
D. TAN, P. J. LIU AND X. W. LIU
KODAI MATH. J.
41 (2018), 421–439

THE EFFECT OF FENCHEL-NIELSEN COORDINATES UNDER

ELEMENTARY MOVES

Dong Tan, Peijia Liu and Xuewen Liu

Abstract

We describe the e¤ect of Fenchel-Nielsen coordinates under elementary move for

hyperbolic surfaces with geodesic boundaries, punctures and cone points, which gen-

eralize Okai’s result for surfaces with geodesic boundaries. The proof relies on the

parametrization of the Teichmüller space of surface of type ð1; 1Þ or ð0; 4Þ as a sub-locus

of an algebraic equation in R3. As an application, we show that the hyperbolic length

functions of closed curves are asymptotically piecewise linear functions with respect to

the Fenchel Nielsen coordinates in the Teichmüller spaces of surfaces with cone points.

1. Introduction

Let S be an oriented surface of genus gb 2 and TðSÞ be the Teichmüller
space of hyperbolic structures on S.

A pants decomposition of S is a maximal set of mutually disjoint simple
closed curves which decompose the surface into pairs of pants. Let P ¼ faig3g�3

i¼1
be a pants decomposition of S. Associated with P is a homeomorphism CP [1]:

CP : TðSÞ ! ðRþ � RÞ3g�3

X 7! ðlaiðXÞ; taiðXÞÞ;

where lai is the hyperbolic length function of ai and tai is the twist coordinate
of ai. The parametrization of TðSÞ under CP is called the Fenchel-Nielsen
coordinates of TðSÞ (associated with P).

By work of Wolpert [10], the Kähler form of Weil-Petersson metric on TðSÞ
has a simple expression in terms of the Fenchel-Nielsen coordinates:

oWP ¼
X3g�3

i¼1

dlai5dtai :
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Let P and P 0 be two distinct pants decompositions of S. An interesting ques-
tion is to understand the transition relation:

CP 0 �C�1
P :

Recall that two pants decompositions P and P 0 are di¤ered by an elemen-
tary move if there exists a A P, b A P 0 such that

(1) P 0 ¼ ðPnfagÞ [ fbg;
(2) a and b intersect minimally (see Figure 1).

Theorem 1.1 (Hatcher-Thurston [2]). There exists a finite sequence of pants
decompositions fP0; . . . ;Png such that P0 ¼ P, Pn ¼ P 0, and Pi and Piþ1, 0a
ia n� 1 are di¤ered by an elementary move.

By Theorem 1, we have

CP 0 �C�1
P ¼ ðCPn

�C�1
Pn�1

Þ � � � � � ðCP1
�C�1

P0
Þ:

As a result, the question reduces to:
Understand the transition relation CP 0 �C�1

P in the case that P and P 0 are
di¤ered by an elementary move.

Assuming that P 0 ¼ ðPnfagÞ [ fbg as above. Note that CP and CP 0 only
di¤er on the coordinates ðla; taÞ and ðlb; tbÞ. As a result, one may assume that S
is a hyperbolic surface with geodesic boundary of type ð1; 1Þ or ð0; 4Þ. Then the
above question is studied by Okai [5] where the equation for CP 0 �C�1

P is given
explicitly.

In this paper, we shall first introduce the language of [4], where the
Teichmüller space of surface of type ð1; 1Þ or ð0; 4Þ is parameterized in R3 as
a sub-locus of a equation, and the length and twist coordinates are expressed
by the above parameters. Then by a detailed analysis, we describe the e¤ect of
Fenchel-Nielsen coordinates under elementary move for hyperbolic surfaces with
geodesic boundaries, punctures and cone points. The precise result which is the
main result of this paper will be stated in §3. The result generalize Okai’s result
[5] for surfaces with geodesic boundaries. And also this give a new proof of

Figure 1. a and b intersect minimally: iða; bÞ ¼ 2 if a separates the surface and iða; bÞ ¼ 1 if a does

not separate the surface.
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Okai’s result. Okai’s result is useful to understand the locally structure of quasi-
conformal Teichmüller space [6]. An interesting question is to extend the result
to complex Fenchel-Nilesen coordinates [7].

As an application of the main result, we show that the hyperbolic length
functions of closed curves are asymptotically piecewise linear functions with
respect to the Fenchel Nielsen coordinates in the Teichmüller spaces of surfaces
with cones. This result is a generalization of Mirzakhani’s result [3] for closed
surfaces.

2. Preliminaries

2.1. Definitions and notations. Let S ¼ Sg;n be a oriented surface of genus
g with n boundary components. A hyperbolic structures on S is a metric of
constant curvature �1 such that each boundary component of S is a totally
geodesic closed curve, a puncture or a cone-point.

In polar co-ordinates around a cone-point, the metric has the form
dr2 þ sinh2 r dh2 where r is the distance from the cone-point, h is the angular
measure around the cone-point, which is measured modulo y for some y A ð0; 2pÞ.
There is some r0 > 0 such that the quotient

fðr; hÞ j 0 < r < r0; 0a ha yg=ðr; 0Þ@ ðr; yÞ

is isometric to a neighborhood of the cone-point. This y is called the angle
around the cone-point.

Endow S with a hyperbolic structure R. We shall assign a number to a
cone-point, a puncture or a geodesic boundary component of R in the following
way: for a cone-point, we let the number be the angle; for a puncture, we let the
number be 0; for a geodesic boundary component of length L, we let the number
be iL. Let y1; . . . ; yn be the numbers assigned to the cone-points, punctures and
geodesic boundary components. We call the tuple ðg; y1; . . . ; ynÞ the signature
of R.

The Teichmüller space Tðg; y1; . . . ; ynÞ parameterizes hyperbolic structures
of signature ðg; y1; . . . ; ynÞ on S up to isotopy. Points in Tðg; y1; . . . ; ynÞ are
pairs ð f ;XÞ, where X is a hyperbolic structures on S of signature ðg; y1; . . . ; ynÞ
equipped with a homeomorphism f : S ! X , up to the equivalence ð f ;X Þ@
ðg;Y Þ if there is an isometry f : X ! Y such that f � f F g.

A simple closed curve on S is essential if it is not homotopic to a boundary
component of S or to a point in the interior of S. Let g be an essential simple
closed curve on S. Given any hyperbolic structure X on S, there is a unique
simple closed geodesic gX isotopic to g. Denote by lgðXÞ the length of gX in X .
lgðXÞ is called the hyperbolic length of g in X . The definition only depends on
the isotopy class of g and the isotopy class of X in Teichmüller space.

A pants decomposition of S is a maximal set of mutually disjoint essential
simple closed curves which decompose S into pairs of pants. Let P ¼ faig3g�3þn

i¼1
be a pants decomposition of S. Endow S with a hyperbolic structure X of
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signature ðg; y1; . . . ; ynÞ. Without loss of generality, we shall assume that ai is
its geodesic representation in X . Along each ai, there is a twist parameter taiðX Þ
measures the relative twist amount between the two generalized hyperbolic pair of
pants (which might be the same) having ai in common.

More precisely, we follow the convention in [9]. In this description, we fix
a small tubular neighborhood Ni for every geodesic ai and an orientation of ai,
and we also fix two points xi, yi on ai. For every hyperbolic pairs of pants P �
Xn

S3g�3
i¼1 ai, we consider three disjoint arcs that join the boundary components,

with endpoints on the chosen points. Every pair of distinct boundary compo-
nents of P are joined by a unique geodesic (called a seam) that is perpendicular to
the boundary components. By performing an isotopy, we can deform the chosen
arcs such that they coincide with the corresponding seams outside the union of
the neighborhoods Ni, and such that in every neighborhood Ni they just spin
around the cylinder (see [9], Figure 4.19). Using the orientation of ai, we can
then compute the amount of spinning of each of these arcs, as in Figure 4.20
of [9]. For every curve ai, the twist parameter taiðX Þ is then defined as the
di¤erence between the amount of spinning of two of the chosen arcs from the
two sides of ai (we need to use the orientation of ai to choose the order of
subtraction).

A pants decomposition P ¼ faig3g�3þn
i¼1 determines a Fenchel-Nielsen coor-

dinates

Tðg; y1; . . . ; ynÞ ! ðRþ � RÞ3g�3þn

X 7! ðlaiðXÞ; taiðXÞÞ:

2.2. Parameterizing the space Tð2y1; 2y2; 2y3; 2y4Þ. Next we state the
parameterization of the space Tð0; 2y1; 2y2; 2y3; 2y4Þ. For reference we refer
to [4].

We assume that S ¼ S0;4 is a sphere with four holes. Let y1; y2; y3; y4 A
½0; p=2� [ iRþ and denote by

Tð2y1; 2y2; 2y3; 2y4Þ ¼ Tð0; 2y1; 2y2; 2y3; 2y4Þ

the Teichmüller space of hyperbolic structures of signature ð0; 2y1; 2y2; 2y3; 2y4Þ
on S. We only treat the case where y1, y2, y3, y4 are numbers in ½0; p=2�. Other
cases where some yi A iRþ follow the same way by slight modifications.

Let a be an essential simple closed curve on S. Note that fag is a pants
decomposition of S. Denote by ðla; taÞ the Fenchel-Nielsen coordinates asso-
ciated to a.

Let X A Tð2y1; 2y2; 2y3; 2y4Þ be a hyperbolic structure with tX ðaÞ ¼ 0.
Denote by l ¼ laðXÞ. Consider a fundamental domain of X in H2 (see Figure
2). We may assume that iRþ is a lift of a. Let L0 and L1 be the geodesics
obtained by the circles jzj ¼ 1 and jzj ¼ el=2, respectively. Choose a point P ¼
�uþ iv A L0, 0a ua 1, v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
. Let L2 be the geodesic that intersects with

L0 at P and also intersects with L1 at some point.
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We claim that L2 does not meet L1 in the right half plane. Note that if we
denote the angle from L0 to L2 by y1 and the angle from L2 to L1 by y2, then
this claim is equivalent to the following inequality:

cos y1 þ cosh
l

2
cos y2 b 0:ð1Þ

As we can not find a reference for this result, we give a proof of it.
Let us consider the case that L2 meets iRþ at the point iel=2. There is a

geodesic triangle surrounded by L0, L2 and iRþ. The angles of the triangle are
y1, p=2 and y2 � p=2. Moreover, the length of the opposite side of y1 is equal to
l=2. By formula of hyperbolic triangle (ref. [1]), we have

cosh l=2 ¼ cos y1
sinðy2 � p=2Þ ¼

cos y1
�cos y2

:

Hence

cos y1 þ cosh
l

2
cos y2 ¼ 0:

Note that cos y1 þ cosh
l

2
cos y2 is a strictly decreasing function of y1 and y2.

y2 is increasing as L2 move from the left to the right. As a result, if L2 meets L1

in the right half plane, then

cos y1 þ cosh
l

2
cos y2 < 0:

If L2 meets L1 in the left half plane, then

cos y1 þ cosh
l

2
cos y2 > 0:

Figure 2. Fundamental domain.
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By our assumption, y1; y2; y3; y4 A ½0; p=2�. So ð1Þ is always satisfied.
Note that each geodesic line in the upper half plane gives rise a reflection,

which is an isometry of the Poincaré metric. We denote by r0, r1, r2 the reflec-
tions correspond to L0, L1, L2, respectively.

Let A ¼ r2r0 and Hl ¼ r1r0. Then A is the Möbius transformation corre-
sponds the rotation at P with rotation angle 2y1, and Hl corresponds to the
hyperbolic transformation z ! elz. Let us write down the matrix representation
of A and Hl in SL2ðRÞ (recall that P ¼ �uþ iv):

A ¼ cos y1 � uv�1 sin y1 v�1 sin y1

�v�1 sin y1 cos y1 þ uv�1 sin y1

� �
;ð2Þ

Hl ¼
�el=2 0

0 �el=2

� �
:ð3Þ

Set B ¼ A�1Hl , the matrix for B is

B ¼ �el=2 cos y1 þ uv�1 sin y1 e�l=2v�1 sin y1

�el=2v�1 sin y1 �e�l=2 cos y1 � uv�1 sin y1

� �
:ð4Þ

where

u ¼
cos y2 þ cosh

l

2
cos y1

����
����

cosh2 l

2
þ 2 cosh

l

2
cos y1 cos y2 þ cos2 y1 þ cos2 y2 � 1

� �1=2 ;ð5Þ

v ¼
sinh

l

2
sin y1

cosh2 l

2
þ 2 cosh

l

2
cos y1 cos y2 þ cos2 y1 þ cos2 y2 � 1

� �1=2 :ð6Þ

By (1), thus the numerator of the first expression in ð5Þ does not need absolute-
values.

Similarly, by replacing ðy1; y2Þ by ðy4; y3Þ, we may define ~AA, ~BB in the same
way as we defined A, B through equations ð2Þ–ð4Þ. These ~AA, ~BB correspond to
(negative) rotations at the cone-points with angles 2y4 and 2y3, respectively.

Let Xs A Tð2y1; 2y2; 2y3; 2y4Þ be the hyperbolic surface obtained from X by
the s-twist along a, that is, laðXsÞ ¼ l, taðXsÞ ¼ s. Note that under the s-twist
deformation, L0 (and L1) becomes a piece-wise geodesic arc. See Figure 3.

Let EðzÞ ¼ �1=z, HsðzÞ ¼ esz. We denote D and C by the conjugation of
~AA�1 and ~BB�1 by Hsr0E, respectively. Then we have

C ¼ �e�l=2ðcos y4 � xh�1 sin y4Þ ese�l=2h�1 sin y4

�esel=2h�1 sin y4 �el=2ðcos y4 þ xh�1 sin y4Þ

� �
;

D ¼ cos y4 þ xh�1 sin y4 esh�1 sin y4

�e�sh�1 sin y4 cos y4 � xh�1 sin y4

� �
;
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where

x ¼
cos y3 þ cosh

l

2
cos y4

����
����

cosh2 l

2
þ 2 cosh

l

2
cos y3 cos y4 þ cos2 y3 þ cos2 y4 � 1

� �1=2 ;

h ¼
sinh

l

2
sin y4

cosh2 l

2
þ 2 cosh

l

2
cos y3 cos y4 þ cos2 y3 þ cos2 y4 � 1

� �1=2 :

Note that D and C correspond to the rotations at the cone-points with angles 2y4
and 2y3, respectively. In particular, when s ¼ 0, D ¼ ~AA�1, C ¼ ~BB�1.

In conclusion, A, B, C, D correspond to the rotations around the cone-points
and each of which can be considered as a matrix-function of the Fenchel-Nielsen
coordinates ðla; taÞ.

Denote x ¼ � 1
2 tr BC, y ¼ � 1

2 tr CA, z ¼ � 1
2 tr AB. Let a ¼ cos y1 cos y4 þ

cos y2 cos y3, b ¼ cos y2 cos y4 þ cos y1 cos y3, c ¼ cos y3 cos y4 þ cos y1 cos y2
and d ¼ 4 cos y1 cos y2 cos y3 cos y4 þ cos2 y1 þ cos2 y2 þ cos2 y3 þ cos2 y4 � 1:

Proposition 2.1 ([4]). With the above notations, Xs satisfies the following
algebraic equation in R3:

x2 þ y2 þ z2 � 2xyzþ 2axþ 2byþ 2czþ d ¼ 0;ð7Þ

and x > 1, y > 1, z > 1. Moreover, the set T represents the Teichmüller space
Tð2y1; 2y2; 2y3; 2y4Þ where

T ¼ fðx; y; zÞ A R3 j x > 1; y > 1; z > 1 and satisfy ð7Þg:

Figure 3. Twist.
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If we denote

L ¼ xþ cos y1 cos y4 � ux�1v�1h�1 sin y1 sin y4

v�1h�1 sin y1 sin y4
;

From [4], we know that

la ¼ l ¼ 2 logðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ; ta ¼ s ¼ logðLþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 1

p
Þ:ð8Þ

Remark 2.1. In the above discussion, we have assumed that y1, y2, y3, y4
are numbers in ½0; p=2�. To include the cases where some yi A iRþ, we could
follow the same way by slight modifications. Note that cosðiyÞ ¼ cosh y and we
don’t need to change the notations in the above equations.

3. Statement and proof of the main result

In this section, we will prove the formula for the e¤ect of Fenchel-Nielsen
coordinates under elementary move. We will assume that S ¼ S0;4 and apply
the notations and results in Section 3.

Suppose that a 0 is an essential simple closed curve on S di¤ers from a by
an elementary move. Denote by ðl 0; t 0Þ the Fenchel-Nielsen coordinates of Xt

associated to a 0. Recall that Xt is the hyperbolic surface obtained from X by
t-twist deformation along a.

Note that a 0 separates the cone-points of angles 2y1, 2y4 with the cone-points
of angles 2y2, 2y3 (recall Figure 3). The hyperbolic transformation correspond-
ing to a 0 is given by BC. We can replace ðy1; y2; y3; y4Þ by ðy4; y1; y2; y3Þ (and
replace x, y, z, a, b, c, d by x 0, y 0, z 0, a 0, b 0, c 0, d 0) and follow the same proof as
in Section 3 to show that

x 02 þ y 02 þ z 02 � 2x 0y 0z 0 þ 2a 0x 0 þ 2b 0y 0 þ 2c 0z 0 þ d 0 ¼ 0:ð9Þ

By the corresponding between cone angles, we have x 0 ¼ z, y 0 ¼ y, z 0 ¼ x and
a 0 ¼ c, b 0 ¼ b, c 0 ¼ a, d 0 ¼ d. As a result, ð9Þ is equivalent to ð7Þ. Similar to
ð8Þ, we have

l 0 ¼ 2 logðz 0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz 0Þ2 � 1

q
Þ ¼ 2 logðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ;ð10Þ

t 0 ¼ logðL 0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL 0Þ2 � 1

q
Þ:

Theorem 3.1 ([Main result]). We have the following formulae for the transi-
tion map F�1

a 0 �Fa:
(i) l 0 satisfies

coshðl 0=2Þ ¼ sinhðl=2Þ�2fcos y1 cos y4 þ cos y2 cos y3

þ coshðl=2Þðcos y1 cos y3 þ cos y2 cos y4Þ þ coshðtÞðcosh2ðl=2Þ
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þ 2 cos y1 cos y2 coshðl=2Þ þ cos2 y1 þ cos2 y2 � 1Þ1=2ðcoshðl=2Þ2

þ 2 cos y3 cos y4 coshðl=2Þ þ cos2 y3 þ cos2 y4 � 1Þ1=2g:

(ii) jt 0j satisfies

coshðt 0Þ ¼ fcos2 y1 þ cos2 y4 þ 2 cos y1 cos y4 coshðl 0=2Þ þ sinh2ðl 0=2Þg�1=2

� fcos2 y2 þ cos2 y3 þ 2 cos y2 cos y3 coshðl 0=2Þ þ sinh2ðl 0=2Þg�1=2

� fsinhðl 0=2Þ2 coshðl=2Þ � cos y1 cos y2 � cos y3 cos y4

� ðcos y1 cos y3 þ cos y2 cos y4Þ coshðl 0=2Þg:

Proof. By ð8Þ, L ¼ coshðtÞ. Using the equation of L, we get

x ¼ cos y1 cos y4 � uxv�1h�1 sin y1 sin y4 þ v�1h�1 sin y1 sin y4 coshðsÞ:
Note that ð10Þ implies that x ¼ coshðl 0=2Þ. Hence

coshðl 0=2Þ ¼ cos y1 cos y4 � uxv�1h�1 sin y1 sin y4 þ v�1h�1 sin y1 sin y4 coshðsÞ:
Combining the above equation with the equations of u, v, x, h, a detailed
calculation shows that

coshðl 0=2Þ ¼ sinhðl=2Þ�2fcos y1 cos y4 þ cos y2 cos y3

þ coshðl=2Þðcos y1 cos y3 þ cos y2 cos y4Þ þ coshðtÞðcosh2ðl=2Þ

þ 2 cos y1 cos y2 coshðl=2Þ þ cos2 y1 þ cos2 y2 � 1Þ1=2ðcosh2ðl=2Þ

þ 2 cos y3 cos y4 coshðl=2Þ þ cos2 y3 þ cos2 y4 � 1Þ1=2g:

This proves (i). To prove (ii), we only need to replace l, t in (i) with l 0, t 0 and
exchange y2 with y4. r

Our main result is a slight generalization of Okai’s result. In the case that
the boundary of S0;4 are totally geodesic boundary with length l1, l2, l3, l4, we

let yi ¼
ili

2
. Then cos yi ¼ coshðli=2Þ and we get the original formulae of Okai

[5] by the above theorem:

coshðl 0=2Þ ¼ sinhðl=2Þ�2fcoshðl1=2Þ coshðl4=2Þ þ coshðl2=2Þ coshðl3=2Þ
þ coshðl=2Þðcoshðl1=2Þ coshðl3=2Þ þ coshðl2=2Þ coshðl4=2ÞÞ

þ coshðtÞðcosh2ðl=2Þ þ 2 coshðl1=2Þ coshðl2=2Þ coshðl=2Þ

þ cosh2ðl1=2Þ þ cosh2ðl2=2Þ � 1Þ1=2

� ðcosh2ðl=2Þ þ 2 coshðl3=2Þ coshðl4=2Þ coshðl=2Þ

þ cosh2ðl3=2Þ þ cosh2ðl4=2Þ � 1Þ1=2g;
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coshðt 0Þ ¼ fcosh2ðl1=2Þ þ cosh2ðl4=2Þ þ 2 coshðl1=2Þ coshðl4=2Þ coshðl 0=2Þ

þ sinh2ðl 0=2Þg�1=2fcosh2ðl2=2Þ þ cosh2ðl3=2Þ

þ 2 coshðl2=2Þ coshðl3=2Þ coshðl 0=2Þ þ sinh2ðl 0=2Þg�1=2

� fsinh2ðl 0=2Þ coshðl=2Þ � coshðl1=2Þ coshðl2=2Þ
� coshðl3=2Þ coshðl4=2Þ � ðcoshðl1=2Þ coshðl3=2Þ
þ coshðl2=2Þ coshðl4=2Þ coshðl 0=2Þg:

Remark 3.1. Our proof is di¤erent from Okai’s proof. So we give a new
proof of Okai’s result. Okai [5] also proved that signðtÞ ¼ �signðt 0Þ.

We make a few comment about the case that S ¼ S1;1 is a torus with one
hole. Let Tð2yÞ be the Teichmüller space of hyperbolic structures on S1;1 with
cone angle 2y A ½0; p� [ iRþ. There is a natural identification of Tð2yÞ with
Tðp; p; p; yÞ (ref. [4]). Apply Tðp; p; p; yÞ to Theorem 3.1, we have

coshðl 0=2Þ ¼ sinhðl=2Þ�1 coshðt=2Þ coshðlÞ þ cos y

2

� �1=2

and

coshðt 0=2Þ ¼ coshðl=2Þfcosh2ðt=2ÞðcoshðlÞ þ cos yÞ � 2 sinh2ðl=2Þg1=2

� fcosh2ðt=2Þðcosh2ðl=2Þ þ cos yÞ þ sinh2ðl=2Þ cos yg�1=2:

In case that y ¼ i
l0
2
, we have

coshðl 0=2Þ ¼ sinhðl=2Þ�1 coshðt=2Þ coshðlÞ þ coshðl0=2Þ
2

� �1=2

and

coshðt 0=2Þ ¼ coshðl=2Þfcosh2ðt=2ÞðcoshðlÞ þ cosðl0=2ÞÞ � 2 sinh2ðl=2Þg1=2

� fcosh2ðt=2Þðcosh2ðl=2Þ þ cosðl0=2ÞÞ þ sinh2ðl=2Þ cosðl0=2Þg�1=2:

The above formula is also given by Okai [5].
As an application, we consider the 2-form dl5dt. Using ð8Þ, we have

dl5dt ¼ 4dz5dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2z2 � x2 � z2 � 2bxz� 2ax� 2cxþ b2 � d

p :

By ð7Þ, the denominator is equal to xz� y� b, and then

dl5dt ¼ 4 dz5dx

xz� y� b
:
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By ð7Þ again, we know that

dz ¼ qz

qx
dxþ qz

qy
dy; dx ¼ qx

qy
dyþ qx

qz
dz;

where

qz

qy
¼ xz� y� b

z� xyþ c
;

qx

qy
¼ xz� y� b

x� yzþ a
:

Hence

4 dz5dx

xz� y� b
¼ 4 dx5dy

xy� z� c
¼ 4 dy5dz

yz� x� a
:

Since
4 dx5dy

xy� z� c
is equal to dl 05dt 0, we have

dl5dt ¼ dl 05dt 0:

As a result, the two form dla5dta is independent of the choice of a. It is
a generalization of the Weil-Petersson symplectic form studied by Wolpert [10].

4. An application

Mirzakhani [3] proved the following theorem:

Theorem 4.1. Let g be a closed curve on Sg;n. The length function

lg : Tðg; 0; . . . ; 0Þ ! Rþ

X 7! lgðXÞ
is an asymptotically piecewise linear function of rational type with respect to the
Fenchel-Nielsen coordinates.

Our goal is to generalize the above theorem to surfaces with cone points by
using Theorem 3.1. We’ll prove the following theorem.

Theorem 4.2. Let g be a closed curve on Sg;n and 0a yi < p, 1a ia n.
Then the length function

lg : Tðg; y1; . . . ; ynÞ ! Rþ

X 7! lgðXÞ
is an asymptotically piecewise linear function with respect to the Fenchel-Nielsen
coordinates.

Remark 4.1. In the case the surfaces without cone points, the length func-
tion of a closed curve is an asymptotically piecewise linear function of rational

431fenchel-nielsen coordinates



type with respect to the Fenchel-Nielsen coordinates. Then in the case the sur-
faces with cone points, the length function of a closed curve is an asymptotically
piecewise linear function with respect to the Fenchel-Nielsen coordinates but
it’s not necessarily of rational type. Because the cone points can cause some
irrational coe‰cients.

4.1. Definitions and lemmas. We give the following definitions and lemmas
that appeared in [3] for completeness. Let C denote a closed cone in Rm.

Definition 4.1 (Asymptotically linear [3]). Let F : C ! R be a function, we
say F is asymptotically linear with respect to coordinates x1; . . . ; xm i¤ there are
linear functions R1; . . . ;Rm 0 , L : Rm ! R and c A Rþ such that

Fðx1; . . . ; xmÞ �Lðx1; . . . ; xmÞ ! c

uniformly as min1aiam 0 fRiðx1; . . . ; xmÞgm 0

i¼1 ! y.

Definition 4.2 (Asymptotically piecewise linear [3]). Let F : C ! R be a
function, we say F is asymptotically piecewise linear i¤ there are linear functions
W1; . . . ;Wk such that for any � ¼ ð�1; . . . ; �mÞ, �i ¼ 1 or �1. The restriction of F
on each sub-cone defined by C� ¼ fx j SignðWiðxÞÞ ¼ �g is asymptotically linear.

Moreover, if R1; . . . ;Rm 0 , W1; . . . ;Wk and L can be chosen to all having
rational coe‰cients, then we call F is of rational type.

For x ¼ ðx1; . . . ; xkÞ A Rk, we define ei : R
k ! R by eiðxÞ ¼ exi . Let F�

k to
be the smallest family of functions Rk ! R containing the functions ei for
1a ia k such that the following holds: for any two f ; g A F �

k and m A N, c A R
we have

f þ g; f � g; f � g;
f

g
; f 1=m; cf

� �
� F�

k

Moreover we define

F� ¼
[
kb1

F�
k :

Then for any P A F�
k , we have

F ðxÞ ¼ ArccoshðPðxÞÞ

is asymptotically piecewise linear on any cone where it is defined.
Let F1; . . . ;Fk in F�

k . For P A F�
k , we define a function

GðxÞ ¼ PðF 0
1ðxÞ; . . . ;F 0

kðxÞÞ;

where F 0
i ðxÞ ¼ ArcsinhðFiðxÞÞ or F 0

i ðxÞ ¼ ArccoshðFiðxÞÞ. Then G A F�
k and

ArccoshðGðxÞÞ is also asymptotically piecewise linear on any cone where it is
defined.
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Let

A� ¼ fG : Rm ! Rm j coshðpiðGÞÞ A F� or sinhðpiðGÞÞ A F�g
where pi : R

m ! R is the natural projection map to the ith coordinate.
With the above notations, the following lemma is from [3]:

Lemma 4.3.
� Any function G A A� is asymptotically piecewise linear.
� The composition G1 � G2 of any two maps in A� is again in A�.

4.2. An application. Now we give an application of the main Theorem 3.1.
For convenience we let

A1 ¼ cos y1 cos y4 þ cos y2 cos y3; A2 ¼ cos y1 cos y3 þ cos y2 cos y4:

A3 ¼ 2 cos y1 cos y2; A4 ¼ cos2 y1 þ cos2 y2 � 1:

A5 ¼ 2 cos y3 cos y4; A6 ¼ cos2 y3 þ cos2 y4 � 1:

B1 ¼ cos2 y1 þ cos2 y4; B2 ¼ 2 cos y1 cos y4:

B3 ¼ cos2 y2 þ cos2 y3; B4 ¼ 2 cos y2 cos y3:

B5 ¼ cos y1 cos y2 þ cos y3 cos y4; B6 ¼ cos y1 cos y3 þ cos y2 cos y4:

It is clear that Ai;Bi A R, i ¼ 1; . . . ; 6. And the formulas from Theorem 3.1 can
be simplified as:

coshðl 0=2Þ ¼ sinhðl=2Þ�2fA1 þ A2 coshðl=2Þ þ coshðtÞ

� ½cosh2ðl=2Þ þ A3 coshðl=2Þ þ A4�1=2

� ½coshðl=2Þ2 þ A5 coshðl=2Þ þ A6�1=2g:

and

coshðt 0Þ ¼ fB1 þ B2 coshðl 0=2Þ þ sinh2ðl 0=2Þg�1=2

� fB3 þ B4 coshðl 0=2Þ þ sinh2ðl 0=2Þg�1=2

� fsinhðl 0=2Þ2 coshðl=2Þ � B5 � B6 coshðl 0=2Þg:

It is clear that coshðl 0=2Þ A F� and coshðt 0Þ A F�. By Lemma 4.3 we know
that l 0=2 and t 0 are asymptotically piecewise linear. This implies that the
asymptotic piecewise linearity does not depend on the choice of the Fenchel-
Nielsen coordinates. Then the Theorem 4.2 is clearly true for the case that g is a
simple closed curve because one can take Fenchel-Nielsen coordinates by using g.

To prove the Theorem 4.2 for the case that g has self-intersections (g is a
closed curve but is not a simple closed curve), we need to generalize the Lemma
3.11 in [8] from hyperbolic surface without cone points to hyperbolic surface with
cone points. We express this generalization as following.
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Lemma 4.4. Let a be a closed curve on Sg;n with iða; aÞ > 0. There are
closed curves a1, a2, a3 on Sg;n such that iðaj ; ajÞ < iða; aÞ for 1a ja 3 and for
any X A Tðg; y1; . . . ; ynÞ we have:

cosh
laðXÞ
2

¼ 2 cosh
la1ðXÞ

2
cosh

la2ðXÞ
2

þ e cosh
la3ðXÞ

2
:

where e A f1;�1g.

Remark 4.2. For each intersection p A a, we have two operations: separat-
ing resolution and non-separation resolution. Let a1 and a2 respectively denote
the two components of the separation of a at p, and let a3 denote the component
of the non-separating resolution of a at p. See [8] for more details.

We can not give a proof of the above lemma directly by using the idea of
the proof of the Lemma 3.11 in [8], since we do not know the metric structure
of the universal cover of hyperbolic surface with cones. But we can view the
hyperbolic cone surface as the subsurface of the corresponding complete surface
in some senses. For this purpose, we need to do some preparations.

First we can find a simple closed geodesic b separating the surface into two
parts as show in Figure 4: one of them is a hyperbolic surface P1 with punctures
and geodesic boundaries; the other is a hyperbolic surface P2 with cone points
and geodesic boundaries, and the genus of P2 is zero. Let c1; . . . ; cm denote the
cone points. We can find some geodesic arcs gi; iþ1 i ¼ 1; . . . ;m� 1, satisfy the
following conditions:

� gi; iþ1 connects the cone points ci and ciþ1.
� gi; iþ1 \ gj; jþ1 ¼ j, i0 j:
Here the surface S endows with a hyperbolic structure R. For simplicity, in

the following we denote S as a surface with hyperbolic structure. That is, S is a
hyperbolic surface. Then we cut the hyperbolic surface S along the geodesic arcs
gi; iþ1 i ¼ 1; . . . ;m� 1, and obtain a new hyperbolic surface S � with boundaries.
Here the boundary component g 01;2 [ g 02;3 [ � � � [ g 0m�1;m [ g 00m�1;m [ � � � [ g 001;2 is

Figure 4. Hyperbolic cone surface.
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piecewise geodesic arcs. Let S 0 denote the completion of P1. It is clearly that
the hyperbolic surface S � can be isometrically embedded into S 0 as show in
Figure 5.

Then we consider the universal cover of S 0 as show in Figure 6, here the
grey shaded parts denote the lifts of P2 as the subsurface of S 0. We will need
the following lemma about the hyperbolic surface with cones.

Lemma 4.5. With the above notations and 0a yi < p, 1a ia n, we have:
� Let a be a closed geodesic of X A Tðg; y1; . . . ; ynÞ. If a \ gi; iþ1 ¼ j for all
gi; iþ1 i ¼ 1; . . . ;m� 1. Then a � P1.

� Let a be a closed geodesic of X A Tðg; y1; . . . ; ynÞ. Then ci B a for any cone
point ci.

Figure 6. Universal cover of S 0.

Figure 5. S � as a subsurface of S 0.
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Lemma 4.6. Let a be a closed curve of X A Tðg; y1; . . . ; ynÞ, and p A a.
Assume a also satisfies the following two conditions:

� anp is a smooth geodesic arc,
� The angle of a at p is y.

Let a 0 denote the geodesic representation of a in the homotopy class. Then we
have:

cosðyÞ ¼
�cosh la 0 ðX Þ þ sinh2 laðXÞ

4

cosh2 laðXÞ
4

:

In case that a is isotopic to a cone point with cone angle j, we denote
la 0 ðX Þ ¼ ij.

Proof. If a \ gi; iþ1 ¼ j for all gi; iþ1 i ¼ 1; . . . ;m� 1. By using the above
lemma we know that a � P1. Then the proof is done by applying the cosine law
on the generalized triangles PJIQ or PKLMN as in the Figure 7.

If a \ gi; iþ1 0j for some gi; iþ1. Let ~aa and ~aa 0 be the lifts of a and a 0 in the
universal cover ~SS 0 of S 0, respectively. Let r denote the hyperbolic metric of ~SS 0.
Then the lifts ~aa and ~aa 0 are divided into some geodesic arcs eaiai, i ¼ 1; . . . ; n and eaiai 0,
i ¼ 1; . . . ; n by the lifts of gi; iþ1. We also know that eaiai and eaiai 0 are homotopy
relative to some fgi; jgi; j.

Let P be a lift of p in the universal cover, and let y be the angle at P of ~aa.
Let the solid geodesic arcs ea1a1 ¼ PA [ BC, ea2a2 ¼ DP denote the lift of a and the
solid geodesic arcs ea1a1 0 ¼ HE, ea2a2 0 ¼ FG denote the lift of a 0, as shown in Figure
8. Then there are two cases:

� a is not isotopic to a cone point. Let us choose a point Q belong to the
geodesic HE such that PQ is vertical to HE. We extend PA to obtain
PJ satisfies lrðPJÞ ¼ laðXÞ, and extend QE to obtain QI satisfies lrðQIÞ ¼
la 0 ðXÞ. Hence we obtain (A) of Figure 7. It is clear that lrðPQÞ ¼ lrðIJÞ.
Moreover we obtain (B) of Figure 7 by a simple geometry operation.

Figure 7. Generalized triangle.
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Applying the cosine law to the generalized triangles PJIQ or PKLMN,
we have:

cosðyÞ ¼
�cosh lX ða 0Þ þ sinh2 lX ðaÞ

4

� �

cosh2 lX ðaÞ
4

� � :

� a is isotopic to a cone point with cone angle j, then we obtain the Figure 9.
Applying the cosine law to the generalized triangles PKMN in Figure 9,

Figure 9.

Figure 8.
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we have:

sin
y

2

� �
¼

cos
j

2

� �

cosh
lrðaÞ
4

� � :

cosðyÞ ¼
�2 cos2

j

2

� �
þ cosh2 lrðaÞ

4

� �

cosh2 lrðaÞ
4

� � ¼
�cosðjÞ þ sinh2 lX ðaÞ

4

� �

cosh2 lX ðaÞ
4

� � : r

Basic on the above lemma, the proof of Lemma 4.4 is similar to the proof of
Lemma 3.11 in [8]. For the sake of simplicity, we omit the details.

Corollary 4.7. For any closed geodesic a A X A Tðg; y1; . . . ; ynÞ, there exist
finite simple closed geodesics bi, i ¼ 1; . . . ;m such that

cosh
laðX Þ
2

� �
¼ k1 cosh

t1; 1
la1ðX Þ
2

� �
� � � cosh t1;m

lamðXÞ
2

� �

þ ks cosh
ts; 1

la1ðXÞ
2

� �
� � � cosh ts;m

lamðXÞ
2

� �
:

where ti; j A N and ki ¼G2r, r A N.

Proof. It su‰cces to prove the corollary in the case that a has self-
intersections. Let we assume p be one of self-intersection point of a. Applying
the Lemma 4.4 to a at p, we have

cosh
laðXÞ
2

� �
¼ 2 cosh

la1ðX Þ
2

� �
cosh

la2ðXÞ
2

� �
þ e cosh

la3ðXÞ
2

� �
:

where e A f1;�1g, and a1, a2 denote the two components of the separation of a
at p, and a3 denote the component of the non-separating resolution of a at p.
Moreover, iðaj; ajÞ < iða; aÞ, j ¼ 1; 2; 3. If iðgj; gjÞ > 0 for some j ¼ 1; 2; 3, we
apply the Lemma 4.4 to gj again. Then the corollary will be proved in finite
steps by applying Lemma 4.4 repeatedly. r

Then the proof of Theorem 4.2 is followed directly by Lemma 4.3 and
Corollary 4.7.
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