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A NOTE ON SERRIN’S OVERDETERMINED PROBLEM

Giulio Ciraolo and Rolando Magnanini

Abstract

We consider the solution of the torsion problem

�Du ¼ N in W; u ¼ 0 on qW;

where W is a bounded domain in RN .

Serrin’s celebrated symmetry theorem states that, if the normal derivative un is

constant on qW, then W must be a ball. In [6], it has been conjectured that Serrin’s

theorem may be obtained by stability in the following way: first, for the solution u of the

torsion problem prove the estimate

re � ri aCt max
Gt

u�min
Gt

u

� �

for some constant Ct depending on t, where re and ri are the radii of an annulus

containing qW and Gt is a surface parallel to qW at distance t and su‰ciently close to

qW; secondly, if in addition un is constant on qW, show that

max
Gt

u�min
Gt

u ¼ oðCtÞ as t ! 0þ:

The estimate constructed in [6] is not sharp enough to achieve this goal. In this

paper, we analyse a simple case study and show that the scheme is successful if the

admissible domains W are ellipses.

1. Introduction

Let W be a bounded domain in RN and let u be the solution of the torsion
problem

�Du ¼ N in W; u ¼ 0 on qW:ð1:1Þ
Serrin’s celebrated symmetry theorem [11] states that, if there exists a solution of
(1.1) whose (exterior) normal derivative un is constant on qW, that is such that

un ¼ c on qW;ð1:2Þ
then W is a ball and u is radially symmetric.

728

1991 Mathematics Subject Classification. Primary 35B06, 35J05, 35J61; Secondary 35B35, 35B09.

Key words and phrases. Serrin’s problem, Parallel surfaces, overdetermined problems, method of

moving planes, stability.

Received January 14, 2014; revised May 20, 2014.



As is well-known, the proof of Serrin makes use of the method of moving
planes (see [11, 7]), a refinement of Alexandrov’s reflection principle [2].

The aim of this note is to probe the feasibility of a new proof of Serrin’s
symmetry theorem based on a comparison with another overdetermined problem
for (1.1). In fact, it has been noticed that, under certain su‰cient conditions on
qW, if the solution of (1.1) is constant on a surface parallel to qW, that is, if for
some small t > 0

u ¼ k on Gt; where Gt ¼ fx A W : distðx; qWÞ ¼ tg;ð1:3Þ

then W must be a ball (see [9, 10, 6] and [12]).
Condition (1.3) was first studied in [9] (see also [10] and [5] for further

developments), motivated by an investigation on time-invariant level surfaces of
a nonlinear non-degenerate fast di¤usion equation (tailored upon the heat
equation), and was used to extend to nonlinear equations the symmetry results
obtained in [8] for the heat equation. The proof still hinges on the method of
moving planes, that can be applied in a much simplified manner, since the
overdetermination in (1.3) takes place inside W. Under slightly di¤erent assump-
tions and by a di¤erent proof—still based on the method of moving planes—a
similar result was obtained in [12] independently.

The evident similarity between the two problems arouses a natural question:
is condition (1.3) weaker or stronger than (1.2)?

As pointed out in [6], (1.3) seems to be weaker than (1.2), as explained
by the following two observations: (i) as (1.3) does not imply (1.2), the latter
can be seen as the limit of a sequence of conditions of type (1.3) with k ¼ kn
and t ¼ tn and kn and tn vanishing as n ! y; (ii) as (1.2) does not imply (1.3)
either, if u satisfies (1.1)–(1.2), then the oscillation of u on a surface parallel to
the boundary becomes smaller than usual, the closer the surface is to qW.
More precisely, if u A C 1ðWÞ, by a Taylor expansion argument, it is easy to verify
that

max
Gt

u�min
Gt

u ¼ oðtÞ as t ! 0ð1:4Þ

—that becomes a Oðt2Þ as t ! y when u A C 2ðWÞ.
This remark suggests the possibility that Serrin’s symmetry result may be

obtained by stability in the following way: first, for the solution u of the torsion
problem (1.1) prove the estimate

re � ri aCt max
Gt

u�min
Gt

u

� �
ð1:5Þ

for some constant Ct depending on t, where re and ri are the radii of an annulus
containing qW; secondly, if in addition un is constant on qW, show that

max
Gt

u�min
Gt

u ¼ oðCtÞ as t ! 0þ:

729a note on serrin’s overdetermined problem



In the same spirit of (1.5), based on [1], in [6] we proved an estimate that
quantifies the radial symmetry of W in terms of the following quantity:

½u�Gt
¼ sup

z;w AGt
z0w

juðzÞ � uðwÞj
jz� wj :ð1:6Þ

In fact, it was proved that there exist two constants e;Ct > 0 such that, if
½u�Gt

a e, then there are two concentric balls Bri and Bre such that

Bri HWHBre and re � ri aCt½u�Gt
:ð1:7Þ

The constant Ct only depends on t, N, the regularity of qW and the diameter of W.
The calculations in [6] imply that Ct blows-up exponentially as t tends to 0,

which is too fast for our purposes, since ½u�Gt
cannot vanish faster than t2, when

(1.2) holds. The exponential dependence of Ct on t is due to the method of
proof we employed, which is based on the idea of refining the method of moving
planes from a quantitative point of view. As that method is based on the
maximum (or comparison) principle, its quantitative counterpart is based on
Harnack’s inequality and some quantitative versions of Hopf ’s boundary lemma.
The exponential dependence of the constant involved in Harnack’s inequality
leads to that of Ct. Recent (unpublished) calculations, based on more refined
versions of Harnack’s inequality, show that the growth rate of Ct can be
improved, but they are still inadequate to achieve our goal. Approaches to
stability based on the ideas contained in [3] and [4] do not seem to work for
problem (1.1)–(1.3).

In this note, we shall show that our scheme (i)–(ii) is successful, at least in
the case N ¼ 2 and if the admissible domains are ellipses: in this case, the
deviation from radial symmetry can be exactly computed in terms of the
oscillation of u on Gt. We obtain (1.5) with Ct ¼ Oðt�1Þ as t ! 0þ; thus,
formula (1.4) yields the desired symmetry.1

2. Section 2

We begin by defining the three quantities that we shall exactly compute
later on. Let GHR2 be a C1-regular closed simple curve and let zðsÞ, s A ½0; jGjÞ
be its parameterization by arc-lenght. For a function u : G ! R, we will consider
the seminorms

jujG ¼ sup
0as; s 0ajGj

s0s 0

juðzðsÞÞ � uðzðs 0ÞÞj
minðjs� s 0j; jGj � js� s 0jÞ ; ½u�G ¼ sup

z;w AG
z0w

juðzÞ � uðwÞj
jz� wj ;ð2:1Þ

and the oscillation

osc
G

u ¼ max
G

u�min
G

u:ð2:2Þ

1Of course, in this very special case, there is a trivial proof of symmetry, but this is not the point.
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We now consider an ellipse

E ¼ z ¼ ðx; yÞ A R2 :
x2

a2
þ y2

b2
< 1

� �
;

with semi-axes a and b normalized by a�2 þ b�2 ¼ 1, and let

Gt ¼ fz A E : distðz; qEÞ ¼ tgð2:3Þ

be the curve parallel to qE at distance t; Gt is still regular and simple if t is
smaller than the minimal radius of curvature of qE, that is for

0a t <
minða3; b3Þ

2a2b2
:ð2:4Þ

When W ¼ E, the solution u of (1.1) is clearly given by

uðx; yÞ ¼ 1� x2

a2
� y2

b2
:ð2:5Þ

Lemma 2.1. Let u be given by (2.5) and let t satisfy (2.4). Then, we have:

(i) jujGt
¼ ja� bj aþ b

a2b2
t;

(ii) ½u�Gt
¼ jujGt

;

(iii) osc
Gt

u ¼ ja� bj aþ b

a2b2
2ab

aþ b
� t

� �
t.

Proof. The standard parametrization of qE is

gðyÞ ¼ ða cos y; b sin yÞ; y A ½0; 2p�;
thus,

Gt ¼ gðyÞ � tJ
g 0ðyÞ
jg 0ðyÞj : y A ½0; 2pÞ

� �
;

where J is the rotation matrix

0 1

�1 0

� �
;

so that the outward unit normal is

nðyÞ ¼ J
g 0ðyÞ
jg 0ðyÞj :

(i) The mean value theorem then tells us that

juðzðsÞÞ � uðzðs 0ÞÞj
minðjs� s 0j; jGtj � js� s 0jÞ ¼ jhDuðzðsÞÞ; z 0ðsÞij;ð2:6Þ
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for some s A ½0; jGtj�. Since Gt is parallel to qE, we have

z 0ðsÞ ¼ g 0ðyðsÞÞ
jg 0ðyðsÞÞj ;

where yðsÞ is such that

zðsÞ ¼ gðyðsÞÞ � tnðyÞ:
By (2.5), we have that

jhDuðzðsÞÞ; z 0ðsÞij ¼ 2jhAzðsÞ; z 0ðsÞij with A ¼ a�2 0

0 b�2

� �
;

and hence

jhDuðzðsÞÞ; z 0ðsÞij ¼ 2
hAgðyÞ; g 0ðyÞi

jg 0ðyÞj � t
hAJg 0ðyÞ; g 0ðyÞi

jg 0ðyÞj2

�����
�����;

with y ¼ yðsÞ.
Straightforward computations give:

g 0ðyÞ ¼ ð�a sin y; b cos yÞ; jg 0ðyÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 yþ b2 cos2 y

p
;

hAgðyÞ; g 0ðyÞi ¼ 0; hAJg 0ðyÞ; g 0ðyÞi ¼ ja2 � b2j
ab

sin y cos y:

Therefore,

jhDuðzðsÞÞ � z 0ðsÞij ¼ ja2 � b2j
ab

2jtan yj
a2 tan2 yþ b2

t;

this expression achieves its maximum if jtan yj ¼ b=a, that gives:

max
0asajGtj

jhDuðzðsÞÞ; z 0ðsÞij ¼ ja�2 � b�2jt:

From (2.6) we conclude.
(ii) By a symmetry argument, we can always assume that ½u�Gt

is attained for
points z and w (that may possibly coincide) in the first quadrant of the cartesian
plane.

Now, suppose that the value ½u�Gt
is attained for two points z;w A Gt with

z0w. Let s ! zðsÞ A Gt be a parametrization by arclength of Gt such that
zð0Þ ¼ z and let o ¼ z 0ð0Þ be the tangent unit vector to Gt at z. The function
defined by

f ðsÞ ¼ uðzðsÞÞ � uðwÞ
jzðsÞ � wj

has a relative maximum at s ¼ 0 and hence f 0ð0Þ ¼ 0; thus,

hDuðzÞ;oi
jz� wj ¼ uðzÞ � uðwÞ

jz� wj
hz� w;oi

jz� wj2
:

732 giulio ciraolo and rolando magnanini



Therefore, since hz� w;oi0 0, we have that

½u�Gt
¼ hDuðzÞ;oi

hz� w;oi
jz� wj;

that gives a contradiction, since the right-hand side increases with z if the angle
between z� w and o decreases.

As a consequence, we infer that

½u�Gt
¼ lim

n!y

uðznÞ � uðwnÞ
jzn � wnj

where zn;wn A Gt and jzn � wnj ! 0:

Thus, by compactness, we can find a point z A Gt such that

½u�Gt
¼ hDuðzÞ;oi;

where o is the tangent unit vector to Gt at z.
It is clear now that ½u�Gt

¼ jujGt
.

(iii) If (2.4) holds, the maximum and minimum of u on Gt are attained at the
points on Gt whose projections on qE respectively maximize and minimize jDuj
on qE. Thus, (iii) follows at once.

In fact, for a point z ¼ gðyÞ � tnðyÞ on Gt, calculations give that

uðzÞ ¼ 1� hAgðyÞ; gðyÞiþ 2thAgðyÞ; nðyÞi� t2hAnðyÞ; nðyÞi

¼ 2thAgðyÞ; nðyÞi� t2hAnðyÞ; nðyÞi;

where

hAgðyÞ; nðyÞi ¼ 1

ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 cos2 yþ a2 sin2 y

p
;

hAnðyÞ; nðyÞi ¼ 1

a2b2
b4 cos2 yþ a4 sin2 y

b2 cos2 yþ a2 sin2 y
;

so that, by the substitution x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 cos2 yþ a2 sin2 y

p
, we obtain that

uðzÞ ¼ 2t

ab
xþ t2

x2
� ða�2 þ b�2Þt2:

Since (2.4) holds, this function is respectively maximal or minimal when x ¼
minða; bÞ or maxða; bÞ. r

Therefore, for an ellipse E, [6, Theorem 1.1] can be stated as follows,
together with two analogues.

Theorem 2.2. Let u be the solution of (1.1) in an ellipse E of semi-axes a
and b. Let Gt be the curve (2.3) parallel to qE at distance t satisfying (2.4).
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Then, there are two concentric balls Bri and Bre such that Bri HEHBre and

re � ri ¼
1

t

a2b2

aþ b
jujGt

; re � ri ¼
1

t

a2b2

aþ b
½u�Gt

;

re � ri ¼
1

t

a2b2

2ab� ðaþ bÞt osc
Gt

u:

Proof. The largest ball contained in E and the smallest ball containing E
are centered at the origin and have radii minða; bÞ and maxða; bÞ, respectively;
hence, re � ri ¼ ja� bj and the desired formulas follow from Lemma 2.1. r

Now, we turn to Serrin problem (1.1)–(1.2). The following lemma holds for
quite general domains in general dimension.

Lemma 2.3. Let WHRN be a bounded domain with boundary of class C2

and let u A C1ðWÞVC2ðWÞ be a solution of (1.1) satisfying (1.2).
Then

osc
Gt

u ¼ oðtÞ as t ! 0þ:

If, in addition, u A C2ðWÞ, then

½u�Gt
and jujGt

¼ oðtÞ as t ! 0þ:

Proof. Let z and z 0 A Gt points at which u attains its maximum and
minimum, respectively (for notational semplicity, we do not indicate their
dependence on t). If t is su‰ciently small, they have unique projections, say
g and g 0, on qW, so that we can write that z ¼ g� tnðgÞ and z ¼ g 0 � tnðg 0Þ.

Since both u and un are constant on qW, Taylor’s formula gives:

uðzÞ � uðz 0Þ ¼
ð t

0

½hDuðg 0 � tnðg 0ÞÞ; nðg 0Þi� hDuðg� tnðgÞÞ; nðgÞi� dt:

By the (uniform) continuity of the first derivatives of u (and the normals), the
right-hand side of the last identity is a oðtÞ as t ! 0þ.

We shall prove the second part of the theorem only for the semi-norm ½u�Gt
,

since that for jujGt
runs similarly.

Let s and s 0 A ½0; jGtj� attain the first supremum in (2.1); we apply (2.6) and
obtain that

juðzðsÞÞ � uðzðs 0ÞÞj
minðjs� s 0j; jGtj � js� s 0jÞ ¼ jhDuðzðsÞÞ; z 0ðsÞij;

for some s A ½0; jGtjÞ. Let g A qW be the projection of the point z ¼ zðsÞ on qW,
that is z ¼ g� tnðgÞ.
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Since qW and Gt are parallel, the tangent unit vector tðgÞ to the curve
s 7! gðsÞ A qW at g equals the tangent unit vector tðzÞ to the curve s 7! zðsÞ A Gt

at z; the same occurs for the corresponding normal unit vectors nðgÞ and nðzÞ.
It is clear that hDuðgÞ; tðgÞi ¼ 0 and, since u A C2ðWÞ, by di¤erentiating

(1.2), we also have that hD2uðgÞnðgÞ; tðgÞi ¼ 0; thus, by Taylor’s formula, we
obtain that

hDuðzðsÞÞ; z 0ðsÞi ¼ hDuðgÞ; tðgÞi� thD2uðgÞnðgÞ; tðgÞiþ Rðs; s 0; tÞ ¼ Rðs; s 0; tÞ:

Since the second derivatives of u are uniformly continuous on W, we conclude
that the remainder term Rðs; s 0; tÞ is a oðtÞ as t ! 0þ. r

Theorem 2.4. Let E be an ellipse of semi-axes a and b and assume that in E
there exists a solution u of (1.1) satisfying (1.2).

Then a ¼ b, that is E is a ball and u is radially symmetric.

Proof. Theorem 2.2 and Lemma 2.3 in any case yield that

ja� bj ¼ oð1Þ as t ! 0þ;

which implies the assertion. r
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