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CONFORMAL AND PROJECTIVE CHARACTERIZATIONS
OF AN ODD DIMENSIONAL UNIT SPHERE

RAMESH SHARMA

Abstract

We obtain two characterizations of an odd-dimensional unit sphere of dimension
>3 by proving the following two results: (i) If a complete connected #-Einstein
K-contact manifold M of dimension > 3 admits a conformal vector field V', then either
M is isometric to a unit sphere, or V' is an infinitesimal automorphism of M. (i) If V'
was a projective vector field in (i), then the same conclusions would hold, except in the
first case, M would be locally isometric to a unit sphere.

1. Introduction

It is known (Yano [17]) that an m-dimensional Riemannian manifold (M, g)
(m+1)(m+2)
2
formations is conformally flat. In [9], Okumura showed that a conformally flat
Sasakian manifold has constant curvature 1. This result holds more generally
on a K-contact manifold, as shown by Tanno [16]. Thus the existence of a
maximal conformal group places a severe restriction on Sasakian (more generally,
K-contact) manifolds, and so it would be interesting to see the effect of a single
I-parameter conformal group generated by a conformal vector field on those
manifolds. This was accomplished by Okumura in [10], who proved that a non-
Killing conformal vector field on a Sasakian manifold M of dimension > 3 is
special concircular and hence if, in addition, M is complete and connected then
it is isometric to a unit sphere. The proof of the last part of this result uses
Obata’s theorem ([7]): A complete and connected Riemannian manifold M of
dimension > 1 admits a non-trivial solution p of the system of partial differential

admitting a maximal, i.e. an -parameter group of conformal trans-

equations VVp = —c?pg if and only if M is isometric to a sphere of radius —.
c

Conformal vector fields on 3-dimensional Sasakian manifolds were studied by
Sharma and Blair [13] and Sharma [12] using certain conditions on the scalar
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curvature. Okumura’s result motivates us to examine the effect of a conformal
vector field on K-contact manifolds, which seems to be a formidable task. On
the other hand, we note the following result of Yano and Nagano [19]: A
complete Einstein manifold admitting a complete non-homothetic conformal
vector field is isometric to a round sphere. Inspired by the aforementioned
results, we study a conformal vector field on a class of K-contact manifolds that
are #-Einstein (a generalization of Finstein condition on K-contact manifold), and
prove the following result.

THEOREM 1. If a complete connected n-Einstein K-contact manifold M of
dimension > 3 admits a conformal vector field V, then either (1) M is isometric to
a unit sphere, or (i) V is an infinitesimal automorphism of the contact metric
structure on M.

This result provides the following characterization of a unit odd-dimensional
sphere.

COROLLARY 1. Among all complete simply connected n-Einstein K-contact

manifolds of dimension > 3, only the unit sphere admits a non-isometric conformal
vector field.

Remark 1. An example of an #-Einstein K-contact manifold is the Sasakian
space form, i.e. a Sasakian manifold with constant g-sectional curvature, and
which is known to be #-Einstein. Theorem 1 generalizes and improves the
corresponding result of Okumura [10]. In this context, we also point out the
following generalization of Okumura’s result by Mizusawa [5]: A conformal
vector field on a (2n+ 1)-dimensional (n > 1) Sasakian manifold of constant
scalar curvature # 2n(2n + 1) is Killing.

Next, we recall [17] that an m-dimensional Riemannian manifold (M,g) admit-
ting a maximal, i.e. m(m + 2)-parameter group of projective transformations is
projectively flat, and hence has constant curvature. A Sasakian (more generally,
K-contact) manifold of constant curvature has constant curvature 1. In [10],
Okumura proved that a projective vector field on a non-Einstein #-Einstein
Sasakian manifold is Killing and an infinitesimal strict contact transformation.
Generalizing and improving this result we prove the following result.

THEOREM 2. Let V be a projective vector field on a connected n-Einstein
K-contact manifold M of dimension > 3. Then, either (1) M is Einstein, or (ii) V
is an infinitesimal automorphism of the contact metric structure on M. In case (i),
if M is complete then it has constant curvature 1, and if it is also simply connected
then it is isometric to a unit sphere.

This result provides the following characterization of a unit odd-dimensional
sphere.
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COROLLARY 2. Among all complete simply connected n-Einstein K-contact
manifolds of dimension > 3, only the unit sphere admits a non-isometric projective
vector field.

Remark 2. For dimension 3, a K-contact manifold is Sasakian for which we
have the following result of Ghosh and Sharma [3]: If V' is a projective vector
field on a 3-dimensional Sasakian manifold M, then either V' is Killing or M has
constant curvature 1.

2. A Brief review of contact geometry

A (2n+ 1)-dimensional smooth manifold is said to be contact if it has a
global 1-form # such that # A (dn)" #0 on M. For a contact 1-form 7 there
exists a unique vector field ¢ such that dn(¢, X) =0 and #(&) = 1. Polarizing dy
on the contact subbundle # = 0, we obtain a Riemannian metric g and a (1,1)-
tensor field ¢ such that

(1) dp(X,Y)=g(X,pY), n(X)=9(X &), ¢*=-I+n1®L

g is called an associated metric of # and (¢,7,&,¢g) a contact metric structure.
A contact metric structure is said to be K-contact if ¢ is Killing with respect to
g. The contact metric structure on M is said to be Sasakian if the almost
Kachler structure on the cone manifold (M x R*,r?g + dr?) over M, is Kaehler.
Sasakian manifolds are K-contact and K-contact 3-manifolds are Sasakian. We
have the following formulas for a K-contact manifold.

(2) Vxé=—pX

3) (Vxp)Y = R X)Y
(4) Ric(X,¢) = 2np(X)
(5) R(X,&)E=X —n(X)¢

where V, R, and Ric denote respectively, the Riemannian connection, curvature
tensor, and Ricci tensor of g. For details we refer to the standard monograph of
Blair [1].

A vector field V' on a contact metric manifold M is said to be an infin-
itesimal contact transformation if £y = g5 for some smooth function ¢ on M.
In particular, for ¢ = 0, V' is called an infinitesimal strict contact transformation.
V is said to be an infinitesimal automorphism of the contact metric structure on
M if it leaves all the structure tensors #, £, g, ¢ invariant (see Tanno [15]).

A contact metric manifold M is said to be n-Einstein in the wider sense, if
the Ricci tensor can be written as

(6) Ric(X,Y)=ag(X,Y)+ bp(X)n(Y)

for some smooth functions ¢ and b on M. It is well-known (Yano and Kon
[18]) that @ and b are constant if M is K-contact, and has dimension greater
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than 3. For n > 1, it follows through a straightforward computation that

r r
(7) a=5 I, b=2n+1 ™

Boyer, Galicki and Matzeu [2] have proved the existence of #-Einstein Sasakian
structures on many different compact manifolds, and have shown the relation
between a K-contact #-Einstein manifold and an Einstein-Weyl structure. Moti-
vated by equations (6) and (7), Hasegawa and Nakane [4] studied #-Einstein
tensor S defined on a Sasakian (more generally, K-contact) manifold by

) r r
SRlc—<2n—l>g—<2n+l—2n)iy®17

where r is the scalar curvature (not necessarily constant). Thus a K-contact
manifold is #-Einstein if and only if S=0. A straightforward computation
shows

1

SI2 — (Ric%1?
ISF = 1Ric’ | = 5 1y

[r—2n(2n 4 1))?

where Ric® denotes the trace-free Ricci tensor Ric —

2n:— 19 The above equa-
tion implies |S| < |Ric®|, equality holds if and only if r = 2n(2n + 1).

3. Conformal and projective vector fields

A vector field V' on an m-dimensional Riemannian manifold (M, g) is said to
be a conformal vector field if it satisfies

(8) Lyg =2pg

for a smooth function p on M, and where Ly denotes the Lie derivative operator
along V. In particular, the conformal vector field V' is homothetic (respectively,
Killing) when p is constant (respectively, zero). Let us denote the gradient vector
field of p by Dp, and the Laplacian of p by Ap = Div.Dp = g”V;V;p. Then we
have the following integrability conditions for the conformal vector field ¥ (Yano

[17]):

) (LyV)(X,Y) = (Xp)Y + (Yp)X — g(X, Y)Dp,
(10) (LyR)(X,Y,Z) =g(VxDp, Z)Y — g(VyDp, Z)X

+9(X,Z)VyDp — g(Y,Z)VxDp,
(11) (LyRic)(X,Y) = —(m—2)g(VxDp, Y) — (Ap)g(X,Y),
(12) Lyr=-2(m—1)Ap—2rp

where r denotes the scalar curvature of g.
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A vector field ¥V on an n-dimensional Riemannian manifold (M,g) is said
to be a projective vector field if there is a 1-form 7= on M such that

(13) (LyV)(X,Y) = n(X)Y +n(Y)X.

For 7 =0, V becomes an affine Killing vector field. In a local coordinate
system, equation (13) becomes

L[/l—‘ljC = 7'[1'5](( —+ ﬂj&l{(.

Its contraction at k and j shows that 7 = df for a smooth function f on M.
The projective vector field V satisfies the following integrability conditions:

(14) (LyR)(X,Y,Z) = g(VxDf,Z)Y — g(VyDf, Z)X,
(15) (LyRic)(X, Y) = —(m — 1)g(VxDf, Y).

4. Proofs of the results

We need the following lemmas.

Lemma 1 ([10], [14]). A conformal wvector field V on a contact metric
manifold, with associated conformal function p, has the following properties:

(i) (Lyn)(&) =p and (ii) n(Ly&) = —p.

LemMA 2 ([14]). Let V be a conformal vector field on a contact metric mani-
fold M. If V is an infinitesimal contact transformation, then it is an infinitesimal
automorphism of M.

Lemma 3 ([12]). A4 homothetic vector field on a K-contact manifold is Killing.

Lemma 4 ([11]). A second order symmetric parallel tensor on a K-contact
manifold (M,g) is a constant multiple of ¢.

Proof of Theorem 1. Here m =2n+ 1. Taking the Lie derivative of (6)

with @ and b given by (7), along the conformal vector field V/, and using (11)
gives the following equation

(16) (1=2n)g(VxDp,Y) — (Ap)g(X, Y)
= 2(% - l)pg(X, Y)

N <2n . 2—) (Lo (X)n(Y) + n(X) (Lym) (V).

Now Lie differentiating the second equation in (1) along 7 we have

(17) (Lym)X =2pn(X) +g(Ly¢, X).
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As r is constant, we have from (12) that

r
1 Ap = —=—p.
(18) p==5P

The use of equations (17) and (18) in (16) provides

(19) VxDp = apX + Blg(U, X )& + 4pn(X)E + n(X)U].
where we have set U = Ly¢&, and

_ r—d4n _2n(2n4-1) —r
(20) T —2n) P T T 20(1 —2n)

Now, using (19) we compute R(X,Y)Dp and find that

21 RX,Y)Dp =a((Xp)Y — (Yp)X) + Bl(g(VxU, Y) —g(VyU, X))<
+9(U, X)pY —g(U, Y)pX +4((Xp)n(Y) = (Yp)n(X))<
+8pg(X, 0 Y)E +4p(n(X)pY —n(Y)pX)
+29(X,0Y)U +n(Y)VxU — p(X)VyU].

Substituting ¢ for Y in (21), taking inner product with £, and using (5) yields

(22) 0= (x4 1)(Xp = (Ep)n(X)) + B29(Vx U, &)

—9(VeU, X) 4+ 4Xp — 4(p)n(X) — n(X)g(VeU, )]
Recalling the commutation formula [17]:

LyVyY —VxLyY — Vip xY = (LyV)(X, Y),
substituting X = Y = ¢ and using (9) we find
(23) VeU = oU —2(Ep)E + Dp.

At this point, we notice from Lemma 1, that g(U,¢&) = g(Ly ¢, &) = —p.  Differ-
entiating it and using (2) gives g(Vx U, &) = g(U,9pX) — Xp. Using this in con-
junction with (23) we obtain

(24) (o0 + B+ 1)(Dp — (¢p)¢) — 3B(pU) = 0.

But we see from (20) that «+f+1=0. Hence equation (24) implies that,
either (i) f =0, or (ii) U =n(U)¢ In case (i) (M,g) is Einstein, i.e. Ric = 2ng,
and (19) reduces to VVp = —pg. So, if (M,g) is complete and connected, then
by Obata’s theorem mentioned in Section 1, (M, g) is isometric to a unit sphere.

For case (ii), applying Lemma 1 provides L, ¢ = —pé&. Lie differentiating
n(X) =g(& X) along V' and using the conformal Killing equation (8) we obtain
Lyn=py. Thus V is an infinitesimal contact transformation. As FV is also
conformal, by Lemma 2 we conclude that 7 is an infinitesimal automorphism of
the contact metric structure, completing the proof.
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Remark. In case (i) of Theorem 1, as shown in the proof, we see that
Lyippg=Lyg+2VVp=2pg—2pg=0. So V =-Dp+K, where K is a Kill-
ing vector field.

Proof of Theorem 2. Let us denote the strain tensor Lpg along the pro-
jective vector field ¥V by / and the corresponding (1, 1)-tensor field by H such
that g(HX,Y)=h(X,Y). Using the commutation formula [17]:

(LVVXg - VXLVg - V[V,X]g)(yv Z) = _g((LVV)(Xv Y)7Z) - g((LVV)(X’ Z)? Y)
and equation (13) with 7 = df shows
(25) (VxH)Y =2(X[)Y + (Y/)X + g(X, Y)(Df).

Now, Lie differentiating the #-Einstein condition (6) along the projective vector
field 7 and using the integrability condition (15) with m =2n+1 we get

(26) —2ng(VxDf,Y)=a(Lyg)(X,Y)+b[(Lyn)(X)n(Y) +n(X)(Lyn)Y].

Substituting ¢ for Y in the above equation and noting g(VyDf, Y) = g(VyDf, X)
(which follows from the Poincare lemma: d> =0) we get

(27) —2ng(VeDf, X) = ah(X, &) + b[(Lym) X + (Lyn)(E)n(X)].

Next, Lie differentiating formula (5) along V' and using integrability condition
(14) we have

(28) 9(VxDf,&)E — g(VeDf . E)X + R(X, Ly &) + R(X, {)Ly <
= —(Lyn)(X)E —n(X)Ly<.
Taking its inner product with ¢ and using formula (5) we get
(29) g(VeDf, X) — g(VeDf , On(X) — g(Ly, X)
= —(Lyn)(X) + 2(Lyn)(S)n(X).

Let (¢;) (i=1,...,2n+1) be a local orthonormal frame on M. Substituting e;
for X in (28), taking inner product with ¢; and summing over i we find

g(VeDf &) = 29(Ly <, C).

The Lie derivative of g(&,&) =1 along V yields h(&, &) +2g(Ly&,E) =0. Con-
sequently,

(30) g(VeDf &) = =h(&, Q).
Now, the Lie derivative of the second equation in (1) along V' provides
(31) (Lym)X = g(HS + LyE, X).

The use of (31) in equation (27) and the relation @ + b = 2n (which follows from
(7)) shows

(32) VeDf = —HE — % (L& + (Lyn)(€)E).
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Further, using (31) and (30) in (29) we find
(33) VeDf = —HS + (h(&, ) + 2n(Lv <))<

Comparing the above two equations we obtain

b
(34) o [Ly€ —n(LyS)<] + [A(E, <) + 2n(LyS)]E = 0.
We consider the cases (i) b =0 and (ii) » # 0. For case (i) a = 2n, and (M, g) is
Einstein with Einstein constant 2n.  So, if (M, g) is complete, then it is compact,
and by a result of Nagano [6], is of constant curvature 1. Equations (25) and
(26) imply

Hence, if (M,g) is complete and simply connected, then by a result of Obata [8],
it is isometric to a unit sphere.
For case (ii), equation (34) gives

2 4
Lyé = [—fh(é, &)+ <1 - {)n(Lvé)] 3
I | . . __h Q)
s inner product with & gives n(Ly¢) = — B and therefore
(36) Lye= -8

2
The use of (31) in conjunction with (36) transforms the equation (26) into
(37) —2nVyDf = aHX + b[g(HE, X)S 4+ n(X)HE — h(E, On(X)<].

We compute —2nR(Y, X)Df through equations (37) and (25), and subsequently
contract it with respect to Y, in order to obtain

—2nRic(X,Df) = —2naXf + b[(2n + 3)(Ef)n(X) — 3Xf
+59(HE, 0X) + X (h(E,€)) — S(h(E, &)n(X)].
As b #0, equation (6) reduces the preceding equation to
(38) (4n +3)(E/In(X) = 3Xf + 59(HE, 9 X)
+ X (h(&,€)) — <(h(E, &))n(X) = 0.

Substituting ¢ for X in (38) immediately yields £f = 0. Differentiating it along &
and noting the property V:£ =0 (a consequence of (2)) we have g(V:Df,&) = 0.
It follows immediately from (30) that A(&, &) =0. Thus (38) reduces to

(39) 3Xf = 5g(HE, pX).

At this stage, differentiating (&, &) = 0 and using (25) we find Xf' = g(HE, ¢X).
Using it back in (39) shows Xf =0, i.e. f is constant. Thus V" becomes affine
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Killing, and so Lypg is parallel. By Lemma 4, V' is homothetic, and hence,
by Lemma 3, becomes Killing. Further, we note from (36) that Ly ¢ =0. As
f is constant, equation (39) reduces to HE =0 and so (31) provides Lyn = 0.
Finally, using this in the Lie derivative of the first equation in (1) and noting
that Lie and exterior derivations commute, we obtain Ly =0. Thus V is an
infinitesimal automorphism of the contact metric structure, completing the proof.

5. Concluding remarks

(1) In case (i) of Theorem 2, equation (26) reduces to Lyg+ VVf =0, ie.
Ly .qaprg=0. So, V= —%Df up to the addition of a Killing vector field.

(2) In cases (ii) of Theorems 1 and 2, V' is an infinitesimal strict contact
transformation and hence by a result of Blair ([1], p. 72), can be expressed as
V= —%(pr + ¢, where Y is a smooth function on M such that &)y =0. So,
it is an open question whether there would be any further restriction on V' due
to the full condition of its being infinitesimal automorphism.
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