ (y9, yd þ C[
ffiffiffiffiffi
n]

p
). This means that

p�n (y, x) < C
u(y)

u(y9; C[
ffiffiffi
n

p
])

p�Cn(y, x):

Hence, by (3.1),

p�n (y, x) < C
u(y)

u(y9; C[
ffiffiffi
n

p
])

inf
z2Bc

ffiffi
n

p ( y)
p�Cn(z, x):

It follows that

pn(x, y)

m(y)
v(y, c

ffiffiffi
n

p
) < C

u(y)

u(y9; C[
ffiffiffi
n

p
])

X
z2Bc

ffiffi
n

p ( y)

pCn(x, z): (4:20)

Let us assume that

jx � yj < C
ffiffiffi
n

p
: (4:21)

It follows that

B ffiffiffi
n

p (x) � BC=n(y):

This, combined with the doubling property (1.3), gives

1

v(y, c
ffiffiffi
n

p
)
<

C

v(x,
ffiffiffi
n

p
)
:

Substituting this into (4.20) gives

pn(x, y) < C
m(y)u(y)

v(x,
ffiffiffi
n

p
)u(y9; C[

ffiffiffi
n

p
])

X
z2Bc

ffiffi
n

p ( y)

pCn(x, z):

We now use (4.18) to obtain

pn(x, y) <
Cxd m(y)u(y)ffiffiffi

n
p

v(x,
ffiffiffi
n

p
)u(y9; C[

ffiffiffi
n

p
])
: (4:22)

Combining (4.22) and (4.8) (which holds because of (4.21)) gives

pn(x, y) <
Cxd m(y)u(y)ffiffiffi

n
p

v(x,
ffiffiffi
n

p
)u(y9; C[

ffiffiffi
n

p
])

exp � jx � yj2
Cn

� �
, jx � yj < C

ffiffiffi
n

p
: (4:23)

Let us now assume that

jx � yj > C
ffiffiffi
n

p
: (4:24)

Observing that

B ffiffiffi
n

p (y) � BC
ffiffiffi
n

p (y),

we deduce
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1

v(y, c
ffiffiffi
n

p
)
<

C

v(y, C
ffiffiffi
n

p
)

,

and, by using the doubling property,

1

v(y, c
ffiffiffi
n

p
)
<

C

v(x,
ffiffiffi
n

p
)

1 þ jx � yjffiffiffi
n

p
� �C

: (4:25)

We should also observe that if z 2 Bc
ffiffiffi
n

p (y) then

jz � xj > cjx � yj, (4:26)

provided that the constant C . 0 that appears in (4.24) is chosen large enough. Combining

(4.20), (4.25) and (4.26), we deduce

pn(x, y) <
Cm(y)u(y)

v(x,
ffiffiffi
n

p
)u(y9, C[

ffiffiffi
n

p
])

1 þ jx � yjffiffiffi
n

p
� �C X

z2Zd
þ,jz�xj>cjx� yj

pCn(x, z):

We now use (4.14) to obtain

pn(x, y) <
Cxd m(y)u(y)ffiffiffi

n
p

v(x,
ffiffiffi
n

p
)u(y9; C[

ffiffiffi
n

p
])

exp � jx � yj2
Cn

� �
, jx � yj > C

ffiffiffi
n

p
: (4:27)

The upper estimate (1.5) is an immediate consequence of (4.23) and (4.27). This completes

the proof of Theorem 1.
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Varopoulos, N.Th. (2001) Marches aléatoires et diffusions dans les domaines lipschitziens. C. R. Acad.

Sci. Paris Sér. I Math., 332, 357–360.

Varopoulos, N.Th. (2003a) Gaussian estimates in Lipschitz domains. Canad. J. Math., 55, 401–431.
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