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WELL-POSEDNESS AND DECAY PROPERTY FOR THE
GENERALIZED DAMPED BOUSSINESQ EQUATION
WITH DOUBLE ROTATIONAL INERTIA
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Abstract

In this paper, we investigate the initial value problem (IVP henceforth) associated
with the generalized damped Boussinesq equation with double rotational inertia

Uy + yAzu,, — aluy, — 2bAu, — aAu +[fA2u —Au=Af(u), xeR", 1>0,
u(x,0) =up(x), u(x,0)=u(x), xeR"

Based on decay estimates of solutions to the corresponding linear equation, we establish

the decay estimates and the pointwise estimates by using Fourier transform. Under

small condition on the initial data, we obtain the existence and asymptotic behavior of

global solutions in the corresponding Sobolev spaces by time weighted norms technique

and the contraction mapping principle.

1. Introduction

We study the Cauchy problem of the generalized damped Boussinesq equa-
tion with double rotational inertia in n space dimensions

(L.1) Uy + yAzut, — alAuy; — 2bAu, — oA u
+ BA*u — Au= Af(u), xeR" >0,
(1.2) u(x,0) =up(x), u(x,0)=u(x), xeR".
Here u = u(x, ) is the unknown function of x = (xy,...,x,) e R" and 1 > 0, 7, q,

b, a, f, are positive constants. f(u) is the given nonlinear function, A%u, and
Auy, are the rotational inertia.
The first initial boundary value problem for

(1.3) uy — aluy — 2bAu, — oA u +/)’A2u —Au = yA(uz)
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in a unit circle was investigated in [28], where a, b, o, f are positive constants
and y is a constant. The existence and the uniqueness of strong solution was
established and the solutions were constructed in the form of series in the small
parameter present in the initial conditions. The long-time asymptotic was also
obtained in the explicit form. In [7], the authors investigated the IVP for
Eq. (1.3) in the unit ball B C R?, similar results were established. It is well-
known that the equation Eq. (1.3) is closely contacted with many wave equations.
For example, the equation (which we call the Bq equation)

Uy — Uxx + Uxxxx = (uz)xxa

which was derived by Boussinesq in 1872 [1] to describe the propagation of long
waves with small amplitude on the surface of shallow water. The improved Bq
equation (which we call IBq equation) is

Uy — Uxx — Uxxt = (uz)xx'
A modification of the IBq equation analogous of the MKdV equation yields
Uy — Uxx — Uxxit = (u3)xx7

which we call the IMBq equation (see [8]). In 1-D space, the Cauchy problem
for the generalized Boussinesq-type equation has been extensively studied from
different views. Lai and Wu [6] studied the generalized Boussinesq-type equation

Uy — Uy — AUy — 2DUs + Cllyry + pu2 = (u3) xe Rl, t>0.

xXx?

They established the global well-posedness in a Sobolov space with a small initial
data by means of Fourier transform and the perturbation theory. Wang, Mu
and Wu [21] employed the scattering theory to study the long-time behavior of
small solutions for the generalized Boussinesq-type equation

Uy — Uyy + Uxxxx — Uxxnt + AUxxxxtt = (f(u))xxv X € R1> t> 0

Polat and Ertas [9], Polat and Piskin [10] studied the local and global existence,
asymptotic behavior and blow up of solutions for

uy — Au+ A*u— Auy — kAu, = Af (1), xeR", t>0.

Recently, Shen et al. [12] considered the Cauchy problem for the following 1-D
nonlinear wave equation of sixth order

Upt + Usxxx T Unxxxrr — Qlyx = f(ux)x; X € R7 > 07
u(x,0) = u(x), w(x,0) =u(x), xeR.

They investigated the Cauchy problem of solutions for a class of sixth order 1-D

nonlinear wave equations at high initial energy level. By introducing a new

stable set They obtained the result that certain solutions with arbitrarily positive

initial energy exist globally. Wang and Xue [19] studied the following Cauchy

problem for the generalized Boussinesq equation (1-D case):

Uyt + Olhyxxx — Uxxer + Unxxxrr — Uxx = f(u)xx; X € R, > 07
H(X7 O) = uo(X), MI(X, 0) =Uup (X), X € R7
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where f(u) =u? (p>1). They established the existence and uniqueness of the
solution and proved the global existence and finite time blowup of the solution
to the problem by the potential well method. Quite recently, Chen and Han [4]
studied the Cauchy problem for a non-linear wave equation

Uy — Qlyxy — Uy = g(u) —ag(u),,, XxeR, >0,
u(x,0) =up(x), wu(x,0)=ui(x), xeR,

and they proved that the Cauchy problem has a unique global generalized
solutions in C?([0,00); H*(R) (s >1 is a real number) and a unique global
classical solution in C?([0,0); H*(R) (s >3). They also proved that the Cauchy
problem admits a unique global generalized solution in C2([0, c0); W™?(R) N
L*(R) (m >0 is an integer, 1 < p < o0) and a unique global classical solution in
C*([0,0); W™P(R) N L*(R) (m>2+1).

As for coupled IMBq equations, Wang and Li [20] considered the Cauchy
problem for the following two coupled IMBq equations

Uy — 0P Uy = S(u,v),,, xeR, >0,
Vit — P = g(u, 0., XeR, >0,
u(x,0) = up(x), u(x,0)=u;(x), xeR,
v(x,0) = vo(x), ©v(x,0)=0v1(x), xeR,

and they proved that, under the assumptions for non-linear terms and initial data,
the existence and uniqueness of the global solution and esablished sufficient
conditions of blow-up of the solution in finite time by convex methods. This
supplements and improves some results by Dé Godefroy [5].

For the space demension n=1,2,3 it is worth mentioning that Varlamov
[13-17] investigated the local well-posedness and the long-time decay of the
Cauchy problem of the generalized Boussinesq-type equation

y — 2bAu; + oA’u — Au= BA(u?), xeR" (n=1,2,3),1>0.

We observe that Eq. (1.1) is a higher order wave equation. In higher dimen-
sional space case, Wang and Chen [18] [23] considered the existence, both locally
and globally in time, and nonexistence of solutions, and the global existence of
small amplitude solutions, and scattering result for the Cauchy problem of the
multidimensional generalized IMBq equation

Uy — Auy — Au=Af(u), xeR", 1>0.

Posteriorly, by employing Besov spaces, some results of [23] were improved by
Cho and Ozawa in [2-3]. Recently, Wang and Xu [24] studied the Cauchy
problem for the generalized 1Bq equation with hydrodynamical damped term

u;,—Au;,—Au—VAutZAf(u), xeRn, Z>O

They established the optimal decay estimates of solutions under the additional
regularity assumption on the initial data. Under smallness condition on the
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initial data, we proved the global existence and decay of the small amplitude
solution in the Sobolev space. Later on, Wang and Da [25] improved some
results of [2-3] [18] [23-24]. More precisely, they investigated the IVP associated
with the generalized damped Boussinesq equation with double dispersion

uy — Auy — bAu, + A’u — aAu = Af (u), xeR", 1> 0.

Based on decay estimates of solutions to the corresponding linear equation, they
established the decay estimates and the pointwise estimates by using Fourier
transform and multiplier method. Under small condition on the initial data,
they obtained the existence and asymptotic behavior of global solutions in the
corresponding Sobolev spaces by time weighted norms technique and the con-
traction mapping principle. Recently, in the case of y=1, a=1, =0, a =0
and f =1 in (1.1), Xia and Yuan [26] considered the following Cauchy problem
of a Boussinesq type equation of sixth order

(1.4) i + Ay — Ay + PA*u — Au= Af (1), xeR" t>0.

They investigated the existence and uniqueness of the global small solution to
(1.4) and (1.2) as well as the small data scattering result to the Cauchy problem
for a Boussinesq type equation of (1.4) and (1.2) with the nonlinear term f(u)
behaving as u” (p>1) as u—0 in R" (n>=1). The main method and
techniques used in their paper are the Littlewood-Paley dyadic decomposition,
the stationary phase estimate and some properties of Bessel function. Quite
recently, Piskin and Polat [11] considered the Cauchy problem of the generalized

multidimensional Boussinesg-type equation with a damping term
1) uy 4+ Nuy — Ay — kAu; + A*u — Au= Af(u), xeR", >0,
’ u(x,0) = uo(x), u(x,0) =wm(x), xeR”",

and obtained the existence, both locally and globally in time, the global non-
existence, and the asymptotic behavior of solutions for (1.5).

The main purpose of this paper is to establish global existence and asy-
mptotic behavior of solutions to (1.1) and (1.2) by using the contraction mapp-
ing principle. Firstly, we consider the decay property of the following linear
equation

(1.6) Uy — yAzu,, — aluy, — 2bAu, — oA u —|—[)’A2u —Au=0.

Then we obtain the following decay estimate of solutions to (1.5) associated with
initial condition (1.2),

—n/4—k/2—1/2
(L7) fofu@)ll < €O+ 0™ 22 lug ) g + flaull o + ol e + e[,
(k <s5+2),
—n/4—h/2—
(1.8) [ (®)]l2 < CQU+ 027 (uo | g + | g2 + ol ez + laaall ),
(h<ys).
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Based on the estimates (1.7) and (1.8), we establish global existence and decay
estimates of solutions to (1.1) and (1.2) by using time weighted norm technique
and the contraction mapping principle. This result improves earlier ones in the
literature, such as [9] [19] [25].

To facilitate further on our analysis, we present some notations which will be
used throughout in our contribution. Let % [u] denote the Fourier transform of
u defined by

(&) =7 = J e~ u(x) dx,
and we denote its inverse transform by Z .

For 1 <p<oo, L? = LP(R") denotes the usual Lebesgue space with the
norm |- ||, ,. Recall that Jy=(I—A)*? and I, = (—A)*"* are said to be the
Bessel and the Riesz potentials, respectively. Assume that 1 < p < o0, —00 <
s < 0. The usual Sobolev space of s is defined by H; = (I — A) -s/ 2L1’ (Bessel
potential spaces) with the norm | f]| Hy = =||(I - A)Y/zf I, »; the homogeneous
Sobolev space of s is defined by H y (—A) S2pp (Riesz potential spaces) with
the norm || f]| 4. = |(— )“/2f||L,,; espemally H°® = Hj, H* = Hj. Moreover, we
know that H; = LN Hps for s > 0. More details are present in the Wang’s et al.
book [22].

We use A ~ B using the statement that 4 < C;B and B < C;4 for some

1
constant C; >0, use 4 <« B to denote the statement that 4 < — B for some
2

large enough constant C, > 0. We denote every positive constant by the same
symbol C or ¢ without confusion. [] is the Gauss symbol.

The rest of the paper is organized as follows. In section 2, we establish the
pointwise estimates of the solutions. Then, in Section 3, we discuss the linear
problem and show the decay estimates. Finally, we prove global existence
and asymptotic behavior of solutions for the Cauchy problem (1.1) and (1.2) in
Section 5.

2. Pointwise estimates of the solutions

The aim of this section is to establish the pointwise estimates of the
solutions. Before proceeding to our analysis, we obtain the solution formula
for the Cauchy problem (1.1) and (1.2).

We first investigate the linear equation (1.4). Taking the Fourier transform,
we have

@1 (U4 ale + 718 i + 26[¢1 %0, + (1] + Biel* + 1EP)a =
The corresponding initial value are

(2.2) t=0: a=a(&), iy =i
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The characteristic equation of (2.1) is

(2.3) (1+alel® +91¢1)2% + 21¢1°A + ] + pIEl* + 1¢]* = 0.

Let 2= 14(¢) be the corresponding eigenvalues of (2.3), we obtain

(2.4)

44(&)

bl e 1 (@ BB — (a4 )| — (an+ B)IEL° — ol
- L+alel” +9le* ‘

The solution to the problem (2.1) and (2.2) is given in the form

(2.5) (g, 1) = G(&, )i (&) + H(E, Dt (&),
where
A(E ) = ! oA (O _ (O
20 e @ :
and
(2.7) H(¢t) = ! (G (E)e™ O — 4_(&)e+ ),

IR GG

By the Duhamel principle and (2.5), we obtain the solution formula to (2.1) and
(2.2),

(2.8) u(t) =G(t) xuy + H(t) xup + J; G(t —7) % (I — ah + yA*) ' Af (u)(z) dr.
where
G(xa t) = 9—;71[6(5’ Z)](X), H(xa t) =7 [FI(‘/:? I)](X)

Next, we shall establish the pointwise estimates of the solutions.

LemmA 2.1.  The solution of problem (2.1) and (2.2) satisfies

(2.9) EP L+ 17 + 18 acg, 0 + a1
< CemPOIEP (1 + &7 + &) iao ()] + | ()],
12

for £eR" and t >0, where p({) = ————.
L+ e + e

Proof. Multiplying (2.1) by & and taking the real part yields

d
{1+ alel? +91E )l + (1) + pIel* + €17 al®} + 261¢% il = .

(210) 54
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Multiplying (2.1) by @ and taking the real part, we obtain

1d ) .z
Q1) 5 S BIENA + 201+ alel” +518)") Re(iui)}
+ (2l + IE + 1E)al® — (14 alé) + el ] = o.
Multiplying both sides of (2.10) and (2.11) by (1 +a|é|* + y|£*) and b|¢|?
respectively, summing up the products yields

d
2.12 —E+F=
(2.12) GETF=0,

where
1
E=§U+ﬂKV+ﬂﬂ5Wf+%1+am2+ﬂ65WKf+ﬂm4+KVWW

+ 0@l + bIE (1 + ale® +91¢)*) Re(an)
and

F = BE (@] + Blel* + 1€1%)1al” + BIEI* (1 + ale]® + yle )],
A simple computation implies that
(2.13) E ~ (1+al¢]* +71¢]*) o,
where

Ey = P (1+ €7 + el + fa.

Note that F 2 c|é|*Ep. It follows from (2.13) that

(2.14) F2p(Q)E
where
4
H=— B
M = e e

By (2.12) and (2.14), we get

d

—F E<0.
G ETwQE <

Thus E(&, 1) < e~ ©IE(¢,0), which together with (2.13) proves the desired esti-
mates (2.9). Then the proof is complete.

LeMMA 2.2. Let G(&,1) and H(E,1) be the fundamental solution of (2.5) in
the Fourier space, which are given in (2.6) and (2.7), respectively. Then we have
the estimates

(2.15) P+ 16+ EIGE D + G (& 1) < Cemrtor
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and

(2.16) [EP(L+ &7 + [E[MHE D + HAE DI < CLEPA+ 7 + €] He
; ¢’

for £eR" and t >0, where p(&) :1+§||2|+|f|4.

Proof. 1If 4p(¢&) =0, from (2.5), we have
(&, 0) = GE D (&), (&, 1) = Gi(& i (E).

Substituting the equalities into (2.9) with #y(&) = 0, we obtain (2.15). In what
follows, we consider #;(&) =0, it follows from (2.5) that

a(& 1) = H(E 0ig(¢), (¢, 1) = H (&, )iy (&).

Substituting the equalities into (2.9) with #;(¢) =0, we obtain the desired esti-
mate (2.16). The Lemma is proved.

Lemma 2.3. Let k>0 and 1 < p <2. Then we have
(2.17) 105 G(1) * 2 < C(1 4 ¢)~ WP IR gy
+ Ce |0 D¢ .2,
(2.18) IO H (1) * pll 2 < C(14 1)~ IRV gy
+ Ce™ |0k .2
(2.19) 165G, (1) % §ll 2 < C(1 4 1) 2PV gy
+ Ce ™ "||0kg]l 2,
(2.20) IO H (1) * Bl 2 < C(1 4 ) WA g
+ Ce |04,
(221)  [0EG(1) + (I — ah + yA*) ' Ag|| 2 < C(1 4 1) KD g
+ Ce™"[|0Xg]| .2,
(2.22) 10X Gi(1) * (I — aA) "' Ag]l 2 < C(1+ 1) "+ )|
+ Ce™"||0kgll 2,
where (k —2), = max{0,k —2}.

Proof. Firstly, we prove (2.17). We divide the integral into two parts
corresponding to the low frequency region |&| < 1 and the high frequency region
|£] 2 1. Using Plancherel’s identity [22] and (2.15), we obtain
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(223)  07G(0) * 4z
= Lq HR{EOIRGE dé+J PG DI de

[¢[=1

= CJ e (&) ae
[t

+Ce“’J PP+ [ + 1) (o)) de

[€[=1

1/q
=<l |érl¢A(f)||iﬁ’ (Jqu |§|(2k72+21)‘1e*cq|5\2t df)
¢s

+ Ce [ 0f 2 g1,
1 1 2 1 . .
where —+— =1, — +-=1. It follows from Hausdorff-Young inequality [2]
that V4 V4 V4 q

(2.24) HE ) < Cl=8) "]l -

By the inequality

J |é|k€—c\é\zz dé < (1 + l)f(k+n)/2) Vi > 0,
[¢[<o

sup [¢ffe I dE < (14072 Vi >0,

0<|é|<o

in [18, pp. 1184], we obtain

1/4
(2.25) <J || 222004 p—cqlél’s df) < C(1 + 1)~ (n/ark=1+])
€51

< C(1+ t)*(”(l/ﬂfl/2)+k—1+1).

Combining (2.23), (2.24) and (2.25) yields (2.17).
Similarly, using (2.15) and (2.16), respectively, we can prove (2.18)—(2.20).
Next, we prove (2.21). By the Plancherel theorem, (2.15) and Hausdorfi-

Young inequality, we have
10XG(1) = (I — ah + yAZ)*lAgniz

= | _ PG Pt 1P 9 g a

¢lst

J &P+ 1P +16) 9O de
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SCj} Jaﬁ“eﬂ“wmﬁfdf+cawj 152 de

[¢[=1

~ —cl¢]? —c
< CUENE. | 1P e e+ coeatyl,
NS

< C(1+ o)~ g7, + Ceme!||o%g] 7.

Thus (2.21) follows. Similarly, we can prove (2.22). Thus we have completed
the proof of Lemma 2.3.

3. Decay estimates for solutions to the linear equation

TueoREM 3.1 Assume that uye H*7*(R") N H{'(R"), u; e H'(R")N
H2(R") (sz g +5). Then the classical solution u(x,t) to (1.4) associated

with initial data (1.2), satisfies the decay estimates
N —njd—k/2—1/2
(3.1) ofu@llz: < 1+ 0" 22 luo g + llauall o+ Ntoll e + e [
for k <s+2,
—n/4—h/2—1
(3.2) [u(®)llz2 < L+ 07" (luoll g + llen [l g2 + ol gz + Nl r)
for h <s,
—n/2—-m/2-1/2
(3.3) a0u()ll < U+ 02 ol o+ g2 + ol s + o)

formgerlE}

Proof. Firstly, we prove (3.1). It follows from (2.17) and (2.18) that

lo5u(0)l 2 < 195 G(0) * url| 2 + 197H (1) ol .-

7}1/471{/271/2“

s+ ol + lleerll =) + € (ol vz + [loar [l )

—nj4—k/2—1/2 (

< (141) ool o+ el 2 + ool g + el

Similar to the proof of (3.1), using (2.19) and (2.20), we obtain (3.2). Next,
we prove (3.3). Using (3.1) and Gagliardo-Nirenberg inequality [22], it is not
difficult to get (3.3). Hence, we omit the procedure here. The Lemma is
complete.

4. Existence of global solution and asymptotic behavior

In this section, we prove the existence and asymptotic behavior of global
solutions to the Cauchy problem (1.1) and (1.2). Before going to our main
result, we need the following technical Lemma.
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LemMa 4.1 [27].  Let s and 0 be positive integers, 5 > 0, p,q,r € [1, 0] satisfy

%Z%ﬁ-;, and let ke{0,1,2,...,s}. Assume that F(v) is a class of C* and
satisfies

0!F(0)] < Crolo]™™, <o, 0<I<s I<0+1
and

|0lF()| < Crs, 0] <0,1<s,0+1<1.

Ifve LPNWhINL* and |v||;. <9, then

0-1
1E@)wer < Callollyralloll o llollz="
: 0-1
10:F W)l < Crallogollpollollollollz= ol < k.

LemmA 4.2 [27].  Let s and 6 be positive integers, 6 > 0, p,q,r € [1, 0] satisfy
;Z%-i-;, and let ke {0,1,2,...,s}. Let F(v) be a function that satisfies the
assumptions of Lemma 4.1.  Moreover, assume that

(03F (v1) = 03F (v2)] < ColJun] + [o2) ™Moy — o, [or] <6, o] <0
If vi,vue LPNWHRINL* and ||v1]|;. <9, ||va]lp <, then for |u| <k, we have

103 (F (v1) = F(v2)ll .-
< Ceof (10501l Lo + 10502l o) [[or = 02l s
+ (ol o + loall ) 103 (01 = o)l ool e + oallp)

Based on the estimates (3.1)—(3.3) of solutions to (1.4) with respect to initial

data (1.2), we define the following Banach space
X = {ue C([0,00); H***(R")) N C1([0, c0); H*(R")) : [Jull x < o0},
where the time weighted norm

lull y = sup{ ST PR g () + Y (1 r>”/“+’”2“||a_’:uz<r>||u},

120 | <512 h<s

For R>0, we define Xg={ueX:|ully <R}. For m<s+1— [ﬂ, using
Gagliardo-Nirenberg inequality, we get

(4.1) 0mu(t)|| . < C(1+ £)~ 22y

We now are position to state the main results.
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THEOREM 4.3, Assume that uoe H*P2(R")N HY(R"), u; e H'(R")N
H%(R") (s > E] + 5) and integer 0 > 2. Let f(u) be a function of class C**2
and satisfy Lemmas 4.1 and 4.2. Let
Ey = |luoll g+ + ]l g2 + ol oz + ear | -

If Ey is suitably small, the Cauchy problem (1.1) and (1.2) has a unique global
classical solution u(x,t) satisfying u € C([0, 00); H**2(R™)), u, € C([0, 0); H*(R™)),
uy € L7 ([0, 00); H2(R")).  Moreover, the solution satisfies the decay estimate

(4.2) [0%u(t)]| 2 < Eo(1 + 1) 44212,
(4.3) 1080 (1) 12 S Eo(1 4 1)+

for k<s+2 and h <s.

Proof. Let us define the nonlinear mapping

(44) Ow)=G(t) «u + H(t) *up + J; G(t — 1) (I — ah + yA*) "' Af (u(7)) dx.

From (2.17), (2.18), (2.21), Lemma 4.1 and (4.1), for k < s+ 2, we conclude
105 @)l
< ClIOEG(1) w2 + ClOTH (1) % uo

LZ
+ CJI 105G (1 — 1) * (I — aA + yA*) ' Af (u(2)) | > dt
0

—n/4—k/2—-1/2 -
< C(L+ 0P (g oo+ | ) + Ce (o]l g + oaal| )

t/2

+C| (41— 22 )|, de
0

t

+C| Q4= V0 )|, dr
/2

t

+C | e o )l dr
0

—n/4—k/2—1/2 —
< CO+0) " P2 g g + Ml | 2) + Ce(futo | ez + [l )

t/2

—n/d4—k/2—1/2 2 0—1

+ch (L4 1 — 7)1 2 2, 1 91 e
t t

4 cj/za 1= 1) 2k 2 ) 5 de + cjoe*c<H>||afu|\u|\u||$ dr
t
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—nfd—k/2—1/)2 —c
< COU+ 072 g+ o) + Cem (ol e + [ 1)

2
+CRO+1 t/ (1+I_T)7n/47k/271/2(1+ ) n/2+1)(1_~_T)7(n/2+1/2)(071) dT

+CRH+1 (1+l__£_)7n/471/2(1+T)7n/27k71(1+T)7(}’l/2+1/2)(071) dr

_|_CR9+1 efc(tf‘r)(l_|_T)—n/4—k/2—]/2(1+T)—(n/2+1/2)0 dr
0

—n/d4—k/2—1/2
< CO+0) "M g+ ol + ol + ) + RS,

Thus
(4.5) (14 0)" 22 08D (u)| 12 < CEg + CR™!.
It follows from (4.4) that
(4.6) D(u), = Gi(t) xuy + H,(1) * ug
+ J; Gi(t — 1) % (I — al +yA?) 'Af (u(z)) dr
Using (2.18)—(2.20), (2.22), Lemma 4.1 and (4.1), for h <s, we arrive at

170 (w), I
< ClIOYGHD) * i 2 + COH (1) * ol -

t
+C| 108Gt — 1) * (I — aA + yAY) ' Af (u(2)) |2 dt
0

—n/A—h/2—1 -
< C(1+0) "W (luoll g1 + Nurll =) + Ce™ (ol v + Nluer |l )

t/2
+C| A=) F W), de
0
t t
+C| Q- ot f ), dr+ CJ e~ INatf(w)| 2 dr
1/2 0

< C(L+ 07" 2 (luo | v+ N[l g=) + Ce™ (a2 + |1 415)
+cj &) A 2l 0 e

P t
+cJ - ”“wﬁwywnlw+CJ Il ull - de
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—n/4—h/2—1 -
< C(L+ 07" M2 luo | v + [l g2) + Ce™(lull vz + [l [ 5)

2
1 RV g (1_'_t_l_)fn/4fh/27l(1+T>—(n/2+1)(1+T)7(n/2+1/2)((1—1) dt
0

t
+CR9+1 /2(1+Z_T)_n/4_l(1+T)_”/2_h_1(1+T)_(n/2+1/2)(0_1) dT
1
+CRO+1 1870(17.[)(1+T)7n/47h/271(1+T)7(n/2+1/2>0 dr
0

—n/4—h/2—1 0+1
< C(L+ 07" R Yol oo+ e[l = + ol govn + e ) + R7'Y.

Thus

(4.7) (1+ 0" 05 D) ||, < CEy + CR,

Taking Ey and R suitably small and combining (4.5) and (4.7), we get
(48) [l < R

For u,v e Xg, by using (4.4), we obtain

(4.9) D(u) — d(v) = JI G(1—1) % (I —ah + yA>) ' Alf (u) — f(v)] dx.
0
Using (4.9), (2.21) and Lemma 4.2 and (4.1), for k < s+ 2, we obtain

(
105 (1) — @(v))]] .

< [ ket = -t +58%) AL~ SO d

/2 —n/d—k/2—1/2
SCJO (I+t1—-1) 0/ () = F ()l dr

+ cj (41— o) 2k f () — ()]l de
t/2

+ Cre“”)llaf[f(u) = SOz d

t/2
< cj (Ut 1= )M 22l ] ) e — ol
0—-1
 ([ull o+ Nloll ) de
t
+ cj/za 1t =) V(05 + 0kul o) Ju - o)
t

+ (lull g2+ oll ) 105 e = )l 2} (a2 + Noll )" de
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t
—c(t— ~k k
+ CLE L0l 2+ 105wl )t = vl
k 0—-1
+ (Jull e+ NJoll )03 (= o)l 23 (el e A [loll )™ dT

t/2
< CRJu— UHXJ (1 £ = 7) AP g ) ~241720 g
0
t

+ CRHHM _ UHXJ (1 +r— T)—n/4—l/2(1 + T)—((H/Z)(;1+l)+(k+l)/2) dr
/2

N CCRUH[, B a”X Jr efc(tff)(l i T),(n/4+(n/2)0+k/2+1/2) dr
0

< CRO(L+ o) "2 P2 — )
which implies

(4.10) (140" 2208 (@ () = D(0)) 2 < CRJu— vl .
Similarly for h <s, from (4.6), (2.22) and (4.1), we have

103 (@ (u) = D)l > < JO 103Gi(t =) % (I — aA +yA*) T ALf (u) = f) 12 de

/2
scL (41— )" 20 (r) — f(0)llps d

+cj<ru—o”WW%uw—f@mum

+chmﬂwﬂﬂw—fwMMdr

< CRV(1 4 1) 42y — o,
which implies
(4.11) (14 0)" 2 a1 (@ () — P (), ]| 2 < CRY | — o] -

Taking R suitably small and using (4.10), (4.11), we obtain
1
(4.12) 1) = ()l < 5 llu— vlly-
It follows (4.8) and (4.12) that @ is strictly contracting mapping. Consequently,
we conclude that there exists a fixed point u € X of the mapping ®@, which is a

classical solution to IVP (1.1) and (1.2). This completes the proof.
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