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INSTABILITY OF SOLITARY WAVES FOR A GENERALIZED
DERIVATIVE NONLINEAR SCHRODINGER EQUATION IN
A BORDERLINE CASE

NoRIYOSHI FUKAYA

Abstract

We study the orbital instability of solitary waves for a derivative nonlinear
Schrodinger equation with a general nonlinearity. We treat a borderline case between
stability and instability, which is left as an open problem by Liu, Simpson and Sulem
(2013). We give a sufficient condition for instability of a two-parameter family of
solitary waves in a degenerate case by extending the results of Ohta (2011), and verify
this condition for some cases.

1. Introduction

In this paper, we consider the following generalized derivative nonlinear
Schrédinger equation.

(gDNLS) i0u = —0%u — ilu|* 0., (1,x) eR xR,
where u is a complex-valued function of (7,x) e R x R and ¢ > 0. When ¢ =1,
(gDNLS) appears in plasma physics, nonlinear optics, and so on (see, e.g., [18,
16, 17, 22, 25)).
It is known that (gDNLS) has a two-parameter family of solitary waves
Uy(t,x) = " ™'¢ (x — wit),
where @ = (wy, w1) € Q := {(wy, 1) € R* |0} < day},

NAO) 1 * .
¢(u(x) = (pw(x) exXp l(%x - 20_+2J %(J’)z dy),

1/20
(04 1)(4ewo — a)lz)

Po(X) =
2\/@g cosh(ay/4wy — wix) — w
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Note that ¢, is a solution of

2 1
7 lpf*p=0, xeR,

” 602 w1
—Oifﬂ + <w0 - f) ®+ > |(ﬂ|20(0 - m

and that ¢, is a solution of
(1) —02¢ + wop + w1i0xp — i|¢]0xp =0, xeR.

We regard L?(R) := L*(R,C) and H'(R) := H!(R,C) as real Hilbert spaces
with inner products

(0,W);2 = J v(xX)w(x) dx, (v,w) 1 = (v, W) 2 + (O, OxW) 2,
—0o0
respectively.
Recently, Hayashi and Ozawa [8] proved that the Cauchy problem for
(gDNLS) is locally well-posed in the energy space H'(R) for all ¢ > 1 (see also
[1, 9, 10, 11, 12, 21, 23]). Moreover, (gDNLS) has three conserved quantities

1 .
E(u) := 5| 0.ll7: - (ilul* 0, u) .2,

20+2
1 5 1,
Qo(u) =5 ulZe, Q1(a) 1= 5 (10t

Note that (gDNLS) can be written in Hamiltonian form id,u(t) = E’(u(f)), and
that Qyp and Q; arise from the gauge and translation invariances of E, respec-
tively.

For w e Q, we define the action

1
So(u) = E(u) + ijQj(u), ue H'(R).
=0

Then (1) is equivalent to S/ (¢) =0. We define
d(w) :=S,(¢,), ®eQ.
Then we have

d/(a)) = (awod(w)v awld(w>> = (Q0(¢w)7 0 <¢w))>

and

(2) (o) = [ 0 d(e2) %f%ﬂd(w)]

00 Oupd(@) 02 d()
_ <Q6(¢(,))a awo ¢w> <Qi (¢w)’ a030 ¢w>
<Q(l)(¢ )’0w1¢w> <Qi (¢w)’aw1¢a)> .

The stability of solitary waves is defined as follows.

w
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DErFINITION 1. The solitary wave e ™’¢, (- — w;?) is said to be stable if for
each ¢ > 0 there exists J > 0 with the following property. For uy € Bs(¢,,), the
solution u(?) of (gDNLS) with u(0) = u exists globally in time, and u(¢) € U,(¢,,)
for all ¢+ >0, where

Bs(¢) = {ve H'(R)|[lv — ¢ll;n <3},

(s0,51) eR?

U.(¢) = {UGHI(R) inf  [jo—e™g(- —s1)|;n <8}.

Otherwise, e ¢ (- — wt) is said to be unstable.

For the case o0 =1, Guo and Wu [7] proved that the solitary wave
e‘'d (- — wit) is stable for w € Q with w; < 0, and Colin and Ohta [2] proved
that the solitary wave is stable for all w e Q.

In [14], Liu, Simpson and Sulem proved that when 0 < ¢ < 1, the solitary
wave is stable for all w € Q, and when o > 2, the solitary wave is unstable for
all w e Q. They also proved that for 1 < ¢ < 2, the solitary wave is stable if
—2,/wy < w1 < 2z9,/wy, and unstable if 2zy/wy < w1 < 2,/wy, where the con-
stant zp = z9(o) € (—1,1) is the solution of

o0

Fy(z) == (0 — 1) U (cosh y — z)71/° dy] 2

0

0 2
- U (cosh y —z) "z cosh y — 1) dy} =0.
0

The authors [14] shows by numerical computation that when 1 < o <2, the
function F, is monotonically increasing, F,(—1) <0 and lim.; F,(z) = +o0.
Therefore F, has exactly one root z, in the interval (—1,1). Note that
det[d”(w)] has the same sign as Fy(w;/2,/wp) (see [14, Lemma 4.2]).

The proofs in [7, 14] are based on the spectral analysis of the linearized
operator S(¢,) and the Hessian matrix d”(w), and on the general theory of
Grillakis, Shatah and Strauss [6]. The proof in [2] is based on the variational
methods as in Shatah [24]. Every proof of [2, 7, 14] requires that the Hessian
matrix d”(w) is not degenerate. In the borderline case w; = 2zo./@o, however,
we cannot apply their methods because the Hessian matrix d”(w) has a zero
eigenvalue and a negative eigenvalue. In [14], the authors conjectured that if
w1 = 2z9,/o, the solitary wave is unstable, but left the stability problem in that
case as an open problem. Although there are several papers treating the stability
and instability of a one-parameter family of solitary waves in degenerate cases
(see [4, 3, 13, 15, 19, 26]), to the best of our knowledge, there are none for a
two-parameter family of solitary waves.

In this paper, we consider the borderline case w; = 2z9,/wo and prove the
following theorem, which verify the conjecture of Liu, Simpson and Sulem [14]
for 7/6 <o < 2.
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TaeoreM 1. Let 7/6 <o <2 and zo=z¢(0) € (=1,1) satisfy Fy(z0) = 0.
Then the solitary wave e¢™'¢,,(- — wit) is unstable if w| = 2z0,/0y.

Remark 1. Our proof requires a certain amount of regularity of E (see
Proposition 1 (iii) below). Therefore, the stability problem in the case 1 < ¢ <
7/6 and w; = 2zp./w, still remains open.

Our proof of Theorem 1 is based on the Lyapunov functional methods as
in Ohta [19, 20] and Maeda [15]. In [19], Ohta gave a sufficient condition for
instability of a one-parameter family of solitary waves e™’¢, for the following
abstract Hamiltonian system in a degenerate case.

du ~

3) = () = JE (u(r)).

Moreover, he proved that this condition holds if d"(w) =0 and c;’i” (w) # 0 under
a certain spectral assumption of S (¢,) (see [19, (B2a)]), where S,, is the action
corresponding to (3), and d(w) := S,(¢,). In [15], Maeda treated the more
degenerate cases d”(w) = d"”(w) =0. 1In [20], Ohta proved instability of a two-
parameter family of solitary waves for the following nonlinear Schrédinger
equation of derivative type in non-degenerate cases.

(4) i0u = —0%u — ilu)*0u — blu*u, (t,x) e R xR,

where b > 0. Combining the idea of [15, 19] with that of [20], we extend the
results of Ohta [19] to two-parameter cases, and obtain a sufficient condition

for instability (see Proposition 1 below). Moreover, we prove that if d”(w) has a
3

. . . d .
zero eigenvalue with an eigenvector ¢ € R?, and Wd(w + A&)|,— # 0, then this

condition holds under a certain spectral condition (see Lemma 2 below).

Remark 2. Our method can be formulated as an abstract theory such as
[4, 5, 6, 15, 19].

Remark 3. The equation (4) has a similar situation to (gDNLS), but our
method is not applicable to (4). Indeed, (4) has a two-parameter family of
solitary waves e’ (- — wt), where @ = (wy, w1) € Q,

bol) = o) e i( G5 I ).
12
2(40)() —0)12)

—w) + \/wf + (14 16b/3)(4wy — w?) cosh(y /4wy — w?x)

Ohta [20] proved that there exists x = x(b) € (0,1) such that the solitary wave
e'™'g (- —wyt) is stable if —2,/wy < w; < 2K,/wy, and unstable if 2wx,/my <

9o (x) =
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a)1 < 2y/wy, and left the case w; = 2x,/wy as an open problem. In the case
= 2k,/wg, however, the Hessian matrix d” (w) has a zero eigenvalue with

an eigenvector £, and d—d(a)+/lf)| ,—o =0, where d(w) == S.,(4,), and S, is
4 ~ A
the action corresponding to (4). In fact, we see that %d(w—i—ﬂ.éﬂ =0 < 0.

Therefore we may conjecture from the instability result of Maeda [15, Theorem 3]
that the solitary wave is unstable. However, we do not know whether the results
of [15] can be extended to two-parameter cases.

The rest of this paper is organized as follows. In Section 2, we give a
sufficient condition for instability of the solitary wave e™¢, (- — wif) in a
degenerate case, and show that this condition holds when 7/6 <o <2 and
) = 2z /1. In Section 3, we prove that this condition implies instability.

2. Sufficient condition for instability

In this section, we give a sufficient condition for instability of solitary
waves in a degenerate case. For convenience, we give some notations. For
s = (s0,51) € R, we define

T(s)v := e™v(- — s1).

Then the generator 7;(0) of {T°((s,0))},cg and T7(0) of {T((0,s))},.g are given
by

Ty(0) =iv, T{(0)v=—dw, veH'(R)

respectively. For j =0, 1, we define the bounded linear operator B; from H'!(R)
to L*(R) by

Bjv := —iT;(0)v.
Then we have Q(v) = Bjvp. Note that E and Q; are invariant under T, that is,
E(T(s)o) = E(v),  Q(T(s)v) = O,(v), ve H'(R), seR>.
By differentiating S, (7'(s)¢,,) =0 at s =0, we obtain
(5) Si(¢u)T/(0)4, =0, weQ, j=0,1.
For ¢ = (&,¢&)) e R?, let

—_—

1
Bw:=) &Bu, Q:(v) =5 (Bew,v)p, veH'(R).
Jj=0

The aim of this section is to prove the following proposition, which gives a
sufficient condition for instability (cf. [19, Theorem 2]).

PropPOSITION 1. Let 1 <o <2 and zy =zo(o) € (—1,1) satisfy Fy(zp) = 0.
Let wy =2zy\/ao and &€ R* be an eigenvector of the Hessian matrix d"(w)
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corresponding to the zero eigenvalue. Then there exists Y € H'(R) with the fol-
lowing properties.
(1) (qubwvw)lﬂ = (T}I(O)¢w7w)L2 =0 fOV all J = 0’ 1’ S(Z(¢w)l// = 7B€V¢w’ and
2
(6) So(fo + M) = Su(o) + 77 +0(2), 7 # —6Qc(¥).

(ii) There exists ko >0 such that {S!(¢,)w,w) = kol|w|| 71 for all we W,
where

W= {W € Hl(R) | (W7 lp)L2 = (w, Bf¢m)L2 = (W’ 7},(0)¢(/))L2 =0,7=0, 1}

Moreover, if 7/6 < a <2, then
(iii) there exists an open neighborhood V C H'(R) of ¢, such that

() 1I1S5(©) = S pan g1y = ollo = wll ) as v,we V, [lo—w|z — 0.
Remark 4. If 3/2<0<2, then Ee C3*(H'(R),R). Therefore, (6) is

equivalent to {SY”(¢,) (W, ¥),¥> # —60:(¥), and (7) is naturally satisfied. The
property (7) is only used in the proof of Lemma 9 below.

We will show in Section 3 that Proposition 1 implies Theorem 1. Prop-
osition 1 (i) follows from the next lemma.

LemMAa 1. Let 1 <o <2 and zy = zo(0) € (—1,1) satisfy Fy(z0) =0. Let

w) = 2z9\/ao and & € R? be an eigenvector of the Hessian matrix d"(w) corre-
3

d
sponding to the zero eigenvalue. Then Fd(w—i-/lé)\ =0 7 0.
pl

The proof of Lemma 1 is given in Appendix A. To prove Proposition 1 (ii),
we use the spectral property of the linearized operator S/ (¢,). Here, note that

(8)  S"(v)f = (=02 —io|v|*” 80w — i|v]*7 0y + wo + wyidy) f — io|v|* 2vd0f,
v, fe H'(R).
The following result is due to [14].

LemMa 2 ([14, Theorem 3.1]). For o>1 and weQ, there exist x, €
H'(R)\{0}, Ay, <0 and ki > 0 such that S!(d,)lw = toie and {S'($,)p,p> >
killpli: for all pe H'(R) satisfying

(P X)) = (P, 7}/(0)¢w)L2 =0, j=0L

Now, we verify Proposition 1.

Proof of Proposition 1. First, we show that :=0id,,:],—0 +
Zjl:o wT;(0)4,, satisfies (i), where (ug, ) € R? is taken so that

(9) (‘T//(O)¢wﬂ lp)LZ = Oa ] = 07 1
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Since ¢ is an eigenvector of d”(w) corresponding to the zero eigenvalue, by (2),
we deduce

0= d"(w)é - <Q(l)(¢(u)a 606w0¢w + élawl¢(g>:| _ |:(Bo¢w7 a}y¢w+ié|ﬂ.:O)L2

B O1(#e): 00wy by + E100, 0y (B18 s 03beryscli—0) 12 '
By differentiating S, ;.(¢,.;:) =0 at 4 =0, we have

Sg(¢w)ai¢w+/lé|/1:0 = _B§¢w'

Since (B;d,,, T;(0)¢,,),. =0 for j,k=0,1, we have (B;},, ). =0 for j=0,1.
Moreover, by (5), we have S/ (¢,)¥ = —B:¢,,. Next, we check (6). By differ-
entiating d(w + AE) = Su4¢(@y4 ) With tespect to 4, we obtain

d
ad(w +28) = 0(Peys12)-

By Taylor’s expansion, we have

(10) Sw+ii(¢w+/lf) = d(w + ;Lé)
3 3

+— ——d(w+ 5é)

d
=d(w) +id—nd(w+né) 6 d

n=0
33

= Suldo) +10:(b) + o Lo+ )

)3
6 d}/l:; +O(A‘ )7

n=0

where  we used  (d*/dn?)d(w + né)|,_g = {d"(@)&, &> =0. Put @, :=
T(uoly iy A) gy se, Where (ug,py) is given in (9). Then we have @y = ¢, and
0,®9 =, which implies that R; := ¢, + Ay — @, satisfies |R;||;;; = O(2*). By
Taylor’s expansion, therefore, we deduce from (10) that

Sw(¢w + )‘w) = Sw+if,(¢w + )ﬂﬁ) - )”Qf(¢w + ;“W)
= (U-Mé(q)/l + R/») - j'QC“(ﬂﬁw) - ZSQC“(W)
= Su1ie(®;) = A0:(¢,,) — 22 Qe() + 0(2)

= S, (¢ >+ﬁ<d—3d<w+né> — 60 <w>)+o<ﬂ3>
eel 6 \dp? : o

n=0
where we used S, = Sy1.6 — 40¢, S(/u+z§(q)2) =0 and S, (D)) = Sw+,1§(¢w+;.é).
By Lemma 1, we have

3

d
Y= d—;73d<w +78)| = 60:()) # —60:(y).

n=0

Next, we show that y satisfies (ii). Since ¥ #0, (,7/(0)4,);. =0 for
j=0,1, and {S!(¢,)¥,¥> =0, it follows from Lemma 2 that (y,y,);» # 0.
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Let we W, and put

a:= Y2 pi=w+ap.

(lan(u)LZ ’

Then we have (p,y,);2 = (p,T/(0)¢,);» =0 for j=0,1. By Lemma 2 and

!
(w,¥);» =0, we obtain ’
(SH ()P p) = Kallw + ap||72 = ki | w]|]--

On the other hand> by <S£(¢(u)wa lp> = 0: S£(¢(u)lrb = _B§¢(u and (W7BCV¢(D)LZ = O:
we have <(S”(¢,)p,p> = <{S!(¢,)w,w), and therefore,

(11) (S" (g )W, wd = ky|wl|7., we W.

Moreover, since ¢, d+$, € L*(R), by (8), we see that there exist positive con-
stants ¢ and C such that

cllollfn < <SE(dy)v, 0>+ Cllo)l72, ve H'(R).

This inequality and (11) imply (ii).
Finally, (iii) follows from (8) and a direct calculation. This completes the
proof. ]

3. Proof of Theorem 1

In this section, we prove Theorem 1 by using Proposition 1. Throughout
this section, let 7/6 < 0 < 2, zo = zo(a) € (—1, 1) satisfy F,(z9) =0, w1 = 2z,/0
and & = (&, &) € R? be an eigenvector of the Hessian matrix d”(w) correspond-
ing to the zero eigenvalue.

LemMa 3. There exist 2y > 0 and a C*-mapping p : (—2, A0) — R such that

(12) Qc(d, + W + p(A)Beh,) = Qe(4)
for all e (=2, ), and

, O:(¥) 2 2
13 === A
() PO = gm0

as A — 0.
Proof. We define
F(lap) = Q§(¢w + ilﬁ +pr_¢(u) - Q§(¢w)v (’Lp) eR%.
Then we have F(0,0) =0 and
6,0F(070) = <Qé(¢w)7 Bf¢w> = ||B§¢w|

By the implicit function theorem, there exist Ay >0 and a C*-mapping
p:(—40,40) — R such that F(4,p(4)) =0 for all 1€ (—4o,%).

72 #0.
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Moreover, by differentiating F(4,p(1)) =0 at A =0, we obtain

’ " ZQg(lﬁ)
0)=0, 0)=————"—o.
PO O
This completes the proof. O
We define
W(4) = g0 + 2+ p(2)Beh,,, A€ (=20, 20).
LemMMA 4. There exist & >0 and C3-mappings o = (%9, %) : Uy (4,) — R?,
AUy (dy,) — (=20,%0), B:Uy(dy,) — R, w: Uy(d,) — W such that
(14) T (euu) )u = ¥(A(u)) + B(u) B, + wlu)
for all ue U,(¢4,). Moreover,
(T (s)u) = a(u) —s, AT (s)u) = AQw), (T (s)u) = pu), w(T(s)u) = w(u)
for all ue U,(¢,) and s€R>.

Proof. We define
(T(ot)u - \P(A) - ﬂB§¢(m T6(0)¢(0)L2
(T(o)u =¥ (A) = BB, T{(0)¢,,) 2
(T(e)u =¥ (A) = BBy, )2
(T(2)u —Y(A) — fBed,, Bedy,) 2
for (u,o,A,B) € H'(R) x R* x R x R.  Then we have G(4,,0,0,0) =0 and

G(u,o, A, p) ==

oG
m (¢w7 07 07 0)
175(0),, - (T7(0)4,,, T5(0)g)) 2 0 0
| (T30 T{(0)4,),2 IT{(0)4,]I2: 0 0
0 0 vl 0
0 0 0 —|Bglz:
Since T(0)¢,,, T{(0)¢,, are linearly independent, we see that (Xocaiﬂ) (¢,,,0,0,0)

is invertible. Thus by the implicit function theorem, there exist g >0, a =
(a0,01) : By (4,) — R%, A : By (4,) — (=20, %) and f: B, (4,) — R such that
G(u,o(u), A(u),p(u)) =0 for all ue B, (4,). We extend o, A and f to the
mappings on U, (¢,) (see [5, Lemma 3.2]). Finally, we define

w(u) = T(o(u))u = ¥(Au)) - f(u)Bed,,, 1€ Uy(dy)-

Then we have the conclusion. O
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Remark 5. By the uniqueness of the solution of G =0, we have
a(P(2) =0, AM¥() =4 B(¥A)=0 w(¥()=0
for all 1€ (=g, o).

o (u)yv e H'(R) for all ue U,(¢,) and ve H'(R).

Lemma 5. of(u), A'(u), of

Proof. By differentiating G(u, o(u), A(u), f(u)) = 0 with respect to u, we
have

o (1) 1 T(—a(u))T5(0),,
o (u) | _ oG | T(=2(u)T{(0)¢,, Y
A'(w) e (u, (), Au), B(u)) T (—a(u))y e H (R)",
B (u) T(—o(u)) B4,
where we used the fact ¢, € H*(R). Similarly, we also see that o (u)v € H'(R).
This completes the proof. O

LeMMA 6. For ue U (d,,) satisfying Qc(u) = Qs(4,,),
B(u) = O(A )| [ w(w)]| g + [w(w)]|7)

as inf_pa[|u — T(5)@, || g1 — 0.

Proof. For ue U,(4,) satisfying Q:(u)=Qc(¢,), by (14), (12) and
(Bep,, w(u)),» = 0, we have

0= Qc(u) — Qc(,,) = Q:(T ((u))u) — Qc(4,,)
= B(1)’ Qc(Bz,) + Qc(w(u)) + B(u) (B2 (A(w)), Beg,) 2
+ () (B2 oy w(u)) 12 + (B (A(u)), w(u)) 12
= Bw)[| Bego I 12 + o(1)] + OUA@)] [[w(w)]| 22 + [Iw(e) [I71).

This implies the conclusion. O
We define
M(u) = T(oc(u))u, A(u) = —(M(Ll),l.lp)Lz, ue Ué‘o(¢w)'
Then
1
(15) A'(w) = = (T/0)M(u), i) 20 (u) — iT (—o(u) )Yy
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By Lemma 5, we see that A'(u), A”(u)ve H'(R) for all ue U,(¢,) and
ve H'(R). Moreover, we have

(16) id'(¢,) = .

Since M and A are invariant under 7, it follows that

(17) 0 = 0y A(T(s)u)| ;g = <A'(w), T; (0)uy = —{Qj(u), iA"(u) ).
We define

P(u) = <E'(u),id'(u)), ue Uy(4,).

Then by (17), we have P(u)=<S.(u),id'()>. By S.(4,) =0, (16) and
S"(¢,)¥ = —B:g,,, we obtain

Note that P is invariant under 7.

LeMMA 7. Let I be an interval of R.  Let ue C(I, H'(R)) N C'(I, H"'(R))
be a solution of (gDNLS), and assume that u(t) € U, (¢,,) for all tel. Then

4 Aw(0) = Pu(0)

for all tel.

Proof. By [5, Lemma 4.6], we see that ¢+ A(u(t)) is C' on I, and

%A(u(t)) = (0uu(1), A"(u(1))) = <E'(u(1)),id"(u(1))> = P(u(1))

for all tel. This completes the proof. O

Put
vi=7+60:(h).
Then v # 0 by Proposition 1 (i).

LEMMA 8. For Ae (=4, 40),
)3

(19) Su(¥(2)) = Suld) = v+ o(4),
/12
(20) P(Y(1) =Zv+ 0(3?)
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Proof. First, we show that (19). Since S/ (4,,) =0 and S/ (¢, )¥ = —B:d,,
by Taylor’s expansion, we have

(21) So) (b, + 2h) = =B, + 0(2).
By (6) and (13), we obtain
So(¥(2)) = Sold + ) + p(A)CSL, (B0 + 1), Bedy) + 0(4)

3

= Sw(¢w) + )L_

& 7+ 6Q:(W)] + 0(27).

Next, we show that (20). By Taylor’s expansion, we have

So(P(2) = S0,(dy, + 2) + p(2) S} (h,) Bedy, + 0(27).

By (15), Remark 5 and (Bj¢,, ). =0 for j=0,1, we have

= - Z (B (), ) 200} (P (4))
j=0

=V =2 (B ¥)2i%(4,) + O(27).
Therefore, by (13) and (21), we obtain
P(¥(2)) = (S, (P(2)),id'(P(2)>
= (St (o + ) > — A jﬁ;(w, V) 12CSh (B + M), i (4,)>
+ PRS0 (o) Bet ¥ + 0(22)
= <S;(¢w+w>,w>—ﬁi(w,mz; (TL(0) o, 4 (40)) 12

=0
+220:() + o(A2).
Here, it follows from (6) that

2

S0+ 20) 9> = == S(h + 1) = T 7+ (7).
Moreover, by differentiating «(7'(s)u) = a(u) —s at s =0, we have

(Tlé(o)u7 O(J{(M))Lz = —0jk, UE Uﬁo(¢w)7 ]7k = 07 1.



462 NORIYOSHI FUKAYA

Thus, we deduce

[y +60: ()] + 0(2?).

2
POv() =

This completes the proof. ]

LeMMA 9. For ue Uy (@) satisfying Qc(u) = Qs (dy,),

_ _A(u)3 l " 3 2
5o~ Su(d) = Uy 1 LS9, ) wia)> + oAGP + (),
3
AP =00 oA + Irw))

as inf gl = T()d |l — O.
Proof.  Since
SL(P(AW))) = =A(u)Bed,, + p(AW)) S} () B, + 0(Aw)?),
by Lemmas 4, 6 and (19), we have

So () = Sw(@y,) = So(M(u)) — Su(d,)
= Su(P(AW))) = Su(ds,) + <o, (P(Aw))), B(u) Bz, + wlu))

3 SPGB Bed, + w(w), B0 B, + w(a)

+o([|p(u)Beg, + w(u)l71)

Adw)?

= U 4 DSl Wi + oA + )

On the other hand, by Lemmas 4, 6 and (20), we deduce

P(u) = P(M(u))
(F(A W) +w(u)) + OUA W) ()] g1 + [w(w)l|7)

(P(A@))) + <P (P(AM))), ww)) + O(A W) w(w)ll 1) + o([w(w)ll3/?)
(

I
~

| |
>“U"U

<

2
S (P () () + O @) W@l ) + o(|Aw) + [l M)

[\

>
S

2
(2’ v+ OA@) W ()ll) + oA + w3,

where we used (7) and (18). This implies the conclusion.
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Proof of Theorem 1. By Lemma 9 and Proposition 1 (ii), we see that there
exist ¢ € (0,¢) and ¢ > 0 such that

(22) Su(U) = Su(be) — Au)P(u) = —c[vA(u)’].

for all ue U, (¢,), where a, :=max{a,0} for aeR.

Without loss of generality, we may assume that v > 0. Suppose that
T(wt)g,, is stable. Let u,(¢) be the solution of (gDNLS) with u;(0) = W(4).
Then by (19), there exists 4; € (0,4) such that S,(¢,) — Su(¥(4)) >0 for all
/€ (=21,0). Since T(wt)¢,, is stable, there exists A, € (0,4;) such that u,(r) €
U, (¢,,) for all Ae (—=42,42) and 1 >0. Let 1€ (—12,0). Then by the conser-
vation of S, and (22), we have

0 <95 = Su(dy) = Soui(0)) = Su(de) — Su(u.(1))
< CA@u(1)} = A (1) Pl (1))
u;

for all 1> 0. By this inequality, A(x,(0)) =1 < 0 and the continuity of ¢ +—
A(u,(1)), we see that A(u,(#)) <0 for all £ >0. Thus, we have J; < AgP(u,(1))
for all £ > 0. Moreover, by Lemma 7, we have

TAwW0) = Plu() > %

for all ¢ > 0, which implies A(u;(f)) — oo as t — +oco. This contradicts the fact
that there exists C > 0 such that |A(u)| < C for all u e U, (¢,). Hence, T(wt)¢,
is unstable. O

Appendix A. Proof of Lemma 1

In this section, we prove Lemma 1. Throughout this section, let 1 < g <2
and zp = zo(0) € (—1,1) satisfy F,(z0) =0. For weQ, we define

Ko = \/4wy — 0}, Ry :=2""26"Y o+ 1)1/(760071/2071/2165)/072.

Then we have

2 W1
(23) awokw = av awlkw = - K_w7
and
. Kyldo—1) a+1 _ 2 —1)o
(24) 6w07€w — _? |: KZ) + 2600 :|, awlkw - K(UT .

For we Q and neZ,, we define
0 o )—l/a—n
Loy o= cosh(orc,x) — dx.
o= | (eoshtom,) — 59
Then it follows from [14, Lemmas A.l and A.2] that
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o)
(25) aw 00,0 = =5 %,0 — 375 %, 0
0V, Kg) ; 4 61)3/2
%)
(26) awl 00,0 = ! O(0 w 2 \/— o1,
) (2 + o)w? + dowy
(27) Oy 1,00 = *mfxo,w - Zonch, %1, s
2,/ 20+ 1w
(28) awlal w :—zoao,w""(aiz)lfxl,w'
w O.KU)
By [14, Lemma A.3] and (2), we obtain
K Ko 2 0, d(®)

(29)  05,d(w) =

2 K
(2601 - 8(0 - 1)600)0((),(0 - a)_okwwlal’w = TO’

(30) 0y Oy d () = —4K (/001 (2 — G20, 0 + 2K K201 0y = Orny Oy d ().
By differentiating (29) with respect to w; (j =0,1), we have

(Bl)  wd,, d(w) = du,0, d(w) — 0, d(w), 0 d(®) = wod} du,d(w).
On the other hand, by differentiating (30), it follows from (23)—(28) that
20)1’&)“0 ®
oK\ Jay

Kwal,w

(32) 07, 0w d(w) = [4(30 —2)(2 — o)y — (g — 1)i?]

o [4(2 - 0)wy — 20’6()12 —(o+ I)K(i},

(33) O 02 d(w) = HOko0.0 [~(36 = 2)(2 — o)} + (o — 1)%2)

(0]
0~ O'KZ,

2(30 — 2)w1Ku, 0

o
Let wy = 2z9,/@o. Then by det[d”(w)] =0 and (29), we have
(34) (OO d())* = 05, d()23, d(@) = wo(05,d())*.

Let
é = (505 él) = (_O)Oaiod(w)v awoa(uld(w))~

Then & is an eigenvector of d”(w) corresponding to the zero eigenvalue.

LemMA 10. Let w1 = 2zp/wy.

“ If 0uy0d(w) = — /@00y, d(w), then
d3
di? -0 e

dw+7E)| = wd(0),d(®))’ 48,05 d(w) — 4/wods, dud(w) + 05, d(w)).
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* If Ouy00d(w) = /@00, d(w), then
3

@+ 0| = (0, d(0)* [ 400002, d(0) + 4000 00y d(@) + 0 d(0)],

Proof. By (31) and (34), we have

(@) = =03 (05, d()) 00y 07, d (@) + 3 (25, d(0))*,
éo‘flaazmawld(w) - ( o ( )) awoawld(w)afioawld(w)a
E0&T0un 0, d() = —2 (0, d())* — w3 (0 d ()8}, d(w),
%as)l (w) ( ( )) awoawld(w)aioawld(w)'
These imply that
3
T+ i8)| =800, d(0) + 3G 2 d(®) + 3aE 0,2, d() + &2}, d(w)
7=0
= (05, d(©))*[~407, d()0,,05, d()
+ 4003y 00, d() 7, 0oy d () + (02, d())].
Then we obtain the conclusion. O

Proof of Lemma 1. Let w; = 2z9\/@. Then by (29), (30), (32) and (33),
we have

62 d(®) = 8Ky/wo, w( — 0+ 1) — 8Ky /wot1, 20(1 —zé)7

Oy Oy d () = —8K 00000, ,20(2 — 0) + 8K w001, oo (1 — Zg),
A 4\/w0’€wo{0,w
Qo O3y, () = =522 [~ (30 — 2)(2 — )25 + (0 — 1)*(1 = 57)]
a(l —z5)
N 4, /w0K 01,0 (30 — 2)zo
T )
420K 000, 0
Oenlon (@) = 253 (30 = D)2 = 0) = (o = (1 = =)
0
4Kw&(—azé + zg —20+1),
If 0w 00 d(w) = —w'/?0,, d(w), we have —(1 —zo — 0)og,, = (1 — z3)at1,,.  This

implies that

—400, 0, d () — 4/w00;, 00, d(@) + 0, d(w) = 8/WoRuot0,u(0 — 1)(1 = z9) # 0.
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Similarly, if 0,,00,d(w) = w]/zaiod(w), we obtain

—400, 0, d() + 4/00;, 00, d() + 8, d(w) = —8+/@0Ret0,0 (0 — 1)(1 4 z9) # 0.

3

By Lemma 10, we conclude %d(w—i—léﬂ =0 7 0. O
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