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Abstract

Generalized trigonometric functions are applied to Legendre’s form of complete
elliptic integrals, and a new form of the generalized complete elliptic integrals of the
Borweins is presented. According to the form, it can be easily shown that these
integrals have similar properties to the classical ones. In particular, it is possible to
establish a computation formula of the generalized n in terms of the arithmetic-
geometric mean, in the classical way as the Gauss-Legendre algorithm for 7 by Brent
and Salamin. Moreover, an elementary alternative proof of Ramanujan’s cubic trans-
formation is also given.

1. Introduction

Complete elliptic integrals of the first kind and of the second kind

/2 do 1 dt
“0 =, e v

n/2 1 1 — k22
E(k):J V1 k2 sinzﬁdﬁzj SR
0 oV 1—1¢2

are classical integrals which have helped us, for instance, to evaluate the length of
curves and to express exact solutions of differential equations.

In this paper we give a generalization of complete elliptic integrals as
an application of generalized trigonometric functions. For this, we need the
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generalized sine function sin, ¢ and the generalized = denoted by 7,, where sin,
is the inverse function of
O dr
sin, ! 0;:J —7, 0=0<1,
o(1—e)'r

and 7, is the number defined by

1
dt 2n
P
mp == 2 sin, 1:2J NV
0(1—1e) psin

Clearly, siny @ = sin 0 and n; = n. These two appear in the eigenvalue problem
of one-dimensional p-Laplacian:

—(|u'|"2u") = Au)”u,  u(0) = u(1) = 0.

Indeed, the eigenvalues are given as 4, = (p — 1)(nz,)”, n=1,2,3,..., and the
corresponding eigenfunction to 4, is u,(x) = sin,(nnm,x) for each n. There are
a lot of literature on generalized trigonometric functions and related functions.
See 9, 10, 14, 16, 18, 22, 23, 24, 25, 28] for general properties as functions; [13,
14, 15, 22, 26, 29] for applications to differential equations involving p-Laplacian;
[5, 10, 11, 16, 17, 22, 30] for basis properties for sequences of these functions.

Now, applying sin, 0 and 7, to the complete elliptic functions, we define
the complete p-elliptic integrals of the first kind K,(k) and of the second kind
E,(k): for pe(1,00) and k€[0,1)

/2 do ! dt
LD &) ::J 1 — kp sin? 0)' 7'/ :J L= )P (1 = kper) =107
0 (I —k?siny 0) 0 (1—) (1 = kper)

/2 | V1 — ke \/P
(12)  E,(k):= JO (1 -k sin? 0)'/7 do = L (ﬁ> dt

Here, each second equality of the definitions is obtained by setting sin, 0 = .
It is easy to see that for p =2 these integrals are equivalent to the classical
complete elliptic integrals K(k) and E(k).

It is worth pointing out that the Borweins [7, Section 5.5] define the gener-
alized complete elliptic integrals of the first and of the second kind by

n (1 1 2
(13) Ks(k) —§F<§—S,§+S,1,k>,
_T ! Lo
(14) Es(k) .—§F<—§—S7§+S7 17k >

for |s] <1/2 and 0 <k <1, where F(a,b;c;x) denotes the Gaussian hyper-
geometric function (see Section 2 for the definition). Note that Ky(k) = K(k)
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and Eg(k) = E(k). According to Euler’s integral representation (see [2, Theorem
2.2.1] or [33, p. 293]), we have

K (k) = o878 ! &
s(k) = 2s+1J (1— t2/(25+1))(25+1)/2(1 _ kztz/(zs+1))l—(2s+1)/23
B (k) — CO5 TS 1] 22/ st D2 B
i) = 25+ 1)\ 1= 2/CstD)

Thus

T T
Kylh) = K (k7). Ey(k) = T Ey (k7).
/4 P

where p =2/(2s+1). To show this, one may use Proposition 2.8 below instead
of integral representations. Anyway, we emphasize that the complete p-elliptic
integrals (1.1) and (1.2) give representations of generalized complete elliptic
integrals in Legendre’s form with generalized trigonometric functions. The
advantage of using the complete p-elliptic integrals lies in the fact that it is
possible to prove formulas of the generalized complete elliptic integrals simply
as well as that of the classical complete elliptic integrals. For example, we
have known the following Legendre relation between K(k) and E(k) (see [2, 7,
20, 33]).

(1.5) K'(k)E(k) + K(K)E'(k) = K()K'(k) =3,
where k' := V1 — k2, K'(k) :== K(k') and E'(k) := E(k’). For this we can show
the following relation between K,(k) and E,(k).

THEOREM 1.1. For ke (0,1)

(1.6) K, (k) Ep(k) + K, (k) E, (k) — Ky (k) K, (k) =

where k' := (1 —k?)'/?, K!(k) := K, (k') and E}(k) := E,(k").

In fact, it is known that K (k) and E,(k) also satisfy the similar relation
(2.17) below to (1.6), which follows from Elliott’s identity (2.18) below. In
contrast to this, our approach with generalized trigonometric functions seems to
be more elementary and self-contained.

As an application of complete p-elliptic integrals, we establish a computation
formula of m,. Let us first mention the case p =2. In that case, consider the
sequences {a,} and {b,} satisfying ay = a, by = b, where a > b > 0, and

a,+b
apy1 = n2 ”, by = ayb,, n=0,12,....
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It is easily checked that these sequences converge to a common limit, the
arithmetic-geometric mean of a and b, denoted by M (a,b). It is well-known that
on May 30th in 1799 Gauss discovered a celebrated relation between M (a,b) and
K (k) (precisely, a relation between M(1,v/2) and the lemniscate integral):

(17) K() =5 3

where k' = /1 — k2. Combining (1.5) and (1.7) with k = k' = 1/+/2, Brent [§]

and Salamin [27] independently established the following formula (see also [2, 7]
for the proof).

1 2
2M<1,_)
(18) = o \/z )
1 =32 2"(az = b3)
n=0

where the initial data of {a,} and {b,} are =1 and b = 1/y/2. This is known
as a fundamental formula to the Gauss-Legendre algorithm, or the Brent-Salamin
algorithm, for computing the value of 7.

Owing to (1.8), it is natural to try to establish a computation formula of 7,.
In addition we are interested in finding such an elementary way of its construc-
tion as Brent and Salamin.

In the present paper, we give the formula only for the case p=3. We
prepare notation for stating results. Let ¢ > b > 0, and assume that {a,} and
{b,} are sequences satisfying ap = a, by = b and

n 21’1 2 n“n 2 n
@+ 2by b,,+1=\3/(“"+”b hb 012

1.9 =
( ) Apt1 3 3 )
It is easy to see that both the sequences converge to the same limit as n — oo,
denoted by M3(a,b). Then, we obtain

THEOREM 1.2. Let 0 <k < 1. Then

where k' = /1 — k3.

Actually, Theorem 1.2 is identical to the result of the Borweins [6, Theorem
2.1 (b)] (with some trivial typos). In either proof, it is essential to show Ram-
anujan’s cubic transformation (Lemma 3.1 below). We will give an alternative
proof for this by more elementary calculation with properties of Kj(k).

By Theorems 1.1 and 1.2 we obtain the following formula of =;.
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TueorREM 1.3. Let a=1 and b=1/v/2. Then

1 2
M1, —
3( ﬁ)

1 =25 3%(a, + cu)en

n=1

where {a,} and {b,} are the sequences (1.9) and c, := /a} —b;.

3 =

)

By the theory of theta functions, the Borweins [6, Section 3] give three
iterations for 7. One of them is obtained from the same sequences as (1.9):

"2
[ (25
(1.10) =

1 - 23"“(615 —ap.,)
n=0
However, note that the initial data a =1 and b= ((v/3—1)/2)" of (1.10) is
different from our initial data ¢ =1 and b = 1/v/2.

It is a simple matter to obtain other formulas for 73 if we combine 73 =
4/371/9 =2.418 - -- with (1.8) or (1.10). The former converges quadratically to
73 and the latter does cubically. On the other hand, our formula in Theorem 1.3
converges cubically to n3 (Table 1). However, we are not interested in such
trivial formulas obtained from those of z, and it is not our purpose to study the
speed of convergence and we will not develop this point here.

25 digits Error

q1 | 2.418399152309345558425031 | 2.9449 x 10~12

g2 | 2.418399152312290467458771 | 4.0425 x 104

¢ | 2.418399152312290467458771 | 1.0367 x 107124

g4 | 2.418399152312290467458771 | 1.8728 x 10737

2 2

Dt

1=23"0 3% (ay + cn)en

Table 1. Convergence of g, to w3, where ¢, =

This paper is organized as follows. In Section 2 we have compiled some
basic facts of complete p-elliptic integrals. In particular we show Legendre’s
relation for K, (k) and E,(k) (Theorem 1.1) and observe relationship between the
complete p-elliptic integrals and the Gaussian hypergeometric functions (Theorem
1.2). Section 3 establishes a computation formula of 7, with p=3 as an
application of complete p-elliptic integrals (Theorem 1.3). In particular, we give
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an elementary proof of Ramanujan’s cubic transformation by using our repre-
sentation of integrals (Lemma 3.1).

2. Complete p-elliptic integrals

In this section, we present some basic properties of complete p-elliptic
integrals K,(k) and E,(k).

Let 1 < p < oo. We repeat the definition of complete p-elliptic integrals of
the first kind K, (k) and of the second kind E,(k): for ke[0,1),

/2 do ! dt
(L) K= [ |
o (1—krsinj 0) o (L—e)""(1—krtr)

/2 | 1 1 — kPP 1/p
(12)  Ey(k):= J (1K sin? 0)'7 do J (_ ) .
0 o\ 1—1¢

where sin, 0 and 7, have been defined in the Introduction. As is traditional,
we will use the notation k’:= (1 —k?)'””. The variable k is often called the
modulus, and k' is the complementary modulus. The complementary integrals
K)(k) and Ej(k) are defined by K(k) := K, (k') and E,(k) := E,(k').

Let cos, 0 := (1 —sin} 0) P The following formulas will be frequently used:

sin;’ 0+ cosy 0 =1,
d . d 1 1
%(smp 0) = cos, 0, %(cosp 0) =—(p—1)sin; 0.
If p =2 then sin, 0, cos, 0 and 7, coincide with the usual sin 0, cos 0 and 7,
respectively, so that these properties above are familiar.
The functions K,(k) and E,(k) satisfy a system of differential equations.
ProposITION 2.1.
dE, _E-K dkK, _E- (K")"K,
dk k7 dk k(k")?
Proof. Differentiating E,(k) we have
dEp w2 g Do o 1/p
%—JO %(l—k Slnp 9) do
an/Z —kr~1sin? 0
0 (1—krsin? 0)' """
Jﬂp/2 1 —k? sin,’,’ 0 1 an/z do
o (1—krsin? 0)' "'/ ko (1—krsin? 0)'~'/7

I =

(EF - Kp)-

x| =
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Next, for K,(k)

/2 (p — 1)kP~! sin? 0
o dK, _J (p—1) H

dk ) (1 —kr sinf 0)>'r
Here we see that
d < —coslljf1 0 >
o\ (1 — kr sin? 6)'~'/7
(p—1)sinf™" 0(1 — k? sin 0) — (p — 1)k” sin?~" 6 cos? 0

(1—kr sin? 0)>"'/7

(p—1)(k")? sin2~" 0

(1—krsin? 0)>'7

so that we use integration by parts as

/2 Jop—1 —cos?1 0
dK, —J e d < % >sin,, 0 do

dkJo (K7 dO\ (1 — ke sinf 0) 17
B Jop—1 —cos{j‘l 0 sin, 0 /2 N Jep—1 Jﬂn/Z cos} 0 40
) (1 =k sinz o) | (KD o (1~ ke sin? 0)' 71
_ 1 Jﬂpﬂl. 1 —k?sin) 0 — (1 — k7) 40
(K)"Jo kP (1 —kp sin? 0)' 717
1
= k(k/)P (Ep - (k/)pr)
This completes the proof. O

Proposition 2.1 now yields Theorem 1.1.

Proof of Theorem 1.1. We will differentiate the left-hand side of (1.6) and
apply Proposition 2.1.  As dk’/dk = —(k/k'")"~" we have

! ! ! ! ! !
K, k'K, —E, dE, K&

(22) dc — k() dk (k)7

Hence a direct computation shows that
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d
—(KE, + K,E, — K,K)

dk
kPK' — E' E,— K, E —(k’)”K
__~r P, E K/ .r P /4 P . E/
T L A A Y ¥/ T L
K —E E,— (k')’K k?’K' — E’
10 p Lp P gl ) 14 14
+KP k (k/)P k(k’)p Kp KP k(k')p

1 1 1 I / kl’*l 1 !
~ EE, <‘ kR k(k/)l’) + (KB — Ky Ey) ((k/)” e k(k’)”)

(L R L R
+KPKP( k+(k’)”+k (k’)‘”

=0.

Therefore the left-hand side of (1.6) is a constant C.
We will evaluate C as follows. It is easy to see that limy_, g KPEP’ =m,/2.
Moreover, since

7,/2 1
K, — E K’:J — (1 —kPsin? 0)'7 ) do
‘( P P) p| 0 <<1 _kr sin]f 9)1,1/], ( y4 )
Jﬂp/Z do
o (1— (k) sin? 0)'~'7
Jnﬁ/z kp sinl 6 J”ﬁ/z do
o (1 —krsinz o) 0 (cos) O+ kv sin? 6)'~'7
1 =
< kPK, (k) = 7”
Tp
= ka(k)?7

we obtain limy_o(K, — E,)K, =0. Thus, letting kK — +0 in the left-hand side
of (1.6), we conclude that C =m,/2. O

ProposITION 2.2, K, (k) and K, (k) satisfy

d i pdy _ o p—1
that is

d?y dy
_ PN _ _ PN _ p—1 _
k(1= k) S5+ (1= (p+ DR S = (p = DRy = 0.
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Moreover E,(k) and Ej(k) — K)(k) satisfy

d dy _
ne * ) 1
w0 (K5 ==k
that is
d? d
k(l—k”)%}szr(l—k”)d—iJrk”‘ly:O.

Proof. Let us first give proofs for K, and E,. Repeated application of
Proposition 2.1 and d(k')”/dk = —pk?~! enables us to see that

d

dk

(ke ) = B — W)

By~ K~ (~pk? Ky + L (B, - (07K

1
%( k
(

and

Similarly, it follows easily from (2.2) that K, satisfies
d 1AV dKP/ _ p—1 gt
2 (k(k ) )= (p— DKP K.
Set H)(k) := E,(k) — K, (k). Using (2.2) repeatedly, we have dH,/dk = E, /k and
d (N _dE, R
dik \ " dk dk (k)P
The proof is complete. O

. [Deltf)ine K, (k) and E;(k) as conjugates for K,(k) and E,(k) respectively: for
e |0,

7,/2 1
2 KW= | A
o (1—kpsin? )7 Jo (1 —e)"P(1 —krer)'?

Ty/2 1 (1 _ kplp)lfl/p
2.4 E*(k) := 1 —k? '1’91*1/%19:]—
e4) EW= | a-ksing0) TR
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It is clear that K; (k) = Kx(k) = K(k) and E;(k) = E»>(k) = E(k). The integral
K (k) appears in the study [29] for bifurcation problems of p-Laplacian. In [32],
K;(k) with ¢ replaced by ¢ is applied to the planar p-elastic problem.

Here are some elementary relations between the integrals we have introduced.
To state the relations, it is convenient to use the notation i, := ¢™” and for a
nonnegative number /

7, /2 1

(2.5) K, (ip0) = J " pd-g P NP J 1/17dZ P\ 1/p’
o (1+¢7sin} 0) 0 (L =) P(1+4¢P1p)
7,/2 l(l _|_/plp)lfl/p

(2.6)  El(ip) = J

(1+¢7sin? 0)'~'7 dg = J
0

o (1—w)'?

ProrosiTiION 2.3. Let 0 <k < 1. Then

28) Ky (171) = (p = DEy ),
29) B ) = (o= 0060 E; (i)
(2.10) Ep (k771) = Ey(K) + (p ~ 2)(K) Ky ().

where p* :=p/(p—1).

Proof. Let us first show (2.7) and (2.9). Setting 1 —#" =u” in each
integral, we have

! dt
2.11 K, (k! :J
( ) P ( ) 0 (l _Zp*)l/p*(l _kptp*)l—l/p*
! du
(p—1 J
(=1 0 (1 —ur) P (1 = kv + kpur)'/?
1 (. k
~ -0 (i)
and
1 _ Lot 1/p*
(2.12) E, (k") :J (1/”> d
o\ T —

(- 1)J1 (1 — kP + krur)'='/7
g o (1—ur)'?

=(p- (k)" E; (z,,k5>
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Next we will prove (2.8). Changing the variable as

4P — (1 —kP)e?
1 —krer’
in (2.11) we obtain
(1—kr)'77
1 1+1/p
(o (1 — krer)
KP*(k )_(p I)JO ) 1/p ) 1/p dt
(=) (=)
! dt
=(p-1
Y )Jo (1= 7)/P(1 — kpgr) =177
= (p = DK (k).

To deduce (2.10), we make use of the same change of variable above to
(2.12).

(l—kl’ 1-1/p

1 I/p

. 1 k!’ﬂ’> (1 — k)

E, (k" YY=(p-1

(R =1 )Jo L= \'P (1= kepgp)H1P
<1—k1’t1’)

oo (! dt
— (-0 | T

In the last integral, after setting ¢ = sin, 0, using (2.1) and Proposition 2.1 we
have

Jl dt _ J”p/z 4o
o (1=m)P(1—krr)> o (1= ko sing 0) 7

an/z do
o (1 —krsinf 0)!-r

/2 k? sin,’f 0
Jo (1 — ke sin? 0)>'77
k dK,
p—1 dk
1
(p—1)(K"”

:I<l7+

=K, + (Ep - (k/)pr>-
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Thus
B 07 = (0= 1) (Ko s (B~ ()
’ P nwy ’
=E,+(p—2)(k')’K,.
Therefore we conclude (2.10). O

From Proposition 2.3 it immediately follows

COROLLARY 2.4. Let 0 <k < 1. Then
1 (. k
Kp(k) = PKP <lp E),

£ = ) (0= 05 (i) - - 255 (1) )

For p =2, the identities of Corollary 2.4 are equivalent to:

K(k) = %K<i%>, E(k) = k’E<i§>,

which can be found in [21, Table 4, p. 319].
The next corollary means that pK, ( /YPy and E,(£'7) — (1 — £)K,(¢'/7) have
duality properties with respect to p.

COROLLARY 2.5. Let 0</ < 1. Then
(2.13) Py (017 = pKy(£'7),

214) B (/) = (1= DKy (1'7) = Ey(010) = (1 = D)y (¢117).

Proof. Putting k = /7 in (2.8) and multiplying it by p*, we obtain (2.13)
at once. To deduce (2.14), putting k =/'7 in (2.10) and using (2.13) we
have

By (/M) = (1= K (217

= E,(¢('") + (p = 2)(1 = O)K,('7) = (1 = £)(p = DK, (£'7)
— E,(0'7) = (1= O)K,(£'7).
Therefore we conclude (2.14). O

Letting 7/ = 0 in (2.13) we have p*zn,- = pm,, which was indicated in [10, 22].
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ProrosITION 2.6.

6(L)- ()

) (1w’
2 4pF<—> cos £
P 2p

1\ 1 1\
1 e (T ()
Er % N 1 cosl * sini ’
M(;) 2 2

where T is the gamma function.

Proof. Let k =1/3/2, then k' =1//2. By Corollary 2.4 we have
1 I o (! dt
Kp <p—\/§) = \/EKP (lp) = \/EJO m

I uttlng 1+ = X, weE Obtall’l

! 1

[t 5)- N

0(l—z¢> 94 _
ZpF(l Zp)

where B is the beta function. Since

1
(2.15) r<1 —> R — i :
p 1\ . = I\ . = v
F(—)sm— 2F(—>51n—cos—
P p P 2p 2p
1 T
216) f(l—z)zm’
2p 2p

the first formula in the proposition follows.
Similarly, Corollary 2.4 yields

E) (%) - éz«p = DE () = (2 = DK ().
Since

L ! P
E'i)=| ———dt=K"(i — dt,
14 (l]’) JO (1 . tzp)l/p y4 (lp) + JO (1 . t2p)l/p
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we have
5(g8) ~ga 0+ o0 )
(D) ()

B G R B
-P

2p

By (2.15), (2.16) and

3 1 T
r(——— -
2 2p) (1 1 '
wr(g) s,

the second formula in the proposition follows.
For p =2 Proposition 2.3 gives that
k(L) -T0L p(L) TSl
v2) Aym’ V2 8ym 7

See also [21, Section 13.8] and [33,

which can be found in [7, Theorem 1.7].

Section 22.8].
On account of Proposition 2.6, it is possible to show C = 7,/2 in the proof

of Theorem 1.1 in another way. Indeed, letting k =1/ V2 we have

1 1 1)’
€= (17@) & (”_\/i) 5 (%)
(\%ﬁlz r122r1+12 (\p/z)zrl“
2 ») P22 2%
2 T T . T - 2
(1> n cosz— sm2— 16 2l_(l) , T
16p2T°( — ) cos — — ) cos? —
’ P 2p P P P P 2p
N2 /1 1V
U — ) —+=
(v2) (217) <2p+2>
4pl"<l>2sin7Z
P P

— 2
22/p2(\/;g):@

21/1771

N
psin —
p
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where we have used the duplication formula

2z—1

r(2z)= N F(z)l"(z—&-%)
with z =1/(2p).

The remainder of this section will be devoted to the study of relation
between complete p-elliptic integrals and hypergeometric series.
For a real number ¢ and a natural number n, we define

@ =

=(a+n—1)(a+n—-2)---(a+ 1a.

We adopt the convention that («),:=1. For |x| <1 the series

F(a7b§ (& X) = i <a)n(b)n X_n

n=0 (c)n n!

is called a Gaussian hypergeometric series. See [2, 7, 20, 33] for more details.
LemMma 2.7. For n=0,1,2,...

0
J sin? 0 dg = 72 A/

0 2 I’l!

ks

Proof.  Letting sin) 0 = ¢, we have

7,/2 o 1 1 w1 /po1 1 1 1 1
sin)" 0df=—| "T/P(1 —1) dt=—B|ln+—,1——].
0 PJo p V4 V4

Moreover,

11
(oL )
1B<n+;,l—l>13<1,1—1) L

and the lemma follows. O
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ProposiTION 2.8. For ke (0,1)

Kp(k)z%FG,l—l,l;kP),
Ep(k)z%FG,—%,l,kf’),

K;(k)Z%F<%,%;I,kP>,

E; (k) %FG%— 1;1;k )

Proof. Binomial series expansion gives

/2 © 1 /2
K, (k) = J (1—k? sin? 0)'771 do =" (~1)" <p ! )k"”J sin" 0 do.
n

0 n=0 0

Here, using Lemma 2.7 and the fact

(i)l G ),

. z M,

we see that

w2

p
2

G G R TR

The other cases are similar and we left to the reader. O

A hypergeometric series F(a, b;c;x) satisfies the hypergeometric differential
equation
d? d
*(1=x) 25+ (e = (a+b+ 1)x) 5 — aby = 0.
From the fact and Proposition 2.8 we can also prove Proposition 2.2.

As mentioned in the Introduction, the Borweins [7, Section 5.5] define the
generalized complete elliptic integrals of the first kind K;(k) and of the second
kind E,(k) by (1.3) and (1.4) respectively. They indicate that these functions
satisfy

T COS TTs

(2.17) K{(R)E (k) + K(K)E{(k) — Ky(K (k) = 5 75,
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where K!(k) :=K,(k'), E(k) := E((k’) and k' := V1 —k?. Letting s=1/p—1/2

A

in this equality we can also prove Theorem 1.1.
They obtained (2.17), relying on the following identity of hypergeometric
functions with a = —-b=c==s:

1o, _1_ 1_,41
(2.18) Fl2t® 2 p(27 %2
a+b+1 b+c+1
1,1 1,1
+F 2t 43 C;x Fl 2 a’2+c;1—x
a+b+1 b4c+1
1,1 1_,41
_F 3+ a3 C;x rl2 a,2+c;1_x
a+b+1 b+c+1

T(a+b+1)T(b+c+1)
CT(a+b+c+3)T(b+1)’

which was given by Elliott [19] (see also [1], [2, Theorem 3.2.8] and [20, (13)
p- 85]). In contrast to this, our approach to Theorem 1.1 is more self-contained.

Finally in this section, we refer the reader to [1] for generalized elliptic
integrals in geometric function theory and the relationship with hypergeometric
functions. In [1] they also define a generalized Jacobian elliptic function related
to Ks(k). The author [30] produces generalized Jacobian elliptic functions with
two parameters p and ¢ related to K,(k), but as real functions (cf. [29]).

3. Application

In this section, we will apply the complete p-elliptic integrals (1.1) and (1.2)
to compute 7,, and prove Theorem 1.3. For the very special case of m, with
p =3, we are able to obtain a computation formula like (1.8) for = by Brent [8§]
and Salamin [27].

Let a > b >0. Consider the sequences {a,} and {b,} satisfying ay = q,
by =b and

a, + 2b, s/(a2 + ayby + b2)b,
ap+1 = 3 5 bn+1 = 3 ’

n=0,1,2,....
It is easy to see that a, > b, for any n, {a,} is decreasing and {b,} is increasing.
Hence each sequence converges to a limit as n — co. Moreover, since

(31) pt1 — bn+l < %ﬂbn — bn = %(

these limits are same. We will denote by M3(a,b) the common limit for ¢ and b.
To show Theorem 1.3, the following identity by Ramanujan for the hyper-
geometric function F(1/3,2/3;1;x) is extremely important.

Ay _bn)a
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Lemma 3.1 (Ramanujan’s cubic transformation). For 0 < k <1

12 ; 3 12 1-kY
(32) F(?’?’l’l_k)_1+2kF<§’§’1’<1+2k)>'

Proof. This identity has been proved by, for instance, the Borweins [6],
Berndt et al. [4, Corollary 2.4] or [3, Corollary 2.4 and (2.25)], and Chan [12],
though Ramanujan did not leave his proof. We will present an alternative proof
with elementary calculation.

Since Proposition 2.8 yields

so that (3.2) is equivalent to

3 1—k
N —
(33) Ks(k) =1 +2kK3<1 +2k)'
We have known from Proposition 2.2 that K3(k') satisfies
d I 3dy _ 2

To show (3.3) we will verify that the function of right-hand side of (3.3) also
satisfies (3.4). Now we let

3 11—k
J (k) :1+2kK3<1+2k)'
Applying Proposition 2.1 we have
(3.5 dfk) [k (1+2K)Es(0)

de 11—k k(k)>

where / = (1 —k)/(1 +2k). Thus, differentiating both sides of

k(k")? Yk _ (1 4k + k)kf (k) — (1 + 2k) E5(£)

dk

gives

(3:6) % (k(k’f%) = (1+2k+3K%) f(k) + (1 + k + kz)kdf;_(kk)
_ (2E3(/) +(1426) dE;é/)).
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Here, by Proposition 2.1
dE5(¢) _ f(k) 3E5()

dc 1-k (I-k(1+2k)

Applying this and (3.5) to (3.6), we see that the right-hand side of (3.6) is equal
to 2k*f(k). This shows that f(k) also satisfies (3.4) as K;3(k') does.

The equation (3.4) has a regular singular point at k =1 and the roots of
the associated indicial equation are both 0. Thus, it follows from the theory of
ordinary differential equations (see for instance [33, §10.32]) that the functions
Ki(k') and f(k), which agree at k =1, must be equal. This concludes the
lemma. O

ProprosITION 3.2. Let 0 <k < 1, then
. 1 VOl + k + k?)k
0 K00 =755 r+2k )

; 3 1K
() Ksk) = g K (1 + 2k’>’

_ L2k (S E F Rk +(1—k)(2+k)
-3 7 1+ 2k 3

. 11—k
(iv) Es(k) = (1 +2k’)E3<1 +2k’) —k'(1+ k") Ks(k),
where k' = v/1 — k3.

Proof. 1t is obvious that (ii) is equivalent to (3.3), hence to Lemma 3.1.

Therefore we will show (i), (iv) and (iii) in this order.
(i) Setting in (ii)

(iif) E3(k) Ks(k),

1 -k
1+2k’7[’
we get 0 </ <1 and

3 2
1=/ I +0+ 1)

T14200 T 142/

Then (i) is equivalent to

Ol + £+ %)

Replacing / by k, we obtain (i).
(iv) Let / be the number above, then

dr 3k?2
dk (14 2k")*(k")*
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It follows from (ii) that (1 + 2k")K3(k) = 3K3(¢). Differentiating both sides in
k, we have

K\ 14 2k’ 142k’
2(g5) K+ 2 ) P Kot

9k? 1 9k

T (L4 2k (k) '/(//)3E3(/) (1 2602k

Ks(0).

Applying

L=k, UK+ ()

(= trw 0T 1+ 2k’

and (ii), we see that the right-hand side is written as

(14 2k")? 3k>
e O e
Thus we have
1+ 2k' (142K (12K (1 + &)
k(k/)3 E3(k) - k(k/)3 E3(/) k(k’)2 K3(k)

Multiplying this by k(k’)’/(1 + 2k’), we obtain (iv).
(iii) It is obvious that (iv) can be written in /, that is,

/Ol + £+ 2 3 (1-0)2+7) (1 + £+ 22
E; = E3(/) — —K; .
1+2/ 1427 (1+27) 1+2/

From (i) we have (iii). The proof is complete. O

Let us introduce auxiliary functions

/2 do

Ip(d,b) Z:J » - 1-1/p°
0 (ar cosy 0+ b7 sinf 0)
m,/2

Jp(a,b) := L (a” cosh 0+ b sin] 0" do.

It is easy to check that K,(k), K,(k), E,(k) and Ej(k) are written as

Kp(k) :Ip(lvk/)a K/(k> :IP(Lk),
Ep(k) = Jpy(L,K'),  E (k)= J,(1,k).
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In the remainder of this section we assume p =3. We will write I3(a,b) and
Js(a,b) simplicity I(a,b) and J(a,b) respectively when no confusion can arise.

The next lemma is crucial to show Theorem 1.2.

LemMma 3.3. For a>b >0,

a+2bl<a+2b . (a2+ab+b2)b>

al(a7 b) = 3 3 Y 3

Proof. From Proposition 3.2 (ii) (with k replaced by k') we get
1
al(a,b) = 5K3’ (b>

a

3 a—>b
_a+2bK3(a+2b)
3 i1 V/9(a? + ab + b?)b
Ca+2h \ a+2b

_a—|—2b1 a+2b s/(a®+ab+b2)b
3 3 7 3 '

This proves the lemma. ]

Lemma 3.3 implies that {a,/(a,,b,)} is a constant sequence:
(3.7) al(a,b) = a11(ay,by) = axl(az, by) = - = a,l(an, by) = -+ -.
Letting n — oo in (3.7) we have

1

al(a,b) = Ms(a,b)I(M;3(a,b), M3(a,b)) = ml(l, 1),
hence,
PropoOSITION 3.4. For a>b>0
1
al(a,b) = % ATk
From above, Theorem 1.2 immediately follows.
Proof of Theorem 1.2. Put a=1 and b =k’ in Proposition 3.4. O

Let In = I(an;bn)> Jn = J(anabn)’ then

LemMA 3.5. For a>b >0
31 — I = awby(a, + b)), n=0,1,2,....
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Proof.  Set K, :=+{/1— (by/a,)’. We see at once that

1

(3.8) I, :?IQ(Kn), Jo=a,Ez(ky), n=0,1,2,....

Now, letting k = x, in Proposition 3.2 (iv), we have

KJ

1— n
E3(Kn) = (l +2K,/1)E3<1 —|—2K'> — K,/l(l +K;1)K3(Kn).

It is easily seen that x) = b,/a, and x,41 = (1 —«),)/(1 +2«;). Thus

a, + an bn bn
E3(K,H_1) — a— <1 —|——>K3(Kn).

E3 Ky) =
( n) Ay n Ay

Multiplying this by a, and using a, + 2b, = 3a,,; we obtain

b,
anEx(Kn) = a1 s (ns1) — by (1 o )Kaocn)

From (3.8) we accomplished the proof.

ProOPOSITION 3.6. Let a>b >0, then

J(a,b) = (a —az3 ay + ¢ n)](a,b),
where ¢, := /a3 — b

223

Proof. We denote I(a,b) and J(a,b) briefly by I and J respectively.

Lemma 3.3 gives a,[, = al for any n. By Lemma 3.5 and ¢, = (a, — b,

obtain
3(Jui1 — aa 1) — (J, — aal) = (aby(a, + b,) — 3aa?, | + aa?)l

(2a; 2 q,b, — bﬁ)]

2
n+1

a
3
a
=3 (2ay + by)(an — by)I
= 3a

(@ns1 + Cng1)Cnyt 1.

Multiplying this by 3" and summing both sizes from n=0 to n=m
obtain

(3.9 3" (I — aail) (J—d’l) = a(Z 3"(an + cn)c n)

)/3, we

-1, we
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On the other hand, since al = a,,I,,, we have

3
sind 0 — a’,

2/3

m

0 (a cosj 0+ b3 sin] 0)

3"(Jy — aa 27 do

m

- 3mJ”‘/2a3 cos; 0+ b3

s [P —sin; 0
=3"c,, 3 73 0.
0 (a3 cosi 0+ b3 sin; 0)

By (3.1) we get

which means lim,,_., 3"(J,, — aa?l) = 0. Therefore, as m — oo in (3.9) the
proposition follows. O

Now we are in a position to show Theorem 1.3.

Proof of Theorem 1.3. Let k =1/v/2 in Theorem 1.1, then

1 1 1\ m
3.10 2K E -Kl—=| =—=.
(310 (7)2(5) - (55) -3
Letting @ = 1 and b = 1/v/2 in Proposition 3.6 we get

o)1~ Ertas ool

where ¢, = {/a3 —b}. Substituting this to (3.10), we have

(2(1 - 23"(% + cn)cn> - 1>K3 (\/%)2 = %

Finally, applying Theorem 1.2 with k = 1/v/2 to this, we obtain

I—Zi?a"(a + ¢ ﬂ—g_@
n:l n n n 4M (1 1 )2 2 .
3 7\3/2
This leads the result. O
Remark 3.7. In Theorem 1.2, we proved the identity

3 1

BRI O)
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From the fact and Corollary 2.4 we can formally deduce

=L
Kk =3 Mi(k', 1)

where M3(a,b) for 0 < a < b is also defined by (1.9) in the same way as that for
a>b>0. This means

11 ) 3 11 (1-k)?
Flz 21—k ) = /——F|s, 50—
(3’3’ ’ > l+k+k2 \3'3" 791 +k+k?))’

which is reported in [31].
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