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THE GAMMA FILTRATIONS OF K-THEORY OF COMPLETE
FLAG VARIETIES
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Abstract

Let G be a compact Lie group and 7 its maximal torus. In this paper, we try to
compute gr;(G/ T) the graded ring associated with the gamma filtration of the complex
K-theory K°(G/T). We use the Chow rings of corresponding versal flag varieties.

1. Introduction

Let p be a prime number. Let K,f)p(X ) be the complex K-theory localized
at p for a topological space X. There are two typical filtrations for KIODP(X )s
the topological filtration defined by Atiyah [2] and the p-filtration defined by
Grothendieck [5]. Let us write by gr;,,(X) and gr;(X) the associated graded
rings for these filtrations. (Also see Chapter 15 in the book [33] by Totaro.)
Let G and T be a connected compact Lie group and its maximal torus. Then
9rpy(G/T) = H*(G/T),. However when H*(G) has p-torsion, it is not iso-
morphic to gr;(G/T). In this paper, we try to compute gr;(G/T).

To study the above (topological) y-filtration, we use the corresponding
algebraic y-filtration. Given a field k& with ch(k) =0, let Gy and T} be a split
reductive group and a split maximal torus over the field k, corresponding to G
and 7. Let By be the Borel subgroup containing 7. Let G be a Gy-torsor.
Then F = G/By is a twisted form of the flag variety Gi/By. Hence we can
consider the y-filtration and its graded ring gr; (F) for algebraic K-theory KL?lg(F)
over k.

Let us write F = F® k for the algebraic closure k of k. It is well known
from Chevalley that the restriction resk : Kc?lg(F) — K(?IQ(F) is surjective when G
is simply connected. Panin [20] shows that Kao,g(F) is torsion free, which implies
resg 1s injective. Hence when G is simply connected, we sce

K}, (F) =~ K (F) = K} (G/T).
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GAMMA FILTRATIONS OF FLAG VARIETIES 131

Moreover we take k such that there is a Gy-torsor G which is isomorphic
to a versal Gy-torsor (for the definition of a versal Gj-torsor, see §3 below or
see [3], [32], [14], [8]). Then F = G/By is thought as the most twisted complete
flag variety, and we say it the versal flag variety. In particular, its Chow ring
CH*(F) is generated by Chern classes ([14], [8]). Hence we have;

THEOREM 1.1. Let G be a compact simply connected Lie group. Let F =
G/By. be the versal flag variety. Then

gr(G/T) = gr;(F) =~ CH*(F)/1  for some ideal 1 C CH"(F).

Remark. Karpenko conjectures that the above 7 =0 ([8], [9]).

Note that gr;(G/ T) is the associated ring of the topological K-theory
K7,(G/T) but gr;(F) is that of the algebraic K-theory Kf,q(F). Hence the
purely topological object gr; *(G/T) can be computed by a purely algebraic geo-
metric object, the Chow rmg of a twisted flag variety F.

Let BT be the classifying space of 7. We consider the fiber sequence G —
G/T 5 BT. The filtration defined from K, K, (i i~Y(BT/)) of K,’;p(G/T) for the
Jj-th skeleton BT/ of BT gives the following the (modified Atiyah-Hirzebruch)
spectral sequence

E}" ~ H*(BT;K; (G)) = K,

top top

(G/T).

From the preceding theorem, we can see;
COROLLARY 1.2. We have E*° = gr;(G/T).

However, the above spectral sequence itself seems to be difficult to compute.
In this paper, the proof of Theorem 1.1 is also given by the computation of each
simple Lie group. For example, in the following cases, gr,(G/T)/p = gr,(F)/p
can be computed (see also [44]).

THEOREM 1.3. Let (G, p) be the following simply connected simple group with
p torsion in H*(G). Let (G, p)= (Spin(n),2) for 7 <n <10, or an exceptional
Lie group except for (E;,2) and (Eg,2,3). Then there are elements by in S(t) =
Zlt,...,t;| = H*(BT) for 1 <s</¢ such that gr,(G/T) = CH*(F), and

gr,(G/T)/p = S(0)/(p, bbby | 1 < i, j <2(p— 1) <k < /).

THEOREM 1.4. Let (G, p) = (Spin(11),2). Then we can take ¢, ¢ in S(t) =
H*(BT) = Z[ty,...,ts]| for 2 i <5 with |e]| =2, |¢]| =2i such that

gri(G/T)/2 = S(0)/(2,¢jc] cic), el |2 < i< j <5, (i, j) # (2,4)).

Remark. Quite recently, Karpenko proves ([9]) that for G = Spin(11) and
G = Spin(12), we have gr,(F) @ CH*(F). Hence the above ring is isomorphic to
CH*(F)/2.
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The plan of this paper is the following. In §2, we recall and prepare the
topological arguments for H*(G/T), K(1)"(G/T) and BP*(G/T). In §3, we
recall the decomposition of the motive of a versal flag variety and recall the
torsion index. In §4, §5, we study the graded rings of the K-theory (and the
Morava K(1)-theory). In §6, §7, we study the cases SO(m) and Spin(m) for
p=2. In §8-§11, we study the cases that (G, p) are in Theorem 1.3 (e.g.,
(Es,5)), (Es,3), (E7,2) and (Eg,2) respectively.

The author thanks the referee who corrected errors in the first version of this
paper.

2. Lie groups G and the flag manifolds G/T

Let G be a connected compact Lie group. By Borel, its mod(p) cohomol-
ogy is (for p odd)

(2.1 H*(G;Z/p) = P(y)/p® A(x1,...,xs), ¢ =rank(G)
with P(y) = L[, sl /(00" p!")

where the degree |y;| of y; is even and |x;| is odd. When p =2, a graded ring
grH*(G;Z/2) is isomorphic to the right hand side ring, e.g. sz = y; for some y;.
In this paper, H*(G;Z/2) means this grH*(G;Z/2) so that (2.1) is satisfied also
for p=2.

Let T be the maximal torus of G and BT be the classifying space of T.
We consider the fibering ([29], [16]) G = G/T = BT and the induced spectral
sequence

E;" = H*(BT;H" (G Z/p)) = H"(G/T;Z/p).

The cohomology of the classifying space of the torus is given by H*(BT) =~ S(¢)
=Zlt,...,t;] with |t;| =2, where t; = pri(c) is the 1-st Chern class induced
from T =8 x---x ST 28 81 c U(1) for the i-th projection pr;. Note that / =
rank(G) is also the number of the odd degree generators x; in H*(G;Z/p).

It is well known that y; are permanent cycles and that there is a regular
sequence ([29], [16]) (b1,...,b,) in H*(BT)/(p) such that djy,11(x;) = b; (this b,
is called the transgressive element). Thus we get

E;" = grH*(G/T;Z/p) = P()/p ® S(1)/(b1,. .., by).

Moreover we know that G/T is a complex manifold such that H*(G/T) is
torsion free, and

(22) H*(G/T)(p) = Z(p)[y17-~~7ys] ®S([)/(fl,...,ﬁ-,bl,...,b/)

where b; = bmod(p) and f; = y?" mod(1y,...,1,).
Let BP*(—) be the Brown-Peterson theory with the coefficients ring BP* =~

Zplvr,02,.. ], |vil = =2(p" — 1) ([6], [24]). Since H*(G/T) is torsion free, the
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Atiyah-Hirzebruch spectral sequence (AHss) collapses. Hence we also know
(2.3) BP*(G/T) = BP*[y1,..., 2] @ S()/(f1,--: [y b, Br)

where b; = b; mod(BP<°) and f, = f; mod(BP<°).

Recall the Morava K-theory K(n)*(X) with the coefficient ring K(n)* =
Z/plvs,v; "], Similarly we can define connected or integral Morava K-theories
with

k(n)* = Z/p[vn}v lg(n)* = Z(p)[vn}a K(I’l)* = Z(p) [Una Uﬁl]'

n

It is known (as the Conner-Floyd type theorem)
R(1)*(X) = BP*(X) @pp. K(1)".

The above fact does not hold for K(n)-theory with n > 2.

Here we consider the connected Morava K-theory k(n)"(X) (such that
K(n)*(X) = k(n)"(X)[v,!]) and the Thom natural homomorphism p : k(n)*(X)
— H*(X;Z/p). Recall that there is an exact sequence (Sullivan exact sequence
[24], [40)) h

o k()TN0 B k() (X)) D HY(XGZ/p) S -
such that p-J0(X) = Q,(X). Here the Milnor Q; operation
Q,:H"(X;Z/p) — H*HPLI(X; Z/p)

is defined by Qp = f and Q;y; = ‘PP[ 0 — Q,—PPI for the Bockstein operation  and
the reduced power operation P/.
We consider the Serre spectral sequence

Ey” = H'(B;H"(F;Z/p)) = H"(E;Z/p).
induced from the fibering F L EZL B with H *(B) @ H®*"(B). By using the

Sullivan exact sequence, we can prove;

Lemma 2.1 (Lemma 4.3 in [40]). In the spectral sequence E*' above, sup-
pose that there is x € H*(F;Z/p) such that

(%) y=0u(x)#0 and bzd\x\ﬂ(x) 7506E‘1"31.
0,]x|

Moreover suppose that E|||"} = Z/p{x} = Z/p. Then there are y' € k(n)"(E) and
b' € k(n)*(B) such that i*(y') =y, p(b’) =b and that

(%) v,y = An*(b") in k(n)*(E), for 2#0eZ/p.

Conversely if (xx) holds in k(n)"(E) for y =i*(y") #0 and b= p(b") #0, then
there is x € H*(F;Z/p) such that () holds.

Remark (Remark 4.8 in [40]). The above lemma also holds letting k(0)"(X)
= H*(X;Z,) and vy = p. This fact is well known (Lemma 2.1 in [29]).
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COROLLARY 2.2.  Let b # 0 be the transgressive image of X, i.e. dy.(x) =
be H*(G/T)/p. Then there is a lift be BP*(BT) = BP*® S(t) of be S(t)/p
such that

b= uy(i) e BP'(G/T)/I% (i b=uvy(i) ek(i)"(G/T)/(v2)
i=0

where y(i) e H*(G/T;Z/p) with n*y(i) = Q;x.

3. Versal flag varieties

Let G, be the split reductive algebraic group corresponding to G, and T}
be the split maximal torus corresponding to 7. Let By be the Borel subgroup
with Ty C Bi. Note that Gi/By is cellular, and CH*(Gy/Ti) =~ CH*(Gy/By).
Hence we have

CH*(Gy/By) ~ H*(G/T) and CH*(BBy)~ H*(BT).

Let us write by Q*(X) the BP-version of the algebraic cobordism defined by
Levine-Morel ([12], [13], [40], [42]) such that

Q' (X) = MGL**(X),, ®uuy, BP",  Q(X) ®pp- L) = CH™ (X))
where MGL*=*/(X ) is the algebraic cobordism theory defined by Voevodsky
with MGL**(pt.) ~ MU* the complex cobordism ring. There is a natural
(realization) map Q*(X) — BP*(X(C)). In particular, we have Q*(Gy/Bi) =
BP*(G/T). Let I,=(p,v1,...,04—1) and I, = (p,v1,...) be the (prime invari-
ant) ideals in BP*. We also note

Q*(Gi/B)/L. = BP*(G/T)/L, = H'(G/T)/p.

Let G be a nontrivial Gy-torsor. We can construct a twisted form of Gy /By
by (G x Gi/Br)/Gr = G/B;. We will study the twisted flag variety F = G/B.

By extending the arguments by Vishik [34] for quadrics to that for flag
varieties, Petrov, Semenov and Zainoulline define the J-invariant of G. Recall
the expression (2.1) in §2

(%) H (G, Z/p) = Z/ply1, .-, /0P pP" ) @ Alxi, .., x).
Roughly speaking (for the detailed definition, see [23]), the J-invariant is defined
as J,(G) = (ji,...,Jjs) if j; is the minimal integer such that

y,-pji e Im(rescy) mod(y1, ..., Vio1,t, ... 1)

for rescy : CH*(F) — CH*(F). Here we take |yj| < |y2| <--- in (x). Hence
0<j;<r and J,(G) = (0,...,0) if and only if G split by an extension of the
index coprime to p. One of the main results in [23] is

THEOREM 3.1 (Theorem 5.13 in [23] and Theorem 4.3 in [28]). Let G be a
Gy-torsor over k, ¥ = G/By and J,(G) = (ji,...,js). Then there is a p-localized
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motive R(G) such that the motive M(F) of the variety ¥ is decomposed as motives
(in the category of Chow motives)

M(F),) = ®, R(G) ® T®".
Here T®" are Tate motives with CH*(®, T®")/p = P'(y) ® S(t)/(b) where
PO =2/pl" VO ) < PO
S(0)/(b) = S(0)/ (b - - br).-
The mod(p) Chow group of R(G) = R(G)® k is given by

CH*(R(G)/p = Z/ply1.-.., 1)/ "),
Hence we have CH*(F)/p =~ CH*(R(G)) ® P'(y) ® S(t)/(b) and

CH'(F)/p = CH"(R(G)) ® P'(y) ® 5(1)/ (D).

Remark. In this paper, a map 4 — B (resp. A = B) for rings 4, B means
a ring map (resp. a ring isomorphism). However CH*(R(G)) does not have a
canonical ring structure. Hence a map 4 — CH*(R(G)) (resp. 4 =~ CH*(R(G)))
means only a (graded) additive map (resp. additive isomorphism). Hence all
(except for the first) isomorphisms in the above theorem are those of only graded
Z./p-modules.

Let us consider an embedding of Gy into the general linear group GLy for
some N. This makes GLy a Gi-torsor over the quotient variety S = GLy/Gk.
Let F be the function field k(S) and define the versal Gy-torsor E to be the
Gy-torsor over F given by the generic fiber of GLy — S. (For details, see [3],
32], [14], [8].)

EFE — GLy

l |

Spec(k(S)) —— S = GLy /G

The corresponding flag variety E/By is called the versal complete flag variety,
which is considered as the most complicated twisted complete flag variety (for
given Gy). It is known that the Chow ring CH*(E/By) is not dependent to the
choice of generic Gi-torsors E (Remark 2.3 in [8]).

Karpenko and Merkurjev showed the following result for a versal flag
variety.

THEOREM 3.2 (Karpenko Lemma 2.1 in [8]). Let h*(X) be an oriented
cohomology theory (e.g., CH*(X), Q*(X)). Let G/By be a versal flag variety.
Then the natural map h*(BBy) — h*(G/By) is surjective.

CoroLLARY 3.3. If G is versal, then CH*(F) = CH*(G/By) is multiplica-
tively generated by elements t; in S(t).
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CoRrOLLARY 3.4. If G is versal, then J(G) = (ry,...,rs), Le. r; = j. Hence
P'(y)=1Z/p in Theorem 3.1.

Proof. If j; <r;, then 0 # y?" € res(CH*(F) — CH*(F)), which is in the
image from S(7) by the precejding theorem. This contradicts to CH*(F)/p =
P(y)/p®S(1)/(b) and 0 # y;" € P(y)/p. O

Hence we have surjections for a versal variety F
CH*(BBy) — CH*(F) 2% CH*(R(G)).
We study in [44] what elements in CH*(BBy) generate CH*(R(G)). By giving
the filtration on S(¢) by b;, we can write
grS(t)/p = AR S(t)/(b1,...,bs) for A=1Z/plby,... b/

In particular, we have maps A “CcH *(F)/p — CH*(R(G))/p. We also see that
the above composition map is surjective (see also Lemma 3.7 below).

LemmAa  3.5. Suppose that there are fi(b),...,fs(b)e A such that
CH*(R(G))/p = A/(fi(b),..., f(b)) additively. Moreover if fi(b)=0 for 1<
i <s also in CH*(F)/p, then we have the ring isomorphism

CH"(F)/p = S(1)/(p, i(D), ..., fs(D)).
Proof. Using (fi,...,fs) C (b) = (b1,...,bs), we have additively

SO/ S5 ) =A@ SO/ () (J1s- -, fs) = A/ (N, -, [5) @ S(1)/(b)
= CH*(R(G))/p ® S(1)/(b) = CH"(F)/p.

Of course there is a ring surjective map S(¢)/(f1,.-.,fs) — CH*(F)/p, this map
must be isomorphic. O

Let dim(G/T) =2d. Then the torsion index is defined as
H(G) = |H*(G/T;Z)/i*H*(BT;Z)| where i:G/T — BT.

Let n(G) be the greatest common divisor of the degrees of all finite field extension

k' of k such that G becomes trivial over k’. Then by Grothendieck [5], it is

known that n(G) divides #(G). Moreover, G is versal, then n(G) = #(G) ([32],

[14], [8]). Note that #(G; x Gy) = #(G1)t(Gy). It is well known that if H*(G)

has a p-torsion, then p divides the torsion index #(G). Torsion index for simply

connected compact Lie groups are completely determined by Totaro [31], [32].
For N >0, let us write Ay = Z/p{bi, ---bi, | |bs| + -+ |bi,| < N}.

ik
LemMMA 3.6. Let b e Ker(pr) for pr: Azg — CH*(R(G)). Then

b= Zb'u' with b’ € Asg, u' € S(t)*/(p,b), ie., [u'|>0.
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Let us write
Yiop = H,-S:ly,‘priil (reps. lm],)
the generator of the highest degree in P(y) (resp. S(¢)/(b)) so that f = yiptsp 18
the fundamental class in H*!(G/T).

Lemma 3.7. The following map is surjective

Ay — CH*(R(G))/p where N = |ypl.

Proof. In the preceding lemma, Ay ® u for |u| >0 maps zero in
CH*(R(G))/p. Since each element in S(z) is written by an element in Ay ®
S(#)/(b), we have the lemma. O

CoROLLARY 3.8. If b; #0 in CH*(X)/p, then so in CH*(R(Gy))/p.

Proof. Let pr(b;) =0. From Lemma 3.6, b;=> b'u’ for |u'| >0, and
hence b’ € Ideal(hy,...,b;—1). This contradict to that (by,...,b,) is regular.
O

Now we consider the torsion index #(G).

LEMMA 3.9 ([44]). Let b=b; ---b; in S(t) such that in H*(G/T),

l;:ps(y,op—i-Zyt), [t >0

for some y e P(y) and te S(t)". Then 1(G),) <P’

4. Filtrations of K-theories

We first recall the topological filtration defined by Atiyah. Let X be a
topological space. Let K,’;p(X ) be the complex K-theory so that Kt%p(X_ ) is the
Grothendieck group generated by complex bundles over X. Let X' be an
i-dimensional skeleton of X. Define the topological filtration of K,f)p(X ) by
F,,(X) = Ker(K;;,(X) — K,,,(X")) and the associated graded algebra gr;,,(X) =
Fl (X)/F*'(X). Consider the AHss (Atiyah-Hirzebruch spectral sequence)

top top
E}Y(X) = HY(X;K;) = K*(X)

top top*

By the construction of the spectral sequence, we have
LemMa 4.1 (Atiyah [2]). grp, (X) = E3°(X).
Note that the above isomorphism

B2 = gr* (K2, (X)) — g (K0,(X)) = grZ (X)
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is given by x — B*x for the Bott periodicity, i.e., K, = Z[B, B~ 'l and deg(B) =
(=2,-1).

Next we consider the geometric filtration. Let X be a smooth algebraic
variety over a subfield k of C. Let K ( ) be the algebraic K-theory so that
Kfl J( ) is the Grothendieck group generated by k-vector bundles over X. It is
also isomorphic to the Grothendieck group generated by coherent sheaves over X
(we assumed X smooth). This K-theory can be written by the motivic K-theory

AK™*(X) ((36], [37], [41]), ie.,
Ky(X) = @; AKY M (X).
In particular K (X) =~ AK**(X) = @; AKY/(X).
The geometric filtration ([5], Chapter 15 in [33]) is defined as

F2 (X) = {[Oy]]| codimy V > i}

geo

(and F2-1(X) = F2 (X)) where Oy is the structural sheaf of closed subvariety V

geo geo

of X. Here we recall the motivic AHss ([41], [42])
AE;" (X)) = HY (X, K*) = AK* (X)
where K2* = AK>*(pt.). Note that
AEZ " (X) = H**(X;K*") =~ CH*(X) @ K*".

Hence AEZ*°(X) is a quotient of CH*(X) by dimensional reason of degree
of differential d, (ie., d,AE***"(X) =0 for smooth X). Thus we have

LemMa 4.2 ([33], Lemma 6.2 in [43]). We have

groe,(X) = AEZ(X) =~ CH*(X)/I

where I =], Im(d,).

Lemma 4.3 ([33], [43]). Let tc: K,g(X) K,%p(X(C)) be the realization
map.  Then F,o,(X) C (1¢) ' F},,(X(C)).

At last, we consider the gamma filtration. Let A’(x) be the exterior power of
the vector bundle x e Kflg(X) and 4,(x) =Y A (x)t e K;,(X)[f].  Let us denote

Ayj-n(x) = 7,(x ZV ¢ (ie. y"(x)=A"(x+n-1)).

Hence '(x) € Ky,

FRX) =" (xvn) - y™ o) i i > 6,35 € Ky (X) -
Then we can see F)(X)C F},(X). (Similarly we can define F,(X) for a

geo

topological space X.) In Proposition 12.5 in [At], Atiyah proved F! ( ) C

Ft’ap(X ) in K;,(X). Moreover Atiyah’s arguments work also in Ka,q(X ) and

this fact is well known ([4], [7], [33], [43]). Let ¢: Kao,g(X) — Z be the augmen-

(X) if so is x. The gamma filtration is defined as
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tation map and ¢;(x) € H*/(X) the Chern class. Let ¢: CH*(X) = E;""" —
E%*0 be the quotient map. Then (see p. 63 in [2]) we have

q(en(x)) = ["(x — &(x))].
Lemma 4.4 ((2], [33], [43)).  The condition F}*(X) = Fzr(X) (resp. F}*(X) =

top
F2 (X)) is equivalent to that E2°(X) (resp. AE2*%(X)) is (multiplicatively)

geo
generated by Chern classes in H*(X) (resp. CH*(X)).
By Conner-Floyd type theorem ([24], [6]), it is well known
AK** (X) = (MGL** (X) ® yu- Z) ® Z[B, B
where the MU*-module structure of Z is given by the Todd genus, and B is

the Bott periodicity. Since the Todd genus of v; (resp. v;, i > 1) is 1 (resp. 0), we
can write

AK** (X) = ABP** (X) Qpp- Z|B,B~"] with B"' = v,.

Recall that AK(1)**'(X) is the algebraic Morava K-theory with K(1)* =
Z,[v1,v7"]. By the Landweber exact functor theorem (see [41]), we have

AK(1)*" (X) = ABP**' (X) ®pp- K(1)*. Thus we have

Lemma 4.5 ([43]). There is a natural isomorphism

AR (X) = AR(1)"" (X) ®g ) ZIB. B~ with v, = B'™".
LemMA 4.6 ([43]). Let E(AK), (resp. E(AK(1)),) be the AHss converging
to AK** (X) (resp. AK(1)* (X)). Then
E(AK)"" = E(AK(1))]""" ®gay- Zp)[B, B

In particular, gr,,(X) = E(AK)?’*’O ~ E(AK(I))i’*‘O.

_ From the above lemmas, it is sufficient to consider the Morava K-theory
AK(1)""(X) when we want to study AK**'(X). For ease of notations, let us
write simply

K> (X) = AK(1)*"(X), so that K*(pt.) = Z,lv1,v;"],
K> (X) = Ak(1)*"(X), so that k*(pt.) = Z,)[v1].

Hereafter of this paper, we only consider this Morava K-theory K2*(X) instead
of AK***(X) or KY (X).

alg

5. The restriction map for the K-theory

We consider the restriction maps that

resg : K*(X) — K*(X).
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By Panin [20], it is known that Kf,g(F) is torsion free for each twisted flag
varieties F = G/By. The following lemma is almost immediate from this Panin’s
result.

Lemma 5.1. Let F be a (twisted) flag variety. Then the restriction map

resg : K*(F) — K*(F) is injective.

Proof. Recall that rescpgq: CH*(F)® Q — CH*(F) ® Q is isomorphic.
Hence by the AHss, we see K*(F) ® Q ~ K*(F) ® Q. Since K*(F) and K*(F)
are torsion free, the lemma is immediate. O

For each simply connected Lie group G, it is well known that resg is
surjective from Chevalley. Thus we have

THEOREM 5.2 (Chevalley, Panin). When G is simply connected, resx is an
isomorphism.

Hence we have Theorem 1.1 in the introduction. However we will see it
directly and explicitly for each simple Lie group. Moreover we will try to com-
pute explicitly gr,(X) for each simply connected simple Lie group.

LemMA 5.3. Let F be a versal complete flag variety. The restriction map

resk is isomorphic if and only if for each generator y; € P(y) in CH*(F), there is
c(i) e K*(BT) such that c(i) = v)'y;, for s; >0 in K*(F)/p.

Proof. Consider the restriction map
resi : k*(R(G)) — k*(R(G)) = k* ® P(y)

where k* =Z,[v1]. Suppose that resgx =resi[v;'] is surjective. Then since
F is versal, there is c(i) e K*(BBy) with ¢(i) =v)'y; for some s;eZ. Since
resi(c(i)) C k* ® P(y), we see s; > 0. The converse is immediate. O

COROLLARY 5.4.  For each generator y; € P(y), if there is xi; € A(xy, ...,
x;) C H*(G;Z/p) such that Qixy; = yi, then resg for a versal flag F is
isomorphic.

Proof.  Let d.(xi) = by € H*(BT)/p. Then by Corollary 2.2, we have
by =viy; mod(vi) in k(1)"(G/T).
By induction, we can take generators y; satisfy the above lemma. O

COROLLARY 5.5. Let G=G) x Gy, and ¥=G/By, F; =G, /B for
i=1,2. Suppose F, ¥; are versal. If resx are isomorphic for K*(F;) then so
is for K*(F).
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Proof. Since F is versal, we see CH*(F;) ® CH*(F,) — CH*(F) is surjec-
tive, because CH*(F) generated by

CH*(B(Bi,k X Byx)) = CH*(BB) 1) ® CH*(BB» k).
Let P(y) C H*(G;/T;) be the polynomial parts corresponding to that in
H*(G;;Z/p). Then P(y) =~ P1(y) ® P»(y). By the assumption, resg are iso-

morphic for F;. Hence from the above lemma, for y; € Pi(y), we have v}'y; =
c(i) e Q*(BB;). So for y;y; € P(y), we see

y1y2 =0)""2e(1)e(2)  with ¢(1)c(2) € Q*(BBy) =~ BP*(BT). O

Proof of Theorem 1.1 without using Chevalley’s theorem. Each simply con-
nect compact Lie group is a product of simple Lie groups. For each simple
group except for E;, Eg with p =2 we will show the existence of x; with
Q1 x; = y; for each generator y; € P(y) in §7-§9. (For example Q(x;) = y; for
all simply connected simple Lie groups.) For groups E;, Es and p =2, we will
see that we can take b; = v{y; mod(2), for s=1 or 2 in §10, §11. O

Recall the fiber sequence G — G/T L BT. We consider the filtration F/ of
K*(G/T) defined by

F/ = Ker(K?,(G/T) — K. (i"'(BT'))

top top
for the j-th skeleton BT/ of BT. This filtration gives the following (modified)
AHss

E}* ~ H*(BT;K*(G)) = K*(G/T).

COROLLARY 5.6. For the above spectral sequence Er***/, we have the iso-
morphism

E;" =K" ®gri(G/T) (eg., E"=gr}(G/T)).

Proof. When F is versal, CH*(F) is generated by elements in CH*(BT).
Since
K*(F) =~ K*(F) ~ K*(G/T),
from Theorem 5.2, K*(G/T) is generated by elements in K*(BT) = K* ® S(¢).
Hence we see
ESY =K' ®S(1)/J  for some J.

This means that E%° =~ S(¢)/J is a graded ring of K°(G/T).

By Atiyah (p. 63 in [2]), if there is a filtration and the associated spectral
sequence such that the £, is generated by Chern classes, then it is isomorphic to
K*®gr,(G/T). O

However, the study of the above spectral sequence seems not so easy. We
will use the following technical lemma, to seek gr,(G/T).
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LeMMA 5.7.  Suppose that there is a filtration of K*(R(G)) and Z,-module
B with maps Z b, ...,bs] — B — gryeo(R(G)) such that

() grK*(R(G)) = K" ® B, and B/p C gr,,,(R(G))/p.

Moreover suppose that for any torsion element be B with b #0¢€ B/p, if there
exist r,s >0 such that in K*(R(G))

(2) p'b=uvib"  for some b' € CH*(R(Gy)),
then b' € B.  With these suppositions, we have B = gr;, (R(G)).

Proof.  Suppose that b’ e gry,(R(G)) but b'¢ B. Since B generates
K*(R(G)) as a K*-module, there is b € B such that b’ = v;*b for s > 0 (otherwise
b’ e B) in K*(R(G)). Let us write b= p"b in K*(R(G)). Then (2) is satisfied
for these b, b' since we see r > 0, otherwise b =0 e CH*(R(G)). Hence b’ € B,
and it is a contradiction.

Since p’b=0e CH*(R(G)), we only consider a torsion element for b.

O

To seek gr,(R(G)), we first find some graded algebra grK*(R(G)) @ K* ® B
such that each element 0 # b € B is represented by an element (possible zero) in
CH*(R(G)). Since b #0e K*(R(G)), there are r,s > 0 such that

p'b=0vib, with b' #0e CH*(R(G)) = k*"(R(G)) ®- Z(,)-

Take new B by replacing p’b by b’ in B. Continue these arguments, we may
approximate gr,(R(G)) by B.

6. The orthogonal group SO(m) and p =2

We consider the orthogonal groups G = SO(m) and p =2 in this section.
The mod 2-cohomology is written as (see for example [17], [19])

grH* (SO(m); Z/2) = A(x1,X2, ., Xm—1)

where |x;| =i, and the multiplications are given by xs2 = xp;. (Note that the
suffix means its degree.)

For ease of argument, we only consider the case m =2/ + 1 (the case m =
2/ 42 works similarly) so that

H*(G, Z/2) = P(y) ® A(xl,X3, . ,)Cz/,l)
grP(»)/2 = A(y2, ..., yar), letting yr = xz; (hence y4 = y%i).

The Steenrod operation is given as Sg*(x;) = (;)(xi+x). The Q;-operations
are given by Nishimoto [19]

OnX2i1 = yopganiiza,  Quy2i = 0.
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It is well known that the transgression dh;(x2;—1) = ¢; is the i-th elemen-
tary symmetric function on S(7). Moreover we see that Qy(xzi—1) = yz in
H*(G;Z/2). In fact, the cohomology H*(G/T) is computed completely by
Toda-Watanabe [30]

THEOREM 6.1 ([30]). There are yy e H*(G/T) for 1 <i</{ such that
n*(yai) = yoi for m: G — G/T, and that we have an isomorphism

H*(G/T) = Zlt;, yail [ (ci = 2y2i, Jai)
where Jy; = 1/4(Z]2i0(—1)jcjczi_j) letting yy =0 for j > /.

By using Nishimoto’s result for Q;-operation, from Corollary 2.2, we have
COROLLARY 6.2. In BP*(G/T)/I%, we have
i =2pi+ Y v (p(2i+2"" - 2))
Sor some y(j) with n*(y(j)) = y;.

We have ¢ =0 in CH*(F)/2 from the natural inclusion SO(2/ + 1) —
Sp(2¢ + 1) (see [21], [44]) for the symplectic group Sp(2/ 4+ 1). Thus we have

THEOREM 6.3 ([21], [44]). Let (G,p) = (SO(2/+1),2) and F = G/B; be
versal. Then CH*(F) is torsion free, and

CH*(F)/2=S(1)/(2,¢,...,¢}), CH*(R(G))/2=Alcy,...,c/).
CoROLLARY 6.4. We have gr,(F) = gry,(F) = CH*(F).

Proof. 1t is known that the image Im(d,) of the differentials of AHss
are generated by torsion elements. Hence the ideal I =J, Im(d,) =0. From
Lemma 4.2, we see gr.,(F) =~ CH*(F)/I = CH*(F). O

From Corollary 2.2, we see ¢; = 2y; + v y2+2_mod(ulz). Here we consider
the mod(2) theory version resg, : K*(F)/2 — K*(F)/2.

LEMMA 6.5.  We have Im(resg)y) = K* ® A(y2i|2i > 4). Hence resg is not
surjective.

Proof. In mod(2), we have ¢; =v;yy42. Hence for all i >2, we have
V2it2 € Im(resk ;). Suppose y2y € Im(resg),) for 0 # ye A(yx|i>2). Then
from Theorem 6.3, there is ¢ € A(¢;) such that ¢ =v{y,y. Since ¢; = vi )22,
we can write ¢=v[y’ for y' e A(yy|i=>=2). Hence v{(y' —v{ 'y2y)=0 in
K*(F)/2 = K*/2® A(yy), which is K*/2-free. and this is a contradiction. []
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In the next section, we will compute the case (G’, p) = (Spin(2/ +1),2). Tt
is well known that G/T =~ G’/T’ for the maximal torus T’ of the spin group.
Hence we see

LEMMA 6.6. Let F = G/By and ¥' = G'/B], be versal. Then
gry(F) & gr,(F) = gr,(F') = gr,(F).

Proof. The last two isomorphisms follow from the facts that F’ is versal
and resg is isomorphic for spin groups (see Lemma 7.3 below). O

Note that cac3 # 0 in gr,(F) but it is zero in gr;(F') from Theorem 7.8 for

Spin(n) when n < 11. Hence the restriction map resy, : gr; (F) — gr,(F) is not
injective, while resg is injective.

7. The spin group Spin(2/+ 1) and p =2

Throughout this section, let p =2, G = SO(2/ + 1) and G’ = Spin(2/ + 1).
By definition, we have the 2 covering n: G' — G. It is well known that
n*: H*(G/T) =~ H*(G'/T").

Let 2! </ <2 ie. t=[log /]. The mod 2 cohomology is

H* (G Z/2) = H*(G;Z/2)/(x1, 1) ® A(2)
= P(») @ A(x3,x5,..., X0 1) ®A(z), |z]=2"2—1

where  P(y) = Z/2[3)/(»2" )@ P(y)'. (Here dyia(z)=y*"" for 0#ye
H?*(BZ/2;Z/2) in the spectral sequence induced from the fibering G' — G —
BZ/2.) Hence

1

grP(») = ®aizos A(32i) = A(¥s, Y10, Y12, - - - Vo).
The Q; operation for z is given by Nishimoto [19]

Q(z) = > yuyy 0Oul®) = > yaiyy for n>1.
i+j=21 i< (=212 2D
We know that

21+l

grH*(G/T)/2 = P(»)' @ Z[y2)/(y; ) ® S(1)/(2,¢c1,¢2,...,¢/)
grH*(G'/T") )2 = P(y)' ® S(1')/(2, ¢}, ..., ch, 3.

+1. .
Here ¢/ =n*(c;) and dyuo(z) = ¢’ in the spectral sequence converging

H*(G'/T’). These are isomorphic, in particular, we have

Lemma 7.1. The element n*(y;) =c1 € S(t') and n*(t;) =c1+ 1t for 1<
J<L.
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Take k such that G is a versal Gi-torsor so that G, is also a versal G-
torsor. Let us write F = G/By and F' = G'/B;. Then

CH*(R(G"))/2 = P(y)'/2, and CH*(R(G))/2 = P(y)/2.
The Chow ring CH*(R(G'))/2 is not computed yet (for general /), while we
have the following lemmas.

Lemma 7.2. We have a surjection
szt

A, ... s ) — CH*(R(G'))/2.
LeMMA 7.3. The restriction resg : K*(F') — K*(F') is isomorphic.

Proof. Recall the relation
¢l =2y +v1yusa mod(vd) in K*(F').

We consider the mod(2) restriction map resg. Since ¢; = v1ya2 mod(2), we
see Va2 € Im(resgya).  So yar € Im(resg ) for 2i' > 6, e.g., for all yy € P(y) =
A(y2|i#27). Hence resg, is surjective. Thus resg itself surjective. O

CorOLLARY 7.4. Let G" = Spin(2/+2) and ¥" =G"/Bi. Then resg :
K*(F") — K*(F") is isomorphic.

Proof. This is immediate from P(y) = P(y)". O

COROLLARY 7.5. We have K*(R(G"))/2=K*/2® A(c!|i#2/ —1).

Proof. Recall ¢}; | =2(y2i_1)+viy2; Where y,; = ¢’ =0e K*(R(G))/2.
So ¢}, , =0e K*(R(G))/2, since resk is injective. We have the maps

K*2@Alc, i #2) — K*(R(G))/2
DO KH(R(G))/2 = K7 /2@ Alya | i # 27)

by ¢/, —viy;. This map is isomorphic from the above lemma. Hence we
have the corollary. O

Hence ¢, | is not a module generator in K*(R(G)). So we can write

2"b =vics;  rs>1,

so that b is torsion element in CH*(R(G)). In fact we have

LEMMA 7.6. Let k <t ie., 2"' < /. Then in K*(R(G)), we have

k 2k_l k k
2k 1 2 : in2k—i i 1 25 1
2 Czk + (—1) 2 U1C2k+l- = Ul C2k+171.
i=1
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Proof. Let us write ¢), = ¢, — 2Vy0k) = U1 Yp2k41)- Then
! -1
U1V2(2k42) = Cripy — 2y30k41) = Couyy — 201 €y
By induction on i, we have

—i N /
v1yaisivny = (—1) 2% el + E : 270 ¢) @k+))
0<j<i

When i = 2% — 1, we see yypur) is in K*(F) (it is zero in K*(R(G)) from
Lemma 3.6). Hence we have the equation in the lemma. O

In general, gr,(R(G)) seems complicated. Here we only note the following
proposition. Let us write Z,)-free module

Az(ar, ... a,) = Lipia; ---a; |1 <ip <--- <ig <nj.
PrOPOSITION 7.7.  Let us write
Bi=Az(c/|i#2/—1,2<i</-1), By=Az(c]|i#2/,3<i</).
Then there are additive injections for i = 1,2 and the surjection
B;/2 C gr;(R(G))/2 — (B1/2+ B,/2)
for degree x < |c2"'| =22,

Proof. First note that when x < 2/*2 we have the surjection A(c},...,c})
— CH*(R(G'))/2. Recall k*(X) is the K-theory with k*(pt) = Z,[v1]. We
consider the map

pik* /2@ Bl — k*(R(G))/2 — k" (R(G)) /2
CK*/2® A(yx|i #2/) =~ K*(R(G))/2
by ¢ — viy2i12. We show
Im(p) = k™ /2{v{ y2i, - - o, | ix # 21 <ip < <ig <l — 1}.

In fact, Im(p) contains the right hand side module since clf — vl y2i+2. Suppose

that p(b;) = v{‘yz,-l -y, for by € Bi. Then b; contains c/ e 1 which must

maps to v1y; ---v1y;. Hence k >s. Therefore each generator c, =cl - c,’ €
A(cl|i #2/ —1) is also a k*-module generator of Im(p). Hence it is nonzero' in

CH" (R(G))/2 from k*(X) ®p- Zpy =~ CH*(X). Thus B;/2 C CH*(R(G))/2.

Next we consider for B;. We consider the map

0 k" ® By — k'(R(G)) — k*(R(G)) — k*(R(G)) ®- Q
~ CH'(R(G) ® Q = Az(yx|i #2/) ® Q.
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by ¢ — 2y By the arguments similar to the case Bj, we see
Im(pg) = k™ {2y -+ you ik #2/, 1 < iy < -+~ < iy < /.
Therefore each generator ¢; = ¢/ --- ¢/ € A(c]|i # 2/) is also k*-module generator

of Im(pq). Hence B,/2 C CH*(R(G))/2. O

Remark. Note that c¢},c5; , contains 2v1 yyie1 52415, While this element
is also contained in ¢}, +1C§ jo

Now we consider examples. For groups Spin(7), Spin(9), the graded ring
gr,(G")/2 are given in the next section (in fact these groups are of type (1)). We
consider here the group G’ = Spin(11). The cohomology is written as

H*(G';Z/2) = Z/2[ys, y10l/ (75, ¥io) ® Alx3, X5, x7, X9, 215).
By Nishimoto, we know Qo(le) = y¢yio- It 1mp11es 2y6¥10 = d16(215) = C?.
Since y;,, = Y610, we have #(G’) = 2.
THEOREM 7.8. For (G',p) = (Spin(11),2), we have the isomorphisms
QVV(R(G))/z =7Z/2{1, Cé, cg, Célla Cg, céczlb 618}7
gr,(F)/2 = S(1)/(2,clel,clcf, ci® |2 <i< j <5, (i, ) # (2,4)).

s Citys
Proof. Consider the restriction map resg
K*(R(G)) = K*{l,Cé,Ci,Cé(Zi} i K*{la Y6, V10, J/6y10} = K*(R(G))

by resg(ch) = v1ys, resg(cy) =viyw. Note cjcj #0e CH*(R(G))/2, from the
preceding proposition. (In fact, v;yeyi0 ¢ Im(resg).)
Next using resg(c}) = 2ys, resx(cs) = 2y10, and resK(cig) = 2y6y10, We have

grK*(R(G)) = K*(R(G))/2 ® 2K (R(G))
K*[2{1,¢3,¢5, 654} © K{2,65, 65, e}

I

From this and Lemma 5.7, we show the first isomorphism. (Note generators

b, ..., c¥ are all nonzero in CH*(R(G))/2 by Corollary 3.8.)

Let us write y2 = y¢t € CH*(F)/2 for 1€ S(f). Then
ceh = 21)1y§ =2v1yet = v1c5t  in K*(F).
Hence we see ¢yc3 =0 in CH*(F)/I = gr;(F). We also note
chel = dygyio =268 in K*(F).

By arguments similar to the proof of Lemma 3.5, we can show the second
isomorphism. O

Remark. Quite recently, Karpenko proves ([9]) that for G = Spin(11), we
have ¢gr,(F) @ CH*(F). Hence the above ring is isomorphic to CH*(F)/2.
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8. Groups of type (I) (e.g., (G, p) = (Es,5))

When G is simply connected and P(y) is generated by just one generator, we
say that G is of type (I). Except for (E;,p=2) and (Eg, p =2,3), all excep-
tional (simple) Lie groups are of type (I). The groups Spin(m) for 7 <m < 10
are also of type (7). Note that in these cases, it is known rank(G) =/ > 2p — 2.

Example. The case (G, p) = (Es,5) is of type I, we have [17]
H*(Es; Z/5) = Z/5]y12)/ (¥1,) ® Alz3, 211, 215, 223, 227, 235, 239, Z47)
where suffix means its degree. The cohomology operations are given
Blzin) = yio, B(z23) = vhh,  Blzss) = vy, Plaar) = v
P'zy =z, Plzis=zy3, Plzyy=1z35, Plzzg=z47.
Similarly, for each group (G, p) of type (I), we can write
H™ (G, Z[p) = Z/p[y]/(3") @ Alx1, ..., x) |yl =2(p+1).
The cohomology operations are given as
B xo— ', Pl xoi g X for 1 <i<p-1.

Hence we have Q1(xzi 1) = Qo(xz) =y  for 1 <i<p-—1.

THEOREM 8.1. Let G be of type (I). Then resg is isomorphic, and
gr;(R(G)) = (Z/p{b1,bs, ..., bop3} ® Ly {1, b2, ... . brp2}).
Moreover gr,(G/T)/p = gr,(F)/p is isomorphic to
S(t)/(p,bibj, b |1 <i,j<2p—-2<k</).
Proof. From Qix; =y, we see by = vy mod(v}) in k(1)"(G/T). From
Corollary 5.4, we see resg is isomorphic, namely the map
K*(R(G)) = K*[)/(8)) — K*[J]/(»") = K*(R(G))

is isomorphic by resg(b;) = v; y. '
From Corollary 2.2, the facts Q;(xzi—1) = Qo(xz) =" for 1 <i<p-—1
imply in K*(G/T) that we can take

byii =v1y', by = py'.
Hence we have, in K*(R(G)) =~ K*(R(G)),
bi =viy' = v 'bu1,  pbi = po{y" = viby.
Thus we get the isomorphism, using v;!e K*,
gr,K*(R(G)) = K*(R(G))/p ® pK*(R(G)) = K" ® B
where B = (Z/p{1,b1,b3,...,by 3} ® Z(,{p,b2,bs,..., b3 2}).
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Note that b; are nonzero in CH*(R(G))/p, it gives gr,(R(G))/p = B/p from
Lemma 5.7. Moreover we have the first isomorphism of this theorem.
The above B/p is rewritten using 4 = Z/p[by, ..., b/]

B/p = Af(bibj, by |1 <i,j <2p—2<k).

From arguments similar to the proof of Lemma 3.5, we have the theorem.
O

Here we recall the (original) Rost motive R, (we write it by R,) defined from
a nonzero pure symbol a in KM, (k)/p (25, [26], [37], [38]). We have isomor-
phisms (with [y| =2(p" —1)/(p — 1))

CH"(R,) = Z[yl/(y"), Q"(Ry) = BP"[y]/(y").

Tueorem 8.2 ([35], [42], [15]). The restriction resq : Q*(R,) — Q*(R,) is
injective. Recall I, = (p,...,vy—1) C BP*. Then

Im(resq) = BP*{1} @ I, ® (Z)[y]"/(»")) € BP*[y]/(»")-
Hence writing v;y' = ¢;(y"), we have
CH*(R)/p=Z/p{l,¢;(y")|0<j<n—-1,1<i<p-1}.
Example. In particular, we have the isomorphism

CH*(R)/p = Zp{l.co(¥),..-.coy’ )} D Z/p{ci(p),...,ci(y" )}

By Petrov-Semenov-Zainoulline ([23]), it is known when G is of type (I), we
can see J(G) = (1) and R(G) = R».

CoroOLLARY 8.3. We have gr,(F) = CH"(F),.

Proof. We have the additive isomorphism
gVy(R(G)) ~B= Z/p{bl, e ,b2p73} &) Z([,){ng, . ,bzpfz}
= Z/p{Cl(y),...,Cl(ypil)}@Z(p){l,CO(y)’...,Co(ypil)},

which is isomorphic to CH*(R;). The fact that gr,(F) = CH*(F)/I for some
ideal I implies / =0 and the theorem. O

The above I is nonzero for R, when n > 3.

LeEmMMA 8.4, There is an isomorphism for n > 3,

grSZO(Rn) ~ CH*(R,)/I with I = Z/p{cz,...,cn_l}[y]/(ypfl).
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Proof. First, note v; =0 in K* =Z, [vi,07!] for j#0,1. We have
vi¢(y) = vy = vier(y) in Q" (Ry).

Since resq is injective, we see vic;(y) = vjci1(y) =0 in K*(R,)/p. O

9. The case G =FEg and p =3

Throughout this section, let (G, p) = (Es,3) and G be versal. The coho-
mology H*(G;Z/3) is isomorphic to ([17])

Z/31ys, y20/ (73, ¥39) ® A(z3,27, 215, 219, 227, 235, 239, Z47 ).

Here the suffix means its degree, e.g., |z;| =i. By Kono-Mimura [11] the actions
of cohomology operations are also known

TueoreM 9.1 ([11]).  We have P3yg = y, and
B: z ¥, Zis— V5, Z19 4 Yo, Za7 = VsV, Z3s > Vgbao,
Z39 y%o, Z47 yw%o,
P'izys 27, zises zig,  Z3s 23
P3: Z7 V> Z19,  Zl5 F> Zy7 b —Z39,  Z35 b Z47.

We use notations y = yg, ¥’ = ya, and x; = z3,...,xg = z47. Then we can
rewrite the isomorphisms

H(G:2/3) = 2/3[, ')/ (*, (")) @ Alxi,..., x5),
grH*(G/T;Z/3) = Z/3(y, ¥')/(»*, (v))) © S(1)/ (b1, ..., bs).
From Corollary 2.2, we have
COROLLARY 9.2 ([44]). We can take by € BP*(BT) such that
vy +uvy =by in BP*(G/T)/I2.
J

From the preceding theorem, we know that all y(y’)’ except for (i, ) =

(0,0) and (2,2) are f-image. Hence we have

COROLLARY 9.3 ([44]). For all nonzero monomials ue P(y)*/3 except for
(yy")?, it holds 3ue S(t). In fact, in BP*(G/T)/I

by=viy+vy, by=3py, by=3y>+uvy by=3y,
bs=3yy', be =3y +ui(y)?, b =300")7 bs=3y(y)".

LemMMA 9.4. The restriction map resg is isomorphic.
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Proof From Qix;=yp and Qix3=)', we see by =uv1y, b3 =3y>+
v1y' mod(v?) in k*(G/T). From Corollary 5.4, we have the lemma. O

In K*(R(G)), let by = by — 3(v;'h))? so that we have by = v;y’. We have

the following graded algebra, while b3 ¢ CH*(R(G)).

LEmMMA 9.5. We have
gr3(K*(R(G))) = K*(R(G))/3 @ 3K"(R(G)) = K* ® (P(b) ® B>) where
P(b) = Z3)[b1,b3]/ (b7, 53),
E’z {3,b2,b4,b5,bé,b7,bg} &) Z(3){b1b2,b1bg} with bé = v1bg — b%

Proof. By definition of b3, we see that the restriction map
K*(R(G)) = K*[b1, bs]/(b7,53) — K*[3, ']/ (5, (")) = K*(R(G))
is isomorphic by resg(b;) = v1y and resg(b3) = v1y’. Here we note that
by =3y =3v;'by, by=3y" =30;'bs, bs=3v’bbs
bs = 3Uf3b12133 + vflgf, by = 3vf25§, bg = 3uf3b1l_)§.

Moreover we have 3b2h2 = 3v}(yy')> = vb,bg.
Therefore we have the isomorphism

K* ® (Z{b2,bs, bs, b7, bs} @ Z{bs = vibs — b3} @ Z{b1bs})
~ K* @ (3Z{by, b3, b1bs, b2, 152} @ 3Z{b2b3} ® 3Z{hB2}).

Here we used b} = 3v72b?b3 mod(9), since by = by mod(3).
For the element 3b7, we note 3bh? = 3v}y*> =uvibh,. Thus we have the
graded ring gr3(K;(R(G)))/3. O

LEmMMA 9.6.  We have the injection (of graded modules)
Z./3{b3, by, bs, bs, b7,bs} @ Z/3{b1by,b1bg, b3, babs} C CH*(R(G))/3.
Proof. From Corollary 3.8, we see
Z/3{by,bs,...,bs} C CH*(R(G))/3.

We see that #(Eg)s =9 from resc(babs) = 9(yy")* ((31]). We also see
resi (b bg) = 3vl(yy’)2. The fact #(Es) # 3 implies that bybg, b1bg are nonzero in
CH*(R(G))/3.

For the element b3, we consider the restriction resi(h3) =9y%. Since
3y% ¢ Im(resy), we see by #0e CH*(R(G))/3. Since 3b1by = v1h3, we also see
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We will consider a filtration of gr;(K*(R(G)) and its associated ring
gr'(K*(R(G))) = gr(grs(K*(R(G)))),

which is isomorphic to K* ® B for some B C CH*(R(G)), to apply Lemma 5.3.

Since b3 = by mod(3), we see P(b)/3 = P(b)/3. So we can replace P(b)/3
by P(b)/3 in gr3(K*(R(G)). Using 3biby = vib3 and 3bibg = vibybg, we can
write

gr3(K*{b]b2,b]bg}) = K*/3{b1b2,b1bg} &) K*{bg,bzbg}.
Since b3 + b}, = v1bs, we can replace b; by bs. Thus we get the another graded
ring gr'(K*(R(G))).
ProPOSITION 9.7. There is a filtration whose associated graded ring is
gr'K*(R(G)) = K* ® (B| ® By) where
Bi = P(b)/(3) @ Z/3{bib2,brbs}, P(b) = Z3[b1, b3/ (b}, b3),
By = Z3{3, b2, b4, bs, b, b7, bs} @ Z3){b3, babs}.

If it would hold (B; @ B,)/3 € CH*(R(G))/3, then we have gr,(R(G))/3 =
(B; @ B,)/3 from Lemma 5.7. However the above supposition is not correct.

CoOROLLARY 9.8. There is a submodule A C P(b)/3 such that
gr;(R(G))/3 = (B1/4) ® A" ® (B,/3)

where there is a surjection s: A — A’ as non-graded modules.

Proof. For 0#aeP(b), if a=0 in CH*(R(G)), then there is a’e
CH*(R(G)) such that a=vFa’ in k*(R(G)) for k> 0. Let s(a) =a’. Then
we have the corollary applying Lemma 5.7. ]

For ease of arguments, we write d(x) = 1/4|x|, e.g.,

d(l)l):—L d(b1)= 17 d(b2)=2, d(b3):4, d(b4)=5
d(bs) =17, d(bs) =9, d(b7) =10, d(bs)=12.
We easily see that by, by, b}, b3, b1b; are nonzero in CH*(R(G))/3. Hence
AC Z/3(bbs, i B,

LEMMA 9.9. We see b12b3 ¢ A

Proof. In k*(R(G)), we have
bibs = (019)°(3y” +01y') = 0} (V%) mod(I}),
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by using facts that y* € I, from y* = 0e CH*(R(G))/3. Suppose b?b; = v1b in
k*(R(G)) for be A(b) = Z[b,...,bs]. Then
() b= (0)*(y’y') mod(I}), d(b)=1.

If b = by mod(b;b;), then by dimensional reason,

bi = bs = 3yy' + di(yY'), AelZ.

This case, of course, does not satisfy ().

Let b =>_b(1)b(2) for b(i)e A(b)*. Since b(i) e l,, we see that b(j) =
32y(i) + v1p(i") for y(i") #0 € P(y). Each b(i) must contain vy, and it is one
of by, b3, bs. By dimensional reason (such as d(b) =7, d(bs) =9), these cases

do not happen. We see (more easily) that the cases b?b; = v}b do not happen
for s > 2. ]

LEmMA 9.10. We have b1b§ € A.

Proof. We have
bib3 = 0y(3y* + o))’ = viy(y)? mod(I})
in k*(R(G)), using y*e€l,. Similarly we have
bibg = v1y(3y%y +01(y")?) =i y(y)* mod(1}).

Let us write b = b1b3 — vib1hs. Then bek* ® P(b) and be I?. We also note
d(b) =9. We will prove b € I2 Im(resy). Then bib? € A and s(b1b3) = (b1bs) €
A’ in Corollary 9.8. o

First note that b does not contain (as a sum of ) v{y’(y’)’ for (i, ) # (2,2),
because d(h) =9 and d(y'(y')’) < d(y(y')*) = 12. If b contains 3uy’(y’)’ for
(i,j)) #(2,2) and pelj, then take off the element ub; from b where b =
3yi(»') +---. Hence we only need to consider b= 2 (yy')? and e 1.
Since d((yy')?) = 14, we can write, moreover,

b= :qulso/yl)z, ,U” c Z(3).

Next we see
(+) b =b— u"vibibs = u'v}(3y*y') mod(1S) (in k*(R(G)).

Here y*(y’) el and hence b’ €18.

If 5 =90%(yy")?, then b elm(res). If b =3v3(yy')?, then b'=
vib1bg mod(I1). Moreover b’ € Ideal(v?) means just zero in k*(R(G)), because
d(b) + 6 =15> d(y*(y')*) = 14. Thus we can take b e I2 Im(resy). O

LemMA 9.11. We have
A=17/3{bb3,b?b3}, and A' = Z/3{b\bs,b’bg}.

Proof. From the above lemma, we can take b1b3 = v1b1bs in k*(R(G)).
Hence b?b3 = v1b7bs. So it is sufficient to prove that bibs # 0 € CH*(R(G))/3.
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Suppose that b?bs = vb. Then
b= () mod(D).

However, we can prove that such b (with d(b) = 12) does not exist by arguments
similar to the proof of Lemma 9.9. O

THEOREM 9.12.  Let (G, p) = (Es,3) and G be versal. For By, By in Prop-
osition 9.7, we have

gry(R(G))/3 = B]/(3, b]b%7 blzbg) @ Z/3{b1b6, blzbﬁ} ® 32/3.
10. The case G=FE7; and p=2
Throughout this section, let (G, p) = (E7,2) and G be versal.

THEOREM 10.1.  The cohomology grH*(G;Z/2) is given
Z/2[ys, 10, 118)/ (Ve ¥io» ¥is)» ® A(z3, 25,20, 215, 217, 223, 227)

Hence we can rewrite

grH* (G, Z)2) = Z/2[y1, y2, »3)/ (31, ¥3,¥3) ® A(x1, ..., x7).

Lemma 10.2. The cohomology operations act as

Sq? Sq* Sq®

X1 =23 —— Xp =25 —— X3 =29 —— X4 = Z17
Sq® Sq*

X5 =215 — X =223 —— X7 = 227
Sq?

X5 =Z15 — X4 = Z17
The Bockstein acts Sq'(xiy1) = y; for 1 <i <3, and

1. _ — —
Sq P Xs=2Z1s > )V1)2,  Xe = Z23 > Y1)V3, X7 = Z27 V> )2)3.

LemMa 10.3 ([44]). In H*(G/T)/(4), for all monomials u e P(y)" /2, except
Jor Yip = y1y2¥3, the elements 2u are written as elements in H*(BT). Moreover,
in BP*(G/T)/I2, there are b; € BP*(BT) such that

by =2y, b3 =2y, by=2y3, bs=2y1y3, b7=2y1y3,
by =viy1 +vy2 +v3y3, bs=2y1y+v1ys.

Proof. The last two equations are given by Qi(x1) = y1, O2(x1) = y2,
Os(x1) = y3,  Qilxs) = y3, Qo(xs) = y1y2. O

Lemma 104 ([31]). We have t(E7),) = 22,

Proof. We get the result from byb7 = (2y1)(2p213) = 22Vi0p- O
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CoroLLARY 10.5.  Elements bibg, bib7, bab; are all nonzero in CH*(R(G))/2.

Proof. Note that |y;y2y3] =34. In Q*(F)/I2, we see
bibs = 203 y10p,  b1bs = 202 Y10p,  b1D7 = 201 Yigp-

These elements are Q*-module generators in Im(resf(Q*(F)) — Q(F)) because
2y1y2p3 ¢ Im(resf) from the fact #(G) = 22, N
By Chevalley’s theorem, resx is surjective. Hence in K*(R(G))/2,
viy2=beZ/2[by,...,b;] some seL.
Since y» ¢ Im(resg)>), we see s > 1. The facts that |b;| > 6 and |y,| = 10 imply
s =2.
LemMmA 10.6. We can take by =2y +viy, in k*(G/T)/(v}).

CoROLLARY 10.7. The restriction map resg is isomorphic, i.e.,

K*(R(G)) = K* @ Az (b1, by, bs).

Proof. Recall that K*(R(G)) = K*® P(y) = K*® Az(y1,y2,3). The
corollary follows from the mod(2) restriction map resg,, which is given as
by = viy1, by = vfya, bs = v1y3. O

Here we give a direct proof (without using Chevalley’s theorem) of the above
lemma. For this, we use k(1) theory (with the coefficients ring k(1)" = k*/p =
Z/p[v1]) of the Eilenberg-MacLane space K(Z,3). It is well known for p odd

(e.g., see [1])
H*(K(Z,3);Z/p) = Z/p[y1, y2,-- ] ® Alx1,x2,...)

where PP ... P'(x;) =x, and fBx,s = y,. When p=2, some graded ring
grH*(K(Z,3);Z/2) is isomorphic to the right hand side of the above isomor-
phism.

Lemma 10.8 (Theorem 3.44. (2) in [39]). We can take vy, =0 in
grk(1)"(K(Z,3)).
Proof. We consider the AHss
E;* = H'(K(Z3):Z/p) ® k(1) = k(1) (K(Z.3)).

It is known that all y, = Q,(x;) are permanent cycles. The first nonzero dif-
ferential d,—1 = v1 ® O, is given as

V4 P
Xy =01y, xa—= 0, X3 01y), Xg 01y,

(e.g., Oi(xip2) = »F). Hence x, and yq, ys,... exist in EZ*I;O.
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On the other hand, from Anderson-Hodgkin [1], it is well known
k()" (K(Z;n))[v; '] = K(1)*(K(Z;n)) = Z/p  for all n>2.
Hence there is s > 0 such that vjy, € Im(d,) for some r. By dimensional reason,

we have do(,_1)p+1(x2) = v{ y2. U

Proof of Lemma 10.6. The element x; € H*(E;;Z) represents the map
i:E7 — K(Z;3) such that i*(x;)=x; and i*(y;) =y;. Hence viy, =0 in
grie(1)" (Ey).

On the other hand,

k(1)"(E7) = k(1)"(E2/T)/(Ideal (S(t) "))

Hence we can write vy, = ty; + ¢’ for #,¢' € S(t)". Since [v}ya| = |y1| = 6, we
see t=0. Thus we get v?y, € k(1)"(BT). O

ProposiTiON 10.9.  There is a filtration whose associated graded ring is
grK*(R(G)) = K* ® (B1 @ By) where
{81 =P(b)2®Z/2{b1b7}, where P(b) = Az(b1,b,bs)
By = Z{2,2by, b3, bs, b1b3, b, b7, b2b7}
Proof. Recall that
K*(R(G)) = K*® P(b) = K*® P(y) = K*(R(G)).
Let us write by = by — 207 'hy and bs = bs — vy 'b1bs so that by = v?y), bs = v1 3

in K*(R(G)). Let us write P(b) = A(by,bs,bs).
We consider grnK*(R(G)) = K*(R(G))/2 ®2K*(R(G)). We have
K*(R(G)) D2K* ® P(b) =2K* ® P(b)
= 2K*{1,b1,by,...,bab3, bibybs} = 2K*{1, y1, y2,..., y12¥3}
= K*{2,2by,b3,bs, b1b3, b, b7,b1b7}.
Here we used 2v;y; = 2by, 2y, = b3, 2y3 = b, 201 y1y2 = b1b3, and
2yy3=bs, 2y2y3=0b7, 2u1y1y2y3 = bib7.
The equation 2b1b; = 4v; y1 y2y3 = v1byb; implies that
grK*(R(G)) = graK*(R(G))/(2b1b7) @ Z{babs},
which gives the graded ring in this lemma. OJ

We can not get gr,(R(G)) here, while we can see the following proposition.

ProrosiTION 10.10.  Let (G, p) = (E7,2) and G be versal. Then there is an
injection (of graded modules)

Bl/(b2b5, b]bzbs) &) Bz/(z, 2b1) C gr;,(R(G))/Z
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Proof. Here we only give a proof that b1h, in B; is non zero in
CH*(R(G))/2. The other cases (e.g. h1bs) are proved similarly. We see

b]bz =U1)1 (2y1 + Ufyz) = Ul3y1 2 mod(ZUllo@,Ii).

Suppose biby = vih. Then we see b = v}y y> mod(21,,v}). We can show that
this does not happen, as the proof of Lemma 9.9. (For example, if b=
by mod(b;b;), then b= b3 and this is a contradiction since b3 contains 2y.)

O

11. The case G=FEg and p =2
It is known ([17]) that

ng*(ESaZ/z) = Z/2[J/17}’27)’3>J’4]/(J’§7J’§a}’327y‘%) ®A(X1,...,X8)

so that grH*(E7,Z/2) = grH*(Es, Z/2)/(¥{, y3, ¥4, Xs).
Here S¢?(x7) = xs, B(xg) = y4. Hence

01(x7) = Qo(xg) = ya, |ya| =30.

ProposiTioN 11.1.  Let (G, p) = (Es,2) and G be the versal Gy-torsor. The
restriction map resg is isomorphic. In fact, for the transgressive elements by, by,
bs, by in K*(G/By)/2, we have

K*(R(G))/2 = K*/2[by,ba, bs, by]/ (b3, b3, b2, b3).

Proof. From the case E7, we have by = viy, in K*(R(G))/2. We also see

by =wv1y1, bs =v1y3, by =v1y4 in K*(R(G))/2. O
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