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THE REAL HYPERSURFACE OF TYPE (B) WITH TWO DISTINCT

PRINCIPAL CURVATURES IN A COMPLEX HYPERBOLIC SPACE

Katsufumi Yamashita and Sadahiro Maeda

Abstract

Real hypersurfaces M 2n�1 of type (B) in CHnðcÞ, nf 2 are known as interesting

examples of Hopf hypersurfaces with constant principal curvatures. They are homo-

geneous in this ambient space. Moreover, the numbers of distinct principal curvatures

of all real hypersurfaces of type (B) with radius r0 ð1=
ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ are 3. When

r ¼ ð1=
ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ, the real hypersurface of type (B) has two distinct principal

curvatures. The purpose of this paper is to characterize this Hopf hypersurface having

two distinct constant principal curvatures.

1. Introduction

J. Berndt and H. Tamaru ([4]) classified all homogeneous real hypersurfaces
M 2n�1 in a complex nðf 2Þ-dimensional complex hyperbolic space CHnðcÞ of
constant holomorphic sectional curvature cð< 0Þ, namely these real hypersurfaces
are orbits of some subgroups of the full isometry group IðCHnðcÞÞ of the ambient
space CHnðcÞ. Note that they are not necessarily Hopf hypersurfaces (for the
definition and fundamental properties of Hopf hypersurfaces, see section 2).
There exist many homogeneous non-Hopf hypersurfaces as well as many homo-
geneous Hopf hypersurfaces in this space. On the contrary every homogeneous
real hypersurface in a complex nðf 2Þ-dimensional complex projective space
CPnðcÞ of constant holomorphic sectional curvature cð> 0Þ is a Hopf hypersur-
face (cf. [11]).

It is well-known that there exist no totally umbilic real hypersurfaces of
CHnðcÞ ðnf 2Þ. In this context, we recall that in CHnðcÞ ðnf 3Þ, a connected
real hypersurface M has at most two distinct principal curvatures at each point
of M if and only if M is locally congruent to either a geodesic sphere GðrÞ of
radius r ð0 < r < yÞ in CHnðcÞ, a tube of radius r ð0 < r < yÞ over a complex
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hyperplane CHn�1ðcÞ, a horosphere or the real hypersurface of type (B) with two
distinct principal curvatures (see [8]). Here, all of these real hypersurfaces are
homogeneous in CHnðcÞ.

A tube of radius r ð0 < r < yÞ around a totally real totally geodesic RHnðc=4Þ
of constant sectional curvature c=4 is called a real hypersuface of type (B) in
CHnðcÞ. When r0 ð1=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ, every real hypersurface M of type

(B) has three distinct constant principal curvatures l1 ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ,

l2 ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ and d ¼

ffiffiffiffiffi
jcj

p
tanhð

ffiffiffiffiffi
jcj

p
rÞ with Ax ¼ dx, where A

and x are the shape operator and the characteristic vector of M, respectively
(see section 2). The real hypersurface of type (B) with radius r ¼
ð1=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ has two distinct constant principal curvatures l1 ¼ d ¼ffiffiffiffiffiffiffiffi

3jcj
p

=2 and l2 ¼
ffiffiffiffiffi
jcj

p
=ð2

ffiffiffi
3

p
Þ (cf. [3]).

The purpose of this paper is to characterize the real hypersurface M of type
(B) with two distinct principal curvatures in CHnðcÞ in terms of the derivative of
its shape operator A, the exterior di¤erentiation dh of its contact form h and the
extrinsic shape of some geodesics of M (see Theorem). Our motivation is based
on the following three facts on real hypersurfaces M of CHnðcÞ:

(1) There exist no real hypersurfaces M with parallel shape operator A (see
[7, 9]);

(2) There exist no real hypersurfaces M with closed contact form h, namely
dh0 0 on M (see [1]);

(3) There exist no real hypersurfaces M all of whose geodesics are mapped
to circles in the ambient space CHnðcÞ (see [10]).

We remark that a characterization of real hypersurfaces M of type (B) having
two distinct principal curvatures in CHnðcÞ was already given by Conditions (1),
(2) in Lemma C and Condition 3cÞ in our Theorem, which are di¤erent from the
above properties (1) and (2) (see [6]).

In this paper, we characterize the real hypersurface M of type (B) with two
distinct principal curvatures in CHnðcÞ from the above properties (1), (2) and (3).

The authors would like to express their hearty thanks to the referee for
improving this paper.

2. Preliminaries

Let M 2n�1 be a real hypersurface of CHnðcÞ, nf 2 and N a unit local
normal vector field on M. The Riemannian connections ~‘‘ of CHnðcÞ and ‘ of
M are related by the following formulas of Gauss and Weingarten:

~‘‘XY ¼ ‘XY þ gðAX ;YÞN;ð2:1Þ
~‘‘XN ¼ �AXð2:2Þ

for any vector fields X and Y on M, where g is the Riemannian metric of M
induced from the standard metric G of the ambient space CHnðcÞ and A is the
shape operator of M in CHnðcÞ. An eigenvector X of the shape operator A is
called a principal curvature vector and an eigenvalue l of A is called a principal
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curvature. We call Vl :¼ fX A TM jAX ¼ lXg a principal distribution associated
with principal curvature l.

It is known that M has an almost contact metric structure induced from the
Kähler structure J of CHnðcÞ, namely we have a quartet ðf; x; h; gÞ defined by

gðfX ;YÞ ¼ GðJX ;Y Þ; x ¼ �JN and hðXÞ ¼ gðx;XÞ ¼ GðJX ;NÞ

which satisfy

f2X ¼ �X þ hðXÞx; gðx; xÞ ¼ 1; fx ¼ 0:ð2:3Þ

It follows from (2.1), (2.2) and ~‘‘J ¼ 0 that

ð‘XfÞY ¼ hðY ÞAX � gðAX ;Y Þx;ð2:4Þ
‘Xx ¼ fAX :ð2:5Þ

In this paper, we call V 0
l :¼ fX A TM jAX ¼ lX ;X ? xg a restricted principal

distribution associated with principal curvature l.
For later use we prepare the following Codazzi equation of M in CHnðcÞ:

ð‘XAÞY � ð‘YAÞX ¼ ðc=4ÞfhðX ÞfY � hðYÞfX � 2gðfX ;Y Þxg:ð2:6Þ

A real hypersurface M of CHnðcÞ is a Hopf hypersurface if the characteristic
vector x is a principal curvature vector at its each point. In the following, for
a Hopf hypersurface M we set Ax ¼ dx on M. It is known that a tube of
su‰ciently small constant radius around every Kähler submanifold of CHnðcÞ is
a Hopf hypersurface. We review the following lemma which is a useful tool in
the theory of Hopf hypersurfaces in CHnðcÞ, nf 2 (cf. [7, 9]).

Lemma A. For a Hopf hypersurface M 2n�1 ðnf 2Þ with principal curvature d
corresponding to the characteristic vector field x in CHnðcÞ, we have the following.

ð1Þ d is constant locally on M.
ð2Þ If X is a tangent vector of M perpendicular to x with AX ¼ lX , then

ð2l� dÞAfX ¼ ðdlþ ðc=2ÞÞfX.

Remark 1. A horosphere of CHnðcÞ shows that we must consider the case
of 2l� d ¼ dlþ ðc=2Þ ¼ 0 in the case of c < 0.

We next recall the following property of the holomorphic distribution
T 0M ¼ fX A TM jX ? xg of a Hopf hypersurface M in CHnðcÞ (see [5]).

Lemma B. The holomorphic distribution T 0M ¼ fX A TM jX ? xg of every
Hopf hypersurace M in CHnðcÞ, nf 2 is not integrable.

In this context, it is natural to consider a problem that does there exist a
Hopf hypersurface M in ~MMnðcÞ satisfying that T 0M is decomposed as the direct
sum of integrable distributions? The following lemma gives a characterization of
all real hypersurfaces of type (B) from this viewpoint ([5, 6]).
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Lemma C. A connected real hypersurface M 2n�1 (with Riemannian connec-
tion ‘) of CHnðcÞ, nf 2 is of type ðBÞ if and only if M satisfies the following two
conditions:

(1) The holomorphic distribution T 0M of M is decomposed as the direct sum
of restricted principal distributions V 0

li
¼ fX A T 0M jAX ¼ liXg;

(2) Every V 0
li

in Condition (1) is integrable and each of its leaves is a
totally geodesic submanifold of M, namely ‘XY A V 0

li
for all vectors X

and Y of any V 0
li
.

We here recall the following classification theorem of Hopf hypersurfaces
with constant principal curvatures in CHnðcÞ, which is due to Berndt ([3]).

Theorem A. Let M 2n�1 be a connected Hopf hypersurface all of whose
principal curvatures are constant in CHnðcÞ, nf 2. Then M is locally congruent
to one of the following:

ðA0Þ A horosphere in CHnðcÞ;
ðA1;0Þ A geodesic sphere GðrÞ of radius r ð0 < r < yÞ;
ðA1;1Þ A tube of radius r ð0 < r < yÞ around a totally geodesic CHn�1ðcÞ;
ðA2Þ A tube of radius r ð0 < r < yÞ around a totally geodesic CH lðcÞ

ð1e le n� 2Þ;
(B) A tube of radius r ð0 < r < yÞ around a totally real totally geodesic

RHnðc=4Þ.

These real hypersurfaces are said to be of types ðA0Þ, ðA1Þ, ðA1Þ, ðA2Þ and (B).
Here, type ðA1Þ means either type ðA1;0Þ or type ðA1;1Þ. Unifying real hyper-
surfaces of type ðA0Þ, ðA1Þ and ðA2Þ, we call them real hypersurfaces of type (A).
Except the real hypersurface of type (B) with radius r ¼ ð1=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ,

the numbers of distinct principal curvatures of these real hypersurfaces are
2; 2; 2; 3; 3, respectively (for details, see [3]).

At the end of this section we review the definition of circles in Riemannian
geometry. A real smooth curve g ¼ gðsÞ parameterized by its arclength s in a
Riemannian manifold M with Riemannian connection ‘ is called a circle of
curvature k if it satisfies the ordinary di¤erential equations ‘ _gg _gg ¼ kYs, ‘ _ggYs ¼
�k _gg with a field Ys of unit vectors along g. Here kðf 0Þ is constant and Ys is
called the unit principal normal vector of g. A circle of null curvature is nothing
but a geodesic. The definition of a circle is equivalent to saying that it is a curve
g ¼ gðsÞ on M with Riemannian metric g satisfying the ordinary di¤erential
equation

‘ _ggð‘ _gg _ggÞ þ gð‘ _gg _gg;‘ _gg _ggÞ _gg ¼ 0:ð2:7Þ

3. Statements of results

Theorem. Let M 2n�1 be a connected real hypersurface of CHnðcÞ, nf 2.
Then the following conditions (1), (2) and (3) are mutually equivalent.
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(1) M is locally congruent to the real hypersurface of type (B) with two
distinct principal curvatures in CHnðcÞ.

(2) M satisfies the following two conditions 2aÞ and 2bÞ.
2aÞ The exterior di¤erentiation dh of the contact form h on M which

is given by dhðX ;Y Þ :¼ ð1=2ÞfX ðhðY ÞÞ � Y ðhðXÞÞ � hð½X ;Y �Þg
holds either dhðX ;Y Þ ¼ ð

ffiffiffiffiffiffiffiffiffiffi
jcj=3

p
ÞgðX ; fYÞ for all X ;Y A TM or

dhðX ;Y Þ ¼ ð�
ffiffiffiffiffiffiffiffiffiffi
jcj=3

p
ÞgðX ; fYÞ for all X ;Y A TM.

2bÞ There exist two geodesics gi ¼ giðsÞ ði ¼ 1; 2Þ on M through a point
x ¼ g1ð0Þ ¼ g2ð0Þ with initial vectors _ggið0Þ orthogonal to xgið0Þ which
are mapped to circles of di¤erent positive curvatures.

(3) M satisfies the following three conditions 3aÞ, 3bÞ and 3cÞ.
3aÞ The holomorphic distribution T 0M of M is decomposed as the direct

sum of restricted principal distributions V 0
li
¼ fX A T 0M jAX ¼ liXg:

3bÞ The derivative of the shape operator A of M satisfies ð‘XAÞY ¼ 0
for all vectors X , Y of each V 0

li
in 3aÞ.

3cÞ There exist two geodesics gi ¼ giðsÞ ði ¼ 1; 2Þ on M through a point
x ¼ g1ð0Þ ¼ g2ð0Þ with initial vectors _ggið0Þ orthogonal to xgið0Þ which
are mapped to circles of positive curvatures 3k and k, respectively.

Proof. We first prove that Condition (1) implies both Conditions (2) and
(3). Let M be the real hypersurface of type (B) with two distinct principal
curvatures. Then our real hypersurface M satisfies (see Lemma A(2))

Ax ¼ l1x; T 0M ¼ V 0
l1
lV 0

l2
and fV 0

l1
¼ V 0

l2
;

where l1 :¼
ffiffiffiffiffiffiffiffi
3jcj

p
=2 and l2 ¼

ffiffiffiffiffi
jcj

p
=ð2

ffiffiffi
3

p
Þ. Hence we easily see that

ðfAþ AfÞX ¼ ðl1 þ l2ÞfX for all X A TM:ð3:1Þ
It follows from (2.5) and (3.1) that

dhðX ;YÞ ¼ 1

2
ðgðY ;‘XxÞ � gðX ;‘YxÞÞ

¼ 1

2
gððfAþ AfÞX ;YÞ ¼

ffiffiffiffiffi
jcj

p
ffiffiffi
3

p gðfX ;YÞ

¼ �
ffiffiffiffiffi
jcj

p
ffiffiffi
3

p gðX ; fYÞ

Needless to say, when we take a unit normal vector N with Ax ¼ �l1x, we get
dhðX ;Y Þ ¼ ð

ffiffiffiffiffi
jcj

p
=
ffiffiffi
3

p
ÞgðX ; fYÞ for all X ;Y A TM.

We next take two geodesics g1 ¼ g1ðsÞ and g2 ¼ g2ðsÞ on M through an
arbitrary fixed point x ¼ g1ð0Þ ¼ g2ð0Þ with initial vectors _gg1ð0Þ A V 0

l1
and

_gg2ð0Þ A V 0
l2
, respectively. Then by virtue of Lemma C we find that these curves

g1 and g2 can be considered as geodesics on some leaves Ll1 and Ll2 of the
restricted principal distributions V 0

l1
and V 0

l2
, respectively. We here explain these

leaves Ll1 and Ll2 in detail. Due to (2.1) we see that the leaves Ll1 and Ll2

are totally umbilic hypersurfaces of an n-dimensional totally real totally geodesic
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real hyperbolic space RHnðc=4Þ of constant sectional curvature c=4 in CHnðcÞ.
Hence these leaves are locally congruent to real space forms Mn�1ðdiÞ of con-
stant sectional curvatures di ði ¼ 1; 2Þ, respectively. So we have the equations
di � ðc=4Þ ¼ l2i . Thus we know that Ll1 and Ll2 are locally congruent to real
space forms Mn�1ðjcj=2Þ of constant sectional curvature jcj=2 and Mn�1ðc=6Þ of
constant sectional curvature c=6, respectively. This, together with Equation (2.1),
shows that these geodesics g1 and g2 are mapped to circles of di¤erent positive
curvatures l1 and l2 in CHnðcÞ, respectively. Thus we obtain Condition (2).

The above discussion yields that Conditions 3aÞ and 3cÞ are immediate
consequences of Condition (1). So we here verify Condition 3bÞ. Thanks to
Lemma C our real hypersurface M satisfies ‘XY A V 0

li
for all X , Y of the

restricted principal foliation V 0
li

ði ¼ 1; 2Þ. For all X ;Y A V 0
li

ði ¼ 1; 2Þ with

l1 ¼
ffiffiffiffiffiffiffiffi
3jcj

p
=2 and l2 ¼

ffiffiffiffiffi
jcj

p
=ð2

ffiffiffi
3

p
Þ, we have

ð‘XAÞY ¼ ‘X ðAY Þ � A‘XY

¼ li‘XY � li‘XY ¼ 0;

so that we get Condition 3bÞ. Therefore we can see that Condition (1) implies
both Conditions (2) and (3).

Conversely, we suppose Condition (2). Then, from Condition 2aÞ and the
above discussion we can take a unit normal vector N on M satisfying (3.1).
Setting X ¼ x in (3.1), we get fAx ¼ 0, so that our real hypersurface M is a
Hopf hypersurface. Next we take a principal curvature vector field Xð? xÞ with
principal curvature l in (3.1). Suppose that 2l� d0 0 at some point x A M.
Hence, from the continuity of the function 2l� d there exists a su‰ciently small
neighborhood Ux of the point x satisfying that ð2l� dÞðyÞ0 0 for each y A Ux.
This, combined with Lemma A(2) and (3.1), yields the following equation on the
neighborhood Ux:

lþ
dlþ c

2
2l� d

¼ 2
ffiffiffiffiffi
jcj

p
ffiffiffi
3

p :

Thus, from the constancy of d and this equation we find that l is constant on Ux.
We finally consider the case of 2l� d ¼ 0 at some point of M. We shall

verify that 2l� d vanishes identically on M. Assume that 2l� d0 0 at some
point x0 A M, and set y0 ¼ ð2l� dÞðx0Þ. Let N be the subset of those points
x A M such that ð2l� dÞðxÞ ¼ y0. Clearly N is a non-empty closed subset of M.
It is also open, since the discussion in the case of 2l� d0 0 means that the
function 2l� d is constantly equal to y0 0 0 on some neighborhood of each point
x A N. Since M is connected, we find that N ¼ M, which is a contradiction.
So we find that l ¼ d=2 on M.

Thus we can see that our real hypersurface is a Hopf hypersurface with
constant principal curvatures. In consideration of Theorem A we see that M
is of type either ðA0Þ, ðA1Þ, ðA2Þ or ðBÞ. We shall check 2aÞ for these real
hypersurfaces one by one. For the principal curvatures of real hypersurfaces of
type (A) and their properties, see [9].

29the real hypersurface of type (B)



Let M be of type ðA0Þ. Then AX ¼ ð
ffiffiffiffiffi
jcj

p
=2ÞX for all X A T 0M and

Ax ¼
ffiffiffiffiffi
jcj

p
x, which implies ðfAþ AfÞX ¼

ffiffiffiffiffi
jcj

p
fX for all X A TM. So we have

dhðX ;Y Þ ¼ ð�
ffiffiffiffiffi
jcj

p
=2ÞgðX ; fYÞ for all X ;Y A TM, which is a contradiction.

Thus we can see that this real hypersurface does not satisfy 2aÞ.
Let M be of type ðA1;0Þ. Then AX ¼ ð

ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2ÞX for all

X A T 0M and Ax ¼
ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞx. Hence, by the same computation as

above dhðX ;Y Þ ¼ ð�
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2ÞgðX ; fY Þ. Thus we obtain the

equation
ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
r=2Þ ¼ 2

ffiffiffiffiffi
jcj

p
=
ffiffiffi
3

p
. Solving this equation, we know that

the radius r of real hypersurfaces of type ðA1;0Þ is expressed as
r ¼ ð2=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ. Then this real hypersurface satisfies 2aÞ.

Let M be of type ðA1;1Þ. Then AX ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2ÞX for all

X A T 0M and Ax ¼
ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞx. Hence we get dhðX ;YÞ ¼ ð�

ffiffiffiffiffi
jcj

p
=2Þ �

tanhð
ffiffiffiffiffi
jcj

p
r=2ÞgðX ; fY Þ, so that

ffiffiffiffiffi
jcj

p
tanhð

ffiffiffiffiffi
jcj

p
r=2Þ ¼ 2

ffiffiffiffiffi
jcj

p
=
ffiffiffi
3

p
, which is a con-

tradiction. Thus this real hypersurface does not satisfy Condition 2aÞ.
Let M be of type ðA2Þ. Then the holomorphic distribution T 0M of M is

decomposed as T 0M ¼ V 0
l1
lV 0

l2
¼ Vl1 lVl2 with l1 ¼ ð

ffiffiffiffiffi
jcj

p
Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ,

l2 ¼ ð
ffiffiffiffiffi
jcj

p
Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ and Ax ¼

ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞx. Note that fV 0

l1
¼ V 0

l1
and fV 0

l2
¼ V 0

l2
. These equalities imply that Equation (3.1) does not hold.

Hence this real hypersurface does not hold 2aÞ.
Let M be of type (B). Then it follows from (3.1) thatffiffiffiffiffi

jcj
p
2

coth

ffiffiffiffiffi
jcj

p
r

2

 !
þ

ffiffiffiffiffi
jcj

p
2

tanh

ffiffiffiffiffi
jcj

p
r

2

 !
¼ 2

ffiffiffiffiffi
jcj

p
ffiffiffi
3

p :

Solving this equation, we get r ¼ ð1=
ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ, so that M has two

distinct principal curvatures l1 ¼ d ¼
ffiffiffiffiffiffiffiffi
3jcj

p
=2 and l2 ¼

ffiffiffiffiffi
jcj

p
=ð2

ffiffiffi
3

p
Þ, which yields

that this real hypersurface satisfies 2aÞ. Hence our discussion asserts that a
real hypersurface of CHnðcÞ satisfies 2aÞ if and only if M is locally congruent
to either the geodesic sphere GðrÞ of radius r ¼ ð2=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ (i.e.,

ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ ¼

ffiffiffiffiffi
jcj

p
=
ffiffiffi
3

p
) or the real hypersurface of type (B) with

two distinct principal curvatures. However the former case does not satisfy 2bÞ.
Indeed, every geodesic g ¼ gðsÞ on GðrÞ of radius r ¼ ð2=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ with

initial vector _ggð0Þ orthogonal to xgð0Þ is mapped to a circle of the same curvatureffiffiffiffiffi
jcj

p
=
ffiffiffi
3

p
(cf. [5]). Therefore we can see that Condition (2) implies Condition (1).

We finally suppose Condition (3). We shall study on the open dense subset
U of M, which is given by Remark 3. Condition 3aÞ implies that our real
hypersurface M is a Hopf hypersurface. Next, for each vector X , Y of any
restricted principal distribution V 0

li
, from Condition 3bÞ we get

0 ¼ ð‘XAÞY ¼ ‘X ðAY Þ � A‘XY

¼ ‘X ðliY Þ � A‘XY

¼ ðXliÞY þ ðliI � AÞ‘XY ;
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so that

ðXliÞY þ ðliI � AÞ‘XY ¼ 0:ð3:2Þ

We here take an arbitrary vector Z A V 0
lj

with li 0 lj.

Note that there exists such a vector Z. To do show that, we assume that
there does not exist such Z. Then there exists an open set V of M such that
T 0V ¼ V 0

li
, which means that Av ¼ liv for any v A T 0V, i.e., our real hyper-

surface V is totally h-umbilic in the ambient space CHnðcÞ. Hence this real
hypersurface V is of type (A). So the shape operator A of V satisfies the
following di¤erential equation:

ð‘XAÞY ¼ ð�c=4ÞðgðfX ;YÞxþ hðYÞfXÞ

for all X ;Y A TV (see [9]). Then for any unit vector X orthogonal to x, from
the above equation we have ð‘XAÞfX ¼ ð�c=4Þx0 0, which contradicts to
Condition 3bÞ.

Then, taking the inner product of (3.2) and the vector Z A V 0
lj

with li 0 lj,
we obtain

0 ¼ gððliI � AÞ‘XY ;ZÞ ¼ ðli � ljÞgð‘XY ;ZÞ;

so that gð‘XY ;ZÞ ¼ 0, which shows that

‘XY A V 0
li
l fxgR for each X ;Y A V 0

li
:ð3:3Þ

We shall verify that gð‘XY ; xÞ ¼ 0. It follows from (2.5) that

gð‘XY ; xÞ ¼ �gðY ;‘XxÞ ¼ �gðY ; fAX Þ ¼ �ligðY ; fXÞ:ð3:4Þ

On the other hand, from (2.6) and Condition 3bÞ we find that gðfX ;YÞ ¼ 0 for
each X ;Y A V 0

li
. This, together with (3.3) and (3.4), yields that ‘XY A V 0

li
for

every vector X , Y of any restricted principal distribution V 0
li
. Hence our real

hypersurface M is of type (B) on the open dense subset U (see Lemma C), which
implies that M is globally of type (B).

The rest of the proof is to determine real hypersurfaces of type (B) satisfying
Condition 3cÞ.

To do this, we review the following fact. We take a geodesic g ¼ gðsÞ on a
hypersurface Mn isometrically immersed into an ðnþ 1Þ-dimensional Riemannian
manifold ~MMnþ1 (with Riemannian metric g). Suppose that the geodesic g is
mapped to a circle of positive curvature k in the ambient space ~MMnþ1. Then the
shape operator A of Mn in ~MMnþ1 satisfies

A _ggðsÞ ¼ k _ggðsÞ for each s or A _ggðsÞ ¼ �k _ggðsÞ for each s:ð3:5Þ

In fact, it follows from (2.1), (2.2) and (2.7) that gðA _gg; _ggÞA _gg ¼ k2 _gg holds on the
curve g. This, combined with k0 0, yields (3.5).
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In view of the above fact and Condition 3cÞ we have only to consider the
following equation ffiffiffiffiffi

jcj
p
2

coth

ffiffiffiffiffi
jcj

p
r

2

 !
¼ 3

ffiffiffiffiffi
jcj

p
2

tanh

ffiffiffiffiffi
jcj

p
r

2

 !
:

Solving this equation, we see that r ¼ ð1=
ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ. Thus we obtain

Condition (1). r

Remark 2. As an immediate consequence of the discussion in the proof of
our Theorem we have the following:

Corollary. A connected real hypersurface M of CHnðcÞ, nf 2 is of type
(B) if and only if M satisfies the following two conditions:

(1) The holomorphic distribution T 0M of M is decomposed as the direct sum
of restricted principal distributions V 0

li
¼ fX A T 0M jAX ¼ liXg;

(2) The derivative of the shape operator A of M satisfies ð‘XAÞY ¼ 0 for all
vectors X , Y of each V 0

li
in ð1Þ.

Remark 3. As a matter of fact, if a real hypersurface M of CHnðcÞ satisfies
Condition (1) in the above Corollary, then M is a Hopf hypersurface. Note that
the converse does not hold in general. However every Hopf hypersurface M 2n�1

of CHnðcÞ satisfies locally Condition (1) on an open dense subset

U ¼ x A M 2n�1

���� the multiplicity of every principal curvature of M 2n�1 in
CHnðcÞ is constant on some neighborhood VxðHUÞ of x

� �

of M 2n�1.

Remark 4. If we remove Condition 2bÞ, our Theorem is not true. In fact,
the geodesic sphere GðrÞ with radius r ¼ ð2=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ in CHnðcÞ satisfies

Condition 2aÞ.
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