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ŁOJASIEWICZ EXPONENTS OF NON-DEGENERATE

HOLOMOROHIC AND MIXED FUNCTIONS

Mutsuo Oka

Abstract

We consider Łojasiewicz inequalities for a non-degenerate holomorphic function

with an isolated singularity at the origin. We give an explicit estimation of the

Łojasiewicz exponent in a slightly weaker form than the assertion in Fukui [10]. We

also introduce Łojasiewicz inequality for strongly non-degenerate mixed functions and

generalize this estimation for mixed functions.

1. Holomorphic functions and Łojasiewicz exponent

Consider an analytic function f ðzÞ with an isolated singularity at the origin.
We consider the inequality

bc > 0; Ez A U ; kqf ðzÞkb ckzkyð1Þ

where U is a su‰ciently small neighborhood of the origin and qf ðzÞ is the

gradient vector
qf

qz1
; . . . ;

qf

qzn

� �
. The Łojasiewicz exponent l0ð f Þ of f ðzÞ at the

origin is the smallest positive number among y’s which satisfy the inequality
(1). It is known that there exists such number l0ð f Þ and it is a rational number
[16, 27]. We assume that the Newton boundary of f is non-degenerate here-
after. The purpose of this paper is to give an explicit upper bound of the
Łojasiewicz exponent in term of the combinatorics of the Newton boundary.
There is a similar estimation proposed by Fukui [10] but he uses some in-
correct equality (2.4), [10] in his proof. Thus the proof has a gap and the
assertion must be proved in a di¤erent way, even if it is true. There is also an
estimation by Abderrahmane [2] using Newton number. In this paper, we give
an estimation along Fukui’s way. Our estimation is apparently a little weaker
than that of Fukui but it is enough for our purpose. In the last section of this
paper (§4), we will generalize the notion of Łojasiewicz exponent for mixed
functions.
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1.1. Newton boundary and the dual Newton diagram. Let f ðzÞ ¼
P

n cnz
n

be an analytic function with f ð0Þ ¼ 0. Recall that the Newton diagram Gþð f Þ is
the minimal convex set in the first quadrant of Rn

þ containing
S

n; cn00ðnþ Rn
þÞ.

The Newton boundary Gð f Þ is the union of compact faces of Gþð f Þ. Let Nþ be
the space of non-negative weight vectors. Using the canonical basis, it can be
identified with the first quadrant of Rn

þ. Let P ¼ ðp1; . . . ; pnÞ A Nþ be a non-zero
weight. It defines a canonical linear mapping on Gþð f Þ by PðnÞ :¼

Pn
i¼1 pini.

We denote the minimal value of P on Gþð f Þ by dðP; f Þ and put DðP; f Þ ¼
fn A Gþð f Þ jPðnÞ ¼ dðP; f Þg. This is a face of Gþð f Þ. We simply write as
dðPÞ or DðPÞ if no confusion is likely. The dimension of DðPÞ can be 0; 1; . . . ;
n� 1. Recall that P;Q A Nþ are equivalent if DðPÞ ¼ DðQÞ. This equivalence
classes gives Nþ a rational polyhedral cone subdivision G�ð f Þ and we call G�ð f Þ
the dual Newton diagram. We also define a partial order in G�ð f Þ by

PaQ , DðPÞ � DðQÞ:
Denote the set of weights which are equivalent to Q by ½Q�. Note that the
closure ½P� is equal to the union

S
QbP½Q� and

dim½P� ¼ dim½P� ¼ n� dim DðPÞ:
The generators of the 1-dimensional cones of G�ð f Þ are called vertices. A
weight P A Nþ is a vertex if and only if dim DðPÞ ¼ n� 1. We denote the set of
vertices by V. P ¼ ðp1; . . . ; pnÞ is called strictly positive if pi > 0 for any i ¼
1; . . . ; n. Note that DðPÞ is compact if and only if P is strictly positive. A
vertex which is not strictly positive is either the canonical basis ei ¼ ð0; . . . ;
^

1
i

; . . . ; 0Þ, 1a ia n or corresponds to a vanishing coordinate subspace (see §3.1
for the definition).

1.1.1. Face function. For D � Gð f Þ, put fDðzÞ :¼
P

n AD cnz
n and we call

fD the face function of D. For a weight vector P A Nþ, the face function asso-
ciated with P is defined by fPðzÞ ¼ fDðPÞðzÞ. The monomial zn and the integer
point n A Gþð f Þ correspond each other. If D is a compact face, fD is a weighted
homogeneous polynomial.

1.2. Normalized weight vector. Take a weight vector P ¼ ðp1; . . . ; pnÞ.
Let d ¼ dðPÞ and assume that d > 0. The hyperplane P in Rn, defined by
p1n1 þ � � � þ pnnn ¼ d, contains the face DðPÞ and all other points n A Gþð f ÞnDðPÞ
are above P. Namely p1n1 þ � � � þ pnnn > d. We call P the supporting hyper-
plane of the weight vector P. For a weight vector P with dðPÞ > 0, we define
the normalized weight vector P̂P of P (with respect to f ) by

P̂P :¼ ð p̂p1; . . . ; p̂pnÞ; p̂pi ¼ pi=dðPÞ:
Hereafter we use this notation P̂P throughout this paper. Using the normalized
weight vector, dðP̂PÞ ¼ 1 and the supporting hyperplane P is written as

P: p̂p1n1 þ � � � þ p̂pnnn ¼ 1:
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Note that the nj coordinate of the intersection of P and nj-axis is
1=p̂pj.

Assume that DðPÞ \ DðQÞ0j and consider the line segment Pt :¼ tPþ
ð1� tÞQ, 0a ta 1. Note that DðPtÞ ¼ DðPÞ \ DðQÞ for any 0 < t < 1 and the

normalized weight vector P̂Pt is simply given by P̂Pt ¼ tP̂Pþ ð1� tÞQ̂Q, provided
dðPÞ > 0 and dðQÞ > 0.

The purpose of this paper is to give an upper bound explicitly for the
Łojasiewicz exponent using the combinatorial data of the Newton boundary.
Then we give an application for the characterization of the monomials which
do not change the topology by adding to f . For a weighted homogeneous
non-degenerate polynomial, we prove the estimation conjectured in [6] under
the Łojasiewicz non-degeneracy. In §4, we generalize these results for mixed
functions.

2. Łojasiewicz exponent for convenient functions

2.1. Preliminary consideration. We first consider the estimation of Łoja-
siewicz exponent along an analytic curve CðtÞ which is parametrized as follows.
Put I :¼ fi j ziðtÞ2 0g and I c be the complement of I .

CðtÞ : zðtÞ ¼ ðz1ðtÞ; . . . ; znðtÞÞ; zð0Þ ¼ 0; zðtÞ A C�I

ziðtÞ ¼ ait
pi þ ðhigher termsÞ; pi A N; i A I :

�
ð2Þ

Here we use the following notations:

CI :¼ fz ¼ ðz1; . . . ; znÞ j zj ¼ 0; j B Ig

C�I :¼ fz ¼ ðz1; . . . ; znÞ j zi 0 0; , i A Ig

NI
þ :¼ fP ¼ ðp1; . . . ; pnÞ A Nþ j pj ¼ 0; j B Ig

N �I
þ :¼ fP ¼ ðp1; . . . ; pnÞ A Nþ j pi 0 0 , i A Ig

f I :¼ f jC I :

Put P ¼ ðpiÞi A I and d ¼ dðP; f I Þ. We define

MðPÞ :¼ maxfpj j j A Ig; mðPÞ :¼ minfpj j j A Ig:
Note that ord zðtÞ ¼ mðPÞ. Put q :¼ ord qf I ðzðtÞÞ. Under the non-degeneracy
assumption, we have the inequalities:

d �MðPÞa qa d �mðPÞ orð3Þ
d �MðPÞ

mðPÞ a
q

mðPÞ a
d

mðPÞ � 1 ¼ 1

mðP̂PÞ
� 1:ð4Þ

Put VariðPÞ ¼ zj

���� qfPqzj
2 0

� �
. Namely VariðPÞ is the set of variables which

appear in fP. Then we have the obvious estimations:
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qf

qzj
ðzðtÞÞ ¼ qf

qzj

� �
P

ðaÞtdj þ ðhigher termsÞ; dj ¼ d P;
qf

qzj

� �
;ð5Þ

ord
qf

qzj
ðzðtÞÞb dj b d � pj:ð6Þ

If zj A VariðPÞ, dj ¼ dðP; f Þ � pj and otherwise dj > d � pj. If mðPÞ ¼ pj ,
d=mðPÞ ¼ 1=p̂pj and this is equal to the j-th coordinate of the intersection of
PðPÞ and nj axis. We define the Łojasiewicz exponent of f along CðtÞ by

l0ðCðtÞÞ :¼ ord qf ðzðtÞÞ
ord zðtÞ :

By (3) and by the non-degeneracy assumption, we have

ord qf ðzðtÞÞa d �mðPÞð7Þ
ord fjðzðtÞÞb dðP; fjÞb d � pjð8Þ

l0ðCðtÞÞa d �mðPÞ
mðPÞ :ð9Þ

For a strictly positive weight vector P ¼ ðp1; . . . ; pnÞ, we define positive invariants

hi; jðPÞ :¼
d � pj

pi
¼

1� p̂pj

p̂pi
;

h 0
i; jðPÞ :¼

dj

pi
¼ d̂dj

p̂pi

hðPÞ :¼ d �mðPÞ
mðPÞ ¼ 1

mðP̂PÞ
� 1:

8>>>>>>>><
>>>>>>>>:

ð10Þ

where dj ¼ dðP; fjÞ and d̂dj ¼ dj=d.

2.2. Łojasiewicz exceptional monomial. We say that f ðzÞ is convenient if
for any 1a ja n, Newton boundary Gð f Þ intersects with nj-axis at a point Bj ¼

ð0; . . . ;
^

b

j

j; . . . ; 0Þ. Recall that a non-degenerate function f ðzÞ has an isolated
singularity at the origin, if it is convenient (Corollary (2.3), [19]). Assume that
f ðzÞ is convenient as above. Define an integer B :¼ maxfbj j j ¼ 1; . . . ; ng and
let L ¼ fi j bi ¼ Bg. We call zBi , i A L a Łojasiewicz monomial of f . We say
that a Łojasiewicz monomial zBi is Łojasiewicz exceptional if there exists j,
j0 i and a monomial of the form zjz

B 0
i , with B 0 < B� 1 which has a non-zero

coe‰cient in f .
Consider the curve parametrized as (2) and assume that I ¼ f1; . . . ; ng.

Then we have seen

ord qf ðzðtÞÞ
ord zðtÞ a

d

mðPÞ � 1aB� 1:
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This implies the following inequality holds in a small neighborhood of the origin.

kqf ðzðtÞÞkb ckzðtÞkB�1; c0 0:ð11Þ
If zBi is Łojasiewicz exceptional and let zjz

B 0
i , B 0 < B� 1 be as above. Then

qf

qzj
has the monomial zB

0
i with non-zero coe‰cient and ord

qf

qzj
ðzðtÞÞ can be piB

0

which is smaller than piðB� 1Þ. In fact, this is the case for the i-axis curve zðtÞ
where ziðtÞ ¼ t and zjðtÞ1 0 for j0 i. We assert

Assertion 1. The inequality l0ð f ÞaB� 1 holds for any analytic curve zðtÞ.

Proof. As we have shown the assertion for the case I ¼ f1; . . . ; ng, we need
only consider the case where some of ziðtÞ is identically zero. In this case, put
I :¼ fi j ziðtÞ2 0g. Then f I :¼ f jC I is a non-degenerate convenient function.
Thus by the above argument applied for f I , we have

ord qf I ðzðtÞÞa ðord zðtÞÞ � ðBI � 1Þ:
Here BI is defined similarly for f I . By the obvious inequality ord qf ðzðtÞÞa
ord qf I ðzðtÞÞ and BI aB, we get the inequality (11). r

For the practical calculation of the Łojasiewicz exponent, we use the
following criterion. This can be proved by the Curve Selection Lemma ([18,
11]).

Proposition 2. A positive number y satisfies the Łojasiewicz inequality (1) if
the inequality

ord qf ðzðtÞÞa y� ord zðtÞ
is satisfied along any non-constant analytic curve CðtÞ parametrized by an analytic
path zðtÞ with zð0Þ ¼ 0. That is l0ð f Þ ¼ sup l0ðCðtÞÞ where CðtÞ moves every
possible analytic curves starting from the origin.

Now we have the following result for convenient non-degenerate functions.

Theorem 3. Let f ðzÞ be a non-degenerate convenient analytic function.
Then Łojasiewicz exponent l0ð f Þ satisfies the inequality: l0ð f ÞaB� 1.

Furthermore if f has a Łojasiewicz non-exceptional monomial, l0ð f Þ ¼ B� 1.

Proof. We have shown that l0ð f ÞaB� 1. We only need to show the
existence of a curve CðtÞ which takes the equality q ¼ B� 1, assuming that f has
a Łojasiewicz non-exceptional monomial. For this purpose, we assume for sim-

plicity B ¼ b1 and zB1 is non-exceptional. Note that the Newton boundary of
qf

qzi
does not touch the n1 axis under B� 1 for any i > 1 by the assumption. Thus
we can take a su‰ciently large integer N and put P ¼ ð1;N; . . . ;NÞ. Note that
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d P;
qf

qz1

� �
¼ B� 1 and d P;

qf

qzi

� �
bB� 1 for any ib 2. Consider the curve

CðtÞ defined by zðtÞ ¼ ðt; tN ; . . . ; tNÞ. Then the above observation tells us that

qf ðzðtÞÞ ¼ ðB; �; . . . ; �ÞtB�1 þ ðhigher termsÞ:
Thus kqf ðzðtÞÞkAkzðtÞkB�1. r

In the above proof, if there is a monomial zB
0

1 zj with j0 1, B 0 < B� 1, we
see that ord fjðzðtÞÞ ¼ B 0. Thus we have ord f1ðzðtÞÞ > ord fjðzðtÞÞ. The im-
portance of Łojasiewicz exceptional monomial is observed by Lenarcik [17]. For
plane curves ðn ¼ 2Þ, we have also observed that it gives a fake e¤ect to com-
putation of the complexity of plane curve singularity but exceptional monomials
can be eliminated without changing the non-degeneracy (Le-Oka [15]). Suppose
that czB1 þ c 0zB

0

1 z2 with B 0 aB� 2, c; c 0 0 0 is in a face function of f . Then
take the coordinate change ðz1; z 02Þ :¼ ðz1; z2 þ ðc=c 0ÞzB�B 0

1 Þ to kill the monomial
zB1 . This operation does not work for mixed polynomials.

3. Łojasiewicz exponents for non-convenient functions

In this section, we consider again a non-degenerate function f ðzÞ with
isolated singularity at the origin without assuming the convenience of the Newton
boundary. It turns out that the estimation of Łojasiewicz exponent is much
more complicated without the convenience assumption. We assume that Gð f Þ
has dimension n� 1 hereafter. If the multiplicity at the origin is greater than 2,
this condition is always satisfied.

3.1. Łojasiewicz non-degeneracy along a vanishing coordinate subspace. Let
I be a subset of f1; . . . ; ng. We say that CI is a vanishing coordinate subspace

([21, 22, 9]) if f I ðzI Þ1 0. Here f I is the restriction of f to C I . We use the

notation CI ¼ fz j zj ¼ 0; j B Ig and zI ¼ ðziÞi A I . If further I ¼ fig is a vanish-
ing coordinate subspace, we say Cfig a vanishing axis. We say a face X � Gþð f Þ
is essentially non-compact if there exists a non-strictly positive weight vector Q ¼
ðq1; . . . ; qnÞ such that dðQ; f Þ > 0 and DðQÞ ¼ X. Let IðQÞ ¼ fi j qi ¼ 0g. We
say also IðQÞ the vanishing direction of X and write also as IðXÞ ¼ IðQÞ. Then
the assumption dðQ; f Þ > 0 implies CIðQÞ is a vanishing coordinate subspace.

Put I ¼ IðQÞ and we assume that I ¼ f1; . . . ;mg. Take an i A I . By the
assumption, the gradient vector qf does non vanish in a neighborhood of the
origin of i-axis except at the origin. This is possible only if there exists a
monomial znii zj with a non-zero coe‰cient for some j0 i in the expansion of f .
Then we observe that j B I , because C I is a vanishing coordinate subspace. Let
Ji be the set of j A I c for which such a monomial znii zj exists with a non-zero
coe‰cient in the expansion of f ðzÞ. Ji 0j for any i A I . We define an integer
nij by

nij :¼ minfni j znii zj has a non-zero coe‰cientg

625Łojasiewicz exponents of non-degenerate functions



for a fixed i A I and j A Ji. For brevity, we put nij ¼ y if j B Ji. Put Bij :¼

ð0; . . . ; ^
nij
i

; . . . ;
^

1

j

; . . . ; 0Þ. Note that Bij A Gð f Þ. Put JðIÞ ¼
S

i A I Ji. We say
that f is Łojasiewicz non-degengerate if for any strictly positive weight vector
P A N �I (namely pi > 0, Ei A I ), the following condition is satisfied. Put I 0 :¼
fi j pi ¼ mðPÞg and JðPÞ :¼

S
i A I 0 Ji � JðIÞ. Then the variety

fz A C�I j ðð fjÞI ÞPðzI Þ ¼ 0; Ej A JðPÞg:
is empty. In other word, for any a A C�I , there exists j A JðPÞ such that
ðð fjÞI ÞPðaÞ0 0. Here and hereafter we use the simplified notation for the

derivative function: fiðzÞ :¼
qf

qzi
ðzÞ, i ¼ 1; . . . ; n.

3.2. Jacobian dual Newton diagram. We consider the derivatives fiðzÞ, i ¼
1; . . . ; n. We consider their Newton boundary Gð fiÞ, i ¼ 1; . . . ; n. As we con-
sider nþ 1 Newton boundaries, we denote by DðP; fiÞ the face of Gð fiÞ where
P takes minimal value, dðP; fiÞ. We consider the following stronger equivalence
relation in the space of non-negative weight vectors. Two weight vectors P, Q
are Jacobian equivalent if DðP; fiÞ ¼ DðQ; fiÞ for any i ¼ 1; . . . ; n and DðP; f Þ ¼
DðQ; f Þ. We denote it by P@

J
Q. This gives a polyhedral cone subdivision of

Nþ and we denote this as G�
J ð f Þ and we call it the Jacobian dual Newton diagram

of f . G�
J ð f Þ is a polyhedral cone subdivision of Nþ which is finer than G�ð f Þ.

The Jacobian dual Newton diagram can be understood alternatively as
follows. Let us consider the function FðzÞ ¼ f ðzÞ f1ðzÞ � � � fnðzÞ. Then G�

J ð f Þ is
essentially equivalent to the dual Newton diagram G�ðF Þ of F . For any weight
vector P, we have DðP;F Þ ¼ DðP; f Þ þ DðP; f1Þ þ � � � þ DðP; fnÞ where the sum
is Minkowski sum. See [3] for the definition. For a weight vector P, the set
of equivalent weight vectors in G�ð f Þ and G�

J ð f Þ is denoted as ½P� and ½P�J
respectively. We consider the vertices of this subdivision. We denote the set
of strictly positive vertices of G�ð f Þ and G�

J ð f Þ by Vþ, Vþ
J respectively. Recall

that ei ¼ ð0; . . . ;
^

1
i

; . . . ; 0Þ.

Proposition 4. (1) P@
J
Q implies P@Q in G�ð f Þ. Conversely if P@Q

and fPðzÞ contains all n-variables, P@
J
Q.

(2) A strictly positive weight vector P is in Vþ or Vþ
J if and only if

dim DðP; f Þ ¼ n� 1 or dimðDðP; f Þ þ
P

i DðP; fiÞÞ ¼ n� 1 respectively
where the summation is Minkowski sum.

Let V0 be the set of vertices of G�ð f Þ which are not strictly positive.

Proposition 5. Assume that P A V0 and CIðPÞ is a non-vanishing subspace.
Then P is one of e1; . . . ; en.

A vertex P A V0 is called a vanishing vertex if CIðPÞ is a vanishing subspace.
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Lemma 6. Let P ¼ ðp1; p2; . . . ; pnÞ be a vanishing vertex of G�ð f Þ in V0 and
put I ¼ IðPÞ. Then the following holds.

(1) fP contains every variable z1; . . . ; zn. In particular, p̂pi a 1 for any i.
(2) Any monomial zai zj , i A I in f ðzÞ must be contained in fPðzÞ, as p̂pi ¼ 0 and

degP̂P zai zj ¼ p̂pj a 1.
(3) There are no monomials zn A C½zI � in fPðzÞ.

Proof. Suppose that fP does not contain the variable zi for some i. Then
DðPÞ � fni ¼ 0g. Then ei A ½P� and thus a contradiction dðP; f Þ ¼ dðei; f Þ ¼ 0.
This proves the first assertion. Consider zai zj, i A I in f . Consider the nor-
malized vector P̂P. Then p̂pi a 1 by the assertion (1) and as degP̂P zai zj b 1, this
implies p̂pj ¼ 1 and zai zj must be in fP. If there is a monomial zn as in the
assertion, degP̂P zn ¼ 0 and an obvious contradiction. r

Example 7. Consider f ðzÞ ¼ ðz91 þ z32 þ z63Þz2 þ z73 þ z74 . Vþ
J has vertices

e1, e2, e3, e4 and R, P, S where

R ¼ 1

12
;
1

4
;
1

7
;
1

7

� �
; fRðzÞ ¼ z91z2 þ z42 þ z73 þ z74

P ¼ 2

21
;
2

7
;
1

7
;
1

7

� �
; fPðzÞ ¼ z73 þ z74

S ¼ 0; 1;
1

7
;
1

7

� �
; fSðzÞ ¼ z91z2 þ z73 þ z74 :

Note that P A Vþ
J nVþ as f2P ¼ z91 þ z32 þ z63 and degP f2P þ 2

7 ¼ 8
7 > 1. S A V0

corresponds to the vanishing coordinate subspace Cf1g. The vertex P is in the
simplicial cone ConeðR; e1; e2Þ as P ¼ Rþ 1

84 e1 þ 1
28 e2. Note that ConeðR; e1; e2Þ

is a regular boundary region. See the definition below.

3.3. Boundary region. We consider equivalence classes ½P� and ½P�J in
G�ð f Þ and G�

J ð f Þ respectively. There exist three di¤erent cases.
1. An equivalent class ½P� (respectively ½P�J ) is called an inner region if the

closure ½P� (resp. ½P�J ) does not contains any vertex of V0 on the boundary.
2. ½P� (respectively ½P�J ) is called a regular boundary region if the closure

½P� (resp. ½P�J ) contains some vertex ei but contains no vanishing vertex on the
boundary.

3. ½P� (resp. ½P�J ) is called a vanishing boundary region, if ½P� (resp. ½P�J )
contains a vanishing vertex Q A G�ð f Þ (resp. Q A G�

J ð f Þ) on the boundary.

3.4. Special admissible paths. Two weight vectors P, Q are called admis-
sible, (respectively J-admissible) if DðPÞ \ DðQÞ0j (resp. DðPÞ \ DðQÞ0j and
DðP; fiÞ \ DðQ; fiÞ0j for any i). Any weight R in the interior of an admissible
lene segment PQ satisfies DðRÞ ¼ DðPÞ \ DðQÞ (resp. DðRÞ ¼ DðPÞ \ DðQÞ and
DðR; fiÞ ¼ DðP; fiÞ \ DðQ; fiÞ, i ¼ 1; . . . ; n). Take a weight vector P ¼ ðp1; . . . ;
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pnÞ which is not strictly positive. Put I ¼ fi j pi ¼ 0g. We say P is a vanishing
weight (respectively non-vanishing weight) if f I 1 0 (resp. f I 2 0).

Proposition 8 (A path in a regular boundary region). Suppose that two
weight P, Q are admissible, Q is strictly positive weight and P is a non-vanishing
weight vector with I ¼ fi j pi ¼ 0g. Then weight vector R A PQ on this line seg-
ment (except P) is given in the normalized form as R̂Rt ¼ Q̂Qþ tP with 0a t < y.

In this expression, R̂Rt ! P when t ! y and there exists a su‰ciently large d > 0

so that mðR̂RtÞ1mðQ̂QI Þ and hðRtÞ1 hðQ̂QI Þ for tb d and hðQ̂QI Þa hðQ̂QÞ.

Proof. For j B I , q̂qj þ tpj ! y and the assertion follows immediately.
Here mðQ̂QI Þ ¼ minfq̂qj j j A Ig. r

Proposition 9 (A path in a vanishing boundary region). Suppose that Q is
strictly positive and P is a vanishing weight vector. Put I ¼ fi j pi ¼ 0g. Then
Q̂Qt ¼ ð1� tÞQ̂Qþ tP̂P, ð0a sa 1Þ parametrize the weights on the line segment QP
and we have the following.

(1) Suppose that q̂qj b q̂qi for some i A I , j B I . Then ð1� tÞq̂qj þ tp̂pj b
ð1� tÞq̂qi for 0a ta 1.

(2) If there is a j B I such that q̂qj < q̂qi for some i A I , there exists 0 < t0 < 1
which satisfies ð1� t0Þq̂qj þ t0 p̂pj ¼ ð1� t0Þq̂qi.

Proof. Second assertion follows from the following property.

ð1� tÞq̂qj þ tp̂pj �!
t!1

p̂pj > 0; ð1� tÞq̂qi �!
t!1

0: r

3.5. Key lemma. First we prepare an elementary lemma.

Lemma 10. Consider a linear fractional function jðsÞ ¼ asþ b

csþ d
where a, b,

c, d are real numbers such that ðc; dÞ0 ð0; 0Þ and csþ d0 0 for 0a sa 1. Then
if j 0ðsÞ2 0, the sign of j 0ðsÞ does not change i.e., j 0ðsÞ > 0 or j 0ðsÞ < 0 for any s,
0a sa 1. Thus jðsÞ is a monotone function on ½0; 1�.

Proof. Assertion follows from

j 0ðsÞ ¼ ad � bc

ðcsþ dÞ2
: r

Assume that P, Q are strictly positive weight vectors. Then the weights on
this line segment PQ can be parametrized normally as R̂Rs, 0 < s < 1:

R̂Rs ¼ sP̂Pþ ð1� sÞQ̂Q:

Putting P̂P ¼ ð p̂p1; . . . ; p̂pnÞ and Q̂Q ¼ ðq̂q1; . . . ; q̂qnÞ, we can write R̂Rs ¼ ðsp̂p1 þ
ð1� sÞq̂q1; . . . ; sp̂pn þ ð1� sÞq̂qnÞ. We consider the quantities defined in (10):
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hijðR̂RsÞ ¼
1� r̂rs; j

r̂rs; i
¼

1� ðsp̂pj þ ð1� sÞq̂qjÞ
sp̂pi þ ð1� sÞq̂qi

;

hðRsÞ ¼
1�mðR̂RsÞ
mðR̂RsÞ

h 0
ijðRsÞ ¼

degðR̂Rs; fjÞ
r̂rs; i

¼ degðR̂Rs; fjÞ
sp̂pi þ ð1� sÞq̂qi

Applying Lemma 10, we have

Lemma 11. Assume that P, Q are strictly positive weight vectors.
(1) Assume that P, Q are admissible. Then we have

hijðR̂RsÞamaxfhijðP̂PÞ; hijðQ̂QÞg; 0 < s < 1:

In particular, we have

hðR̂RsÞamaxfhðP̂PÞ; hðQ̂QÞg
(2) Assume that P, Q are J-admissible. Then we have

h 0
ijðR̂RsÞamaxfh 0

ijðP̂PÞ; h 0
ijðQ̂QÞg; 0 < s < 1:

3.5.1. Invariants to be used for the estimation. Let Vþ
J be the set of strictly

positive vertices of G�
J ð f Þ and consider the subset Vþþ

J � Vþ
J which are in a

vanishing boundary region ½Q� of G�ð f Þ for some Q. The numbers of Vþ, Vþ
J ,

Vþþ
J are finite. We define the following invariants.

hmaxð f Þ :¼ maxfhðPÞ jP A Vþg
hJ;maxð f Þ :¼ maxfhðPÞ jP A Vþ [Vþþ

J g;

h 0
J;maxð f Þ :¼ maxfh 0

k; iðRÞ jR A Vþþ
J ; k; i ¼ 1; . . . ; ng

h 00
J;maxð f Þ :¼ maxfhJ;maxð f Þ; h 0

J;maxð f Þg:

Here h 0
k; iðRÞ ¼ dðR; fiÞ=rk.

3.6. Main theorem. The following estimation is our main result which is
a modified weaker version of the assertion in [10]. Recall that we assume that
dim Gð f Þ ¼ n� 1.

Theorem 12. Let f ðzÞ be a non-degenerate Łojasiewicz non-degenerate func-
tion with an isolated singularity at the origin. Then Łojasiewicz exponent l0ð f Þ
has the estimation

l0ð f Þa h 00
J;maxð f Þ:

If Vþþ
J ¼ j, the estimation can be replaced by a better one

l0ð f Þa hmaxð f Þ:
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The proof of Theorem 3.6 will be given in §3.7.

3.6.1. Test Curve. We consider an analytic curve CðtÞ, �e < ta e para-
metrized as before (2),

CðtÞ :
zðtÞ ¼ ðz1ðtÞ; . . . ; znðtÞÞ; zð0Þ ¼ 0; zðtÞ A C�I

ziðtÞ ¼ ait
pi þ ðhigher termsÞ; i A I

zjðtÞ1 0; j B I

8><
>:ð12Þ

For simplicity, we assume that I ¼ f1; . . . ;mg. Put P ¼ ðp1; . . . ; pmÞ A N �I
þ and

a ¼ ða1; . . . ; amÞ A C�I . We are interested in a best possible upper bound for
the positive quantity l0ðCðtÞÞ ¼ ord qf ðzðtÞÞ=ord zðtÞ. Using the notation fj ¼
qf =qzj , we have the expansion

fjðzðtÞÞ ¼ ð fjÞPðaÞtdðP; fjÞ þ ðhigher termsÞ:ð13Þ
Note that if fPðzÞ contains the variable zj,

ð fjÞPðaÞ ¼ ð fPÞjðaÞ; dðP; fjÞ ¼ dðP; f Þ � pj:ð14Þ

3.6.2. Curves corresponding to a strictly positive weight vector. In the pre-
vious section, we have seen that a test curve CðtÞ gives a pair ðP; aÞ A NI

þ � C�I .
We consider the converse in the case I ¼ f1; . . . ; ng. Assume we have a strictly
positive integer weight vector P ¼ ðp1; . . . ; pnÞ A Nn

þ \ Zn. Taking a coe‰cient
vector a ¼ ða1; . . . ; anÞ A C�n, we associate an analytic curve

CPðt; aÞ : zðtÞ :¼ ða1tp1 ; . . . ; antpnÞ:
The test curve (12) gives the data ðP; aÞ and if I ¼ f1; . . . ; ng, CPðt; aÞ and CðtÞ
di¤ers only higher terms. In this case, we also use the notation as l0ðPÞ instead
of l0ðCPðt; aÞÞ or l0ðCðtÞÞ by an abuse of notation. Then by the above discus-
sion and by the non-degeneracy assumption, we have

ord qf ðzðtÞÞa dðP; f Þ �mðPÞð15Þ
ord qf ðzðtÞÞ
ord zðtÞ a

dðP; f Þ
mðPÞ � 1ð16Þ

¼ 1

mðP̂PÞ
� 1:ð17Þ

Note that hðP̂PÞ ¼ hðPÞ. This estimation does not depend on the choice of rep-
resentative of the equivalence class of P and the choice of a. The weakness
of the above estimation is that mðP̂PÞ can be arbitrary small in the vanishing
boundary region which makes hðP̂PÞ ¼ hðPÞ unbounded.

3.7. Proof of Theorem 12. Take a test curve as (2) and we consider the
weight vector P. To prove the theorem, it is enough to prove that l0ð f ÞðCðtÞÞa
h 00
J;maxð f Þ by Proposition 2. We first consider the case that P is strictly positive

which is most essential.
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3.7.1. Strictly positive case. We first assume that I ¼ f1; . . . ; ng and P is
strictly positive. We divide the situation into three cases.

C-1 ½P� is an inner region. That is, ½P� has only strictly positive weight
vectors in the boundary.

C-2 ½P� is a regular boundary region.
C-3 ½P� is a vanishing boundary region. In this case, we need to consider

the subdivision by Jacobian dual Newton diagram. There are three
subcases.
C-3-1. ½P�J is an inner region.
C-3-2. ½P�J is a regular boundary region.
C-3-3. ½P�J is also a vanishing boundary region.

We need consider the Jacobian dual diagram only in vanishing boundary regions
of G�ð f Þ.

3.7.2. Cases C-1 and C-3-1. We start from the inequality l0ðPÞa hðPÞ
and then estimate hðPÞ by the strictly positive vertices. We use an induction
on dim½P� or dim½P�J in Case C-3-1 to show that l0ðPÞa hmaxð f Þ (resp. l0ðPÞa
hJ;maxð f Þ). The induction starts from the case dim½P� ¼ 1 (respectively dim½P�J
¼ 1). In this case, the assertion is obvious. If dim½P� ¼ r > 1, we take a line
segment RS with R;S A q½P� (resp. in q½P�J ) passing through P we apply Lemma
11 to get the estimation

l0ðCðtÞÞa hðPÞamaxfhðRÞ; hðSÞga hmaxð f Þ; R;S : admissible

l0ðCðtÞÞa hðPÞamaxfhðRÞ; hðSÞga hJ;maxð f Þ; S : J-admissible:

As dim½R�; dim½S� < r (resp. dim½R�J ; dim½S�J < r), the induction works. For the
other cases, we prepare a simple lemma.

Lemma 13. Assume that dim Gð f Þ ¼ n� 1. Then for any face D � Gð f Þ,
there exists an ðn� 1Þ dimensional face X such that X � D. Equivalently for any

weight P, the closure ½P� contains a strictly positive vertex Q. Respectively ½P�J
contains a strictly positive vertex Q A Vþ

J .

The assertion is immediate from the assumption that dim Gð f Þ ¼ n� 1 as
Gþð f Þ is a n-dimensional convex polyhedral region and Gð f Þ is the union of
compact boundary faces. The assertion for G�

J ð f Þ, as we can use F ¼ ff1 � fn
instead of f .

3.7.3. Case C-2 and C-3-2. We start again from the inequality l0ðPÞa
hðPÞ. Assume that ½P� (respectively ½P�J ) is a regular boundary region. We
prove that hðPÞa hmaxð f Þ (respectively hðPÞa hJ;maxð f Þ) by the induction of
dim½P� (resp. dim½P�J ). The argument is completely same in the case ½P�J .
Take a strictly positive vertex R in ½P� \Vþ (resp. in R A ½P�J \Vþ

J ), using
Lemma 13. Take the segment RP and extend it further to the right so that it
arrives to a boundary point of the region, say Q. Then ½Q� is either an inner
region or a regular boundary region.
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If Q is strictly positive and ½Q� is an inner region, we can apply the argument
of Case C-1 or C-3-1 and we consider the estimation in ½Q� by the inductive
argument.

Similarly if Q is strictly positive and ½Q� is a regular boundary region, we
apply the induction’s assumption, as dim½P� > dim½Q�.

So we assume that Q is not strictly positive. Then Q is a non-vanishing
weight vector i.e., dðQÞ ¼ 0. The normalized form of weight vectors on this

segment is given as R̂Rs ¼ R̂Rþ sQ with 0a s < y and P̂P ¼ R̂Rs0 for some s0 > 0.
Put I ¼ IðQÞ and mI ðR̂RÞ ¼ minfr̂ri j i A Ig, I 0 :¼ fi j r̂ri ¼ mI ðR̂RÞg and IR :¼ f j j r̂rj ¼
mðR̂RÞg.

– If I 0 \ IR 0j, mðR̂RÞ ¼ mI ðR̂RÞ and mðR̂RsÞ1 r̂ri0 for any s and i0 A I 0. Thus

l0ðCðtÞÞa hðP̂PÞ ¼ hðR̂Rs0Þ ¼ hðR̂RÞa hmaxð f Þ ðresp:a hJ;maxð f ÞÞ:

– If I 0 \ IR ¼ j, i.e., mðR̂RÞ < mI ðR̂RÞ, take j0 A IR such that there exists a
small positive number e and mðR̂RsÞ ¼ r̂rj0 þ sqj0 for sa e. As mI ðR̂RÞ > r̂rj0 but
r̂rj0 þ sqj0 is monotone increasing in s, there exists some s1 such that mI ðR̂RÞ ¼
r̂rj0 þ s1qj0 and for sb s1, mðR̂RsÞ ¼ mI ðR̂RÞ. Thus hðR̂RsÞ is monotone decreasing
for 0a sa s1 and constant for sb s1. Thus in any case we get

l0ðCðtÞÞa hðPÞ ¼ hðR̂Rs0Þa hðR̂R0Þ ¼ hðR̂RÞa hmaxð f Þ ðresp:a hJ;maxð f ÞÞ:

3.7.4. Case C-3-3. This case requires careful choice of the line segment
for the estimation. For this purpose, we prepare the following Proposition 14
and Lemma 15. A strictly positive weight vector P is simplicially positive (re-
spectively J-simplicially positive) if there exist strictly positive linearly independent
vertices P1; . . . ;Ps of G�ð f Þ such that Pi A ½P�, i ¼ 1; . . . ; s (resp. vertices P1; . . . ;

Ps of G
�
J ð f Þ such that Pi A ½P�J , i ¼ 1; . . . ; s) and P is in the interior of the simplex

ðP1; . . . ;PsÞ. Here by a simplex ðP1; . . . ;PsÞ, we mean the simplicial cone

ConeðP1; . . . ;PsÞ ¼
Xs
i¼1

liPi

���� li b 0

( )
:

Thus a line segment PQ is equal to the simplex ðP;QÞ.

Proposition 14. Let P be a strictly positive weight vector. Then there are
two possibilities.

(1) P is simplicially positive (respectively J-simplicially positive).
(2) There are linearly independent vertices P1; . . . ;Pq�1, qa dim½P� of ½P�

(resp. linearly independent vertices P1; . . . ;Pq�1, qa dim½P�J of ½P�J ) and a
weight vector Pq which is not strictly positive so that P is in the interior of
the simplex ðP1; . . . ;PqÞ.

Proof. The assertion follows easily from the fact that ½P� (resp. ½P�J ) is a
polyhedral convex cone. We use induction on r ¼ dim½P� (resp. r ¼ dim½P�J ).
As the proof is completely parallel, we show the assertion in the case of G�ð f Þ.
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Take a strictly positive vertex P1 A ½P� using Lemma 13 and take the line segment
P1P and extending to the right, put Q1 be the weight on the boundary of ½P�.
Thus P is contained in the interior of P1Q1. Consider ½Q1�. Then dim½Q1� < r.
If Q1 is not strictly positive, we stop the operation. Then q ¼ 2 and this case
corresponds to Case (2). If Q1 is still strictly positive but not a vertex, we repeat

the argument on ½Q1�. Take a strictly positive vertex P2 A ½Q1� and so on.
Apply an inductive argument. The operation stops if we arrive at a weight
vector which is not strictly positive (then case (2)) or a strictly positive vertex Pq

(Case (1)). r

Using this proposition, we have the following choice of a nice line
segment.

Lemma 15. Assume that P is a strictly positive weight. If P is not sim-
plicially positive (respectively not J-simplicially positive), there is a line segment
RQ such that R is simplicially positive (resp. J-simplicially positive) and Q is not
strictly positive.

Proof. We give the proof for G�ð f Þ as the proof is completely parallel for
G�
J ð f Þ. Assume that P is not simplicially positive. Using Proposition 14, we

suppose that P is in the interior of the simplex ðP1; . . . ;PqÞ where P1; . . . ;Pq�1 are
strictly positive vertices and Pq is not strictly positive. Write P by a bary-
centric coordinates as P ¼

Pq
i¼1 liPi with li > 0 and we may assume

Pq
i¼1 li ¼ 1.

Put l :¼
Pq�1

i¼1 li, m :¼ 1� l and define R :¼ ð
Pq�1

i¼1 liPiÞ=l and Q :¼ Pq=m.
Then P ¼ lRþ mQ and R A ðP1; . . . ;Pq�1Þ. Thus R is simplicially positive.

r

Remark 16. For the proof of Case 3-3 below, the Jacobian dual Newton
diagram is essential. So we use Lemma 15 for G�

J ð f Þ.

Proof of Case 3-3. Now we are ready to have an estimation for the
Łojasiewicz exponent of our test curve CðtÞ. Suppose that ½P� and ½P�J are not
vanishing boundary regions. We apply Lemma 15. If P is J-simplicially posi-
tive, we have the estimation l0ðCðtÞÞa hJ;maxð f Þ by the same argument as in
Case 3-1. Thus using Lemma 15, we may assume that P is in the line segment
RQ where R is J-simplicially positive and Q is not strictly positive. If Q is
a non-vanishing weight, we proceed as the case C-3-2 to get the estimation
l0ðCðtÞÞa hJ;maxð f Þ. Thus we assume that Q is a vanishing weight vector
and dðQ; f Þ > 0. Assume that Q ¼ ðq1; . . . ; qnÞ and put I :¼ fi j qi ¼ 0g. We
assume I ¼ f1; . . . ;mg for simplicity. Note that CI is a vanishing coordinate
subspace. For each i A I , there exists some j B I and a monomial z

ni; j
i zj with a

non-zero coe‰cient, as f has an isolated singularity at the origin. Put Ji be
the set of such j for a fixed i A I and put JðIÞ ¼

S
i A I Ji. Here ni; j is assumed

to be the smallest when j is fixed. Put xI :¼ maxfni; j j i A I ; j A Jig and xð f Þ be
the maximum of xI where I corresponds to a vanishing coordinate subspace.
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Put h 0
J;maxð f Þ :¼ maxfh 0

k; iðRÞ jR A Vþþ; 1a k; ia ng where h 0
j; iðRÞ ¼ dðR; fiÞ=rj.

Under the above situation, we will prove that

ð?Þ l0ðCðtÞÞamaxfxð f Þ; hJ;maxð f Þ; h 0
J;maxð f Þg:

Consider the normalized weight vector R̂Rs :¼ ð1� sÞR̂Rþ sQ̂Q, 0a sa 1. Note that
R̂R0 ¼ R̂R, R̂R1 ¼ Q̂Q and putting R̂Rs ¼ ðr̂rs;1; . . . ; r̂rs;nÞ,

r̂rs; i ¼
ð1� sÞr̂ri; 1a iam

ð1� sÞr̂ri þ sq̂qi; m < ia n:

�

Put I 0 ¼ fi A I j r̂ri ¼ mðR̂RI Þg and J 0 ¼
S

i A I 0 Ji. Thus for iam, the normalized
weight r̂rsj goes to 0, when s approaches to 1. On the other hand, for j > m,
r̂rsj b d, 0a Esa 1 for some d > 0. Thus there exists an e, 1 > e > 0 so that for
1� ea sa 1, mðR̂RsÞ is taken by i A I 0. Note that for j A J 0, there exists a small
enough e2, e2 a e1 so that ð fjÞR̂Rs

¼ ðð fjÞI ÞR̂Rs
as r̂rsj b d for j > m for 1� e2 a sa 1.

Here ð fjÞI is the restriction of fj to CI and ðR̂RsÞI is the I projection of R̂Rs to
NI

þ. That is, ð fjÞR̂Rs
contains only variable z1; . . . ; zm. By the Łojasiewicz non-

degeneracy, there exists i0 A I 0 and j0 A Ji0 such that

ð fj0ÞR̂Rs
ðaÞ0 0; sb 1� e2:

By the definition of Jacobian dual Newton diagram, for any 0 < s < 1, ð fj0ÞR̂Rs

does not depend on s and thus ð fj0ÞR̂Rs
ðaÞ00 for any 0< s< 1. Then dðR̂Rs; fj0Þa

ð1� sÞr̂ri0 � ni0; j0 for any 0 < sa 1. The equality takes place if the monomial
z
ni0 ; j0
i0

zj0 is on the face function ð fj0ÞR̂Rs
ðzÞ. Assume that P̂P ¼ R̂Rs0 , 0 < s0 < 1.

Thus we start from the estimation

l0ðCðtÞÞa dðR̂Rs0 ; fj0Þ=mðR̂Rs0Þ:ð18Þ

First for sb 1� e2, we see that

l0ðR̂RsÞa
ð1� sÞr̂ri0ni0; j0
ð1� sÞr̂ri0

¼ ni0; j0 :

(s0 ¼ m in the proof of Lemma 15.) Put IR :¼ fk j r̂rk ¼ mðR̂RÞg.
(a) If there exists a k A I 0 \ IR i.e. mðR̂RÞ ¼ mðR̂RI Þ, we have the estimation

l0ðR̂RsÞa ni0; j0 for any s. In particular, l0ðCðtÞÞa ni0; j0 .

(b) Assume that I 0 \ IR ¼ j i.e. mðR̂RÞ < mðR̂RI Þ. Choose k A IR. Then there
exists a small number e > 0 so that mðR̂RsÞ ¼ r̂rs;k for 0a sa e. By the defini-
tion of I 0, this implies that k B I . There exists 0 < s1 < 1 such that mðR̂Rs1Þ ¼
ð1� s1Þr̂rk þ s1q̂qk ¼ ð1� s1Þr̂ri0 . We divide this case into two subcases.

(b-1) Assume that ð1� sÞr̂rk þ sq̂qk is monotone increasing in s. Then

l0ðPÞ ¼ l0ðR̂Rs0Þa hðR̂R0Þ ¼ hðR̂RÞa hJ;maxð f Þ; if s0 a s1:

l0ðPÞ ¼ l0ðR̂Rs0Þa
ð1� s0Þr̂ri0ni0; j0
ð1� s0Þr̂ri0

¼ ni0; j0 ; if s0 > s1:
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(b-2) Assume that ð1� sÞr̂rk þ sq̂qk is monotone decreasing in s. Then

l0ðR̂Rs0Þa
ð1� s0Þr̂ri0ni0; j0
ð1� s0Þr̂rk þ s0q̂qk

a
r̂ri0ni0; j0
r̂rk

a h 0
k; j0

ðRÞ; if s0 a s1ð19Þ

l0ðR̂Rs0Þa
ð1� s0Þr̂ri0ni0; j0
ð1� s0Þr̂ri0

¼ ni0; j0 ; if s0 b s1:ð20Þ

where the first estimation (19) for s0 a s1 follows from the fact that

s 7! h 0
k; j0

ðR̂RsÞ ¼
ð1� sÞr̂ri0ni0; j0
ð1� sÞr̂rk þ sq̂qk

; 0a sa 1

is monotone decreasing on s. Then we apply Lemma 11 to get the estimation

l0ðCðtÞÞa h 0
k; j0

ðRÞa h 0
J;maxð f Þ:

Thus we have proved the estimation ð?Þ. Assuming the next lemma for a
moment, we can ignore the first term xð f Þ in ð?Þ and the estimation reduces to

l0ðCðtÞÞa h 00
J;maxð f Þ; if zðtÞ A C�n:

Furthermore if Vþþ
J ¼ j, h 0

i; jðPÞ ¼ hi; jðPÞ for P A Vþ, as fPðzÞ contains all
the variables and therefore h 0

i; jðPÞ ¼ hi; jðPÞa hðPÞ or h 0
J;maxð f Þa hJ;maxð f Þ ¼

hmaxð f Þ.

Lemma 17. The following inequality holds.

ni; j a hmaxð f Þ; Ei A I ; Ej A Ji:

Proof. Let X be a maximal face of Gð f Þ for which the face function
fXðzÞ contains the monomial z

ni; j
i zj . The corresponding weight vector P (i.e.,

DðPÞ ¼ X) is in Vþ � G�ð f Þ such that X is subset of the hyperplane

p1n1 þ � � � þ pnnn ¼ dðPÞ
and fPðzÞ contains the monomial z

ni; j
i zj. Thus ni; j pi þ pj ¼ dðPÞ. Consider an

analytic curve zðtÞ corresponding to the weight P. Then we have

ni; j ¼
dðPÞ � pj

pi
¼ hi; jðPÞa hðPÞa hmaxð f Þ: r

To complete the proof, we have to consider the case where the test curve is
in a proper coordinate subspace.

3.7.5. Test curves in a proper subspace. We consider the situation of the
test curve zðtÞ defined in (12) for which I c 0j. Recall that I ¼ fi j ziðtÞ2 0g
and we assume I ¼ f1; . . . ;mg, m < n for simplicity.

Case 1. Assume that f I 2 0. Recall that P ¼ ðp1; . . . ; pmÞ and a ¼
ða1; . . . ; amÞ A C�I . Let D1 ¼ DðPÞ � G�ð f I Þ. Consider the weight vector ~PP ¼
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ðp1; . . . ; pm;K ; . . . ;KÞ A Nþ where K is su‰ciently large so that Dð ~PP; f Þ ¼ D1,
d :¼ dðP; f I Þ ¼ dð ~PP; f Þ and mð ~PPÞ ¼ mðPÞ. Put ~aa¼ ða; 1; . . . ; 1Þ. Consider yk :¼
ord qf =qkðzðtÞÞ and put y :¼ minfyk j yk 0yg. Here yk ¼ y if qf =qkðzðtÞÞ1 0
by definition. Then l0ðCðtÞÞ ¼ y=mðPÞ. Consider the modified curve

~CCðtÞ : ~zzðtÞ ¼ ðz1ðtÞ; . . . ; zmðtÞ; tN ; . . . ; tNÞ:
Taking N su‰ciently large, say N > maxfyk j yk 0yg, it is easy to see that
ord qf =qkð~zzðtÞÞ ¼ yk for any k with yk 0y. Thus for such an N, l0ðCðtÞÞ ¼
l0ð ~CCðtÞÞ. Combining with the previous argument, we get l0ðCðtÞÞa h 00

J;maxð f Þ.

Case 2. Assume that f I 1 0. This implies CI is a vanishing coordinate
subspace. Thus each monomial in the expansion of f must contain one of
fzj j j A I cg. Thus fiðzðtÞÞ1 0 for i A I . Put mðPÞ :¼ minfpi j i A Ig and I 0 ¼
fi A I j pi ¼ mðPÞg and Ji be the set of j A I c such that a monomial z

ni; j
i zj exists.

Then by the Łojasiewicz non-degeneracy, there exists i0 A I 0 and j0 A Ji0 such that
fj0ðaÞ0 0 and thus

ord qf ðzðtÞÞ
ord zðtÞ amaxfni; j j i A I 0; j A Iiga hJ;maxð f Þ:

This completes the proof of Theorem 12.

Remark 18. It is possible to have hJ;max ¼ hmax or h 00
J;max ¼ hJ;max in some

cases. For example, see the next section. In Example 7, we have the equality
hJ;max ¼ hmax as the simplex ðR; e1; e2Þ is a regular boundary region. In fact, we
have hðRÞ ¼ 11, hðPÞ ¼ 9.

3.8. Weighted homogeneous polynomials. Suppose that f ðzÞ is a weighted
homogeneous polynomial with isolated singularity at the origin. There are
already a better result by Brzostowski [5, 4]. I thank to Tadeusz Krasiński
for informing me these papers.

Theorem 19 (Brzostowski [5, 4]). Let f ðzÞ be a non-degenerate weighted
homogeneous polynomial with an isolated singularity at the origin and dim Gð f Þ ¼
n� 1. Let R be the weight vector of f . Then l0ð f Þa hðRÞ.

Remark 20. For a non-degenerate weighted homogeneous polynomial f ðzÞ
with isolated singularity at the origin, Brzostowski does not need the Łojasiewicz
non-degeneracy.

3.9. Łojasiewicz Join Theorem. Consider a join type function f ðz;wÞ ¼
gðzÞ þ hðwÞ where z A Cn and w A Cm. Assume that both gðzÞ and hðwÞ have
isolated singularities at the respective origin. Then

Łojasiewicz Join Theorem 21 ([27], Corollary 2, §2). We have the equality:

l0ð f Þ ¼ maxfl0ðgÞ; l0ðhÞg:
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Proof. Put u ¼ ðz;wÞ A Cnþm. Take any analytic curve CðtÞ : uðtÞ ¼ ðzðtÞ;
wðtÞÞ, 0a ta 1.

Case 1. If zðtÞ1 0 (respectively wðtÞ1 0),
ord qf ðuðtÞÞ
ord uðtÞ a l0ðhÞ (resp.

a l0ðgÞ).

Case 2. Assume that zðtÞ2 0 and wðtÞ2 0. If ord zðtÞa ord wðtÞ, we
have

ord qf ðuðtÞÞ
ord uðtÞ ¼ min

ord qgðzðtÞÞ
ord zðtÞ ;

ord qhðwðtÞÞ
ord zðtÞ

� �

amin l0ðgÞ;
l0ðhÞ ord wðtÞ

ord zðtÞ

� �

a l0ðgÞ:

If ord zðtÞ > ord wðtÞ, by the same argument,

ord qf ðuðtÞÞ
ord uðtÞ a l0ðhÞ:

Thus we have l0ð f Þamaxfl0ðgÞ; l0ðhÞg. The equality can be taken by a curve
uðtÞ ¼ ðzðtÞ; 0Þ or uðtÞ ¼ ð0;wðtÞÞ which takes l0ðgÞ for gðzÞ or l0ðhÞ for hðwÞ
respectively. r

Remark 22. As we see in the proof of Theorem 12, it is not necessary to
take the Jacobian dual Newton diagram everywhere. We only need consider
G�
J ð f Þ in the vanishing regions of G�ð f Þ. Namely if P is a vertex of G�

J ð f Þ
which is in an inner or a regular boundary region of G�ð f Þ, we have an estima-
tion hðPÞa hmaxð f Þ.

3.10. Application. We consider the hypersurface V ¼ f �1ð0Þ and the trans-
versality problem with the sphere Sr :¼ fz j kzk ¼ rg. Certainly transversality
has been shown by Milnor [18]. However we want to see this property from a
slightly di¤erent view point. Recall first that Sr and V does not intersect
transversely at z ¼ a if and only if

(i) a and qf ðaÞ are linear dependent over C, or
Using hermitian inner product and the Schwartz inequality, this condition is

equivalent to
(ii) jða; qf ðaÞÞnormj ¼ 1:

3.10.1. Orthogonality at the limits (Whitney (b)-regularity).

Lemma 23. Assume that f is a non-degenerate and Łojasiewicz non-
degenerate holomorphic function with an isolated singularity at the origin.
Consider a non-constant analytic curve zðtÞ with zð0Þ ¼ 0 defined as (2) and
assume that fPðaÞ ¼ 0. Then we have
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(1) limt!0ðzðtÞ; qf ðzðtÞÞÞnorm ¼ 0. Geometrically this implies the limit direc-
tion of zðtÞ is contained in the limit of the tangent space TzðtÞV of V.

(2) In particular, there exists a positive number r0 so that the sphere Sr

intersects V transversely for any ra r0.

Proof. Let J ¼ f j j zjðtÞ1 0g and let I be the complement of J. We
assume that I ¼ f1; . . . ;mg. Consider the Taylor expansion

ziðtÞ ¼ ait
pi þ ðhigher termsÞ; i A I :

Put P ¼ ðpiÞi A I A NI
þ as before.

Case 1. Assume that f I 2 0 and assume for simplicity p1 ¼ � � � ¼ pl <
plþ1 a � � �a pm and put d ¼ dðP; f I Þ. Note that ord zðtÞ ¼ p1. Put q ¼
ord qf ðzðtÞÞ. By the assumption, limt!0 t

�p1zðtÞ ¼ ay where ay :¼ ða1; . . . ; al;
0; . . . ; 0Þ. Put vy :¼ limt!0 t

�qqf ðzðtÞÞ. By the non-degeneracy, we have qa
d � p1. If q < d � p1, the assertion (1) is immediate, as vy A CK where K ¼
f j j j > lg. Assume that q ¼ d � p1. This implies

qf I

qzj
ðaÞ ¼ 0; jb lþ 1:

By the assumption f I
P ðaÞ ¼ 0 and the Euler equality of f I

P ðzÞ, we get

f I
P ðaÞ ¼

Xm
i¼1

piai
qf I

P

qzi
ðaÞ ¼ p1

Xl
i¼1

ai
qf I

P

qzi
ðaÞ ¼ 0:

In this case, note that vy ¼ qf I
P

qz1
ðaÞ; . . . ; qf

I
P

qzl
ðaÞ; 0; . . . ; 0

� �
. This implies also

lim
t!0

ðzðtÞ; qf ðzðtÞÞÞnorm ¼ ðay; vyÞnorm

¼ c
Xl
i¼1

ai
qf I

P

qzi
ðaÞ ¼ 0

where c is a non-zero scalar.

Case 2. Assume that f I 1 0. Then zðtÞ A CI and CI is a vanishing coor-
dinate subspace, and thus qf ðzðtÞÞ A CI c

. Thus the assertion is obvious. The
assertion (2) follows from (1). Of course, (2) is nothing but the existence of a
stable radius which is well known by [18] for a general holomorphic function with
an isolated singularity at the origin. r

Remark 24. The assertion of the lemma says that the stratification
fVnf0g; f0gg is a Whitney b-regular stratification.

3.10.2. Making f convenient without changing the topology. Let f be a
non-degenerate, Łojasiewicz non-degenerate function with isolated singularity at
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the origin. Choose integer Ni with

Ni > h 00
J;maxð f Þ þ 1; i ¼ 1; . . . ; nð21Þ

and consider a polynomial

RðzÞ ¼ c1z
N1

1 þ � � � þ cnz
Nn
n :

Consider the family of functions:

fsðzÞ ¼ f ðzÞ þ sRðzÞ; 0a sa 1:

The coe‰cients are chosen generically so that fs is non-degenerate. Note that
f0 ¼ f and f1 is a convenient and non-degenerate

Theorem 25. Consider the family of hypersurface Vs :¼ f �1
s ð0Þ, 0a sa 1.

There exists a positive number r0 such that Vs \ Br0 has a unique singular point
at the origin and for any ra r0 the sphere Sr and Vs intersect transversely for
any 0a sa 1. In particular, the links of f and f1 are isotopic and their Milnor
fibrations are isomorphic.

Proof. Take r0 so that there exists a positive number c and the following
inequality is satisfied.

kqf ðzÞkb ckzkl0ð f Þ; 0 < kzka r0:

Assume that the assertion does not hold. Then we can find an analytic curve
ðzðtÞ; sðtÞÞ, 0a ta 1 and Laurent series lðtÞ such that zð0Þ ¼ 0 and sð0Þ ¼ s0 A
½0; 1� and

qfsðtÞðzðtÞÞ ¼ lðtÞzðtÞ; fsðtÞðzðtÞÞ1 0:ð22Þ
Expand zðtÞ and sðtÞ in Taylor expansions

ziðtÞ ¼ ait
pi þ ðhigher termsÞ; i ¼ 1; . . . ; n

sðtÞ ¼ s0 þ btb þ ðhigher termsÞ; 0a s0 a 1

and let I ¼ fi j ziðtÞ2 0g, P ¼ ðpiÞ A N �I
þ , and a ¼ ðaiÞ A C�I . Then by the

definition of RðzÞ,
ord sðtÞqRðzðtÞÞbmðPÞðN � 1Þ > mðPÞh 00

J;maxð23Þ
where N ¼ minfN1; . . . ;Nng. By Theorem 32,

ord qf ðzðtÞÞamðPÞh 00
J;max:ð24Þ

Thus

ord qfs0ðzðtÞÞ ¼ ord qf ðzðtÞÞ
and

lim
t!0

ðqfsðtÞðzðtÞÞÞnorm ¼ lim
t!0

ðqfsð0ÞðzðtÞÞÞnorm:
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This already implies the family of hypersurfaces Vs have isolated singularities
at the origin. Note that the equality fPðaÞ ¼ 0 follows from the equality
fsðtÞðzðtÞÞ1 0. The assumption gives us the contradicting equalities

jðzðtÞ; qfsðtÞðzðtÞÞÞnormj1 1; and

lim
t!0

ðzðtÞ; qfsðtÞðzðtÞÞÞnorm ¼ 0

where the first equality follows from the assumption (22) and the second conver-
gence follows from (24) and Lemma 23. Thus the family fs, 0a sa 1 has a
uniform stable radius and the isomorphisms of the Milnor fibrations are easily
obtained using tubular Milnor fibration and Ehresman’s fibration theorem ([28]).

r

Remark 26. By the same argument, it is easy to see that ftðzÞ ¼ f ðzÞ þ tzn

with
Pn

i¼1 ni b h 00
J;maxð f Þ þ 1 does not change the topology at the origin. A

similar result for C 0-su‰ciency is proved in Kuo [14].

4. Łojasiewicz inequality for mixed functions

In this section, we will introduce the notion of Łojasiewicz exponent for
a mixed function and we generalize the estimation obtained for non-degenerate
holomorphic functions in previous sections for f ðz; zÞ which are strongly non-
degenerate.

4.1. Newton boundaries and various gradients. Let f be a mixed function
expanded as

f ðz; zÞ ¼
X
n;m

cnmz
nzm:

The Newton diagram Gþð f Þ is defined as the convex hull of[
cnm00

ððnþ mÞ þ ðRþÞnÞ

and the Newton boundary Gð f Þ is defined by the union of compact faces of
Gþð f Þ as in the holomorphic case, using the radial weighted degree of the
monomial znzm. Here the radial weight degree with respect to the weight vector
P ¼ ðp1; . . . ; pnÞ, is defined by

rdegP znzm :¼
Xn
i¼1

piðni þ miÞ:

The notion of strong non-degeneracy is introduced in [21] to study Milnor
fibration defined by f . Let us recall the definition. Take an arbitrary face
D of Gð f Þ of any dimension. The face function is defined by fDðz; zÞ ¼P

nþm AD cnmz
nzm. Let P be the weight vector. Then fP is defined as fDðPÞ as
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in the holomorphic case. fPðz; zÞ is a radially weighted homogeneous polyno-
mial with weight P. A mixed function f is called strongly non-degenerate if
fD : C�n ! C has no critical point for any face function fD. It is known that
such a mixed function admits a Milnor fibration at the origin ([21]).

We assume that Gð f Þ has dimension n� 1. We consider two gradient
vectors:

qf :¼ qf

qz1
; . . . ;

qf

qzn

� �
ð25Þ

qf :¼ qf

qz1
; . . . ;

qf

qzn

� �
ð26Þ

To study the behavior of the tangent spaces, it is more useful to use the real
and imaginary part of f . Put f ¼ gþ ih where g and h are real and imaginary
parts of f . Putting zj ¼ xj þ iyj, g, h are real analytic functions of 2n variables
x1; y1; . . . ; xn; yn. Substituting xj ¼ ðzj þ zjÞ=2 and yj ¼ ðzj � zjÞ=2i, we consider
g, h as mixed functions. As they are real valued mixed functions, we have

Tag
�1ð0Þ ¼ fv j <ðv; qgÞ ¼ 0g; Tah

�1ð0Þ ¼ fv j <ðv; qhÞ ¼ 0g:
Here ðv;wÞ is the hermitian inner product. As we have qg ¼ qg and qh ¼ qh
([22]), various gradients are related by

qf ¼ qgþ iqh; qf ¼ qg� iqhð27Þ

qg ¼ ðqf þ qf Þ=2; qh ¼ ð f � qf Þ=2i:ð28Þ

For a weight vector P ¼ ðp1; . . . ; pnÞ, the real part and imaginary part gP ¼ <fP,
hP ¼ =fP of fP are real-valued radially weighted homogeneous polynomials with
weight P and the Euler equality take the form ([20]):

gPðz; zÞ ¼ 2
Xn
i¼1

pizi
qgP

qzi
; hPðz; zÞ ¼ 2

Xn
i¼1

pizi
qhP

qzi
:ð29Þ

The strong non-degeneracy implies that fqgPða; aÞ; qhPða; aÞg are linearly indepen-
dent over R for any a ¼ ða1; . . . ; anÞ A C�n. We consider the Łojasiewicz in-
equalities of real-valued mixed functions g and h. For a non-zero vector w A Cn,
we denote the real hyperplane orthogonal to w by w? :¼ fv A Cn j <ðv;wÞ ¼ 0g.
We denote the normalized vector w=kwk by wnorm. The problem (which do
not happen for holomorphic functions) is that along a given analytic curve
zðtÞ, 0a ta 1 with zð0Þ ¼ 0, the limit directions limt!0ðqgðzðtÞÞÞnorm and
limt!0ðqhðzðtÞÞÞnorm can be linearly dependent over R. In this case, we have
a proper inclusion:

lim
t!0

TzðtÞVt ¼ lim
t!0

ððqgðzðtÞÞÞ? \ ðqhðzðtÞÞÞ?Þð30Þ

� lim
t!0

ðqgðzðtÞÞnormÞ
? \ lim

t!0
ðqhðzðtÞÞnormÞ

?
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The following lemma plays a key role to solve this problem. Let I ¼ f1a ja
n j zjðtÞ2 0g and I c be the complement of I .

CðtÞ : zðtÞ ¼ ðz1ðtÞ; . . . ; znðtÞÞ; zð0Þ ¼ 0; zðtÞ A C�I ; t > 0

ziðtÞ ¼ ait
pi þ ðhigher termsÞ; ai 0 0; i A I

�
ð31Þ

Consider the weight vector P ¼ ðpiÞ A N �I , a ¼ ðaiÞi A I A C�I and we assume that
f I 0 0. For any real valued analytic function bðtÞ defined on an open neigh-
borhood of t ¼ 0, we consider the modified gradient vectors, defined as follows.

ðqgðzðtÞÞÞbðtÞ :¼ qgðzðtÞÞ þ bðtÞqhðzðtÞÞ

ðqhðzðtÞÞÞbðtÞ :¼ qhðzðtÞÞ þ bðtÞqgðzðtÞÞ:

Note that any of the following three pairs generate the same real dimension 2
subspace over R at TzðtÞC

n.

fqgðzðtÞÞ; qhðzðtÞÞg; fqgðzðtÞÞ; ðqhðzðtÞÞÞbðtÞg; fðqgðzðtÞÞÞbðtÞ; qhðzðtÞÞg

The following is a key lemma to generalize the assertions obtained in previous
sections for mixed functions. Consider the family of hypersurface Vt :¼ fz A Cn j
f ðz; zÞ ¼ f ðzðtÞ; zðtÞÞg for �ea ta e where Vt passes through zðtÞ.

Lemma 27. Assume that ord qgðzðtÞÞa ord qhðzðtÞÞ for simplicity.
(i) There exists a real valued analytic function bðtÞ so that two analytic curves

qgðzðtÞÞ, ðqhðzðtÞÞÞbðtÞ have normalized limits

vg;y :¼ lim
t!0

ðqgðzðtÞÞÞnorm and

v 0h;y :¼ lim
t!0

ððqhðzðtÞÞÞbðtÞÞnorm

which are linearly independent over R. The limit of the tangent space TzðtÞVt is
equal to the intersection of the hyperplanes v?g;y \ ðv 0h;yÞ?.

(ii) The orders of the vectors qgðzðtÞÞ, ðqhðzðtÞÞÞbðtÞ satisfy the inequality:

ord qgðzðtÞÞ; ordðqhðzðtÞÞÞbðtÞ a dðP; f I Þ �mðPÞ:

(iii) If further fPðaÞ ¼ 0, the limit vector limt!0 zðtÞnorm is real orthgonal to
vg;y and v 0h;y i.e., limt!0 zðtÞnorm A v?g;y \ ðv 0h;yÞ?.

(iv) For any analytic functions bðtÞ, cðtÞ,

ord qgðzðtÞÞcðtÞ; ord qhðzðtÞÞbðtÞ a dðP; f I Þ �mðPÞ:

Here two vectors v;w A Cn are called to be real orthogonal if <ðv;wÞ ¼ 0.

Proof. The proof is essentially the same as the proof of Theorem 3.14, [9].
For the convenience, we repeat the proof briefly. For further related discussion,
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see [22, 9]. Put I ¼ fi j ziðtÞ2 0g and J ¼ I c. We may assume that I ¼ f1; . . . ;
mg, a ¼ ða1; . . . ; amÞ and

p1 ¼ p2 ¼ � � � ¼ pk < pkþ1 a � � �a pm:

Put d ¼ dðP; f I Þ. Under the above assumption, ord zðtÞ ¼ p1 and

lim
t!0

ðzðtÞÞnorm ¼ aðyÞnorm where aðyÞ :¼ ða1; . . . ; ak; 0; . . . ; 0Þ:

By the definition of P and the assumption f I 0 0,

qgI

qzi
ðzðtÞÞ ¼ qgI

P

qzi
ðaÞtd�pi þ ðhigher termsÞ

qhI

qzi
ðzðtÞÞ ¼ qhI

P

qzi
ðaÞtd�pi þ ðhigher termsÞ

Thus by the strong non-degeneracy assumption, we have the inequality:

ord qgI ðzðtÞÞa d � p1; ord qhI ðzðtÞÞa d � p1:

For an analytic curve vðtÞ with vð0Þ ¼ 0, we associate scalar vector

bðvðtÞÞ :¼ ðb1; . . . ; bmÞ; where bi ¼ Coe¤ðviðtÞ; td�piÞ

and integers

dðvðtÞÞ :¼ minford viðtÞ j i ¼ 1; . . . ;mg;
gv :¼ maxfi j ord viðtÞ ¼ dðvðtÞÞg:

Note that gv is the largest index for which limt!0 vðtÞnorm has non-zero coe‰cient.
We call gv the leading index of vðtÞ.

We start from two analytic curves qgI ðzðtÞÞ and qhI ðzðtÞÞ. Put dg ¼
ordðqgI ðzðtÞÞÞ, dh ¼ ordðqhI ðzðtÞÞÞ and gg :¼ g

qgI ðzðtÞÞ, gh :¼ g
qhI ðzðtÞÞ. We assume

that dg a dh. First we associate 2�m-matrix with complex coe‰cients by

AðqgI ; qhI Þ :¼ bðqgI ðzðtÞÞÞ
bðqhI ðzðtÞÞÞ

� �
¼

qgI
P

qz1
ðaÞ � � � qgI

P

qzm
ðaÞ

qhI
P

qz1
ðaÞ � � � qhI

P

qzm
ðaÞ

0
BBB@

1
CCCA

By the strong non-degeneracy assumption, two raw complex vectors are linearly
independent over R. The normalized limit, limt!0ðqgI ðzðtÞÞÞnorm, has non-zero

j-th coe‰cient if and only if ord
qgI

qzj
ðzðtÞÞ ¼ dg. The following three cases are

possible.
(1) gg 0 gh.
(2) gg ¼ gh and Coe¤

qgI

qzgg
ðzðtÞÞ; tdg

 !
;Coe¤

qhI

qzgh
ðzðtÞÞ; tdh

� �( )
are linearly

independent over R.
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(3) gg ¼ gh and Coe¤
qgI

qzgg
ðzðtÞÞ; tdg

 !
;Coe¤

qhI

qzgh
ðzðtÞÞ; tdh

� �( )
are linearly

dependent over R.
In the cases of (1), (2), their normalized limits are linearly independent over R
and there is no operation necessary. In the case of (3), we put b1ðtÞ ¼ r1t

dh�dg

and put ðqhÞ0ðtÞ :¼ qhI ðzðtÞÞ � b1ðtÞqgI ðzðtÞÞ. Here r1 is the unique real number
such that

r1 Coe¤
qgI

zgg
ðzðtÞÞ; tdg

 !
� Coe¤

qhI

zgh
ðzðtÞÞ; tdh

� �
¼ 0:

After this operation, we have three possible cases.
(1) 0 gðqhÞ 0ðtÞ 0 g

qgI ðzðtÞÞ
(2) 0 gðqhÞ 0ðtÞ ¼ g

qgI ðzðtÞÞ but the leading coe‰cients of ðqhÞ0ðtÞ and qgI ðzðtÞÞ are
linearly independent over R.

(3) 0 gðqhÞ 0ðtÞ ¼ g
qgI ðzðtÞÞ and the leading coe‰cients of ðqhÞ0ðtÞ and qgI ðzðtÞÞ

are still linearly dependent over R.
In the case of ð1Þ0 and ð2Þ0, we stop the operation. Otherwise we have ð3Þ0 and
we continue this operation till we get a modified gradient vector

ðqhÞð jÞðtÞ ¼ qhI ðzðtÞÞ � rðtÞqgI ðzðtÞÞ; rðtÞ :¼
Xj

i¼1

biðtÞ

for which either its leading index is di¤erent from gg (case (1)) or the coe‰cients
of the leading index are linearly independent over R (case (2)). Note that in
this operation, the order of ðqhÞð jÞðtÞ is strictly increasing in j while the matrix
Aðqg; ðqhÞð jÞÞ is simply changed in the second raw vector by bðqhI Þ � rð0ÞbðqgI Þ.
Therefore ðqhÞð jÞðtÞ :¼ qhI ðzðtÞÞ � rðtÞqgI ðzðtÞÞ satisfies

ordðqhÞð jÞðtÞa d � p1

and therefore the operation should stop after finite steps, say k. After the opera-
tion is finished, the normalized vector ððqhÞðkÞðtÞÞnorm has linearly independent
limit with that of qgI ðzðtÞÞ.

Suppose further f I
P ðaÞ ¼ 0. This implies gI

PðaÞ ¼ hI
PðaÞ ¼ 0. We will show

now ay ¼ ða1; . . . ; ak; 0; . . . ; 0Þ is orthogonal to the limits of the normalized
vectors

vgy :¼ lim
t!0

ðqgI ðzðtÞÞÞnorm and vðqhÞ
ðkÞ

y :¼ lim
t!0

ððqhÞðkÞðtÞÞnorm:

First we consider v
g
y. If dg < d � p1, j-coe‰cient of v

g
y is zero for ja k and

<ðvgy; ayÞ ¼ 0 is obvious. If dg ¼ d � p1, we must have

qgI
P

qzj
ðaÞ ¼ 0; k þ 1a jam
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and the i-th coe‰cient of vgy is
qgI

P

qzi
ðaÞ for 1a ia k up to a scalar multiplication.

Thus the assertion follows from the Euler equality

gI
PðaÞ ¼ 0 ¼

Xm
i¼1

piai
qgI

P

qzi
ðaÞ ¼ p1

Xk
i¼1

ai
qgI

P

qzi
ðaÞ:

Now we consider v
ðqhÞðkÞ
y . We start from the equality hI

PðaÞ � rð0ÞgI
PðaÞ ¼ 0. If

dðqhÞðkÞðtÞ < d � p1, v
ðqhÞðkÞ
y and ay are orthogonal by the same reason. Suppose

that dðqhÞðkÞðtÞ ¼ d � p1. Then we must have

qhI
P

qzj
ðaÞ � rð0Þ qg

I
P

qzj
ðaÞ ¼ 0; k þ 1a jam:

Thus the assertion follows from the Euler equality of the real valued radially
weighted homogeneous polynomial hI

Pðz; zÞ � rð0ÞgI
Pðz; zÞ. The assertion (iv) can

be shown in a similar way looking at the matrix A before and after. r

Definition 28. Let zðtÞ be a analytic curve starting at the origin. Assume
that qgðzðtÞÞa ord qhðzðtÞÞ and fqgðzðtÞÞ; qhðzðtÞÞcðtÞg (respectively ord qgðzðtÞÞ >
qhðzðtÞÞÞ and fqgðzðtÞÞcðtÞ; qhðzðtÞÞg is a good modified gradient pair if they have
linearly independent normalized limits over R.

Take an arbitrary analytic curve CðtÞ : z ¼ zðtÞ with zð0Þ ¼ 0 and a good
modified gradient pair, say fqgðzðtÞÞ; qhðzðtÞÞcðtÞg assuming qgðzðtÞÞa ord qhðzðtÞÞ
for simplicity and suppose that the following inequality is satisfied for su‰ciently
small t, 0a ta e,

ordðqgðzðtÞ; zðtÞÞÞ=ord zðtÞa yð32Þ

ordðqhðzðtÞ; zðtÞÞcðtÞÞ=ord zðtÞa y:ð33Þ

(If qgðzðtÞÞ > ord qhðzðtÞÞ, we exchange g and h in the above inequalities so that

qg is to be modified.) We define the Łojasiewicz exponent l0ðCðtÞÞ along an
analytic curve CðtÞ as the infinimum of such y satisfying the above inequality.
The Łojasiewicz exponent of f is defined by the supremum of l0ðCðtÞÞ for all
analytic curves CðtÞ.

These inequalities are equivalent to the inequality

kqgðzðtÞ; zðtÞÞk; kqhðzðtÞ; zðtÞÞcðtÞkbCkzðtÞky; bC > 0

for 0a ta e.

Taking cðtÞ1 0, such y satisfies the usual Łojasiewicz inequalities:

kqgðz; zÞkbCkzkyð34Þ

kqhðz; zÞkbCkzky; bC > 0:ð35Þ
in a su‰ciently small neighborhood of the origin.
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Now we are ready to generalize the results which are obtained in previous
sections for holomorphic functions.

4.2. Convenient case. We consider a strongly non-degenerate mixed func-
tion f ðz; zÞ with an isolated singularity at the origin. A mixed function f ðz; zÞ
is called convenient if for each i ¼ 1; . . . ; n, there is a point Bi ¼ ð0; . . . ;

^

b
i

i; . . . ; 0Þ
on the Newton boundary Gð f Þ. In the mixed function case, there might exist
several corresponding mixed monomial znii z

mi
i with ni þ mi ¼ bi in the expansion of

f ðz; zÞ. Such a monomial is called an i-axis monomial. Let B :¼ maxfbi j i ¼
1; . . . ; ng. An i axis monomial znii z

mi
i is called Łojasiewicz monomial if ni þ mi ¼

B. A Łojasiewicz monomial znii z
mi
i is exceptional if there exists a monomial

z
n 0i
i z

m 0
i

i wj where wj ¼ zj or zj in the expansion of f ðz; zÞ such that n 0i þ m 0
i <

B� 1.

Theorem 29. Let f ðz; zÞ be a strongly non-degenerate convenient mixed
function. Then Łojasiewicz exponent l0ð f Þ satisfies the inequality: l0ð f Þa
B� 1. Furthermore if f has a Łojasiewicz non-exceptional monomial, we have
the equality l0ð f Þ ¼ B� 1.

Using Lemma 27, the proof is completely parallel to that of Theorem 3.

4.3. Non-convenient mixed polynomials. We consider the case of non-
degenerate mixed polynomials with an isolated singularity at the origin. One
point is how to define ‘‘Łojasiewicz non-degeneracy’’ for mixed functions.

Let CI be a vanishing coordinate subspace and let J be the complement
of I . For each i, there must exist a mixed monomial z

nij
i z

mij

i wj with j A J as we
have assumed that the origin is an isolated singularity. Hereafter we use variable
wj for either wj ¼ zj or wj ¼ zj for simplicity. We take lij to be the minimum

of fnij þmijg for fixed i, j. The point Bij :¼ ð0; . . . ;
^

l
i

ij ; . . . ;
^

1

j

. . . ; 0Þ is a point of

Gð f Þ. We call a monomial z
nij
i z

mij

i wj an almost i-axis monomial if nij þmij ¼ lij .
Let Ji be the set of j for which such almost i-axis monomial exists and put
JðIÞ ¼

S
i A I Ji as in Part I.

Define lðIÞ :¼ maxflij j i A I ; j A Jig. For our present purpose, we take
the following definition of Łojasiewicz non-degeneracy. Consider a strictly

positive weight vector Q A N �I . Consider F ð jÞ :¼ zj
qf

qzj

� �I
þ zj

qf

qzj

� �I
. Note

that
qFð jÞQ
qzj

and
qF ð jÞQ
qzj

are polynomials in C½z1; z1; . . . ; zm; zm�. Here Fð jÞQ :¼

ðF ð jÞÞQ with the weight of zj being 0 by definition. We use the notations

fj :¼
qf

qzj
and fj :¼

qf

qzj
for simplicity. Note that

qF ð jÞQ
qzj

¼
ð fjÞQ; rdegQ fj a rdegQ fj
0; rdegQ fj > rdegQ fj

(
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qFð jÞQ
qzj

¼
ð fjÞQ; rdegQ fj b rdegQ fj
0; rdegQ fj < rdegQ fj

(
:

Put I 0 :¼ fi j qi ¼ mðQÞg and JðQÞ :¼
S

i A I 0 Ji. f ðz; zÞ is called Łojasiewicz non-
degenerate if under any such situation and for any a A C�I , there exists i0 A I 0,
j0 A JðQÞ such that

qF ð j0ÞQ
qzj0

ðaÞ
�����

�����0 qFð j0ÞQ
qzj0

ðaÞ
�����

�����:ð36Þ

Writing F ð jÞ :¼ gð jÞ þ ihð jÞ, this is equivalent to

Proposition 30. Under the above notations,

qgð j0ÞQ
qzj0

ðaÞ;
qhð j0ÞQ
qzj0

ðaÞ
( )

ð37Þ

are linearly independent over R.

The assertion follows from Proposition 1 [20]. Assume that such a Q is
associated with an analytic family zðtÞ and d ¼ rdegQ F ð jÞ. Then da li0; j0qi0
and

qg

qzj
ðzðtÞÞ ¼

qgð jÞQ
qzj

ðaÞtd þ ðhigher termsÞ; ord
qg

qzj
ðzðtÞÞ ¼ d

qh

qzj
ðzðtÞÞ ¼

qhð jÞQ
qzj

ðaÞtd þ ðhigher termsÞ; ord
qh

qzj
ðzðtÞÞ ¼ d:

Proposition 31. Using Proposition 30, there exists a good modified gradient
pair fqgðzðtÞÞ; qhðzðtÞÞcðtÞg or fqgðzðtÞÞcðtÞ; qhðzðtÞÞg. Their order in t has a upper
bound d ¼ rdegQ Fð j0Þa li0; j0qi0 .

4.4. Jacobian dual Newton diagram. We consider the derivatives fiðzÞ :¼
qf

qzi
ðzÞ and fiðzÞ :¼

qf

qzi
ðzÞ, i ¼ 1; . . . ; n. Put Fiðz; zÞ ¼ fiðz; zÞ fiðz; zÞ. If one of

the derivatives vanishes identically, we consider only non-zero derivatives. For
example, if fi 1 0, we put Fi ¼ fi. We consider their Newton boundary GðFiÞ,
i ¼ 1; . . . ; n. Two weight vectors P, Q are Jacobian equivalent if DðP;FiÞ ¼
DðQ;FiÞ for any i ¼ 1; . . . ; n and DðP; f Þ ¼ DðQ; f Þ. We denote it by P@

J
Q.

This gives a polyhedral cone subdivision of Nþ and we denote this as G�
J ð f Þ and

we call it the Jacobian dual Newton diagram of f . G�
J ð f Þ is a polyhedral cone

subdivision of Nþ which is finer than G�ð f Þ.
Alternatively we can consider the function FðzÞ ¼ f ðzÞF1ðzÞ � � �FnðzÞ. Then

G�
J ð f Þ is nothing but the dual Newton diagram G�ðFÞ of F . For any weight

vector P, we have DðP;FÞ ¼ DðP; f Þ þ DðP;F1Þ þ � � � þ DðP;FnÞ where the sum
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is Minkowski sum. For a weight vector P, the set of equivalent weight vectors
in G�ð f Þ and G�

J ð f Þ is denoted as ½P� and ½P�J respectively. We consider the
vertices of these dual Newton diagrams. We denote the set of strictly positive
vertices of G�ð f Þ and G�

J ð f Þ by Vþ, Vþ
J as before. Now we can generalize

Theorem 14. Let Vþþ
J � Vþ

J be the set of the vertices of G�
J ð f Þ which are in a

vanishing boundary region of G�ð f Þ as in the holomorphic case. The numbers
of Vþ, Vþ

J , Vþþ
J are finite. We define basic invariants, as before

hJ;maxð f Þ :¼ maxfhðPÞ jP A Vþ [Vþþ
J g;

hmax :¼ maxfhðPÞ jP A Vþg
h 0
J;max :¼ maxfh 0

k; iðRÞ jR A Vþþ
J ; k; i ¼ 1; . . . ; ng

h 00
J;maxð f Þ :¼ maxfhJ;maxð f Þ; h 0

J;maxð f Þg; where

h 0
k; iðRÞ :¼

minfdðR; fiÞ; dðR; fiÞg
mðRÞ :

Theorem 32. Let f ðzÞ be a non-degenerate, Łojasiewicz non-degenerate
mixed function with an isolated singularity at the origin. Then Łojasiewicz expo-
nent l0ð f Þ satisfies the estimation l0ð f Þa h 00

J;maxð f Þ.

Proof. The proof is completely parallel to that of Theorem 12. We con-
sider an analytic curve CðtÞ parametrized as zðtÞ ¼ ðz1ðtÞ; . . . ; znðtÞÞ and put I :¼
fi j ziðtÞ2 0g. Consider the Taylor expansion of ziðtÞ as before:

zðtÞ ¼ ðz1ðtÞ; . . . ; znðtÞÞ; zð0Þ ¼ 0; zðtÞ A C�I

ziðtÞ ¼ ait
pi þ ðhigher termsÞ; i A I

�
ð38Þ

We put P ¼ ðpiÞ A N �I
þ as before. Assume first I ¼ f1; . . . ; ng. We divide the

situation into three cases as before.
C-1 ½P� is an inner region. That is, ½P� has only strictly positive weight

vectors in the boundary.
C-2 ½P� is a regular boundary region.
C-3 ½P� is a vanishing boundary region. In this case, we need to consider

the subdivision by ½P�J . There are three subcases.
C-3-1. ½P�J is an inner region.
C-3-2. ½P�J is a regular boundary region.
C-3-3. ½P�J is also a vanishing boundary region.

Then the proof goes exactly as that of Theorem 12, using Lemma 27. For
the cases C-1, C-3-1, C-2, C-3-2, we start from a given good modified gradient
pair and the estimation of these gradient by Lemma 27. Then the argument
is completely the same. We have the estimation l0ðCðtÞÞa h 00

J;maxð f Þ in these
cases.

For the case C-3-3, consider the situation that P is not a simplicially positive
and R, Q as in Lemma 15 so that P is on the line segment RQ, R is simplicially
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positive and Q is not strictly positive. If Q is non-vanishing, it reduced to
Case 3-2. Thus we assume that Q is a vanishing weight vector and dðQ; f Þ > 0.
Assume that Q ¼ ðq1; . . . ; qnÞ and I ¼ fi j qi ¼ 0g and assume I ¼ f1; . . . ;mg for
simplicity. Note that CI is a vanishing coordinate subspace. For each i A I ,
there exists some j B I and a monomial z

ni; j
i zj with a non-zero coe‰cient, as f

has an isolated singularity at the origin. Put Ji be the set of such j for a fixed
i A I and put JðIÞ ¼

S
i A I Ji. Here ni; j is assumed to be the smallest when j

is fixed. Put xI :¼ maxfni; j j i A I ; j A Jig and xð f Þ be the maximum of xI where
I moves in the coordinate subspaces corresponding to vanishing coordinate
subspaces. Put h 0

J;maxð f Þ :¼ maxfh 0
k; iðRÞ jR A Vþþg where h 0

j; iðRÞ ¼ dðR; fiÞ=rj.
Under the above situation, we will prove, as in the holomorphic case, that

ð?Þ l0ðCðtÞÞamaxfxð f Þ; hJ;maxð f Þ; h 0
J;maxg:

Consider the normalized weight vector R̂Rs :¼ ð1� sÞR̂Rþ sQ̂Q, 0a sa 1. Note
that R̂R0 ¼ R̂R, R̂R1 ¼ Q̂Q and putting R̂Rs ¼ ðr̂rs;1; . . . ; r̂rs;nÞ,

r̂rs; i ¼
ð1� sÞr̂ri; 1a iam

ð1� sÞr̂ri þ sq̂qi; m < ia n:

�

Put I 0 ¼ fi A I j r̂ri ¼ mðR̂RI Þg and J 0 ¼
S

i A I 0 Ji. Thus for iam, the normalized
weight r̂rsj goes to 0, when s approaches to 1. On the other hand, for j > m,
r̂rsj b d, 0a Esa 1 for some d > 0. Thus there exists an e, 1 > e > 0 so that for
1� ea sa 1, mðR̂RsÞ is taken by i A I 0. Note that for j A J 0, there exists a small
enough e2, e2 a e1 so that ð fjÞR̂Rs

¼ ðð fjÞI ÞR̂Rs
as r̂rsj b d for j > m for 1� e2 a sa 1.

Here ð fjÞI is the restriction of fj to CI and ðR̂RsÞI is the I projection of R̂Rs to
NI

þ. That is, ð fjÞR̂Rs
contains only variable z1; . . . ; zm. By the Łojasiewicz non-

degeneracy, there exists i0 A I 0 and j0 A Ji0 such that

qgð j0ÞQ
qzj0

ðaÞ;
qhð j0ÞQ
qzj0

ðaÞ
( )

ð39Þ

are linearly independent over R. Here we use the same notation as in (39). By
the definition of Jacobian dual Newton diagram and Proposition 39, there is a
good modified gradient pair, say qgðzðtÞÞ, qhðzðtÞÞcðtÞ (we assume ord qgðzðtÞÞa
ord qhðzðtÞÞ for simplicity) so that their orders are estimated from above by li0; j0qi0 .

The rest of the argument is simply the evaluation of the number li0; j0qi0=
mðR̂Rs0Þ and the proof is completed by the exact same argument as in the proof
of Theorem 12, Case 3-3-3 using the following. The case CðtÞ A C�I with I c 0j
is treated also by the exactly same argument. r

Lemma 33 (Restatement of Lemma 17). We have the inequality: lðIÞa
hmaxð f Þ.

Theorem 19 for non-degenerate weighted homogeneous polynomial and
Łojasiewicz Join Theorem 21 also hold in the exactly same way for mixed func-
tions. For example, we get the following as a corollary of Theorem 19.
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Theorem 34 ([4]). Let f ðzÞ be a strongly non-degenerate mixed weighted
homogeneous polynomial with isolated singularity at the origin and dim Gð f Þ ¼
n� 1. Let R be the weight vector of f . Then we have the estimation l0ð f Þa
hðRÞ.

4.5. Making f convenient. We also generalize Theorem 21. Take an
integer N > h 00

J;maxð f Þ þ 1. Consider mixed polynomial Rðz; zÞ :¼
Pn

i¼1 ciz
mi

i znii
where ni, mi are any fixed non-negative integers with mi þ ni ¼ Ni bN and
ni 0mi. We choose such fðmi; niÞ j i ¼ 1; . . . ; ng and fix them. The coe‰cients
c1; . . . ; cn are generic so that f1 :¼ f ðz; zÞ þ Rðz; zÞ is strongly non-degenerate.
Consider the family fsðz; zÞ ¼ f ðz; zÞ þ sRðz; zÞ. Then we have the following.

Theorem 35. There exists a r0 > 0 such that for any ra r0, the sphere Sr

and the family of hypersurface Vs :¼ f �1
s ð0Þ intersect transversely for any 0a sa

1. In particular, the links of f and f1 are isotopic and their Milnor fibrations are
isomorphic.

The proof is similar and we leave it to the reader.
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[15] D. T. Lê and M. Oka, On resolution complexity of plane curves, Kodai Math. J. 18 (1995),

1–36.

[16] M. Lejeune-Jalabert and B. Tessier, Cloture integrale des idéaux et equisingularité, École
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[27] B. Teissier, Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces, Invent.

Math. 40 (1977), 267–292.

[28] J. A. Wolf, Di¤erentiable fibre spaces and mappings compatible with Riemannian metrics,

Michigan Math. J. 11 (1964), 65–70.

Mutsuo Oka

Department of Mathematics

Tokyo University of Science

1-3 Kagurazaka, Shinjuku-ku

Tokyo 162-8601

Japan

E-mail: oka@rs.kagu.tus.ac.jp

651Łojasiewicz exponents of non-degenerate functions


