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THE EXISTENCE OF QUASICONFORMAL HOMEOMORPHISM

BETWEEN PLANES WITH COUNTABLE MARKED POINTS

Hiroki Fujino

Abstract

We consider quasiconformal deformations of CnZ. We give some criteria for

infinitely often punctured planes to be quasiconformally equivalent to CnZ. In par-

ticular, we characterize the closed subsets of R whose compliments are quasiconformally

equivalent to CnZ.

1. Introduction

Let R be a Riemann surface. The Teichmüller space TðRÞ is a space which
describes all quasiconformal deformations of R. It is well known that TðRÞ
becomes either a finite dimensional complex manifold or a non-separable infinite
dimensional Banach analytic manifold. TðRÞ becomes finite dimensional if and
only if R is of finite type. Through the investigation of quasiconformal deforma-
tions of a certain infinite type Riemann surface, a certain characteristic subspace
will be found, which is separable.

The universal Teichmüller space TðDÞ simultaneously describes all quasi-
conformal deformations of all hyperbolic type Riemann surfaces. This arises
from the fact that each covering X ! Y induces an embedding of TðY Þ into
TðXÞ. On the other hand, CnZ covers a certain n-punctured Riemann sphere
for each nb 3. Namely TðCnZÞ simultaneously describes all quasiconformal
deformations of Riemann surfaces of genus 0 with at least three punctures.
Needless to say, the universal Teichmüller space TðDÞ also describes them.
However for the reasons mentioned below, the Teichmüller space TðCnZÞ is
more suitable to describe them than TðDÞ.

For each positive integer n, let Rn ¼ ðCnZÞ=hzþ ni. Rn is an ðnþ 2Þ-
punctured Riemann sphere, and the projection pn : CnZ ! Rn induces the embed-
ding p�

n : TðRnÞ ,! TðCnZÞ. The covering transformation group of pn is the
cyclic group hzþ ni, so that, quasiconformal deformations of Rn correspond to
periodic quasiconformal deformations of CnZ with only a period n. Then it
is shown from McMullen’s theorem in [4] that p�

n is totally geodesic for the
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Teichmüller metric. By contrast, the embedding of TðRnÞ into TðDÞ is not
totally geodesic (cf. The Kra–McMullen theorem [4]). Additionally, CnZ is
considered to be one of the smallest Riemann surface which has the above
properties, that is, there exists no Riemann surface except CnZ which is covered
by CnZ and covers Rn for all n.

Thus, in this paper, we would like to investigate quasiconformal deforma-
tions of CnZ. In particular, we shall try to find all Riemann surfaces which are
quasiconformally equivalent to CnZ.

This attempt is reduced to the existence problem of quasiconformal homeo-
morphism between planes with countable marked points. In fact, if R is quasi-
conformally equivalent to CnZ, then R is conformally equivalent to CnE by
a certain closed discrete subset EHC (cf. The removable singularity theorem,
see [5, Theorem 17.3.]). Henceforth, we say that two subsets E;E 0 HC are
quasiconformally equivalent if there exists a quasiconformal self-homeomorphism
of C which maps E onto E 0. We consider the following problem.

Problem. Let P be the family of all closed discrete infinite subsets EHC.
Find all E A P which is quasiconformally equivalent to Z.

This Problem is analogous to the problem investigated by P. MacManus.
In his paper [3], he considered the usual Cantor–middle–third set (the Cantor
ternary set)

C ¼ ½0; 1�
�

6
y

m¼1

6
3m�1�1

k¼0

3k þ 1

3m
;
3k þ 2

3m

� �

instead of Z. Further he completely characterized subsets which is quasicon-
formally equivalent to C by several conditions of the Euclidean geometry.

First, when we take the MacManus proof into consideration, it seems
significant to solve our Problem for E A P contained in the real line. In this
particular case, we obtain the next theorem.

Theorem A. For a monotone increasing sequence E ¼ fangn AZ HR with
an !Gy as n !Gy, the following conditions are equivalent.

i. E is quasiconformally equivalent to Z.
ii. There exists a quasiconformal homeomorphism of C such that f ðnÞ ¼ an

for all n A Z.
iii. There exists Mb 1 such that the following inequality holds for all n A Z,

k A N;

1

M
a

anþk � an

an � an�k

aM:

The last condition derives from the concept of M-quasisymmetry. Theorem
3.1 (proved in Section 3.1) shows that if E A P lying on the real line is quasi-
conformally equivalent to Z, then E can not be bounded from above and
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below. Therefore the assumption in Theorem A is necessarily required. Further
Theorem A completely characterizes the subsets of R which are quasiconformally
equivalent to Z.

Next, we observe E A P whose compliment has an automorphism of infinite
order. In this case, we obtain the next theorem.

Theorem B. Let E A P which has the following form;

E ¼ Zþ fangk
n¼1

where each an satisfies ReðanÞ A ½0; 1Þ.
Then, E is quasiconformally equivalent to Z if and only if k < þy.

The assumption for E in Theorem B means that CnE has an automor-
phism of infinite order zþ 1. On the other hand, if CnE has an automor-
phism of infinite order, we may assume E satisfies the assumption in Theorem B
by composing certain A‰ne transformation. Thus we immediately obtain the
following application;

Let T0 ¼ 6
n AN p�

n ðTðRnÞÞ, namely T0 is a subspace of TðCnZÞ which

simultaneously describes all quasiconformal deformations of all Riemann surfaces
of finite type ð0; nÞ with nb 3. Further, let Ty be the set of all ½S; f � A TðCnZÞ,
the Teichmüller equivalence class of the quasiconformal homeomorphism f : CnZ
! S, such that there exists an automorphism of infinite order in AutðSÞ. Then
Theorem B implies

Corollary C.

Ty ¼ 6
½ f � AModðCnZÞ

½ f ��ðT0Þ.

Here, ModðCnZÞ is the Teichmüller-Modular group of CnZ. The subspace
T0 is not closed in TðCnZÞ. However, it is easily seen that T0 is separable by
its construction. Further from the McMullen theorem, T0 is geodesically convex
with respect to the Teichmüller metric.

In addition, AutðSÞ is isomorphic to the stabilizer StabModðCnZÞð½S; f �Þ for
½S; f � A TðCnZÞ. Therefore, the Teichmüller-Modular group ModðCnZÞ does
not act properly discontinuously at each point of Ty, the closure of Ty.

Note that we can apply the above argument to the another infinite type
Riemann surface R 0 ¼ C�nf2ngn AZ, where C� ¼ Cnf0g. We will discuss this
case in detail in Section 4.2.

2. Preliminaries

2.1. Porous sets. We say that a subset EHC is c-porous in C for a
constant cb 1 if any closed disk Brðz 0Þ of radius r > 0 centered at z 0 A C contains
z such that Br=cðzÞHCnE.
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It is easily seen that;
� Zþ iZ is not porous in C.
� Any subset of R is 1-porous in C, particularly, Z is 1-porous in C.
� E1 ¼ Zþ if2n j n ¼ 0; 1; 2; . . .g is 8-porous.
J. Väisälä pointed out that the porosity is preserved by quasiconformal

mappings in [6]. Thus it immediately follows that Zþ iZ is not quasiconfor-
mally equivalent to Z. However, by this way, we cannot decide whether E1 is
quasiconformally equivalent to Z or not. (Theorem B proved in Section 4.1
shows that E1 is not quasiconformally equivalent to Z.)

2.2. Quasiconformal mappings and Extremal distances. Let DHC be a
domain. For given continua C1;C2 HD,

dDðC1;C2Þ ¼ modðFDðC1;C2ÞÞ

is called the extremal distance between C1 and C2 in D, where mod denotes the
2-modulus of a curve family and FDðC1;C2Þ denotes the family of all rectifiable
curves which join C1 and C2 in D. The definition of 2-modulus is given by

modðFÞ :¼ inf
r

ð
C

rðxþ iyÞ2 dxdy:

where the infimum is taken over all non-negative Borel functions with
Ð
g
rjdzjb 1

for all rectifiable g A F.
The 2-modulus coincides with the reciprocal of the extremal length intro-

duced by L. V. Ahlfors and A. Beurling [2]. It is well known that a sense
preserving homeomorphism f becomes K-quasiconformal for a constant Kb 1 if
and only if f satisfies the following inequality for any curve family F in the
domain of f .

1

K
modðFÞamodð f ðFÞÞaK modðFÞ:

The next useful lower bound for extremal distances was presented by M.
Vuorinen in [7, Lemma 4.7]; For each pair of disjoint continua C1;C2 HC, it
holds that

dCðC1;C2Þb
2

p
log 1þmini¼1;2 diamðCiÞ

distðC1;C2Þ

� �
:

2.3. The Ahlfors three-point condition. The image of _RR ¼ RU fyg under a
quasiconformal self-homeomorphism of the Riemann sphere is called a quasi-
circle.

A characterization of quasicircles was obtained in [1]; for a Jordan curve C
in the Riemann sphere which passes through y, C is a quasicircle if and only if
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there exists Ab 1 such that whenever three distinct points z1; z2; z3 A Cnfyg lie
on C in this order, the following inequality holds.

jz1 � z2j
jz1 � z3j

aA:

Moreover the above Ab 1 can be constracted depending only on the maximal
dilatation of quasiconformal homeomorphism.

This necessary and su‰cient condition is called the three-point condition (or
the bounded turning condition). The necessity of the three-point condition means
that if a quasicircle goes far away from a certain point, it cannot return near this
point above a certain rate. A similar characterization also holds for a Jordan
curve which does not pass through y, however we will only deal with the former
case.

2.4. The Ahlfors–Beurling extension theorem. An orientation preserving
self-homeomorphism f of R is called M-quasisymmetric for Mb 1 if the follow-
ing inequality holds for all x A R and all t > 0.

1

M
a

fðxþ tÞ � fðxÞ
fðxÞ � fðx� tÞ aM:

We merely say f is quasisymmetric if f is M-quasisymmetric for some Mb 1.
The concept of M-quasisymmetry gives a characterization of orientation

preserving self-homeomorphisms of real line which have a global quasiconformal
extension. That is; for a given orientation preserving self-homeomorphism f of
R, f can be extended to a quasiconformal homeomorphism from the upper half
plane onto itself if and only if f is quasisymmetric (cf. The Ahlfors–Beurling
extension theorem [1]). Moreover it is well known that every quasiconformal
self-homeomorphism of the upper half plane is the restriction of a global quasi-
conformal homeomorphism. Namely, f can be extended to a quasiconformal
self-homeomorphism of the Riemann sphere, if and only if f is quasisymmetric.

3. Proof of Theorem A

In this section, we would like to restrict ourselves to E A P which lies on R.

3.1. A criterion. We obtain the next criterion for E A P contained in R to
be quasiconformally equivalent to Z.

Theorem 3.1. Let E A P be contained in R. If E is quasiconformally
equivalent to Z, then sup E ¼ þy and inf E ¼ �y.

Proof. To obtain a contradiction, assume inf E > �y. Then since E is
discrete and closed, sup E ¼ þy. Thus numbering E suitably we let E ¼
fangn AN be a monotone increasing sequence with an ! þy as n ! þy.
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Let f : C ! C be K-quasiconformal mapping with f ðEÞ ¼ Z. Composing
an A‰ne transformation, we may assume f ða1Þ ¼ 0. For an arbitrary fixed
constant Mb 1, consider the set

S :¼ k A N j f ðakÞ ¼ max
j¼1;...;k

f ðajÞbM

� �
:

Obviously, S consists of infinitely many elements. We number S ¼ fkjgj AN in
ascending order. Then the sequence f f ðakj Þgj AN is monotone increasing. On
the other hand, there exist infinitely many n A N with f ðanÞ < 0. Thus we can
find j; l A N such that kj < l < kjþ1 and f ðalÞ < 0. Moreover since f ðanÞa
f ðakj Þ for all n ¼ 1; 2; . . . ; kjþ1 � 1, if f ðamÞ ¼ f ðakj Þ þ 1 then mb kjþ1. Con-
sequently we confirmed that there exists k A S and exist l;m A N such that

� k < l < m,
� f ðalÞ < 0 and f ðamÞ ¼ f ðakÞ þ 1.

Then f ðakÞ, f ðalÞ, f ðamÞ lie on C :¼ f ðRÞ in this order, and

j f ðakÞ � f ðalÞj
j f ðakÞ � f ðamÞj

¼ f ðakÞ � f ðalÞbM:

This means C can not satisfy the three-point condition for any Mb 1. However
this contradicts that C is a subarc of a quasicircle which passes through y.

r

This result extremely depends on the particularity of Z.

Example. For arbitrary r; s > 1, frngyn¼0 is quasiconformally equivalent to
fGsngyn¼0.

3.2. A characterization. From Theorem 3.1, for our Problem it su‰ces
to consider monotone increasing sequences E ¼ fangn AZ HR with an !Gy as
n !Gy. We shall prove the next characterization theorem in this section.

Figure 1
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Theorem A. For a monotone increasing sequence E ¼ fangn AZ HR with
an !Gy as n !Gy, the following conditions are equivalent.

i. E is quasiconformally equivalent to Z.
ii. There exists a quasiconformal homeomorphism of C such that f ðnÞ ¼ an

for all n A Z.
iii. There exists Mb 1 such that the following inequality holds for all n A Z,

k A N;

1

M
a

anþk � an

an � an�k

aM:

That (ii) implies (i) is trivial. We prove the other implications below.

Proof ((iii) ) (ii)). Set fðxÞ :¼ ðanþ1 � anÞðx� nÞ þ an for x A ½n; nþ 1Þ.
Then f defines an orientation preserving self-homeomorphism of R with fðnÞ ¼
an, further becomes CðMÞ-quasisymmetric where CðMÞ ¼ M 4 þM 3 þM 2 þM.
Therefore we obtain a quasicnoformal extension f : C ! C of f by the Ahlfors–
Beurling extension theorem.

Let x ¼ nþ t1, t ¼ mþ t2 ðn A Z, m A Zb0, t1; t2 A ½0; 1ÞÞ. To prove the
quasisymmetry of f, we have to show the following inequality,

1

CðMÞ a I :¼ fðxþ tÞ � fðxÞ
fðxÞ � fðx� tÞ aCðMÞ:

We divide the calculations into the following four cases.
i. t1 þ t2 A ½0; 1Þ and t1 � t2 A ð�1; 0Þ.
ii. t1 þ t2 A ½0; 1Þ and t1 � t2 A ½0; 1Þ.
iii. t1 þ t2 A ½1; 2Þ and t1 � t2 A ð�1; 0Þ.
iv. t1 þ t2 A ½1; 2Þ and t1 � t2 A ½0; 1Þ.

However we only check the first case here as the calculations are almost the same
and easy for each case. To simplify the calculation, we use the next inequality.

Lemma 3.2. Under the above assumptions, the following inequalities hold.
I) For n;m A Z ðn < mÞ, and k A Zb0,

amþk � an

am � an
aMk þMk�1 þ � � � þM þ 1;

am � an�k

am � an
aMk þMk�1 þ � � � þM þ 1:

II) For p; q A R and k A Z, if k � 1a pa ka qa k þ 1 then

1

M
ðakþ1 � akÞðq� pÞa fðqÞ � fðpÞaMðakþ1 � akÞðq� pÞ:

If we replace ðakþ1 � akÞ by ðak � ak�1Þ, this inequality also holds.

738 hiroki fujino



Proof.

IÞ amþk � an

am � an
a

amþk � am�1

am � am�1

¼
Xk
j¼0

amþ j � amþ j�1

am � am�1
aMk þMk�1 þ � � � þM þ 1:

Another inequality is also proved in the same way.

IIÞ fðqÞ � fðpÞ ¼ ðakþ1 � akÞðq� kÞ þ ak � ðak � ak�1Þðp� k þ 1Þ � ak�1

¼ ðakþ1 � akÞðq� kÞ þ ðak � ak�1Þðk � pÞ � � � ð�Þ

ð�Þa ðakþ1 � akÞðq� kÞ þMðakþ1 � akÞðk � pÞ
¼ Mðakþ1 � akÞðq� pÞ þ ð1�MÞðakþ1 � akÞðq� kÞaMðakþ1 � akÞðq� pÞ

ð�ÞaMðak � ak�1Þðq� kÞ þ ðak � ak�1Þðk � pÞ
¼ Mðak � ak�1Þðq� pÞ þ ð1�MÞðak � ak�1Þðq� kÞaMðak � ak�1Þðq� pÞ

The lower bounds are also proved in the same way. r

Continuation of Proof of Theorem A. Suppose t1 þ t2 A ½0; 1Þ and
t1 � t2 A ð�1; 0Þ.

(Upper bound ). First if m0 0, since f is monotone increasing,

I a
fðnþmþ 1Þ � fðnÞ
fðnÞ � fðn�mÞ

¼ anþmþ1 � an

an � an�m

aM
anþmþ1 � an

anþm � an
aMðM þ 1Þ < CðMÞ:

Next if m ¼ 0, since n� 1a nþ t1 þ t2 a na nþ t1 a nþ 1,

I a
ðanþ1 � anÞðt1 þ t2Þ � ðanþ1 � anÞt1

1

M
ðanþ1 � anÞt2

¼ M < CðMÞ:

(Lower bound ). First if m0 0; 1, by the monotonicity of f

I >
fðnþmþ 1Þ � fðnÞ
fðnÞ � fðn�mÞ

b
1

M

anþm � anþ1

anþmþ3 � anþ1
b

1

MðM 3 þM 2 þM þ 1Þ ¼
1

CðMÞ :

Next if m ¼ 0, by the same reason of the case of upper bound,

I b
ðanþ1 � anÞðt1 þ t2Þ � ðanþ1 � anÞt1

Mðanþ1 � anÞt2
¼ 1

M
>

1

CðMÞ :
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Finally if m ¼ 1, since na nþ t1 a nþ 1a nþ t1 þ 1a nþ 2 we have fðxþ tÞ�

fðxÞb fðxþ 1Þ � fðxÞb 1

M
ðanþ1 � anÞ. On the other hand, fðxÞ � fðx� tÞa

fðnþ 1Þ � fðn� 2Þ ¼ anþ1 � an�2. Thus we have

I b
1

M

anþ1 � an

anþ1 � an�2
b

1

MðM 2 þM þ 1Þ b
1

CðMÞ :

Proof ((i) ) (iii)). Let f : C ! C be K-quasiconformal homeomorphism
such that f ðEÞ ¼ Z ðKb 1Þ.

In this proof, we shall use the following proposition.

Proposition 3.3. For a monotone increasing sequence E ¼ fangn AZ HR
such that an !Gy as n !Gy and for any K-quasiconformal homeomorphism
f : C ! C which maps E onto Z, there exists Lb 1 depending only on K such that
the following inequality holds for all n A Z and k A N;

1

L
a

j f ðanþkÞ � f ðanÞj
j f ðanÞ � f ðan�kÞj

aL:

Proposition 3.3 is proved in the next section.
For arbitrary fixed n A Z and k A N, we set r ¼ janþk � anj=jan � an�kj,

r 0 ¼ j f ðanþkÞ � f ðanÞj=j f ðanÞ � f ðan�kÞj and S1 ¼ S1ðan; janþk � anjÞ, S2 ¼
S1ðan; jan � an�kjÞ where S1ðx;RÞ denotes the circle of radius R centered at x.

If r > 1, then by using the Vuorinen theorem, we have

2p

log r
¼ dCðS1;S2Þb

1

K
dCð f ðS1Þ; f ðS2ÞÞ

b
1

K

2

p
log 1þmini¼1;2 diam f ðSiÞ

distð f ðS1Þ; f ðS2ÞÞ

� �

b
2

pK
log 1þ j f ðanÞ � f ðan�kÞj

j f ðanþkÞ � f ðan�kÞj

� �
b

2

pK
log 1þ 1

r 0 þ 1

� �
:

If r < 1, we similarly have

2p

log 1=r
b

2

pK
log 1þ 1

1=r 0 þ 1

� �
:

From Proposition 3.3, there exists Lb 1 such that 1=La r 0 aL where L does
not depend on n A Z and k A N. Combining the above inequalities, we obtain

exp
p2K

log 1þ 1

Lþ 1

� �
0
BB@

1
CCA

0
BB@

1
CCA
�1

a
janþk � anj
jan � an�kj

a exp
p2K

log 1þ 1

Lþ 1

� �
0
BB@

1
CCA:
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The proof is completed. Then remark that we can choose M depending only on
K since L depends only on K . r

3.3. Proof of Proposition 3.3. We shall prove Proposition 3.3 from now on.
Under the assumptions of Proposition 3.3, we let C ¼ f ðRÞ. Recall that

C is a subarc of a quasicircle which passes through y. Thus there exists a
constant Ab 1 depending only on K such that if arbitrary distinct three points
z1, z2, z3 lie on C in this order, it holds;

jz1 � z2j
jz1 � z3j

aA:

Lemma 3.4. For arbitrary n A Z, it holds that j f ðanÞ � f ðanþ1Þja 2A.

Proof. Suppose j f ðanÞ � f ðanþ1Þjb 2. Then we may assume f ðanþ1Þ >
f ðanÞ since the same argument mentioned below can be applied to the case
f ðanÞ > f ðanþ1Þ.

Letting m A Zan satisfy

f ðamÞ ¼ maxf f ðajÞ j j A Zan s:t: f ðanÞa f ðajÞ < f ðanþ1Þg
and l A Z satisfy f ðalÞ ¼ f ðamÞ þ 1 (then lb nþ 1 by the constraction), we can
constract m; l A Z which satisfy the following conditions;

i. ma n and nþ 1a l,
ii. f ðanÞa f ðamÞ < f ðanþ1Þ and f ðanÞ < f ðalÞa f ðanþ1Þ,
iii. j f ðamÞ � f ðalÞj ¼ 1. (See, Figure 2.)

First, suppose f ðamÞ � f ðanÞb ð f ðanþ1Þ � f ðanÞÞ=2. Then f ðamÞ, f ðanÞ,
f ðalÞ are distinct since f ðamÞ � f ðanÞb 1, and lie on C in this order. From
the three-point condition,

Ab
j f ðamÞ � f ðanÞj
j f ðamÞ � f ðalÞj

¼ f ðamÞ � f ðanÞb
f ðanþ1Þ � f ðanÞ

2
:

Thus we have f ðanþ1Þ � f ðanÞa 2A.

Figure 2
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Next, suppose f ðamÞ � f ðanÞ < ð f ðanþ1Þ � f ðanÞÞ=2. Then f ðanþ1Þ � f ðamÞ
> ð f ðanþ1Þ � f ðanÞÞ=2 holds. Since f ðanþ1Þ � f ðanÞ > 2,

f ðanþ1Þ � f ðalÞ >
f ðanþ1Þ � f ðanÞ

2
� 1b 0;

that is, l0 nþ 1. Therefore f ðamÞ, f ðanþ1Þ, f ðalÞ are distinct and are in this
order on C. Similarly we have f ðanþ1Þ � f ðanÞa 2A. r

Lemma 3.5. For arbitrary n A Z and k A N ðk0 1Þ, it follows;

k � 1

2A
a j f ðanÞ � f ðanþkÞja 2Ak:

Proof. (Upper bound ). By using the triangle inequality, it immediately
follows from Lemma 3.4 that j f ðanÞ � f ðanþkÞja 2Ak.

(Lower bound ). Suppose k0 1. The open interval

�
f ðanÞ �

k � 1

2
;

f ðanÞ þ
k � 1

2

�
contains at most ðk � 1Þ integer points. Thus there exists m A Z

ðn < m < nþ kÞ such that

j f ðanÞ � f ðamÞjb
k � 1

2
:

From the three-point condition, we obtain

Ab
j f ðanÞ � f ðamÞj
j f ðanÞ � f ðanþkÞj

b
k � 1

2j f ðanÞ � f ðanþkÞj
;

that is, j f ðanÞ � f ðanþkÞjb ðk � 1Þ=2A. r

Proof of Proposition 3.3. If k0 1, it immediately follows from Lemma 3.5
that

1

L
a

j f ðanþkÞ � f ðanÞj
j f ðanÞ � f ðan�kÞj

aL

for L ¼ 8A2. Moreover, even if k ¼ 1, it follows from Lemma 3.4

8A2 > 2Ab
j f ðanþ1Þ � f ðanÞj
j f ðanÞ � f ðan�1Þj

b
1

2A
>

1

8A2
: r

4. Proof of Theorem B

In this section, first, we shall prove Theorem B. Next, we introduce an
another example for which almost the same result holds. Finally, we would like
to suggest a natural question arising from the above observations.
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4.1. Proof of Theorem B.

Theorem B. Let E A P which has the following form;

E ¼ Zþ fangk
n¼1

where each an satisfies ReðanÞ A ½0; 1Þ.
Then, E is quasiconformally equivalent to Z if and only if k < þy.

Proof. (Necessity). To obtain a contradiction, assume k ¼ þy. Let
f : C ! C be a K-quasiconformal homeomorphism with f ðZÞ ¼ E, and
by composing an A‰ne transformation, we may assume 0 A E, and
supfIm an j n A Ng ¼ y.

Under the above assumptions, we prove the following lemma.

Lemma 4.1.

sup
m AZ

jIm f ðmÞ � Im f ðmþ 1Þj ¼ y:

Proof. Since Z is porous, by Väisälä’s theorem, E is c-porous for some
cb 1. For any r > 1 let x ¼ ifð

ffiffiffi
2

p
cþ 1Þrþ 1g. Then by porousity of E,

there exist z A B ffiffi
2

p
crðxÞ such that B ffiffi

2
p

rðzÞHCnE. Then the square domain

fw ¼ uþ iv j ju�Re zj < r; jv� Im zj < rg does not intersect with E.
It is easily confirmed that
� E V fw j Im z� r < Im w < Im zþ rg ¼ j, since zþ 1 A AutðCnEÞ.
� E V fw j Im wb Im zþ rg0j, since supfIm a j a A Eg ¼ y.
� E V fw j Im z� rb Im wg0j, since 0 A E and Im z� rb 1.

Therefore when we consider the image of real line under f , it immediately
follows there exists m A Z such that jIm f ðmÞ � Im f ðmþ 1Þjb 2r. r

Figure 3
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Continuation of Proof of Theorem B. By Lemma 4.1, there exists m A Z
such that

l :¼ jIm f ðmÞ � Im f ðmþ 1Þj > exp
Kp2

log 2

� �
:

Let

C 0
1 :¼ f f ðmÞ þ t j t A ½0; 1�g; C1 :¼ f �1ðC 0

1Þ

C 0
2 :¼ f f ðmþ 1Þ þ t j t A ½0; 1�g; C2 :¼ f �1ðC 0

2Þ:

Then we have,
i. by quasiconformality of f

dCðC1;C2ÞaKdCðC 0
1;C

0
2Þ;

ii. since C 0
1 and C 0

2 are separeted by the annulus fw j 1 < jw� f ðmÞj < lg

dCðC 0
1;C

0
2Þa

2p

log l
<

2

Kp
log 2;

iii. from Vuorinen’s theorem,

dCðC1;C2Þb
2

p
log 1þmini¼1;2 diamðCiÞ

distðC1;C2Þ

� �
b

2

p
log 1þ min

i¼1;2
diam Ci

� �
:

Combining the above inequalities, we obtain

min
i¼1;2

diam Ci < 1:

On the other hand, since each endpoints of Ci are in the integer set, diam Ci b 1
ði ¼ 1; 2Þ. This is a contradiction.

Figure 4
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(Su‰ciency). Since ðCnZÞ=hzþ ki and ðCnEÞ=hzþ 1i are ðk þ 2Þ-
punctured Riemann sphere, there exists a quasiconformal homeomorphism be-
tween them which fixes 0 and y. Then it can be lifted to a quasiconfromal
homeomorphism between CnZ and CnE. r

Remark. The necessity and the proof of the su‰ciency part shows that if
a Riemann surface R which has an automorphism of infinite order is quasi-
conformally equivalent to CnZ, then there exists a periodic quasiconformal
deformation from CnZ to R coming from the deformation of finitely punctured
Riemann sphere.

Corollary C.

Ty ¼ 6
½ f � AModðCnZÞ

½ f ��ðT0Þ:

Here, symbols used in Corollary C are defined in Introduction.

4.2. Another example. For a Riemann surface R, let AutyðRÞHAutðRÞ
be the set of all automorphisms of infinite order. The following Theorem 4.2 is
a mere rephrasing of Theorem B.

Theorem 4.2. For E A P with AutyðCnEÞ0j, the following are equivalent.
i. CnE is quasiconformally equivalent to CnZ.
ii. For any h A AutyðCnEÞ, the quotient space ðCnEÞ=hhi is a finitely

punctured Riemann sphere.
iii. There exists h A AutyðCnEÞ such that the quotient space ðCnEÞ=hhi is

a finitely punctured Riemann sphere.

Now, we would like to consider the another infinite type Riemann surface
R 0 ¼ C�nf2ngn AZ, where C� ¼ Cnf0g. In this case, a similar theorem is proved
far more easily than the case of CnZ, because of the relative compactness of
the fundamental domain of h2nzi (contrary to this, the fundamental domain of
hzþ ni is not relatively compact in C).

Theorem 4.3. For a closed discrete infinite subset EHC� with AutyðC�nEÞ
0j, the following are equivalent.

i. C�nE is quasiconformally equivalent to C�nf2ngn AZ.
ii. For any h A AutyðC�nEÞ, the quotient space ðC�nEÞ=hhi is a finitely

punctured torus.
iii. There exists h A AutyðC�nEÞ such that the quotient space ðC�nEÞ=hhi is

a finitely punctured torus.

Moreover, a theorem similar to Corollary C also holds. In this case, the
space corresponding to T0 simultaneously describes all quasiconformal deforma-
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tions of all Riemann surfaces of finite type ð1; nÞ with nb 1, and has the same
properties of T0, separability and geodesic convexity.

4.3. Natural question. With the observations mentioned above, a natural
question arises; does an analogous theorem hold for Riemann surfaces which
have the following property?

� It has an automorphism of infinite order.
� For any automorphism of infinite order, the quotient space by the action of
its cyclic group is of finite type.

In other words, is the above property preserved by quasiconformal deformations?

For example, the Riemann surface defined by w2 ¼ z
Yy
n¼1

1� z2

n2

� �
has the

above property.
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[ 6 ] J. Väisälä, Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc. 299 (1987),

525–533.

[ 7 ] M. Vuorinen, On Teichmüller’s modulus problem in Rn, Math. Scand. 63 (1988), 315–333.

Hiroki Fujino

Graduate School of Mathematics

Nagoya University

Furo-cho Chikusa-ku Nagoya 464-8602

Japan

E-mail: m12040w@math.nagoya-u.ac.jp

746 hiroki fujino


