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LOJASIEWICZ EXPONENTS OF NON-DEGENERATE
HOLOMOROHIC AND MIXED FUNCTIONS

Mutsuo Oxka

Abstract

We consider Lojasiewicz inequalities for a non-degenerate holomorphic function
with an isolated singularity at the origin. We give an explicit estimation of the
Lojasiewicz exponent in a slightly weaker form than the assertion in Fukui [10]. We
also introduce Lojasiewicz inequality for strongly non-degenerate mixed functions and
generalize this estimation for mixed functions.

1. Holomorphic functions and Y.ojasiewicz exponent

Consider an analytic function f(z) with an isolated singularity at the origin.
We consider the inequality

(1) 3e>0,Vze U, ||of(2)|| = |z’
where U is a sufficiently small neighborhood of the origin and df(z) is the

. 0 ) S
gradient vector <—f f). The Lojasiewicz exponent /y(f) of f(z) at the

0z;" 0z,
origin is the smallest positive number among @’s which satisfy the inequality
(1). It is known that there exists such number Z(f) and it is a rational number
[16, 27]. We assume that the Newton boundary of f is non-degenerate here-
after. The purpose of this paper is to give an explicit upper bound of the
Lojasiewicz exponent in term of the combinatorics of the Newton boundary.
There is a similar estimation proposed by Fukui [10] but he uses some in-
correct equality (2.4), [10] in his proof. Thus the proof has a gap and the
assertion must be proved in a different way, even if it is true. There is also an
estimation by Abderrahmane [2] using Newton number. In this paper, we give
an estimation along Fukui’s way. Our estimation is apparently a little weaker
than that of Fukui but it is enough for our purpose. In the last section of this
paper (§4), we will generalize the notion of Lojasiewicz exponent for mixed
functions.
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1.1. Newton boundary and the dual Newton diagram. Let f(z) =), c,z"
be an analytic function with f(0) = 0. Recall that the Newton diagram I', (f) is
the minimal convex set in the first quadrant of R’ containing |J, . .o(v + RY).
The Newton boundary I'(f’) is the union of compact faces of ', (f). Let N, be
the space of non-negative weight vectors. Using the canonical basis, it can be
identified with the first quadrant of R”. Let P = (py,..., p,) € N4 be a non-zero
weight. It defines a canonical linear mapping on ' .(f) by P(v) =Y, piv.
We denote the minimal value of P on Iy (f) by d(P,f) and put A(P,f) =
{veT (f)|P(v)=d(P,f)}. This is a face of ' (f). We simply write as
d(P) or A(P) if no confusion is likely. The dimension of A(P) can be 0,1,...,
n—1. Recall that P,Q e N, are equivalent if A(P) = A(Q). This equivalence
classes gives N, a rational polyhedral cone subdivision I'*(f) and we call I'*(f)
the dual Newton diagram. We also define a partial order in I'*(f) by

P< Q& AP) CAQ).
Denote the set of weights which are equivalent to Q by [Q]. Note that the

closure [P] is equal to the union Up=»[0] and

dim[P] = dim[P] = n — dim A(P).
The generators of the 1-dimensional cones of I'*(f) are called vertices. A
weight P e N, is a vertex if and only if dim A(P) =n— 1. We denote the set of
vertices by ¥". P = (p1,...,pn) is called strictly positive if p; >0 for any i =
I,...,n. Note that A(P) is compact if and only if P is strictly positive. A

vertex which is not strictly positive is either the canonical basis ¢; = (0,...,
1

T, ...,0), 1 <i<n or corresponds to a vanishing coordinate subspace (see §3.1
for the definition).

1.1.1.  Face function. For A CT(f), put fa(z) :=> ,.,c2" and we call
fa the face function of A. For a weight vector P € N, the face function asso-
ciated with P is defined by fp(z) = fap)(z). The monomial z” and the integer
point v € ', (f) correspond each other. If A is a compact face, fx is a weighted
homogeneous polynomial.

1.2. Normalized weight vector. Take a weight vector P = (pi,..., pa)-
Let d =d(P) and assume that d > 0. The hyperplane IT in R”", defined by
pivi + -+ + pavn = d, contains the face A(P) and all other points v e I'y (f)\A(P)
are above Il. Namely p;vi + -+ p,vy > d. We call I1 the supporting hyper-
plane of the weight vector P. For a weight vector P with d(P) > 0, we define
the normalized weight vector P of P (with respect to f) by

P = (ﬁla"'vﬁn)? ﬁl:l’:/d(P)

Hereafter we use this notation P throughout this paper. Using the normalized
weight vector, d(P) =1 and the supporting hyperplane IT is written as

I: pwvi+---+p,ym=1
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Note that the v; coordinate of the intersection of II and vj-axis is
1/p;.

" Assume that A(P)NA(Q) #0 and consider the line segment P,:= P +
(1-00, 0<t<1. Note that A(P;) =A(P)NA(Q) for any 0 < ¢ < 1 and the
normalized weight vector P, is simply given by P, =P+ (1- I)Q, provided
d(P) >0 and d(Q) > 0.

The purpose of this paper is to give an upper bound explicitly for the
Lojasiewicz exponent using the combinatorial data of the Newton boundary.
Then we give an application for the characterization of the monomials which
do not change the topology by adding to f. For a weighted homogeneous
non-degenerate polynomial, we prove the estimation conjectured in [6] under
the Lojasiewicz non-degeneracy. In §4, we generalize these results for mixed
functions.

2. Lojasiewicz exponent for convenient functions

2.1. Preliminary consideration. We first consider the estimation of Loja-
siewicz exponent along an analytic curve C(z) which is parametrized as follows.
Put 7 :={i|z;(t) #0} and I° be the complement of I.

) an{uoz@mwwmm,umzmwmc”
z;(t) = a;t"" + (higher terms), p;eN,iel.
Here we use the following notations:
Ccl={z= (z1,--,20) |25 =0, j¢ 1}
Cli={z=(z1,...,22) |2 #0, & iel}

N{={P=(pr.....pa) €N |p; =0, j &1}
N ={P=(p1,....pn) Ny |pi #0 = iel}
f! = fler-
Put P = (p;);.; and d =d(P, f'). We define
M(P) = max{p;| je T}, m(P):=min{p;]je I}

Note that ord z(r) = m(P). Put ¢ := ord df7(z(¢)). Under the non-degeneracy
assumption, we have the inequalities:

(3) d—M(P)<qg<d-m(P) or
d— M(P) q d _
@ B = mB) = mE) )

o
ﬁzj
appear in fp. Then we have the obvious estimations:

Put Vari(P) = {zj

# 0}. Namely Vari(P) is the set of variables which
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(5) gg (z(1)) = (%) (a)t% + (higher terms), d; = d( gf)
7 i/p ,
(6) ord af( () =d=d— p;.

0z;

If zjeVari(P), di=d(P,f)— p, and otherwise d; >d — p;. If m(P)= p;,
d/m(P) =1/p; and this is equal to the j-th coordinate of the intersection of
II(P) and v; axis. We define the Lojasiewicz exponent of f along C(t) by

__ord of (z(t))
w(Cr) = ord z(t)
By (3) and by the non-degeneracy assumption, we have
(7) ord df (z(¢)) < d — m(P)
(8) ord fj(z(1)) = d(P Ji)zd—p;
d —m(P)
For a strictly positive weight vector P = (py,..., ps), we define positive invariants
d—p; _1-p
: P . e _ J ,
M, (P) = - B
d d
(10) rp) =49
}7[’]( ) pi Pi
d — m(P) 1
P) .= = ——1
e m(P)  m(P)

where d; = d(P, f;) and d; =d;/d.

2.2. Lojasiewicz exceptional monomial. We say that f(z) is convenient if
for any 1 < j < n, Newton boundary I'(f) intersects with v;-axis at a point B; =
J

(0,...,13]-,...,0). Recall that a non-degenerate function f(z) has an isolated
singularity at the origin, if it is convenient (Corollary (2.3), [19]). Assume that
f(z) is convenient as above. Define an integer B:= max{b;|j=1,...,n} and

let & ={i|b;=B}. We call z#, ie ¥ a Lojasiewicz monomial of f. We say
that a Lojasiewicz monomial z? is Zojasiewicz exceptional if there exists j,
j #i and a monomial of the form zjziB’, with B’ < B — 1 which has a non-zero
coefficient in f.

Consider the curve parametrized as (2) and assume that 7= {1,...,n}.

Then we have seen

ord 0f (z(1)) <

ordz() S mp) 1 =B-L
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This implies the following inequality holds in a small neighborhood of the origin.

(11) lof @)l = ellz(0]|®", e #o.
of

If z2 is Lojasiewicz exceptional and let z;z%', B’ < B — 1 be as above. Then PP
o m . of %
has the monomial z?" with non-zero coefficient and ord al(z(t)) can be p;B’
%
which is smaller than p;(B—1). In fact, this is the case for the i-axis curve z(¢)
where z;(f) =t and z;(t) =0 for j #i. We assert

ASSERTION 1. The inequality £y(f) < B— 1 holds for any analytic curve z(t).

Proof. As we have shown the assertion for the case 7 = {1,...,n}, we need
only consider the case where some of z;(¢) is identically zero. In this case, put
I:={i|zi(t) #0}. Then f!:= f|c is a non-degenerate convenient function.
Thus by the above argument applied for f/, we have

ord 9f ' (z(t)) < (ord z(¢)) x (B — 1).

Here B; is defined similarly for f7/. By the obvious inequality ord df(z(t)) <
ord df1(z(r)) and B; < B, we get the inequality (11). O

For the practical calculation of the Lojasiewicz exponent, we use the
following criterion. This can be proved by the Curve Selection Lemma ([18,

11]).

PROPOSITION 2. A positive number 0 satisfies the Lojasiewicz inequality (1) if
the inequality

ord 9f (z(¢)) < 0 x ord z(7)
is satisfied along any non-constant analytic curve C(t) parametrized by an analytic

)
path z(t) with z(0) =0. That is £y(f) = sup 4o(C(¢)) where C(t) moves every
possible analytic curves starting from the origin.

Now we have the following result for convenient non-degenerate functions.

THEOREM 3. Let f(z) be a non-degenerate convenient analytic function.
Then Lojasiewicz exponent (y(f) satisfies the inequality: (y(f) < B— 1.
Furthermore if f has a Lojasiewicz non-exceptional monomial, £y(f) = B — 1.

Proof. We have shown that /(f) < B—1. We only need to show the
existence of a curve C(¢) which takes the equality ¢ = B — 1, assuming that f has
a Lojasiewicz non-exceptional monomial. For this purpose, we assume for sim-

. . . 0
plicity B = by and z¥ is non-exceptional. Note that the Newton boundary of G_f
Zj
does not touch the v; axis under B —1 for any i > 1 by the assumption. Thus
we can take a sufficiently large integer N and put P = (I, N,...,N). Note that



LOJASIEWICZ EXPONENTS OF NON-DEGENERATE FUNCTIONS 625

) 0
d(P7 %) =B—1 and d(P, %) > B—1 for any i >2. Consider the curve
1 i

C(1) defined by z(z) = (¢,¢V,...,tY). Then the above observation tells us that
of (z(1)) = (B, *,...,*)t51 + (higher terms).
Thus [|0f (2(0))|| ~ [|2()]|* " O

In the above proof, if there is a monomial z#'z; with j # 1, B' < B— 1, we
see that ord f;(z(f)) = B’. Thus we have ord fi(z(¢)) > ord f;(z(¢)). The im-
portance of Lojasiewicz exceptional monomial is observed by Lenarcik [17]. For
plane curves (n =2), we have also observed that it gives a fake effect to com-
putation of the complexity of plane curve singularity but exceptional monomials
can be eliminated without changing the non-degeneracy (Le-Oka [15]). Suppose
that czf 4 ¢'z8'zy with B’ <B—2, ¢,¢’ #0 is in a face function of f. Then
take the coordinate change (z1,z}) := (21,22 + (¢/c')zf~%") to kill the monomial

zB. This operation does not work for mixed polynomials.

3. Lojasiewicz exponents for non-convenient functions

In this section, we consider again a non-degenerate function f(z) with
isolated singularity at the origin without assuming the convenience of the Newton
boundary. It turns out that the estimation of Lojasiewicz exponent is much
more complicated without the convenience assumption. We assume that I'(f)
has dimension n — 1 hereafter. If the multiplicity at the origin is greater than 2,
this condition is always satisfied.

3.1. Lojasiewicz non-degeneracy along a vanishing coordinate subspace. Let
I be a subset of {1,...,n}. We say that C’ is a vanishing coordinate subspace
(21, 22, 9)) if f'(z;) =0. Here f! is the restriction of f to C’. We use the
notation C' = {z|z; =0, j¢ I} and z; = (z;),,. If further 7 = {i} is a vanish-
ing coordinate subspace, we say C'Y a vanishing axis. We say a face E C I';.(f)
is essentially non-compact if there exists a non-strictly positive weight vector Q =
(q1,---,4n) such that d(Q,f) >0 and A(Q) =E. Let I(Q) ={i|qi=0}. We
say also I(Q) the vanishing direction of E and write also as I(E) = I(Q). Then
the assumption d(Q, f) > 0 implies C’ (@) is a vanishing coordinate subspace.

Put 7 =1(Q) and we assume that 7 = {1,...,m}. Take an iel. By the
assumption, the gradient vector df does non vanish in a neighborhood of the
origin of i-axis except at the origin. This is possible only if there exists a
monomial z;"z; with a non-zero coefficient for some j # i in the expansion of f.
Then we observe that j ¢ I, because C’ is a vanishing coordinate subspace. Let
Ji be the set of je ¢ for which such a monomial z/"z; exists with a non-zero
coefficient in the expansion of f(z). J; # 0 for any ieI. We define an integer
nyj by

nj = min{n; | z;"z; has a non-zero coeflicient}
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for a fixed ie/ and jeJ;. For brevity, we put n; = oo if j¢J;. Put Bj:=
i J

0,...,n5...,1,...,0). Note that B;eI'(f). Put J(I)=U,,; Ji. We say

that f is Lojasiewicz non-degengerate if for any strictly positive weight vector

Pe N*' (namely p; >0, VieI), the following condition is satisfied. Put I’ :=

{i| pi=m(P)} and J(P):=J;.;, Ji CJ(I). Then the variety

{ze CT((/)")plz) =0, Vi e J(P)}.

is empty. In other word, for any aeC* there exists jeJ(P) such that
(( ];-)I)P(a) #0. Here and hereafter we use the simplified notation for the

0
derivative function: fi(z) := a—?(z), i=1,...,n

3.2. Jacobian dual Newton diagram. We consider the derivatives f;(z), i =
1,...,n. We consider their Newton boundary I'(f;), i=1,...,n. As we con-
sider n+ 1 Newton boundaries, we denote by A(P, f;) the face of I'(f;) where
P takes minimal value, d(P, f;). We consider the following stronger equivalence
relation in the space of non-negative weight vectors. Two weight vectors P, QO
are Jacobian equivalent if A(P, f;) = A(Q, f;) for any i=1,...,n and A(P,f) =
A(Q, f). We denote it by P 5 Q. This gives a polyhedral cone subdivision of
N, and we denote this as I';(f) and we call it the Jacobian dual Newton diagram
of f. T'j(f) is a polyhedral cone subdivision of N, which is finer than I'*(f).

The Jacobian dual Newton diagram can be understood alternatively as
follows. Let us consider the function F(z) = f(z)fi(z)--- fu(z). Then I';(f) is
essentially equivalent to the dual Newton diagram I'*(F) of F. For any weight
vector P, we have A(P,F)=A(P,f)+A(P, fi) +---+ A(P, f,) where the sum
is Minkowski sum. See [3] for the definition. For a weight vector P, the set
of equivalent weight vectors in I'*(f) and I';(f) is denoted as [P] and [P],
respectively. We consider the vertices of this subdivision. We denote the set
of strictly positive vertices of I'*(f) and T';(f) by ¥, #," respectively. Recall

that ¢; = (0,...,1,...,0).

ProposITION 4. (1) P~ Q implies P~ Q in T*(f). Conversely if P~ Q
and fp(z) contains all n-variables, P 5 0.

(2) A strictly positive weight vector P is in vt or ¥, if and only if
dim A(P,f)=n—1 or dim(A(P,f)+ > ;A(P, f))) =n—1 respectively
where the summation is Minkowski sum.

Let 75 be the set of vertices of I'*(f) which are not strictly positive.

PROPOSITION 5. Assume that P € v and C'') is a non-vanishing subspace.
Then P is one of ey,...,e,

A vertex P e 7§ is called a vanishing vertex if C!'") is a vanishing subspace.
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LemMa 6. Let P= (p1,p2,-..,pn) be a vanishing vertex of T*(f) in ¥4 and
put I =1(P). Then the following holds.
(1) fp contains every variable zi,...,z,. In particular, p, <1 for any i
(2) Any monomial z{'z;, i € I in f(z) must be contained in fp(z), as p; =0 and
degp zf'z; = p; < L
(3) There are no monomials 7’ € Clz;] in fp(z).

Proof. Suppose that fp does not contain the variable z; for some i. Then
A(P) C {vi=0}. Then ¢; € [P] and thus a contradiction d(P, ) = d(e;, ) = 0.
This proves the first assertion. Consider z'z;, iel in f. Consider the nor-
malized vector P. Then p; <1 by the assertion (1) and as degp z'z; > 1, this
implies p; =1 and z/z; must be in fp. If there is a monomial z" as in the
assertion, degs z" =0 and an obvious contradiction. O

Example 7. Consider f(z) = (z{ +2z3 +z8)z2+2] +z]. ;" has vertices
ei, €, e3, eq and R, P, S where

1 111 .
RZ(E’Z’?’?)’ Jr(@) =zt 2 42+
/2211 L
P_<ﬂ’7’7’7>’ fr(z) =23 + 2

11
S:(O717757>7 fs(z):ZIQZZ+Z?Z+ZZ'

Note that Pe 7;"\7"" as fop=z] + 23 +z§ and degp for +2=5>1. Sev;
corresponds to the vanishing coordinate subspace C'. The vertex P is in the
simplicial cone Cone(R,e1,¢;) as P = R+ gze; +5ges.  Note that Cone(R, ey, e2)
is a regular boundary region. See the definition below.

3.3. Boundary region. We consider equivalence classes [P] and [P, in
I'*(f) and T'j(f) respectively. There exist three different cases.

1. An equivalent class [P] (respectively [P];) is called an inner region if the
closure [P] (resp. [P],) does not contains any vertex of 7{ on the boundary.

2. [P] (respectively [P],) is called a regular boundary region if the closure
[P] (resp. [P],) contains some vertex ¢; but contains no vanishing vertex on the
boundary. L L

3. [P] (resp. [P],) is called a vanishing boundary region, if [P] (resp. [P],)
contains a vanishing vertex Q e I'*(f) (resp. Q€ I';(f)) on the boundary.

3.4. Special admissible paths. Two weight vectors P, Q are called admis-
sible, (respectively J-admissible) if A(P)NA(Q) # 0 (resp. A(P)NA(Q) # 0 and
A(P, /) NA(Q, f;) # 0 for any i). Any weight R in the interior of an admissible
lene segment PQ satisfies A(R) = A(P)NA(Q) (resp. A(R) =A(P)NA(Q) and
AR, ;) = AP, i) NA(Q, fi), i=1,...,n). Take a weight vector P = (py,...,
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Pn) which is not strictly positive. Put I = {i| p; =0}. We say P is a vanishing
weight (respectively non-vanishing weight) if f1 =0 (resp. 1 #0).

ProposITION 8 (A path in a regular boundary region). Suppose that two
weight P, Q are admissible, Q is strictly positive weight and P is a non-vanishing
weight vector with I = {i|p; =0}. Then weight vector R e PQ on this line seg-
ment (except P) is given in the normalized form as R, = Q + tP with 0 <t < o0.
In this expression, R, — P when t — oo and there exists a sufficiently large 6 > 0

so that m(R,)) = m(Q;) and n(R,) = n(Q;) for t > and n(Q;) < n(Q).

Proof. For j¢lI, g;+1ipj— oo and the assertion follows immediately.
Here m(Q;) = min{g; | je I}. O

PRrROPOSITION 9 (A path in a vanishing boundary region). Suppose that Q is
strictly positive and P is a vanishing weight vector. Put I ={i|p; =0}. Then
0,=(1—8Q+1tP, (0<s<1) parametrize the weights on the line segment QP
and we have the following.

(1) Suppose that ;> q; for some iel, j¢l Then (1—1)g +1p; >

(1—=10)gq; for 0<t<1.
(2) If there is a j ¢ 1 such that q; < q; for some i€ I, there exists 0 < 1y <1
which satisfies (1 —10)q; + top; = (1 — 1)g;.

Proof. Second assertion follows from the following property.

3.5. Key lemma. First we prepare an clementary lemma.

: : b
LemMa 10. Consider a linear fractional function ¢(s) = ast where a, b,
cs

+d
¢, d are real numbers such that (c,d) # (0,0) and cs+d # 0 for 0 <s < 1. Then
if ¢'(s) # 0, the sign of ¢'(s) does not change i.e., ¢'(s) > 0 or ¢'(s) <0 for any s,
0<s<1. Thus ¢(s) is a monotone function on [0,1].

~

Proof. Assertion follows from

/S)_ad—bc 0
(es+d)*

Assume that P, Q are strictly positive weight vectors. Then the weights on
this line segment PQ can be parametrized normally as R, 0 < s < 1:

Ry=sP+(1—-29)0.

Putting P = (p,,...,p,) and O=(4,,...,q4,), we can write Ry = (sp, +
(1 =9)4,-..,3p, + (1 —s)g,). We consider the quantities defined in (10):
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1—#; 1= (sp+ (1 —9)g))

Ry =L
R = S T v (-4,
1—m fis
n(R) =R
m(Ry)
deg Rsa f deg Rsvf
”;(Rs): (A : j): _ ( _])A
Ty i SP; + (1 S)qi

Applying Lemma 10, we have

Lemma 11. Assume that P, Q are strictly positive weight vectors.
(1) Assume that P, Q are admissible. Then we have

n;(Rs) < max{n;(P),n;(Q)}, 0<s<l1.
In particular, we have
n(Rs) < max{n(P),n(Q)}
(2) Assume that P, Q are J-admissible. Then we have

nj(R,) < max{n(P),n;(Q)}, 0<s<1l.

3.5.1. Invariants to be used for the estimation. Let ¥;" be the set of strictly
positive vertices of I';(f) and consider the subset #;"" C #," which are in a
vanishing boundary region [Q] of I'*(f) for some Q. The numbers of ¥"*, ¥;*,
¥,7" are finite. We define the following invariants.

Mmax(f) = max{n(P)| P e 7"}
n],mux(f) = max{ly(P) |P € n,/+ U n,/.;++}a
Ny max(f) = max{n (R)|Re ;" kji=1,...,n}
n.y,max(f) = max{”],mux(f)?”.ll,max(f)}'
Here 7; ;(R) = d(R, fi)/rk.
3.6. Main theorem. The following estimation is our main result which is

a modified weaker version of the assertion in [10]. Recall that we assume that
dmT(f)=n—1.

THEOREM 12. Let f(z) be a non-degenerate Lojasiewicz non-degenerate func-
tion with an isolated singularity at the origin. Then Lojasiewicz exponent (y(f)
has the estimation

fo(f) = ny.max(f)'

If ;7" =0, the estimation can be replaced by a better one

H(f) < e (f)-
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The proof of Theorem 3.6 will be given in §3.7.

3.6.1. Test Curve. We consider an analytic curve C(f), —e < t < ¢ para-
metrized as before (2),

z(t) = (z1(1),...,z,(1)), z(0) =0, z(t) e C*

(12) C(t) : < zi(t) = a;t” + (higher terms), iel

z() =0, jé¢I
For simplicity, we assume that / = {1,...,m}. Put P=(pi,...,pu) € N;! and
a=(ay,...,ay) e C*. We are interested in a best possible upper bound for

the positive quantity /y(C(¢)) = ord df(z(¢))/ord z(f). Using the notation f; =
df /0zj, we have the expansion

(13) £i(z(1)) = (f;) p(a)t/"F) + (higher terms).
Note that if fp(z) contains the variable z;,
(14) (f)p(a) = (fp);(a), d(P,f;) =d(P,[f)— pj.

3.6.2. Curves corresponding to a strictly positive weight vector. In the pre-
vious section, we have seen that a test curve C(f) gives a pair (P,a) e NI x C*.

We consider the converse in the case I = {1,...,n}. Assume we have a strictly
positive integer weight vector P = (p1,...,p,) e NY NZ". Taking a coefficient
vector a = (aj,...,a,) € C™, we associate an analytic curve

Cp(t,a) : z(1) := (1", . .., a,t™).

The test curve (12) gives the data (P,a) and if 7 = {1,...,n}, Cp(t,a) and C(?)
differs only higher terms. In this case, we also use the notation as Z,(P) instead
of 4(Cp(t,a)) or £(C(z)) by an abuse of notation. Then by the above discus-
sion and by the non-degeneracy assumption, we have

(15) ord of (z(1)) < d(P, f) — m(P)
ord 0f (z(z)) _ d(P,f)
(16) ord z(¢) = m(P) 1
1
(17) =)

Note that #(P) = 5(P). This estimation does not depend on the choice of rep-
resentative of the equivalence class of P and the choice of a. The weakness

of the above estimation is that m(P) can be arbitrary small in the vanishing

boundary region which makes #(P) = #(P) unbounded.

3.7. Proof of Theorem 12. Take a test curve as (2) and we consider the
weight vector P. To prove the theorem, it is enough to prove that /,(f)(C(z)) <
77 ma(f) by Proposition 2. We first consider the case that P is strictly positive
which is most essential.
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3.7.1.  Strictly positive case. We first assume that 7 = {l,...,n} and P is

strictly positive. We divide the situation into three cases.

C-1 [P] is an inner region. That is, [P] has only strictly positive weight
vectors in the boundary.

C-2 [P] is a regular boundary region.

C-3 [P] is a vanishing boundary region. In this case, we need to consider
the subdivision by Jacobian dual Newton diagram. There are three
subcases.

C-3-1. [P], is an inner region.
C-3-2. [P], is a regular boundary region.
C-3-3. [P], is also a vanishing boundary region.
We need consider the Jacobian dual diagram only in vanishing boundary regions

of T*(f).

3.7.2. Cases C-1 and C-3-1. We start from the inequality /(P) < n(P)
and then estimate n(P) by the strictly positive vertices. We use an induction
on dim[P] or dim[P]; in Case C-3-1 to show that 4,(P) < 7,,,.(f) (resp. £(P) <
N7 max(f)).  The induction starts from the case dim[P] =1 (respectively dim[P],
=1). In this case, the assertion is obvious. If dim[P]=r > 1, we take a line

segment RS with R, S € 0[P] (resp. in 0[P],) passing through P we apply Lemma
11 to get the estimation

/0(C(0)) < 7(P) < max{n(R),1(S)} < fps(f),  R,S : admissible
%0(C(1)) < n(P) < max{n(R),n(S)} < #y pax(f), S:J-admissible.

As dim[R], dim[S] < r (resp. dim[R],,dim[S], < r), the induction works. For the
other cases, we prepare a simple lemma.

Lemma 13. Assume that dim T'(f) =n—1. Then for any face A C T(f),
there exists an (n — 1) dimensional face E such that 2 D A.  Equivalently for any
weight P, the closure [P) contains a strictly positive vertex Q. Respectively [P],
contains a strictly positive vertex Q€ ¥;".

The assertion is immediate from the assumption that dim I'(f) =n—1 as
I'.(f) is a n-dimensional convex polyhedral region and T'(f) is the union of
compact boundary faces. The assertion for I';(f), as we can use F = ffi - f,
instead of f.

3.7.3. Case C-2 and C-3-2. We start again from the inequality 4 (P) <
n(P). Assume that [P] (respectively [P];) is a regular boundary region. We
prove that #(P) < #,,,.(f) (respectively n(P) < n; ux(f)) by the induction of
dim[P] (resp. dim[P],). The argument is completely same in the case [P],.
Take a strictly positive vertex R in [P]N ¥ " (resp. in Re[P],N¥;"), using
Lemma 13. Take the segment RP and extend it further to the right so that it
arrives to a boundary point of the region, say Q. Then [Q] is either an inner

region or a regular boundary region.
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If Q is strictly positive and [Q] is an inner region, we can apply the argument
of Case C-1 or C-3-1 and we consider the estimation in [Q] by the inductive
argument.

Similarly if Q is strictly positive and [Q] is a regular boundary region, we
apply the induction’s assumption, as dim[P] > dim[Q)].

So we assume that Q is not strictly positive. Then Q is a non-vanishing
weight vector ie., d(Q) =0. The normalized form of weight vectors on this
segment is given as Rs =R+s5Q with 0<s< o0 and P = R for some s9 > 0.
Put 7 = I(Q) and my(R) = min{#; |ie I}, I' :== {i|#; = m;(R)} "and Ig ={jl|t; =
m(R)}. R R R

~ If I'nIg #0, m(R) = my(R) and m(R;) = F;, for any s and iy € I’. Thus

H(C(1)) < (P) = n(Rs,) = N(R) < (/) (1. < 11 pras(f)-

—~If I'nlzg=0, ie., m(R) <Am1(f€), take jjo € Ig such that there exists a
small positive number & and m(R;) = 7j, +sqj, for s <e. As my(R) >, but
rj0 +5qj, is monotone increasing in s, there exists some s; such that mr(R) =
7, +s1¢;, and for s> s, m(R,) = mI(R). Thus #(R,) is monotone decreasing
for 0 <s <s; and constant for s >s;. Thus in any case we get

KO(C(Z)) < W(P) = '](feso) < W(RO) = W(R) = 77max(f) (resp- < 77Ji,max(f))'

3.7.4. Case C-3-3. This case requires careful choice of the line segment
for the estimation. For this purpose, we prepare the following Proposition 14
and Lemma 15. A strictly positive weight vector P is simplicially positive (re-
spectively J-simplicially positive) if there exist strictly positive linearly independent
vertices Py, ..., P of I'"(f) such that P e [P], i=1,...,s (resp. vertices Pi,...,
Py of T';(f) such that P,e [P],, i=1,...,s) and P is in the interior of the simplex
(Py,...,P;). Here by a simplex (Pl,...,Pj.), we mean the simplicial cone

Cone(Pi,...,P,) = {Z PRI 0}.
i=1

Thus a line segment PQ is equal to the simplex (P, Q).

PrOPOSITION 14. Let P be a strictly positive weight vector. Then there are
two possibilities.
(1) P is simplicially positive (respectively J-simplicially positive). o
(2) There are linearly independent vertices Py,...,P,_1, q < dim[P] of [P]
(resp. linearly independent vertices Py, ...,P,_1, ¢ < dim[P], of @) and a
weight vector P, which is not strictly positive so that P is in the interior of
the simplex (Py,...,PF,).

Proof. The assertion follows easily from the fact that [P] (resp. [P],) is a
polyhedral convex cone. We use induction on r = dim[P ] (resp. r = dim[P],).
As the proof is completely parallel, we show the assertion in the case of I'*(f).
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Take a strictly positive vertex P; € [P] using Lemma 13 and take the line segment
PP and extending to the right, put Q; be the weight on the boundary of [P].
Thus P is contained in the interior of P;1Q;. Consider [Q;]. Then dim[Q] < r.
If Q) is not strictly positive, we stop the operation. Then g =2 and this case
corresponds to Case (2). If Qy is still strictly positive but not a vertex, we repeat
the argument on [Q;]. Take a strictly positive vertex P, € [Q;] and so on.
Apply an inductive argument. The operation stops if we arrive at a weight
vector which is not strictly positive (then case (2)) or a strictly positive vertex P,

(Case (1)). O

Using this proposition, we have the following choice of a nice line
segment.

LemMmA 15. Assume that P is a strictly positive weight. If P is not sim-
plicially positive (respectively not J-simplicially positive), there is a line segment
RQ such that R is simplicially positive (resp. J-simplicially positive) and Q is not
strictly positive.

Proof. We give the proof for I'*(f) as the proof is completely parallel for
I';(f). Assume that P is not simplicially positive. Using Proposition 14, we
suppose that P is in the interior of the simplex (Pi,..., P,) where Py,..., P, | are
strictly positive vertices and Pq is not strictly positive. Write P by a bary-
centric coordlnates as P =31, AP with /; > 0 and we  may assume S di=1
Put :=3% "% w:=1-1 and define R:= (3%} AiP;)[2 and Q:=P/p.
Then P=AR+uQ and Re(Pi,...,P;—1). Thus R is simplicially positive.

U

Remark 16. For the proof of Case 3-3 below, the Jacobian dual Newton
diagram is essential. So we use Lemma 15 for I'j(f).

Proof of Case 3-3. Now we are ready to have an estimation for the
Lojasiewicz exponent of our test curve C(¢). Suppose that [P] and [P], are not
vanishing boundary regions. We apply Lemma 15. If P is J-simplicially posi-
tive, we have the estimation 4)(C(?)) < #, ,..(f) by the same argument as in
Case 3-1. Thus using Lemma 15, we may assume that P is in the line segment
RO where R is J-simplicially positive and Q is not strictly positive. If Q is
a non-vanishing weight, we proceed as the case C-3-2 to get the estimation
4(C(1) <1y max(f). Thus we assume that Q is a vanishing weight vector
and d(Q, f) >0. Assume that Q = (qi,...,q,) and put I := {i|g; =0}. We
assume [ = {1,...,m} for simplicity. Note that C’ is a vanishing coordinate
subspace. For each i€/, there exists some j ¢ / and a monomial z;"/z; with a
non-zero coefficient, as f has an isolated singularity at the origin. Put J; be
the set of such j for a fixed i e I and put J(I) =J;., Ji. Here n;; is assumed
to be the smallest when j is fixed. Put & :=max{n;;|iel,jeJ;} and &(f) b
the maximum of &; where I corresponds to a vanishing coordinate subspace.
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Put 7} ., (f) := max{n; ;(R)|Re ¥ ™" 1 <k,i <n} where 5/ ,(R) = d(R, fi)/r;.
Under the above situation, we will prove that

(*) KO(C(I)) < max{é(f)’rlj,ma‘c( ) 77] mav(f)}

Consider the normalized weight vector Ry:=(1—5)R+50,0<s<1. Note that
Ry =R, Ry = Q and putting Ry = (Fs.1,...,Fn),

. (1—s), 1<i<m
Vs i = A ~ .
. (1 =9)F+sq, m<i<n

Put I' = {iel|#; =m(R;)} and J' =|J,_;, Ji. Thus for i <m, the normalized
Weight Fy goes to 0, when s approaches to 1. On the other hand, for j > m,

j=0,0<Vs <1 for some 0 > 0. Thus there exists an & 1 > &> 0 so that for
1 —e<s<1, m(R,) is taken by i e I'. Note that for j e J’ there exists a small
enough &, & < ¢ so that (fj)z = ((ﬁ)l)k as iy >0 for j>mforl —e <s<l.
Here ( fj)l is the restriction of f; to C’ and (R,), is the I projection of R, to
NI. Thatis, (fj)z z, contains only variable zj,...,z,. By the Lojasiewicz non-
degeneracy, there exists ip € I’ and jj € J;, such that

(fjo) ()7é0 s>1—e.

By the definition of Jacobian dual Newton diagram, for any 0 <s <1, (fj)a
does not depend on s and thus (fj)z (a) # 0 for any 0 <s < 1. Then d(R;, f;,) <
(1 — 8)Fi, X nyy j, for any 0 <s<1. The equality takes place if the monomial
zlo'“ %z, is on the face function (f;) #.(z). Assume that P=R,, 0<so <1
Thus we start from the estimation

(18) ZO(C(Z)) = d(ﬁsovf;o)/m(kso)-

First for s > 1 — &, we see that

(1 - s)f'io”imm

Ry) < =Ny iy
fo( s) = (1 . S)i’io Mg, jo
($o = u in the proof of Lemma 15.) Put Ig:={k|f; = m(R)}.
(a) If there exists a ke I' N Ig i.e. m(R) = m(R;), we have the estimation

o(Ry) < myy j, for any s. In particular, 4(C(t ) < iy -

(b) Assume that I' N 1g =0 i.e. m(R) < m(RI) Choose k € Iz. Then there
exists a small number & >0 so that m(R,) = 7, for 0 <s<e By the defini-
tion of I’, this implies that k ¢ I. There exists 0 < s; < 1 such that m(R,) =
(1 —s1)fx +s1qk (1 —s1)7;,. We divide this case into two subcases.

(b-1) Assume that (1 —s)#; + sg, is monotone increasing in s. Then

ZO(P) = KO(R&]) = ”(RO) = ’Y(R) =< ”J,max(f)ﬂ if 5o <.

(1 - SO)fionioajo

l(P) = /O(Rm) < (1 — 50)7;,

= Njyjy, If S0 > 51,
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(b-2) Assume that (1 — s)7x + 5§, is monotone decreasing in s. Then

(1- SO)’A’ionio,jo < fionioyjo
(1= s0)fx + 504~ T
(1 - So)ffonimjo —n

(1 . SO);.iU 10,]02

where the first estimation (19) for sy <s; follows from the fact that

(19) /0<RS(1) =< < 7’]//61’1»0 (R), if so <51

(20) /()(RSO) < if 5o > sy.

(1 - S)’A’ionio,jo

" (R) = 0<s<l1
S|—>’7k,jn( S) (I—S)fk+sqk, <5<

is monotone decreasing on s. Then we apply Lemma 11 to get the estimation

ZO(C(Z)) = nl/c‘,_jo(R) < n},max(f)'

Thus we have proved the estimation (). Assuming the next lemma for a
moment, we can ignore the first term &(f) in (x) and the estimation reduces to

4(C(W0) <1 ar(f),if 2(1) € C™.
Furthermore if 7" =0, »/ ,(P) =y, (P) for Pe 7", as fp(z) contains all
the variables and therefore 7] ;(P) = n; ;(P) <n(P) or 1} ,...(f) <1 ma(f) =
”max(f)' ”

LemMma 17. The following inequality holds.
ni,j = ”max(f)a Vie I, Vj € Jl'.

Proof. Let E be a maximal face of I'(f) for which the face function
f=(z) contains the monomial z;"/z;. The corresponding weight vector P (i.e.,
A(P)=E) is in 7" C T*(f) such that E is subset of the hyperplane

P1V1+"'+ann:d(P)

and fp(z) contains the monomial z;"/z;. Thus n; ;p; + p; = d(P). Consider an
analytic curve z(#) corresponding to the weight P. Then we have

d(P) —pj _

nij =
‘ Di

’7,“,/(})) < 77(P) < 77max(f)- U

To complete the proof, we have to consider the case where the test curve is
in a proper coordinate subspace.

3.7.5. Test curves in a proper subspace. We consider the situation of the
test curve z(¢) defined in (12) for which 7¢ # . Recall that I = {i|z;(¢) # 0}
and we assume [ ={1,...,m}, m <n for simplicity.

CaseE 1. Assume that f/#0. Recall that P=(pi,...,pn) and a
(ai,...,an) € CY. Let Ay =A(P)cT*(f!). Consider the weight vector P
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(p1,--spm; K,...,K) e N, where K is sufficiently large so that AP, f) = Ay,
d:=d(P, f")=d(P, ) and m(P) =m(P). Puta=(a,1,...,1). Consider 0; :=
ord 0f /0k(z(t)) and put 0 := min{0; |0 # co}. Here Oy = oo if df /0k(z(¢)) =0
by definition. Then 4,(C(¢)) = 8/m(P). Consider the modified curve

C(t):2(t) = (z1(0),- .., zm(0), 2V, ..., 1Y),

Taking N sufficiently large, say N > max{6y |6 # oo}, it is easy to see that
ord 0f /0k(z(t)) = Oy for any k with 0 # co. Thus for such an N, 4(C(1)) =

/o(C(t)). Combining with the previous argument, we get /o(C(2)) < 17 . (f).

CASE 2. Assume that f/ =0. This implies C’ is a vanishing coordinate
subspace. Thus each monomial in the expansion of f must contain one of
{z;|jeI}. Thus fi(z(¢)) =0 for iel. Put m(P):=min{p;|iel} and I' =
{iel|p;=m(P)} and J; be the set of je /¢ such that a monomial z;"/z; exists.
Then by the Lojasiewicz non-degeneracy, there exists iy € I’ and jy € J;, such that
fi(a) #0 and thus

ord 0f (z(t))
ord z(7)

This completes the proof of Theorem 12.

<max{n;;liel',je L} <nyuu(f)

Remark 18. 1t is possible to have 7 ,.uc = Nmax OF 1 pyux = M7 may 10 SOME
cases. For example, see the next section. In Example 7, we have the equality
N max = Mmax @S the simplex (R, e, ep) is a regular boundary region. In fact, we
have 7(R) = 11, n(P) =9.

3.8. Weighted homogeneous polynomials. Suppose that f(z) is a weighted
homogeneous polynomial with isolated singularity at the origin. There are
already a better result by Brzostowski [5, 4]. 1 thank to Tadeusz Krasinski
for informing me these papers.

THEOREM 19 (Brzostowski [5, 4]). Let f(z) be a non-degenerate weighted
homogeneous polynomial with an isolated singularity at the origin and dim I'(f) =
n—1. Let R be the weight vector of f. Then £(f) <n(R).

Remark 20. For a non-degenerate weighted homogeneous polynomial f(z)
with isolated singularity at the origin, Brzostowski does not need the Lojasiewicz
non-degeneracy.

3.9. Lojasiewicz Join Theorem. Consider a join type function f(z,w) =
g(z) + h(w) where ze C" and we C”. Assume that both g(z) and h(w) have
isolated singularities at the respective origin. Then

Losasiewicz JoIN THEOREM 21 ([27], Corollary 2, §2). We have the equality:
70(f) = max{7(g), /o(h)}.
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Proof. Put u= (z,w) e C"™. Take any analytic curve C(¢) : u(z) = (z(¢),
w(t)), 0<t<1.

ord af( (1)

Case 1. If z(r) =0 (respectively w(¢) =0), ord (t) =

< 40(9))-

CaseE 2. Assume that z(r) #£0 and w(z) #0. If ordz(r) < ord w(z), we
have

< /y(h) (resp.

ord of (u(z)) . [ord dg(z(z)) ord oh(w(z))
ord u(z) _mm{ ordz(f) ~ ordz(t) }

< min{fg(g),

</o(9).

lo(h) ord w(t)
ord z(¢) }

If ord z(¢) > ord w(z), by the same argument,

ord Jf (u(z))
“ordu() = 00)-

Thus we have 4(f) < max{/(g),%(h)}. The equality can be taken by a curve
u(t) = (z(1),0) or u(r) = (0,w(r)) which takes #(g) for g(z) or £y(h) for h(w)
respectively. ]

Remark 22. As we see in the proof of Theorem 12, it is not necessary to
take the Jacobian dual Newton diagram everywhere. We only need consider
I';(f) in the vanishing regions of I'*(f). Namely if P is a vertex of I';(f)
which is in an inner or a regular boundary region of I'*(f), we have an estima-

tion 7’](P) < 77111cz.x(f)‘

3.10. Application. We consider the hypersurface V' = f~!(0) and the trans-
versality problem with the sphere S,:= {z|||z|| =r}. Certainly transversality
has been shown by Milnor [18]. However we want to see this property from a
slightly different view point. Recall first that S, and V' does not intersect
transversely at z=a if and only if

(i) a and Jf(a) are linear dependent over C, or

Using hermitian inner product and the Schwartz inequality, this condition is
equivalent to

(ii) |(a,0f (2)) ol = 1.
3.10.1. Orthogonality at the limits (Whitney (b)-regularity).

Lemma 23. Assume that f is a non-degenerate and FLojasiewicz non-
degenerate holomorphic function with an isolated singularity at the origin.
Consider a non-constant analytic curve z(t) with z(0) =0 defined as (2) and
assume that fp(a) =0. Then we have
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(1) limy—o(z(2), of (2(2))) yorm = 0.  Geometrically this implies the limit direc-
tion of z(t) is contained in the limit of the tangent space T,V of V.

(2) In particular, there exists a positive number ry so that the sphere S,
intersects 'V transversely for any r < ry.

Proof. Let J={j|zi(t) =0} and let I be the complement of J. We
assume that 7 ={l,...,m}. Consider the Taylor expansion
zi(t) = a;t"" + (higher terms), iel.
Put P = (p;);.; € NI as before.

Case 1. Assume that f!# 0 and assume for simplicity p; =--- = p, <
pri1 <+ <pm and put d=d(P,f7). Note that ordz(t)=p;. Put ¢=
ord df (z(¢)). By the assumption, lim,_o t~"'z(f) = a,, where a,, := (ay,...,a,,

0,...,0). Put v, :=Ilim, #7799 (z(z)). By the non-degeneracy, we have g <
d—p. If g<d— py, the assertion (1) is immediate, as v,, € CX where K =
{jlj>¢}. Assume that ¢g=d — p;. This implies

a’

= i 1.
o (a)=0, j=/+

By the assumption f£(a) =0 and the Euler equality of f£(z), we get

o~ Loff
fp(a) = Zpiai oz (a) = pi Zaia—(a) =0.
i=1 Zi i=1 Zi

. off off o
In this case, note that v, = 2 (a),...,g(a),o, ...,0]. This implies also
1 ‘

%ii%(z([)a a7(1(1‘)))norm = (ax?v@c‘)norm

/ .
= cZa,-afPI (a)=0
i=1

62,‘

where ¢ is a non-zero scalar.

Case 2. Assume that f/ =0. Then z(¢) e C' and C’ is a vanishing coor-
dinate subspace, and thus df(z(r)) e C!". Thus the assertion is obvious. The
assertion (2) follows from (1). Of course, (2) is nothing but the existence of a
stable radius which is well known by [18] for a general holomorphic function with
an isolated singularity at the origin. O

Remark 24. The assertion of the lemma says that the stratification
{7\{0},{0}} is a Whitney b-regular stratification.

3.10.2. Making f convenient without changing the topology. Let f be a
non-degenerate, Lojasiewicz non-degenerate function with isolated singularity at
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the origin. Choose integer N; with
(21) Ni> 07 )+ 1, i=1,...n
and consider a polynomial
R(z) = Clzfvl + -+ anév”.
Consider the family of functions:
fs(z) = f(z) +sR(z), 0<s<l.

The coefficients are chosen generically so that f; is non-degenerate. Note that
fo=f and f] is a convenient and non-degenerate

THEOREM 25.  Consider the family of hypersurface Vi := f.1(0), 0 <s < 1.
There exists a positive number ry such that VN B, has a unique singular point
at the origin and for any r < ry the sphere S, and V intersect transversely for
any 0 < s < 1. In particular, the links of f and f| are isotopic and their Milnor
fibrations are isomorphic.

Proof. Take ry so that there exists a positive number ¢ and the following
inequality is satisfied.
lor @) = e]l21*, 0 < ||z < ro.

Assume that the assertion does not hold. Then we can find an analytic curve
(z(1),s(1)), 0 <t <1 and Laurent series A(z) such that z(0) =0 and s(0) =) €
[0,1] and

(22) Uiy (2(1)) = A(0)2(1), S (2(1))

Expand z(¢) and s(¢) in Taylor expansions

0.

z;(t) = a;t"" + (higher terms), i=1,...,n
s(t) = so + pt® + (higher terms), 0 <sy <1

and let I={i|z;(r)#0}, P=(p)eN;, and a=(q)eC*”. Then by the
definition of R(z),

(23) ord s(t)0R(z(t)) = m(P)(N — 1) > m(P);y}’vmax
where N = min{Ny,...,N,}. By Theorem 32,

(24) ord 0f (z(1)) < m(P)1} yax-

Thus

ord df;, (z(?)) = ord 0f (z(z))

and
1 (250 (), = (2501 (201

t—0
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This already implies the family of hypersurfaces V; have isolated singularities
at the origin. Note that the equality fp(a) =0 follows from the equality
fs(2(2)) =0. The assumption gives us the contradicting equalities

|(2(2), i) (2())) oyl = 1, and

lti_l?g(z(l)? ‘fs(l)(z(l)))norm =0

where the first equality follows from the assumption (22) and the second conver-
gence follows from (24) and Lemma 23. Thus the family f;, 0 <s<1 has a
uniform stable radius and the isomorphisms of the Milnor fibrations are easily
obtained using tubular Milnor fibration and Ehresman’s fibration theorem ([28]).

U

Remark 26. By the same argument, it is easy to see that f;(z) = f(z) + 1z’
with >77, vi > #7 .. (f) +1 does not change the topology at the origin. A
similar result for C-sufficiency is proved in Kuo [14].

4. Lojasiewicz inequality for mixed functions

In this section, we will introduce the notion of Lojasiewicz exponent for
a mixed function and we generalize the estimation obtained for non-degenerate
holomorphic functions in previous sections for f(z,z) which are strongly non-
degenerate.

4.1. Newton boundaries and various gradients. Let f be a mixed function
expanded as

f(z,7) = Z Co2'Z".
v,

The Newton diagram '\ (f) is defined as the convex hull of

U O+ +®R)"

Cpu#0

and the Newton boundary I'(f) is defined by the union of compact faces of
I',(f) as in the holomorphic case, using the radial weighted degree of the
monomial z'z*. Here the radial weight degree with respect to the weight vector
P=(p1,...,pn), is defined by

n
rdegp 2'2" = Zpi(vi + ).

i=1

The notion of strong non-degeneracy is introduced in [21] to study Milnor
fibration defined by f. Let us recall the definition. Take an arbitrary face
A of T'(f) of any dimension. The face function is defined by fi(z,z) =
D vipen Op2’Z!. Let P be the weight vector. Then fp is defined as fyp) as
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in the holomorphic case. fp(z,Z) is a radially weighted homogeneous polyno-
mial with weight P. A mixed function f is called strongly non-degenerate if
fa: C" — C has no critical point for any face function fi. It is known that
such a mixed function admits a Milnor fibration at the origin ([21]).

We assume that I'(f) has dimension n—1. We consider two gradient
vectors:

(T

(25) 6f . (aZl gre ey E)
(o

(26) af - <aZl gy E)

To study the behavior of the tangent spaces, it is more useful to use the real
and imaginary part of f. Put f =g+ ih where g and / are real and imaginary
parts of f. Putting z; = x; +iy;, g, h are real analytic functions of 2n variables
X1, V1,5 Xn, Yy Substituting x; = (z; + Z;)/2 and y; = (z; — Z;)/2i, we consider
g, h as mixed functions. As they are real valued mixed functions, we have

Tag™'(0) = {v|R(v,d9) = 0}, Tuh™'(0) = {v|R(v,0h) = 0}.

Here (v,w) is the hermitian inner product. As we have dg = dg and oh = oh
([22]), various gradients are related by

(27) of = dg +ioh, of = og — ioh
(28) dg = (of +9)/2, oh=(f —af)/2i.

For a weight vector P = (pi,..., p,), the real part and imaginary part gp = Rfp,
hp = Sfp of fp are real-valued radially weighted homogeneous polynomials with
weight P and the Euler equality take the form ([20]):

=\ - 6gp =N o ahp
(29) gP(zv Z) - zizzlplzla_ziv hP(L Z) - 2izzlplzz aZ[ .

The strong non-degeneracy implies that {dgp(a,a), ohp(a,a)} are linearly indepen-
dent over R for any a= (aj,...,a,) e C™". We consider the Lojasiewicz in-
equalities of real-valued mixed functions g and #. For a non-zero vector w € C”,
we denote the real hyperplane orthogonal to w by wt := {ve C"|R(v,w) = 0}.
We denote the normalized vector w/||w|| by W,,,,. The problem (which do
not happen for holomorphic functions) is that along a given analytic curve
z(t), 0<t<1 with z(0)=0, the limit directions lim,_o(0g(z(?))),,n, and
lim, o (0h(z(?))),,m can be linearly dependent over R. In this case, we have
a proper inclusion:

(30) lim T, ¥, = lim((g(2(1)))* N (3h(z(1)))*)

C lim(dg(z(1))

t—0

)" VM (h(2(1)) o)

norm
t—0
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The following lemma plays a key role to solve this problem. Let I ={1 <j <
n|zj(t) #0} and I¢ be the complement of /.

z(t) = (z1(2), ..., za(0)), 2(0)=0,z(t)eC”, t>0
S o) {z,»(t) = a;t”" + (higher terms), a; #0,iel

Consider the weight vector P = (p;) e N*, a = (a;);.; € C*' and we assume that
fT#0. For any real valued analytic function h(z) defined on an open neigh-
borhood of =0, we consider the modified gradient vectors, defined as follows.

Note that any of the following three pairs generate the same real dimension 2
subspace over R at T, C".

{09(2(r)), 0h(2(1))},  {0g(2(1)), (h(z(1)))y},  {(99(2(1)))s(,), Oh(z(1))}

The following is a key lemma to generalize the assertions obtained in previous
sections for mixed functions. Consider the family of hypersurface V; := {z € C" |
f(z,Z) = f(z(1),Z(t))} for —e <t < ¢ where V; passes through z().

LeMMA 27. Assume that ord dg(z(t)) < ord 0h(z(t)) for simplicity.
(i) There exists a real valued analytic function b(t) so that two analytic curves
0g(2(1)), (0h(z(t)))y,) have normalized limits

Vg.co = im(g(2(1))),pp  and

Ul/z., 0 = 1%((éh(z(1)))b(1))norin

which are linearly independent over R.  The limit of the tangent space T,V is
equal to the intersection of the hyperplanes vglx N (vh - )L.

(i) The orders of the vectors 0g(z(t)), (0h(z ()b satisfy the inequality:

ord dg(z(1)), ord(Oh(z(1))) i,y < d(P, f") — m(P).

(iii) If further fp(a) =0, the limit vector lim,_ z(f)
Vg0 and v, ie., lim_q z(t),,,, € v, N (0} )"
(iv) For any analytic functions b( ) (1),

ord dg(z(1)) (), ord 0h(z(1)),) < d(P, f1) — m(P).

worm 18 Teal orthgonal to

Here two vectors v,w e C" are called to be real orthogonal if R(v,w) = 0.

Proof. The proof is essentially the same as the proof of Theorem 3.14, [9].
For the convenience, we repeat the proof briefly. For further related discussion,
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see [22,9]. Put I ={i|z(t) #0} and J =I°. We may assume that [ = {1,...,
m}, a= (ai,...,a,) and

Pl :pzz"'zpk<l)k+1 <-... Spm.
Put d =d(P, f!). Under the above assumption, ord z(¢) = p; and

norm

lirrg(z(l))norm =a(o0) where a(o0) := (ay,...,a,0,...,0).
11—

By the definition of P and the assumption f! #0,

Al
Oégi (z(¢ aagzp (a)t? 7P 4 (higher terms)
oh! Ohp ,  dp .

= (z(1) = g(a)t " + (higher terms)

Thus by the strong non-degeneracy assumption, we have the inequality:
ord o9’ (z(t)) < d — p1, ord dh'(z(1)) <d — pi.
For an analytic curve v(¢) with v(0) =0, we associate scalar vector
BOW) = (i) where f, = Coefi(ty(1), 1/°7")

and integers

d(v(?)) := min{ord v;(t) [i=1,...,m},

yy = max{i|ord vij(t) = d(v(t))}.
Note that p, is the largest index for which lim, .o v(¢),,,,,, has non-zero coefficient.
We call y, the leading index of v(r). ~ ~

We start from two analytic curves dg’(z(¢)) and 0h'(z(r)). Put d, =

ord(dg’ (z(1))), dy = ord(dh!(z(r))) and y, := Vagla(y Th = Vani(a)- W€ assume
that d, < d,. First we associate 2 x m-matrix with complex coefficients by

Gy ... Wrgy
A I A1l ﬂ(égl(z([))) aZl o aZm
dg’,0h") := _ =
a2ty = (et o)) b Wb
0z 0Zm

By the strong non-degeneracy assumption, two raw complex vectors are linearly

independent over R. The normalized limit, lim, .o(dg(z(¢))) has non-zero
g’

norm>

j-th coefficient if and only if ord
possible.

(1) 7, #
2) )}:g = )):Z and Coeﬂ( g’ (2(0)), ¢t > Coeff(ah[ (z(1)), tdh>} are linearly

6 (z(t)) = d,;. The following three cases are
Zj

azyq 0z,
independent over R.
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Al I
(3) 74 = 7» and { Coeff (gg (z(l))7td-“>,Coeff< — (z(l))7td”>} are linearly
Vg
dependent over R.

In the cases of (1), (2), their normalized limits are linearly independent over R
and there is no operation necessary. In the case of (3), we put by(7) = p 1%~
and put (0h)'(t) := oh’(z(t)) — b1 (¢)0g” (z(t)). Here p, is the unique real number
such that

p1 Coeft (ai (2(1)), zd-q) ~ Coeff (ﬁ ), t) <o

Vg z Vh

After this operation, we have three possible cases.
(D" D@y ) # Vagratoy -
Yiny' () = Vag1(z(s)) DUt the leading coefficients of (0h)'(t) and dg” (z(1)) are
linearly independent over R. ~ ~
(3) V') = Vg and the leading coefficients of (0h)'(¢) and dg’(z(1))
are still linearly dependent over R.
In the case of (1)" and (2)’, we stop the operation. Otherwise we have (3)" and
we continue this operation till we get a modified gradient vector

for which either its leading index is different from y, (case (1)) or the coefficients
of the leading index are hnearly 1ndependent over R (case (2)). Note that in
this operat1on the order of (ah) ( ) is strictly increasing in j while the matrix

A(dg, (ah) ) is simply changed in the second raw vector by S(0h") — p(0)B(dg”).
Therefore (0h)"Y) (1) := ah! (2(1)) — p(1)dg (2(1)) satisfies

ord(on) (1) < d — p,

and therefore the operation should stop after ﬁnlte steps, say k. After the opera-
tion is finished, the normalized vector ((3h)*(¢)), has linearly independent
limit with that of dg’(z(¢)).

Suppose further f{(a) = 0. This implies gh(a) = hi(a) =0. We will show
now a. = (ai,...,a,0,...,0) is orthogonal to the limits of the normalized
vectors

v, = 1im (39" (2(1))) 0 and ol =M ((3R) (1)) 1

t—0 norm t—0

First we consider v¥,. If d; <d — p;, j-coefficient of v¥, is zero for j < k and
R(v%,a,) =0 is obvious. If d, =d — p;, we must have

95 .
IP (q) — 1
5, (a)=0, k+1<j<m
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(3{/1)
62,»
Thus the assertion follows from the Euler equality

m ag[ k ag[
a)=0= Zpiaia—;(a) =P Zflia—;(a)
i=1 ! i=1 !

(@n)©
(ém®

and the i-th coefficient of v¥, is (a) for 1 <i <k up to a scalar multiplication.

Now we consider vy We start from the equality hl(a) — p(0)gh(a) =0. If

d(nh) 0 < d— p1, vy and a,, are orthogonal by the same reason. Suppose
that d(— 0, =d— p;. Then we must have

ohyp dgp

—(a) — =0, k+1<j<m

@O @=0, k+l<j<m

Thus the assertion follows from the Euler equality of the real valued radially
weighted homogeneous polynomial 4% (z,Z) — p(0)gh(z,Z). The assertion (iv) can
be shown in a similar way looking at the matrix 4 before and after. O

DEerINITION 28.  Let z(f) be a analytlc curve starting at the origin. Assume
that dg(z(z)) < ord doh(z(r)) and {ag( } (respectively ord dg(z(t)) >
oh(z(1))) and {og(z(t De(r), 0h(z(1))} is a good mOdl%Cd gradient pair if they have
linearly independent normahzed limits over R.

Take an arbitrary analytic curve C(¢):z =z(¢) with z(0) =0 and a good
modified gradient pair, say {dg(z(r)), 0h(2(1)),(,} assuming dg(z(7)) < ord dh(z(1))
for simplicity and suppose that the following inequality is satisfied for sufficiently
small 7, 0 <1 <eg,

(32) ord(dg(z(1),Z(1)))/ord z(f) < 0
(33) ord(éh(z(l),i(t))c(,))/ord z(1) < 0.

(If 8g(z(t)) > ord dh(z(t)), we exchange g and % in the above inequalities so that
dg is to be modified.) We define the Lojasiewicz exponent /,(C(t)) along an
analytic curve C(¢) as the infinimum of such @ satisfying the above inequality.
The Lojasiewicz exponent of f is defined by the supremum of 4 (C(¢)) for all
analytic curves C(?).

These inequalities are equivalent to the inequality

189(2(2), Z())l, 1A (2(1),2(1) (o | = Cllz(®)l|”, 3C >0

for 0 <t<e

Taking ¢(¢) =0, such 6 satisfies the usual Lojasiewicz inequalities:
(34) 189(z.2)]| = Cllz]”
(35) 13h(2,2)|| = Cllzl|’, 3C > 0.

in a sufficiently small neighborhood of the origin.
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Now we are ready to generalize the results which are obtained in previous
sections for holomorphic functions.

4.2. Convenient case. We consider a strongly non-degenerate mixed func-
tion f(z,Z) with an isolated singularity at the origin. A mixed function f(z,Z)
1

is called convenient if for each i =1,...,n, there is a point B; = (0, .. .,l;i, ...,0)
on the Newton boundary I'(f). In the mixed function case, there might exist
several corresponding mixed monomial z}"z/% with v; + g, = b; in the expansion of
f (z Z). Such a monomial is called an i-axis monomial. Let B:= max{b;|i=
1,...,n}. An i axis monomial z;"z! is called Lojasiewicz monomial if v; + p; =

B A Lojasiewicz monomial z; z” " is exceptional if there exists a monomial
z zﬂ’ w; where w; =z; or Z; in the expansion of f(z,Z) such that v/ 4 <

- L

THEOREM 29. Let f(z,Z) be a strongly non-degenerate convenient mixed
Sunction. Then FLojasiewicz exponent (y(f) satisfies the inequality: ¢(y(f) <
B — 1. Furthermore if f has a Lojasiewicz non-exceptional monomial, we have
the equality ¢,(f) = B — 1.

Using Lemma 27, the proof is completely parallel to that of Theorem 3.

4.3. Non-convenient mixed polynomials. We consider the case of non-
degenerate mixed polynomials with an isolated singularity at the origin. One
point is how to define “Lojasiewicz non-degeneracy” for mixed functions.

Let C’ be a vanishing coordinate subspace and let J be the complement
of I. For each i, there must exist a mixed monomial z; g w; with jeJ as we
have assumed that the origin is an isolated singularity. Hereafter we use variable
w; for either w; = z; or w; = Z; for simplicity. We take 4 jto be the minimum

of {n; +m;} for fixed 7, j. The pomt B; = (0,.. /l,, ...,1...,0) is a point of
[(f). We call a monomial z;"z""w; an almost i-axis monomial if n; + my; = 4.
Let J; be the set of j for Wthh such almost i-axis monomial exists and put
J(I) =, Ji as in Part L

Define /(I) :=max{/;|iel, jeJ;}. For our present purpose, we take
the following definition of kLojasiewicz non-degeneracy. Consider a strictly

i
positive weight vector Qe N*/. Consider F(j):=z; (g) +Z <§f> . Note
OF(j)o and F(j)o Zj Zj

that 3 a5 are polynomials in Clzy,Zy,...,2Zn, Zm|. Here F(j)Q =
J J

(F(j))o with the weight of z; being 0 by definition. We use the notations

Jfi= f and f f for simplicity. Note that

0z; 0z

5F(j)Q _ (fj)Qa rdeg, f; < rdeg, fj'-'
oz, |0, rdeg, f; > rdegy f;
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0F(j)o | (f7)g, rdegy f; > rdeg, f;
0z; 0, rdeg, f; < rdeg, fj—

Put I' .= {i|q; = m(Q)} and J(Q) :=;.; Ji- f(z,Z) is called Lojasiewicz non-
degenerate if under any such situation and for any a e C*, there exists iy e I’,
Jjo € J(Q) such that

(36) ‘aFa(ij))Q(a £ O%;?)Q(a).
Jo Jo

Writing F(j) := g(j) + ih(j), this is equivalent to

ProposITION 30. Under the above notations,

(37) {ag(f°)9 (@), e <a>}

0zj, 0zj,
are linearly independent over R.
The assertion follows from Proposition 1 [20]. Assume that such a Q is

associated with an analytic family z(¢) and d =rdeg, F(j). Then d </ j,qi,
and

gf (z(2)) = Oga(Z{")Q (a)t? + (higher terms), ord ng (z(1))=d
jf (z(1)) = @h;;)g (a)td + (higher terms), ord %( (1) =d.

ProposiTION 31.  Using Proposition 30, there exists a good modified gradient

pair {0g(z(t)), Oh(z(t e} or {0g(z(1)) ,(t),éh(z(t))}. Their order in t has a upper
bound d = rdegy, F(jo) < 4 jy4iy-

4.4. Jacobian dual Newton diagram. We consider the derivatives f;(z) :=

5f

o ( ), i=1,...,n. Put Fi(z,Z) = fi(z,Z)fi(z,Z). If one of

2z, (@) and fi{z) =
the derivatives vamshes identically, we consider only non-zero derivatives. For
example, if f; =0, we put F; = fi. We consider their Newton boundary I'(F;),
i=1,...,n. Two weight vectors P, Q are Jacobian equivalent if A(P,F;) =
A(Q,F;) for any i=1,...,n and A(P, f) =A(Q, f). We denote it by P7 0.
This gives a polyhedral cone subdivision of N. and we denote this as I';(f) and
we call it the Jacobian dual Newton diagram of f. Tj(f) is a polyhedral cone
subdivision of N, which is finer than I'*(f).

Alternatively we can consider the function F(z) = f(z)Fi(z)--- F,(z). Then
I';(f) is nothing but the dual Newton diagram I'*(F) of F. For any weight
vector P, we have A(P,F)=A(P,f)+A(P,Fi)+---+ A(P,F,) where the sum
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is Minkowski sum. For a weight vector P, the set of equivalent weight vectors
in I'"(f) and I';(f) is denoted as [P] and [P]; respectively. We consider the
vertices of these dual Newton diagrams. We denote the set of strictly positive
vertices of I'*(f) and T';(f) by 7", #;% as before. Now we can generalize
Theorem 14. Let 7,7 C 7, be the set of the vertices of I';(f) which are in a
vanishing boundary region of I'*(f) as in the holomorphic case. The numbers
of v *, v;, ¥;7 are finite. We define basic invariants, as before

ﬂ],max(f) = max{’?(P) |P € A/+ U AKIJHF};

Mmax = max{fy(P) |P € VV-’_}

Ny max = max{n, (R)|Re ;" k,i=1,...,n}
”y,max(f) = max{r/],max(f)’;7.ll,max(f)}7 where

ﬂ@my:mmwfi%ﬂ&m}

THEOREM 32. Let f(z) be a non-degenerate, Lojasiewicz non-degenerate
mixed function with an isolated singularity at the origin. Then Lojasiewicz expo-
nent (y(f) satisfies the estimation (o(f) < 1Y ()

Proof. The proof is completely parallel to that of Theorem 12. We con-

sider an analytic curve C(¢) parametrized as z(t) = (z,(?),...,z,(¢)) and put [ :=
{i|z(¢) #£0}. Consider the Taylor expansion of z;(¢) as before:
(38) {30 = G102, 20 =0, 2 e

z;i(t) = a;t"" + (higher terms), iel

We put P = (p;) € Ni! as before. Assume first 7 = {1,...,n}. We divide the
situation into three cases as before. .
C-1 [P] is an inner region. That is, [P] has only strictly positive weight
vectors in the boundary.
C-2 [P] is a regular boundary region.
C-3 [P] is a vanishing boundary region. In this case, we need to consider
the subdivision by [P],. There are three subcases.
C-3-1. [P], is an inner region.
C-3-2. [P], is a regular boundary region.
C-3-3. [P], is also a vanishing boundary region.
Then the proof goes exactly as that of Theorem 12, using Lemma 27. For
the cases C-1, C-3-1, C-2, C-3-2, we start from a given good modified gradient
pair and the estimation of these gradient by Lemma 27. Then the argument
is completely the same. We have the estimation /o(C(#)) <7} ,,.(f) in these
cases.
For the case C-3-3, consider the situation that P is not a simplicially positive
and R, Q as in Lemma 15 so that P is on the line segment RQ, R is simplicially
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positive and Q is not strictly positive. If Q is non-vanishing, it reduced to
Case 3-2. Thus we assume that Q is a vanishing weight vector and d(Q, /) > 0.
Assume that Q = (q1,...,¢,) and I = {i|¢; = 0} and assume 7 = {1,...,m} for
simplicity. Note that C! is a vanishing coordinate subspace. For each i€,
there exists some j ¢ / and a monomial zf” z; with a non-zero coefficient, as f
has an isolated singularity at the origin. Put J; be the set of such j for a fixed
iel and put J(I) =J;.; Ji. Here n;; is assumed to be the smallest when j
is fixed. Put &; :=max{n;;|i€l, jeJ;} and &(f) be the maximum of &; where
I moves in the coordinate subspaces corresponding to vanishing coordinate
subspaces. Put 7}, (f) := max{n; ;(R)|Re 7"} where 5/ ,(R) = d(R, f;)/1;.
Under the above situation, we will prove, as in the holomorphic case, that

(*) fo(C(l)) < max{é(f)?”],max(f)?n;,lnax}'

Consider the normalized weight vector Ry:=(1—s)R+s50, 0<s<1. Note
that Ry = R, Ry = Q and putting Ry = (Fs1,...,Fsn),

N (I1=9)F, 1<i<m
Is,i = N N .
> (1 —s)fi+s5q, m<i<n.

Put I’ = {iel|# =m(R;)} and J' =J,.;, Ji. Thus for i <m, the normalized
weight 7 goes to 0, when s approaches to 1. On the other hand, for j > m,
Fg >0, 0 <Vs <1 for some 0 >0. Thus there exists an ¢, 1 > ¢ > 0 so that for
l—e<s<1, m(Ry) is taken by i e I’. Note that for j e J’, there exists a small
enough &, & < ¢ so that (ﬁ)Rx = ((ﬁ)I)RX asfy=ofor j>mforl —e <s<1.
Here ( ];)1 is the restriction of f; to C’ and (R,), is the I projection of R, to
N i That is, (f;) z, contains only variable zj,...,z,. By the Lojasiewicz non-
degeneracy, there exists ip € I’ and jj € J;, such that

(39) {5Q(JO)Q (a) oh(jo)o (a)}

— Pl A—
0zj, 0zj,

are linearly independent over R.  Here we use the same notation as in (39). By
the definition of Jacobian dual Newton diagram and Proposition 39, there is a
good modified gradient pair, say dg(z(t)), 0h(z(t)),, (we assume ord dg(z(1)) <
ord 0h(z(t)) for simplicity) so that their orders are estimated from above by 4, j qi,.

_The rest of the argument is simply the evaluation of the number 4, ;,q;,/
m(R;,) and the proof is completed by the exact same argument as in the proof
of Theorem 12, Case 3-3-3 using the following. The case C(¢) e C*/ with I¢ # 0
is treated also by the exactly same argument. O

Lemma 33 (Restatement of Lemma 17). We have the inequality: ((I) <

’7)71“){ (f)'

Theorem 19 for non-degenerate weighted homogeneous polynomial and
Lojasiewicz Join Theorem 21 also hold in the exactly same way for mixed func-
tions. For example, we get the following as a corollary of Theorem 19.
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THEOREM 34 ([4]). Let f(z) be a strongly non-degenerate mixed weighted
homogeneous polynomial with isolated singularity at the origin and dim T'(f) =
n—1. Let R be the weight vector of f. Then we have the estimation ()(f) <

n(R).

4.5. Making f convenient. We also generalize Theorem 21. Take an
integer N > 7/ ,..(f)+1. Consider mixed polynomial R(z,z):= ), ciz/"z"
where n;, m; are any fixed non-negative integers with m; +n; = N; > N and
n; #m;.  We choose such {(m;,n;)|i=1,...,n} and fix them. The coefficients
cly...,cy are generic so that fi:= f(z,Z) + R(z,Z) is strongly non-degenerate.
Consider the family f(z,Z) = f(z,Z) + sR(z,z). Then we have the following.

THEOREM 35. There exists a ro > 0 such that for any r < ry, the sphere S,
and the family of hypersurface Vs := f,"1(0) intersect transversely for any 0 < s <
1. In particular, the links of [ and f; are isotopic and their Milnor fibrations are
isomorphic.

The proof is similar and we leave it to the reader.
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