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CONFORMAL AND PROJECTIVE CHARACTERIZATIONS

OF AN ODD DIMENSIONAL UNIT SPHERE

Ramesh Sharma

Abstract

We obtain two characterizations of an odd-dimensional unit sphere of dimension

> 3 by proving the following two results: (i) If a complete connected h-Einstein

K-contact manifold M of dimension > 3 admits a conformal vector field V , then either

M is isometric to a unit sphere, or V is an infinitesimal automorphism of M. (ii) If V

was a projective vector field in (i), then the same conclusions would hold, except in the

first case, M would be locally isometric to a unit sphere.

1. Introduction

It is known (Yano [17]) that an m-dimensional Riemannian manifold ðM; gÞ

admitting a maximal, i.e. an
ðmþ 1Þðmþ 2Þ

2
-parameter group of conformal trans-

formations is conformally flat. In [9], Okumura showed that a conformally flat
Sasakian manifold has constant curvature 1. This result holds more generally
on a K-contact manifold, as shown by Tanno [16]. Thus the existence of a
maximal conformal group places a severe restriction on Sasakian (more generally,
K-contact) manifolds, and so it would be interesting to see the e¤ect of a single
1-parameter conformal group generated by a conformal vector field on those
manifolds. This was accomplished by Okumura in [10], who proved that a non-
Killing conformal vector field on a Sasakian manifold M of dimension > 3 is
special concircular and hence if, in addition, M is complete and connected then
it is isometric to a unit sphere. The proof of the last part of this result uses
Obata’s theorem ([7]): A complete and connected Riemannian manifold M of
dimension > 1 admits a non-trivial solution r of the system of partial di¤erential

equations ‘‘r ¼ �c2rg if and only if M is isometric to a sphere of radius
1

c
.

Conformal vector fields on 3-dimensional Sasakian manifolds were studied by
Sharma and Blair [13] and Sharma [12] using certain conditions on the scalar
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curvature. Okumura’s result motivates us to examine the e¤ect of a conformal
vector field on K-contact manifolds, which seems to be a formidable task. On
the other hand, we note the following result of Yano and Nagano [19]: A
complete Einstein manifold admitting a complete non-homothetic conformal
vector field is isometric to a round sphere. Inspired by the aforementioned
results, we study a conformal vector field on a class of K-contact manifolds that
are h-Einstein (a generalization of Einstein condition on K-contact manifold), and
prove the following result.

Theorem 1. If a complete connected h-Einstein K-contact manifold M of
dimension > 3 admits a conformal vector field V , then either (i) M is isometric to
a unit sphere, or (ii) V is an infinitesimal automorphism of the contact metric
structure on M.

This result provides the following characterization of a unit odd-dimensional
sphere.

Corollary 1. Among all complete simply connected h-Einstein K-contact
manifolds of dimension > 3, only the unit sphere admits a non-isometric conformal
vector field.

Remark 1. An example of an h-Einstein K-contact manifold is the Sasakian
space form, i.e. a Sasakian manifold with constant j-sectional curvature, and
which is known to be h-Einstein. Theorem 1 generalizes and improves the
corresponding result of Okumura [10]. In this context, we also point out the
following generalization of Okumura’s result by Mizusawa [5]: A conformal
vector field on a ð2nþ 1Þ-dimensional ðn > 1Þ Sasakian manifold of constant
scalar curvature0 2nð2nþ 1Þ is Killing.

Next, we recall [17] that an m-dimensional Riemannian manifold ðM; gÞ admit-
ting a maximal, i.e. mðmþ 2Þ-parameter group of projective transformations is
projectively flat, and hence has constant curvature. A Sasakian (more generally,
K-contact) manifold of constant curvature has constant curvature 1. In [10],
Okumura proved that a projective vector field on a non-Einstein h-Einstein
Sasakian manifold is Killing and an infinitesimal strict contact transformation.
Generalizing and improving this result we prove the following result.

Theorem 2. Let V be a projective vector field on a connected h-Einstein
K-contact manifold M of dimension > 3. Then, either (i) M is Einstein, or (ii) V
is an infinitesimal automorphism of the contact metric structure on M. In case (i),
if M is complete then it has constant curvature 1, and if it is also simply connected
then it is isometric to a unit sphere.

This result provides the following characterization of a unit odd-dimensional
sphere.
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Corollary 2. Among all complete simply connected h-Einstein K-contact
manifolds of dimension > 3, only the unit sphere admits a non-isometric projective
vector field.

Remark 2. For dimension 3, a K-contact manifold is Sasakian for which we
have the following result of Ghosh and Sharma [3]: If V is a projective vector
field on a 3-dimensional Sasakian manifold M, then either V is Killing or M has
constant curvature 1.

2. A Brief review of contact geometry

A ð2nþ 1Þ-dimensional smooth manifold is said to be contact if it has a
global 1-form h such that h5ðdhÞn 0 0 on M. For a contact 1-form h there
exists a unique vector field x such that dhðx;X Þ ¼ 0 and hðxÞ ¼ 1. Polarizing dh
on the contact subbundle h ¼ 0, we obtain a Riemannian metric g and a ð1; 1Þ-
tensor field j such that

dhðX ;YÞ ¼ gðX ; jYÞ; hðXÞ ¼ gðX ; xÞ; j2 ¼ �I þ hn x:ð1Þ

g is called an associated metric of h and ðj; h; x; gÞ a contact metric structure.
A contact metric structure is said to be K-contact if x is Killing with respect to
g. The contact metric structure on M is said to be Sasakian if the almost
Kaehler structure on the cone manifold ðM � Rþ; r2gþ dr2Þ over M, is Kaehler.
Sasakian manifolds are K-contact and K-contact 3-manifolds are Sasakian. We
have the following formulas for a K-contact manifold.

‘Xx ¼ �jXð2Þ
ð‘XjÞY ¼ Rðx;X ÞYð3Þ
RicðX ; xÞ ¼ 2nhðXÞð4Þ

RðX ; xÞx ¼ X � hðX Þxð5Þ
where ‘, R, and Ric denote respectively, the Riemannian connection, curvature
tensor, and Ricci tensor of g. For details we refer to the standard monograph of
Blair [1].

A vector field V on a contact metric manifold M is said to be an infin-
itesimal contact transformation if £Vh ¼ sh for some smooth function s on M.
In particular, for s ¼ 0, V is called an infinitesimal strict contact transformation.
V is said to be an infinitesimal automorphism of the contact metric structure on
M if it leaves all the structure tensors h, x, g, j invariant (see Tanno [15]).

A contact metric manifold M is said to be h-Einstein in the wider sense, if
the Ricci tensor can be written as

RicðX ;YÞ ¼ agðX ;Y Þ þ bhðX ÞhðYÞð6Þ

for some smooth functions a and b on M. It is well-known (Yano and Kon
[18]) that a and b are constant if M is K-contact, and has dimension greater
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than 3. For n > 1, it follows through a straightforward computation that

a ¼ r

2n
� 1; b ¼ 2nþ 1� r

2n
ð7Þ

Boyer, Galicki and Matzeu [2] have proved the existence of h-Einstein Sasakian
structures on many di¤erent compact manifolds, and have shown the relation
between a K-contact h-Einstein manifold and an Einstein-Weyl structure. Moti-
vated by equations (6) and (7), Hasegawa and Nakane [4] studied h-Einstein
tensor S defined on a Sasakian (more generally, K-contact) manifold by

S ¼ Ric� r

2n
� 1

� �
g� 2nþ 1� r

2n

� �
hn h

where r is the scalar curvature (not necessarily constant). Thus a K-contact
manifold is h-Einstein if and only if S ¼ 0. A straightforward computation
shows

jSj2 ¼ jRic0j2 � 1

2nð2nþ 1Þ ½r� 2nð2nþ 1Þ�2

where Ric0 denotes the trace-free Ricci tensor Ric� r

2nþ 1
g. The above equa-

tion implies jSja jRic0j, equality holds if and only if r ¼ 2nð2nþ 1Þ.

3. Conformal and projective vector fields

A vector field V on an m-dimensional Riemannian manifold ðM; gÞ is said to
be a conformal vector field if it satisfies

LVg ¼ 2rgð8Þ

for a smooth function r on M, and where LV denotes the Lie derivative operator
along V . In particular, the conformal vector field V is homothetic (respectively,
Killing) when r is constant (respectively, zero). Let us denote the gradient vector
field of r by Dr, and the Laplacian of r by Dr ¼ Div:Dr ¼ gij‘i‘jr. Then we
have the following integrability conditions for the conformal vector field V (Yano
[17]):

ðLV‘ÞðX ;Y Þ ¼ ðXrÞY þ ðYrÞX � gðX ;YÞDr;ð9Þ

ðLVRÞðX ;Y ;ZÞ ¼ gð‘XDr;ZÞY � gð‘YDr;ZÞXð10Þ
þ gðX ;ZÞ‘YDr� gðY ;ZÞ‘XDr;

ðLVRicÞðX ;YÞ ¼ �ðm� 2Þgð‘XDr;YÞ � ðDrÞgðX ;YÞ;ð11Þ
LVr ¼ �2ðm� 1ÞDr� 2rrð12Þ

where r denotes the scalar curvature of g.
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A vector field V on an n-dimensional Riemannian manifold ðM; gÞ is said
to be a projective vector field if there is a 1-form p on M such that

ðLV‘ÞðX ;Y Þ ¼ pðX ÞY þ pðYÞX :ð13Þ

For p ¼ 0, V becomes an a‰ne Killing vector field. In a local coordinate
system, equation (13) becomes

LVG
k
ij ¼ pid

k
j þ pjd

k
i :

Its contraction at k and j shows that p ¼ df for a smooth function f on M.
The projective vector field V satisfies the following integrability conditions:

ðLVRÞðX ;Y ;ZÞ ¼ gð‘XDf ;ZÞY � gð‘YDf ;ZÞX ;ð14Þ
ðLVRicÞðX ;YÞ ¼ �ðm� 1Þgð‘XDf ;YÞ:ð15Þ

4. Proofs of the results

We need the following lemmas.

Lemma 1 ([10], [14]). A conformal vector field V on a contact metric
manifold, with associated conformal function r, has the following properties:
(i) ðLVhÞðxÞ ¼ r and (ii) hðLVxÞ ¼ �r.

Lemma 2 ([14]). Let V be a conformal vector field on a contact metric mani-
fold M. If V is an infinitesimal contact transformation, then it is an infinitesimal
automorphism of M.

Lemma 3 ([12]). A homothetic vector field on a K-contact manifold is Killing.

Lemma 4 ([11]). A second order symmetric parallel tensor on a K-contact
manifold ðM; gÞ is a constant multiple of g.

Proof of Theorem 1. Here m ¼ 2nþ 1. Taking the Lie derivative of (6)
with a and b given by (7), along the conformal vector field V , and using (11)
gives the following equation

ð1� 2nÞgð‘XDr;YÞ � ðDrÞgðX ;Y Þð16Þ

¼ 2
r

2n
� 1

� �
rgðX ;YÞ

þ 2nþ 1� r

2n

� �
½ðLVhÞðXÞhðY Þ þ hðX ÞðLVhÞðY Þ�:

Now Lie di¤erentiating the second equation in (1) along V we have

ðLVhÞX ¼ 2rhðX Þ þ gðLVx;XÞ:ð17Þ
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As r is constant, we have from (12) that

Dr ¼ � r

2n
r:ð18Þ

The use of equations (17) and (18) in (16) provides

‘XDr ¼ arX þ b½gðU ;XÞxþ 4rhðX Þxþ hðX ÞU �:ð19Þ

where we have set U ¼ LVx, and

a ¼ r� 4n

2nð1� 2nÞ ; b ¼ 2nð2nþ 1Þ � r

2nð1� 2nÞ :ð20Þ

Now, using (19) we compute RðX ;YÞDr and find that

RðX ;Y ÞDr ¼ aððXrÞY � ðYrÞX Þ þ b½ðgð‘XU ;YÞ � gð‘YU ;X ÞÞxð21Þ
þ gðU ;X ÞjY � gðU ;YÞjX þ 4ððXrÞhðYÞ � ðYrÞhðXÞÞx
þ 8rgðX ; jY Þxþ 4rðhðX ÞjY � hðYÞjXÞ
þ 2gðX ; jY ÞU þ hðY Þ‘XU � hðXÞ‘YU �:

Substituting x for Y in (21), taking inner product with x, and using (5) yields

0 ¼ ðaþ 1ÞðXr� ðxrÞhðXÞÞ þ b½2gð‘XU ; xÞð22Þ
� gð‘xU ;XÞ þ 4Xr� 4ðxrÞhðXÞ � hðXÞgð‘xU ; xÞ�:

Recalling the commutation formula [17]:

LV‘XY � ‘XLVY � ‘½V ;X �Y ¼ ðLV‘ÞðX ;YÞ;

substituting X ¼ Y ¼ x and using (9) we find

‘xU ¼ jU � 2ðxrÞxþDr:ð23Þ
At this point, we notice from Lemma 1, that gðU ; xÞ ¼ gðLVx; xÞ ¼ �r. Di¤er-
entiating it and using (2) gives gð‘XU ; xÞ ¼ gðU ; jX Þ � Xr. Using this in con-
junction with (23) we obtain

ðaþ b þ 1ÞðDr� ðxrÞxÞ � 3bðjUÞ ¼ 0:ð24Þ

But we see from (20) that aþ b þ 1 ¼ 0. Hence equation (24) implies that,
either (i) b ¼ 0, or (ii) U ¼ hðUÞx. In case (i) ðM; gÞ is Einstein, i.e. Ric ¼ 2ng,
and (19) reduces to ‘‘r ¼ �rg. So, if ðM; gÞ is complete and connected, then
by Obata’s theorem mentioned in Section 1, ðM; gÞ is isometric to a unit sphere.

For case (ii), applying Lemma 1 provides LVx ¼ �rx. Lie di¤erentiating
hðX Þ ¼ gðx;XÞ along V and using the conformal Killing equation (8) we obtain
LVh ¼ rh. Thus V is an infinitesimal contact transformation. As V is also
conformal, by Lemma 2 we conclude that V is an infinitesimal automorphism of
the contact metric structure, completing the proof.
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Remark. In case (i) of Theorem 1, as shown in the proof, we see that
LVþDrg ¼ LVgþ 2‘‘r ¼ 2rg� 2rg ¼ 0. So V ¼ �Drþ K , where K is a Kill-
ing vector field.

Proof of Theorem 2. Let us denote the strain tensor LVg along the pro-
jective vector field V by h and the corresponding ð1; 1Þ-tensor field by H such
that gðHX ;YÞ ¼ hðX ;YÞ. Using the commutation formula [17]:

ðLV‘Xg� ‘XLVg� ‘½V ;X �gÞðY ;ZÞ ¼ �gððLV‘ÞðX ;YÞ;ZÞ � gððLV‘ÞðX ;ZÞ;YÞ
and equation (13) with p ¼ df shows

ð‘XHÞY ¼ 2ðXf ÞY þ ðYf ÞX þ gðX ;YÞðDf Þ:ð25Þ
Now, Lie di¤erentiating the h-Einstein condition (6) along the projective vector
field V and using the integrability condition (15) with m ¼ 2nþ 1 we get

�2ngð‘XDf ;Y Þ ¼ aðLVgÞðX ;Y Þ þ b½ðLVhÞðXÞhðY Þ þ hðX ÞðLVhÞY �:ð26Þ
Substituting x for Y in the above equation and noting gð‘XDf ;YÞ ¼ gð‘YDf ;X Þ
(which follows from the Poincare lemma: d 2 ¼ 0) we get

�2ngð‘xDf ;XÞ ¼ ahðX ; xÞ þ b½ðLVhÞX þ ðLVhÞðxÞhðX Þ�:ð27Þ
Next, Lie di¤erentiating formula (5) along V and using integrability condition
(14) we have

gð‘XDf ; xÞx� gð‘xDf ; xÞX þ RðX ;LVxÞxþ RðX ; xÞLVxð28Þ
¼ �ðLVhÞðXÞx� hðXÞLVx:

Taking its inner product with x and using formula (5) we get

gð‘xDf ;XÞ � gð‘xDf ; xÞhðXÞ � gðLVx;XÞð29Þ
¼ �ðLVhÞðXÞ þ 2ðLVhÞðxÞhðXÞ:

Let ðeiÞ ði ¼ 1; . . . ; 2nþ 1Þ be a local orthonormal frame on M. Substituting ei
for X in (28), taking inner product with ei and summing over i we find

gð‘xDf ; xÞ ¼ 2gðLVx; xÞ:
The Lie derivative of gðx; xÞ ¼ 1 along V yields hðx; xÞ þ 2gðLVx; xÞ ¼ 0. Con-
sequently,

gð‘xDf ; xÞ ¼ �hðx; xÞ:ð30Þ
Now, the Lie derivative of the second equation in (1) along V provides

ðLVhÞX ¼ gðHxþ LVx;X Þ:ð31Þ
The use of (31) in equation (27) and the relation aþ b ¼ 2n (which follows from
(7)) shows

‘xDf ¼ �Hx� b

2n
ðLVxþ ðLVhÞðxÞxÞ:ð32Þ

166 ramesh sharma



Further, using (31) and (30) in (29) we find

‘xDf ¼ �Hxþ ðhðx; xÞ þ 2hðLVxÞÞx:ð33Þ
Comparing the above two equations we obtain

b

2n
½LVx� hðLVxÞx� þ ½hðx; xÞ þ 2hðLVxÞ�x ¼ 0:ð34Þ

We consider the cases (i) b ¼ 0 and (ii) b0 0. For case (i) a ¼ 2n, and ðM; gÞ is
Einstein with Einstein constant 2n. So, if ðM; gÞ is complete, then it is compact,
and by a result of Nagano [6], is of constant curvature 1. Equations (25) and
(26) imply

ð‘‘‘f ÞðX ;Y ;ZÞ þ 2ðXf ÞgðY ;ZÞ þ ðYf ÞgðX ;ZÞ þ ðZf ÞgðX ;Y Þ ¼ 0:ð35Þ
Hence, if ðM; gÞ is complete and simply connected, then by a result of Obata [8],
it is isometric to a unit sphere.

For case (ii), equation (34) gives

LVx ¼ � 2n

b
hðx; xÞ þ 1� 4n

b

� �
hðLVxÞ

� �
x:

Its inner product with x gives hðLVxÞ ¼ � hðx; xÞ
2

, and therefore

LVx ¼ � hðx; xÞ
2

x:ð36Þ

The use of (31) in conjunction with (36) transforms the equation (26) into

�2n‘XDf ¼ aHX þ b½gðHx;X Þxþ hðX ÞHx� hðx; xÞhðX Þx�:ð37Þ
We compute �2nRðY ;XÞDf through equations (37) and (25), and subsequently
contract it with respect to Y , in order to obtain

�2nRicðX ;Df Þ ¼ �2naXf þ b½ð2nþ 3Þðx f ÞhðX Þ � 3Xf

þ 5gðHx; jXÞ þ Xðhðx; xÞÞ � xðhðx; xÞÞhðXÞ�:

As b0 0, equation (6) reduces the preceding equation to

ð4nþ 3Þðx f ÞhðXÞ � 3Xf þ 5gðHx; jXÞð38Þ
þ Xðhðx; xÞÞ � xðhðx; xÞÞhðXÞ ¼ 0:

Substituting x for X in (38) immediately yields x f ¼ 0. Di¤erentiating it along x
and noting the property ‘xx ¼ 0 (a consequence of (2)) we have gð‘xDf ; xÞ ¼ 0.
It follows immediately from (30) that hðx; xÞ ¼ 0. Thus (38) reduces to

3Xf ¼ 5gðHx; jXÞ:ð39Þ
At this stage, di¤erentiating hðx; xÞ ¼ 0 and using (25) we find Xf ¼ gðHx; jX Þ.
Using it back in (39) shows Xf ¼ 0, i.e. f is constant. Thus V becomes a‰ne
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Killing, and so LVg is parallel. By Lemma 4, V is homothetic, and hence,
by Lemma 3, becomes Killing. Further, we note from (36) that LVx ¼ 0. As
f is constant, equation (39) reduces to Hx ¼ 0 and so (31) provides LVh ¼ 0.
Finally, using this in the Lie derivative of the first equation in (1) and noting
that Lie and exterior derivations commute, we obtain LVj ¼ 0. Thus V is an
infinitesimal automorphism of the contact metric structure, completing the proof.

5. Concluding remarks

(1) In case (i) of Theorem 2, equation (26) reduces to LVgþ ‘‘f ¼ 0, i.e.
LVþð1=2ÞDf g ¼ 0. So, V ¼ � 1

2Df up to the addition of a Killing vector field.
(2) In cases (ii) of Theorems 1 and 2, V is an infinitesimal strict contact

transformation and hence by a result of Blair ([1], p. 72), can be expressed as
V ¼ � 1

2 jDcþ cx, where c is a smooth function on M such that xc ¼ 0. So,
it is an open question whether there would be any further restriction on V due
to the full condition of its being infinitesimal automorphism.
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