CONFORMAL AND PROJECTIVE CHARACTERIZATIONS OF AN ODD DIMENSIONAL UNIT SPHERE

RAMESH SHARMA

Abstract

We obtain two characterizations of an odd-dimensional unit sphere of dimension > 3 by proving the following two results: (i) If a complete connected η -Einstein K-contact manifold M of dimension > 3 admits a conformal vector field V, then either M is isometric to a unit sphere, or V is an infinitesimal automorphism of M. (ii) If V was a projective vector field in (i), then the same conclusions would hold, except in the first case, M would be locally isometric to a unit sphere.

1. Introduction

It is known (Yano [17]) that an *m*-dimensional Riemannian manifold (M, g)admitting a maximal, i.e. an $\frac{(m+1)(m+2)}{2}$ -parameter group of conformal transformations is conformally flat. In [9], Okumura showed that a conformally flat Sasakian manifold has constant curvature 1. This result holds more generally on a K-contact manifold, as shown by Tanno [16]. Thus the existence of a maximal conformal group places a severe restriction on Sasakian (more generally, K-contact) manifolds, and so it would be interesting to see the effect of a single 1-parameter conformal group generated by a conformal vector field on those manifolds. This was accomplished by Okumura in [10], who proved that a non-Killing conformal vector field on a Sasakian manifold M of dimension > 3 is special concircular and hence if, in addition, M is complete and connected then it is isometric to a unit sphere. The proof of the last part of this result uses Obata's theorem ([7]): A complete and connected Riemannian manifold M of dimension > 1 admits a non-trivial solution ρ of the system of partial differential equations $\nabla \nabla \rho = -c^2 \rho g$ if and only if M is isometric to a sphere of radius $\frac{1}{c}$.

Conformal vector fields on 3-dimensional Sasakian manifolds were studied by Sharma and Blair [13] and Sharma [12] using certain conditions on the scalar

Mathematics Subject Classification. 53C25, 53C15.

Key words and phrases. Conformal vector field, Projective vector field, η -Einstein K-contact manifold, Infinitesimal automorphism.

Received April 10, 2018; revised July 23, 2018.

curvature. Okumura's result motivates us to examine the effect of a conformal vector field on K-contact manifolds, which seems to be a formidable task. On the other hand, we note the following result of Yano and Nagano [19]: A complete Einstein manifold admitting a complete non-homothetic conformal vector field is isometric to a round sphere. Inspired by the aforementioned results, we study a conformal vector field on a class of K-contact manifolds that are η -Einstein (a generalization of Einstein condition on K-contact manifold), and prove the following result.

THEOREM 1. If a complete connected η -Einstein K-contact manifold M of dimension > 3 admits a conformal vector field V, then either (i) M is isometric to a unit sphere, or (ii) V is an infinitesimal automorphism of the contact metric structure on M.

This result provides the following characterization of a unit odd-dimensional sphere.

COROLLARY 1. Among all complete simply connected η -Einstein K-contact manifolds of dimension > 3, only the unit sphere admits a non-isometric conformal vector field.

Remark 1. An example of an η -Einstein K-contact manifold is the Sasakian space form, i.e. a Sasakian manifold with constant φ -sectional curvature, and which is known to be η -Einstein. Theorem 1 generalizes and improves the corresponding result of Okumura [10]. In this context, we also point out the following generalization of Okumura's result by Mizusawa [5]: A conformal vector field on a (2n + 1)-dimensional (n > 1) Sasakian manifold of constant scalar curvature $\neq 2n(2n + 1)$ is Killing.

Next, we recall [17] that an *m*-dimensional Riemannian manifold (M, g) admitting a maximal, i.e. m(m+2)-parameter group of projective transformations is projectively flat, and hence has constant curvature. A Sasakian (more generally, *K*-contact) manifold of constant curvature has constant curvature 1. In [10], Okumura proved that a projective vector field on a non-Einstein η -Einstein Sasakian manifold is Killing and an infinitesimal strict contact transformation. Generalizing and improving this result we prove the following result.

THEOREM 2. Let V be a projective vector field on a connected η -Einstein K-contact manifold M of dimension > 3. Then, either (i) M is Einstein, or (ii) V is an infinitesimal automorphism of the contact metric structure on M. In case (i), if M is complete then it has constant curvature 1, and if it is also simply connected then it is isometric to a unit sphere.

This result provides the following characterization of a unit odd-dimensional sphere.

COROLLARY 2. Among all complete simply connected η -Einstein K-contact manifolds of dimension > 3, only the unit sphere admits a non-isometric projective vector field.

Remark 2. For dimension 3, a K-contact manifold is Sasakian for which we have the following result of Ghosh and Sharma [3]: If V is a projective vector field on a 3-dimensional Sasakian manifold M, then either V is Killing or M has constant curvature 1.

2. A Brief review of contact geometry

A (2n+1)-dimensional smooth manifold is said to be contact if it has a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ on M. For a contact 1-form η there exists a unique vector field ξ such that $d\eta(\xi, X) = 0$ and $\eta(\xi) = 1$. Polarizing $d\eta$ on the contact subbundle $\eta = 0$, we obtain a Riemannian metric g and a (1, 1)-tensor field φ such that

(1)
$$d\eta(X,Y) = g(X,\varphi Y), \quad \eta(X) = g(X,\xi), \quad \varphi^2 = -I + \eta \otimes \xi.$$

g is called an associated metric of η and (φ, η, ξ, g) a contact metric structure. A contact metric structure is said to be K-contact if ξ is Killing with respect to g. The contact metric structure on M is said to be Sasakian if the almost Kaehler structure on the cone manifold $(M \times R^+, r^2g + dr^2)$ over M, is Kaehler. Sasakian manifolds are K-contact and K-contact 3-manifolds are Sasakian. We have the following formulas for a K-contact manifold.

(2)
$$\nabla_X \xi = -\varphi X$$

(3)
$$(\nabla_X \varphi) Y = R(\xi, X) Y$$

(4)
$$Ric(X,\xi) = 2n\eta(X)$$

(5)
$$R(X,\xi)\xi = X - \eta(X)\xi$$

where ∇ , *R*, and *Ric* denote respectively, the Riemannian connection, curvature tensor, and Ricci tensor of *g*. For details we refer to the standard monograph of Blair [1].

A vector field V on a contact metric manifold M is said to be an infinitesimal contact transformation if $\pounds_V \eta = \sigma \eta$ for some smooth function σ on M. In particular, for $\sigma = 0$, V is called an infinitesimal strict contact transformation. V is said to be an infinitesimal automorphism of the contact metric structure on M if it leaves all the structure tensors η , ξ , g, φ invariant (see Tanno [15]).

A contact metric manifold M is said to be η -Einstein in the wider sense, if the Ricci tensor can be written as

(6)
$$Ric(X, Y) = ag(X, Y) + b\eta(X)\eta(Y)$$

for some smooth functions a and b on M. It is well-known (Yano and Kon [18]) that a and b are constant if M is K-contact, and has dimension greater

than 3. For n > 1, it follows through a straightforward computation that

(7)
$$a = \frac{r}{2n} - 1, \quad b = 2n + 1 - \frac{r}{2n}$$

Boyer, Galicki and Matzeu [2] have proved the existence of η -Einstein Sasakian structures on many different compact manifolds, and have shown the relation between a *K*-contact η -Einstein manifold and an Einstein-Weyl structure. Motivated by equations (6) and (7), Hasegawa and Nakane [4] studied η -Einstein tensor *S* defined on a Sasakian (more generally, *K*-contact) manifold by

$$S = Ric - \left(\frac{r}{2n} - 1\right)g - \left(2n + 1 - \frac{r}{2n}\right)\eta \otimes \eta$$

where r is the scalar curvature (not necessarily constant). Thus a K-contact manifold is η -Einstein if and only if S = 0. A straightforward computation shows

$$|S|^{2} = |Ric^{0}|^{2} - \frac{1}{2n(2n+1)}[r - 2n(2n+1)]^{2}$$

where Ric^0 denotes the trace-free Ricci tensor $Ric - \frac{r}{2n+1}g$. The above equation implies $|S| \le |Ric^0|$, equality holds if and only if r = 2n(2n+1).

3. Conformal and projective vector fields

A vector field V on an m-dimensional Riemannian manifold (M,g) is said to be a conformal vector field if it satisfies

(8)
$$L_V g = 2\rho g$$

for a smooth function ρ on M, and where L_V denotes the Lie derivative operator along V. In particular, the conformal vector field V is homothetic (respectively, Killing) when ρ is constant (respectively, zero). Let us denote the gradient vector field of ρ by $D\rho$, and the Laplacian of ρ by $\Delta \rho = Div.D\rho = g^{ij}\nabla_i\nabla_j\rho$. Then we have the following integrability conditions for the conformal vector field V (Yano [17]):

(9)
$$(L_V \nabla)(X, Y) = (X\rho)Y + (Y\rho)X - g(X, Y)D\rho,$$

(10)
$$(L_V R)(X, Y, Z) = g(\nabla_X D\rho, Z) Y - g(\nabla_Y D\rho, Z) X$$

$$+ g(X,Z) \mathsf{V}_Y D\rho - g(Y,Z) \mathsf{V}_X D\rho,$$

(11)
$$(L_V Ric)(X, Y) = -(m-2)g(\nabla_X D\rho, Y) - (\Delta \rho)g(X, Y),$$

(12)
$$L_V r = -2(m-1)\Delta\rho - 2r\rho$$

where r denotes the scalar curvature of g.

A vector field V on an *n*-dimensional Riemannian manifold (M,g) is said to be a projective vector field if there is a 1-form π on M such that

(13)
$$(L_V \nabla)(X, Y) = \pi(X) Y + \pi(Y) X.$$

For $\pi = 0$, V becomes an affine Killing vector field. In a local coordinate system, equation (13) becomes

$$L_V \Gamma_{ij}^k = \pi_i \delta_j^k + \pi_j \delta_i^k.$$

Its contraction at k and j shows that $\pi = df$ for a smooth function f on M. The projective vector field V satisfies the following integrability conditions:

(14)
$$(L_V R)(X, Y, Z) = g(\nabla_X Df, Z)Y - g(\nabla_Y Df, Z)X,$$

(15) $(L_V Ric)(X, Y) = -(m-1)g(\nabla_X Df, Y).$

4. Proofs of the results

We need the following lemmas.

LEMMA 1 ([10], [14]). A conformal vector field V on a contact metric manifold, with associated conformal function ρ , has the following properties: (i) $(L_V \eta)(\xi) = \rho$ and (ii) $\eta(L_V \xi) = -\rho$.

LEMMA 2 ([14]). Let V be a conformal vector field on a contact metric manifold M. If V is an infinitesimal contact transformation, then it is an infinitesimal automorphism of M.

LEMMA 3 ([12]). A homothetic vector field on a K-contact manifold is Killing.

LEMMA 4 ([11]). A second order symmetric parallel tensor on a K-contact manifold (M,g) is a constant multiple of g.

Proof of Theorem 1. Here m = 2n + 1. Taking the Lie derivative of (6) with *a* and *b* given by (7), along the conformal vector field *V*, and using (11) gives the following equation

(16)
$$(1-2n)g(\nabla_X D\rho, Y) - (\Delta \rho)g(X, Y)$$
$$= 2\left(\frac{r}{2n} - 1\right)\rho g(X, Y)$$
$$+ \left(2n + 1 - \frac{r}{2n}\right)[(L_V \eta)(X)\eta(Y) + \eta(X)(L_V \eta)(Y)].$$

Now Lie differentiating the second equation in (1) along V we have (17) $(L_V \eta) X = 2\rho \eta(X) + g(L_V \xi, X).$

As r is constant, we have from (12) that

(18)
$$\Delta \rho = -\frac{r}{2n}\rho.$$

The use of equations (17) and (18) in (16) provides

(19)
$$\nabla_X D\rho = \alpha \rho X + \beta [g(U, X)\xi + 4\rho \eta(X)\xi + \eta(X)U].$$

where we have set $U = L_V \xi$, and

(20)
$$\alpha = \frac{r - 4n}{2n(1 - 2n)}, \quad \beta = \frac{2n(2n + 1) - r}{2n(1 - 2n)}$$

Now, using (19) we compute $R(X, Y)D\rho$ and find that

(21)
$$\begin{aligned} R(X,Y)D\rho &= \alpha((X\rho)Y - (Y\rho)X) + \beta[(g(\nabla_X U,Y) - g(\nabla_Y U,X))\xi \\ &+ g(U,X)\varphi Y - g(U,Y)\varphi X + 4((X\rho)\eta(Y) - (Y\rho)\eta(X))\xi \\ &+ 8\rho g(X,\varphi Y)\xi + 4\rho(\eta(X)\varphi Y - \eta(Y)\varphi X) \\ &+ 2g(X,\varphi Y)U + \eta(Y)\nabla_X U - \eta(X)\nabla_Y U]. \end{aligned}$$

Substituting ξ for Y in (21), taking inner product with ξ , and using (5) yields

(22)
$$0 = (\alpha + 1)(X\rho - (\xi\rho)\eta(X)) + \beta[2g(\nabla_X U, \xi) - g(\nabla_\xi U, X) + 4X\rho - 4(\xi\rho)\eta(X) - \eta(X)g(\nabla_\xi U, \xi)].$$

Recalling the commutation formula [17]:

$$L_V \nabla_X Y - \nabla_X L_V Y - \nabla_{[V,X]} Y = (L_V \nabla)(X,Y),$$

substituting $X = Y = \xi$ and using (9) we find

(23)
$$\nabla_{\xi} U = \varphi U - 2(\xi \rho)\xi + D\rho$$

At this point, we notice from Lemma 1, that $g(U,\xi) = g(L_V\xi,\xi) = -\rho$. Differentiating it and using (2) gives $g(\nabla_X U,\xi) = g(U,\varphi X) - X\rho$. Using this in conjunction with (23) we obtain

(24)
$$(\alpha + \beta + 1)(D\rho - (\xi\rho)\xi) - 3\beta(\varphi U) = 0.$$

But we see from (20) that $\alpha + \beta + 1 = 0$. Hence equation (24) implies that, either (i) $\beta = 0$, or (ii) $U = \eta(U)\xi$. In case (i) (M,g) is Einstein, i.e. Ric = 2ng, and (19) reduces to $\nabla \nabla \rho = -\rho g$. So, if (M,g) is complete and connected, then by Obata's theorem mentioned in Section 1, (M,g) is isometric to a unit sphere.

For case (ii), applying Lemma 1 provides $L_V\xi = -\rho\xi$. Lie differentiating $\eta(X) = g(\xi, X)$ along V and using the conformal Killing equation (8) we obtain $L_V\eta = \rho\eta$. Thus V is an infinitesimal contact transformation. As V is also conformal, by Lemma 2 we conclude that V is an infinitesimal automorphism of the contact metric structure, completing the proof.

Remark. In case (i) of Theorem 1, as shown in the proof, we see that $L_{V+D\rho}g = L_Vg + 2\nabla\nabla\rho = 2\rho g - 2\rho g = 0$. So $V = -D\rho + K$, where K is a Killing vector field.

Proof of Theorem 2. Let us denote the strain tensor $L_V g$ along the projective vector field V by h and the corresponding (1,1)-tensor field by H such that g(HX, Y) = h(X, Y). Using the commutation formula [17]:

$$(L_V \nabla_X g - \nabla_X L_V g - \nabla_{[V,X]} g)(Y,Z) = -g((L_V \nabla)(X,Y),Z) - g((L_V \nabla)(X,Z),Y)$$

and equation (13) with $\pi = df$ shows

(25)
$$(\nabla_X H) Y = 2(Xf) Y + (Yf) X + g(X, Y)(Df)$$

Now, Lie differentiating the η -Einstein condition (6) along the projective vector field V and using the integrability condition (15) with m = 2n + 1 we get

(26)
$$-2ng(\nabla_X Df, Y) = a(L_V g)(X, Y) + b[(L_V \eta)(X)\eta(Y) + \eta(X)(L_V \eta)Y].$$

Substituting ξ for Y in the above equation and noting $g(\nabla_X Df, Y) = g(\nabla_Y Df, X)$ (which follows from the Poincare lemma: $d^2 = 0$) we get

(27)
$$-2ng(\nabla_{\xi}Df,X) = ah(X,\xi) + b[(L_V\eta)X + (L_V\eta)(\xi)\eta(X)].$$

Next, Lie differentiating formula (5) along V and using integrability condition (14) we have

(28)
$$g(\nabla_X Df, \xi)\xi - g(\nabla_\xi Df, \xi)X + R(X, L_V\xi)\xi + R(X, \xi)L_V\xi$$
$$= -(L_V\eta)(X)\xi - \eta(X)L_V\xi.$$

Taking its inner product with ξ and using formula (5) we get

(29)
$$g(\nabla_{\xi}Df, X) - g(\nabla_{\xi}Df, \xi)\eta(X) - g(L_{V}\xi, X)$$
$$= -(L_{V}\eta)(X) + 2(L_{V}\eta)(\xi)\eta(X).$$

Let (e_i) (i = 1, ..., 2n + 1) be a local orthonormal frame on M. Substituting e_i for X in (28), taking inner product with e_i and summing over i we find

$$g(\nabla_{\xi} Df, \xi) = 2g(L_V \xi, \xi).$$

The Lie derivative of $g(\xi,\xi) = 1$ along V yields $h(\xi,\xi) + 2g(L_V\xi,\xi) = 0$. Consequently,

(30) $g(\nabla_{\xi} Df, \xi) = -h(\xi, \xi).$

Now, the Lie derivative of the second equation in (1) along V provides

(31)
$$(L_V \eta) X = g(H\xi + L_V \xi, X).$$

The use of (31) in equation (27) and the relation a + b = 2n (which follows from (7)) shows

(32)
$$\nabla_{\xi} Df = -H\xi - \frac{b}{2n} (L_V \xi + (L_V \eta)(\xi)\xi).$$

Further, using (31) and (30) in (29) we find

(33)
$$\nabla_{\xi} Df = -H\xi + (h(\xi,\xi) + 2\eta(L_V\xi))\xi.$$

Comparing the above two equations we obtain

(34)
$$\frac{b}{2n}[L_V\xi - \eta(L_V\xi)\xi] + [h(\xi,\xi) + 2\eta(L_V\xi)]\xi = 0.$$

We consider the cases (i) b = 0 and (ii) $b \neq 0$. For case (i) a = 2n, and (M, g) is Einstein with Einstein constant 2n. So, if (M, g) is complete, then it is compact, and by a result of Nagano [6], is of constant curvature 1. Equations (25) and (26) imply

(35)
$$(\nabla \nabla \nabla f)(X, Y, Z) + 2(Xf)g(Y, Z) + (Yf)g(X, Z) + (Zf)g(X, Y) = 0.$$

Hence, if (M, g) is complete and simply connected, then by a result of Obata [8], it is isometric to a unit sphere.

For case (ii), equation (34) gives

$$L_V \xi = \left[-\frac{2n}{b} h(\xi, \xi) + \left(1 - \frac{4n}{b} \right) \eta(L_V \xi) \right] \xi.$$

Its inner product with ξ gives $\eta(L_V\xi) = -\frac{h(\xi,\xi)}{2}$, and therefore

(36)
$$L_V \xi = -\frac{h(\xi,\xi)}{2}\xi.$$

The use of (31) in conjunction with (36) transforms the equation (26) into

(37)
$$-2n\nabla_X Df = aHX + b[g(H\xi, X)\xi + \eta(X)H\xi - h(\xi, \xi)\eta(X)\xi].$$

We compute -2nR(Y, X)Df through equations (37) and (25), and subsequently contract it with respect to Y, in order to obtain

$$-2nRic(X, Df) = -2naXf + b[(2n+3)(\xi f)\eta(X) - 3Xf + 5g(H\xi, \varphi X) + X(h(\xi, \xi)) - \xi(h(\xi, \xi))\eta(X)].$$

As $b \neq 0$, equation (6) reduces the preceding equation to

(38)
$$(4n+3)(\xi f)\eta(X) - 3Xf + 5g(H\xi,\varphi X) + X(h(\xi,\xi)) - \xi(h(\xi,\xi))\eta(X) = 0.$$

Substituting ξ for X in (38) immediately yields $\xi f = 0$. Differentiating it along ξ and noting the property $\nabla_{\xi}\xi = 0$ (a consequence of (2)) we have $g(\nabla_{\xi}Df, \xi) = 0$. It follows immediately from (30) that $h(\xi, \xi) = 0$. Thus (38) reduces to

(39)
$$3Xf = 5g(H\xi, \varphi X).$$

At this stage, differentiating $h(\xi, \xi) = 0$ and using (25) we find $Xf = g(H\xi, \varphi X)$. Using it back in (39) shows Xf = 0, i.e. f is constant. Thus V becomes affine

Killing, and so $L_V g$ is parallel. By Lemma 4, V is homothetic, and hence, by Lemma 3, becomes Killing. Further, we note from (36) that $L_V \xi = 0$. As f is constant, equation (39) reduces to $H\xi = 0$ and so (31) provides $L_V \eta = 0$. Finally, using this in the Lie derivative of the first equation in (1) and noting that Lie and exterior derivations commute, we obtain $L_V \varphi = 0$. Thus V is an infinitesimal automorphism of the contact metric structure, completing the proof.

5. Concluding remarks

(1) In case (i) of Theorem 2, equation (26) reduces to $L_V g + \nabla \nabla f = 0$, i.e. $L_{V+(1/2)Df}g = 0$. So, $V = -\frac{1}{2}Df$ up to the addition of a Killing vector field.

(2) In cases (ii) of Theorems 1 and 2, V is an infinitesimal strict contact transformation and hence by a result of Blair ([1], p. 72), can be expressed as $V = -\frac{1}{2}\varphi D\psi + \psi\xi$, where ψ is a smooth function on M such that $\xi\psi = 0$. So, it is an open question whether there would be any further restriction on V due to the full condition of its being infinitesimal automorphism.

6. Acknowledgments

The author is thankful to the referee for valuable comments and suggestions. This work is accomplished by the grace of Bhagawan Sri Sathya Sai Baba.

References

- D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, Progress in math. 203, Birkhauser, Basel, 2002.
- [2] C. P. BOYER, K. GALICKI AND P. MATZEU, On η-Einstein Sasakian geometry, Commun. Math. Phys. 262 (2006), 177–208.
- [3] A. GHOSH AND R. SHARMA, Some results on contact metric manifolds, Ann. Glob. Anal. Geom. 15 (1997), 497–507.
- [4] I. HASEGAWA AND T. NAKANE, On Sasakian manifolds with vanishing contact Bochner curvature tensor, Hokkaido Math. J. 9 (1980), 184–189.
- [5] H. MIZUSAWA, On infinitesimal transformations of K-contact and normal contact metric spaces, Sci. Rep. Niigata Univ. Ser. A. 1 (1964), 5–18.
- [6] T. NAGANO, The projective transformation on a space with parallel Ricci tensor, Kodai Math. Sem. Rep. 11 (1959), 131–138.
- [7] M. OBATA, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.
- [8] M. OBATA, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.-Japan Sem. in Differential Geom., Kyoto, Japan, 1965, 101–114.
- [9] M. OKUMURA, Some remarks on space with certain contact structures, Tohoku Math. J. 14 (1962), 135–145.
- [10] M. OKUMURA, On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. J. 14 (1962), 398–412.
- [11] R. SHARMA, Second order parallel tensors on contact manifolds, Alg. Groups Geom. 7 (1990), 145–152.

- [12] R. SHARMA, Addendum to our paper "Conformal motion of contact manifolds with characteristic vector field in the k-nullity distribution", Illinois J. Math. 42 (1998), 673–677.
- [13] R. SHARMA AND D. E. BLAIR, Conformal motion of contact manifolds with characteristic vector field in the k-nullity distribution, Illinois J. Math. 40 (1996), 553–563.
- [14] R. SHARMA AND L. VRANCKEN, Conformal classification of (k, μ) -contact manifolds, Kodai Math. J. **33** (2010), 267–282.
- [15] S. TANNO, Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416–430.
- [16] S. TANNO, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43 (1967), 581–583.
- [17] K. YANO, Integral formulas in Riemannian geometry, Pure and applied mathematics 1, Marcel Dekker, New York, 1970.
- [18] K. YANO AND M. KON, Structures on manifolds, Series in pure mathematics 3, World Scientific, 1984.
- [19] K. YANO AND T. NAGANO, Einstein spaces admitting a one-parameter group of conformal transformations, Annals of Math. 69 (1959), 451–461.

Ramesh Sharma DEPARTMENT OF MATHEMATICS UNIVERSITY OF NEW HAVEN WEST HAVEN, CT 06516 USA E-mail: rsharma@newhaven.edu