Y. NAGAHATA
KODAI MATH. J.
36 (2013), 409-427

FUNCTIONAL CENTRAL LIMIT THEOREM FOR TAGGED
PARTICLE DYNAMICS IN STOCHASTIC RANKING PROCESS

YUKIO NAGAHATA

Abstract

In this paper we consider “parabolically” scaled centered tagged particle dynamics
for a stochastic ranking process (regarded as a particle system), which is driven
according to an algorithm for self-organizing linear list of a finite number of items. We
let the number of items to infinity and show that the scaled tagged particle weakly
converges to a “‘diffusion” processes with occasional jumps, in which the particle jumps
to 0 when its own Poisson clock rings and behaves as a “diffusion” process otherwise.
The ““diffusion” is decomposed into a sum of independent continuous Markov Gaussian
processes with a random covariance. Intuitively, each component process is constructed
by infinitely many particles having the same intensity behind the tagged particle. This
random covariance depends only on its own last Poisson time. In multi-tagged particle
system, ‘“‘hyperbolically” scaled tagged particles decompose [0,1] interval into L+ 1
layers, where L is a number of tagged particles. Intuitively, infinitely many particles
in each layer construct a “diffusion” processes, which is interpreted as a shrunk version
of that in the single tagged particle case. Each “parabolically” scaled centered tagged
particle holds in common these ““diffusion” processes if the corresponding layer is behind
the corresponding ‘‘hyperbolically” scaled tagged particle.

1. Introduction

We consider a stochastic ranking process (or Poisson embedding of the
move-to-front rules), which is driven according to an algorithm for a self-
organizing linear list of a finite number of items. The list is updated in the
following way. Each item has an independent Poisson clock, whose rate depends
on type of the item. If the Poisson clock of the i-th item rings, then it is
transferred to the top of the list and each of the items located in front of the i-th
item accordingly descend simultaneously by one rank; those behind do not move
at all. In this paper, we treat this process as an “interacting particle sys-

tem”. We fasten a tag to a “particle” (or tags to “‘particles””) and observe the
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motion of the “‘tagged particle” (or “tagged particles”). In the previous paper
[23], we obtained a scaling limit of tagged particle dynamics and multi-tagged
particle dynamics as the number of the particles tends to infinity under a
“hyperbolic” scaling. In this scaling limit the limit process of the scaled tagged
particle jumps to the top of the list when its own Poisson clock rings and moves
deterministically along a curve otherwise. The tagged particles in the multi-
tagged particle system are independent. These results may be regarded as a law
of large numbers.

In this paper we consider “parabolically” scaled centered tagged particle
dynamics. In the limit under this scaling we obtain a sum of diffusion processes
with occasional jump in which the particle jumps to 0 when its own Poisson clock
rings and behaves as a sum of continuous Markov Gaussian processes with a
random covariance otherwise. We can interpret that each of these Gaussian
processes is constructed by infinitely many particles having the same intensity
behind the tagged particle. This random covariance depends only on its own
last Poisson time (Theorem 2.2). In multi-tagged particle system, ‘“hyperboli-
cally” scaled tagged particles decompose the unit interval [0, 1] into L + 1 layers,
where L is a number of tagged particles. Intuitively, infinitely many particles in
each layer construct a sum of continuous Markov Gaussian processes, which is
interpreted as a shrunk version of that in the single tagged particle case. Each
“parabolically” scaled centered tagged particle holds in common these Gaussian
processes if the corresponding layer is behind the corresponding ‘‘hyperbolically”’
scaled tagged particle (Theorem 2.5).

The move-to-front rule is introduced by Tsetlin [27] and studied in many
papers [5, 16, 20, 21, 22]. It is also studied as least-recently-used cashing [1, 3, 4,
6, 7, 8, 9, 10, 17, 18, 25, 26]. Recently it is reintroduced and studied as a
mathematical model of the ranking in the web page of online bookstores or in the
posting web pages [11, 12, 13, 14, 15, 23].

This paper is organized as follows: In section 2, we define our model and
state main results. In section 3, we prove Theorem 2.2. In section 4, we prove
Lemma 2.4. 1In section 5, we prove Theorem 2.5.

2. Model and results

Let {v;ieN} be independent Poisson random measures on [0, c0) with
intensity w;(s) ds. We suppose that the set of intensities is finite, i.e., there

exists K such that {w;ieN}={w;,wa,...,wg}t. Let (xNV,x),...,x¥) be a
permutation of 1,2,...,N. We define a stochastic ranking process XV =
XN, xY,...,X7) as a unique solution of the system of stochastic integral
equation

t

1) X0 =+ D [ 10006) > Kl + [ (1 = Ko@)
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where 1(A) is the indicator function of 4. We regard XV (¢) and x}¥ as positions
of the i-th particle at time 7 and at time O respectively. The i-th particle has the
Poisson clock v; with intensity w; and at each time when the clock v; rings, then
i-th particle jumps to the top. If a Poisson clock of a particle located behind the
i-th particle rings, then the i-th particle jumps backward by one step.

We define the normalized position of XV by

1

M) =

1

(XN (@) = 1).

We set y¥ :=(x¥ —1)/N for 1 <i<N. Let us consider the Cauchy problem
for a system of quasi linear PDE

0 0

Eul(x, 1) = —u(x,s)w(s Zum (x,8)Wp(s 6x ur(x,s),

2) (0, 1) = £i(0),
u/(l, t) = 0,
u(x,0) = fi(x),

for /=1,2,...,K where the initial functlons 11, 1< /| < K are smooth and
decreasmg, and satisfy that f; > 0 and Zl  f1(0) = In [13] it is proved that
this system of PDE has a unique global classical solution. From now on, we

denote by u(x,?) = (ui(x,1),...,ux(x,t)) the unique global solution of (2).
We refer following results [23].

ProposITION 2.1 ([23, Theorem 1.2]). Assume that

yY =y, (N — ), almost surely,

|

NZ: 100 =) 1(p) > x) — fi(x),
]:

(N — o0), uniformly in x € [0, 1] almost surely.

Then the scaled tagged particle motion YN () converges to Y(t) uniformly in
t €0, T) almost surely for all T >0, where Y is the solution of

t

Kt
1=y + ZL w (Y1 (s—), s)wi(s) ds—J Y1 (s—)vi(ds).
I=1

0

Furthermore, assume that for some L,
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(yfv,yév,...,yiv) = (y1,92,--,0L), (N — 00), almost surely,

N
J=1

(N — o), uniformly in x €[0,1] almost surely.

Then the scaled tagged particle system (Y (1), YN (1),...,Y}N(t)) converges to
(Y, ( ), Ya(t ) Y.(¢)) uniformly in te€[0,T]| almost surely for all T >0, where
Y, i=1,2,. L are the solutions of

t

K t
=y,~+l_zlj0u,<m<s— $)(s) ds — j Yi(s—)vilds).

0

Proposition 2.1 expresses a scaled particle moves deterministically obeying the
same ODE as for the corresponding characteristic curve of the system of PDE
(2) except for its successive Poisson epochs at each of which it jumps to the
top independently of the motion of the other tagged particles. We recall that
Proposition 2.1 can be regarded as a law of large numbers.

The process YV may be considered as a “hyperbolic” scaling of X, and we
are going to consider a “parabolic” scaling. Here is given a reason why we use
the words ‘“hyperbolic” and “parabolic” in spite of no scale change of time in
both cases. First we consider

N t
Np) = ZI:L v, (ds).

It is obvious that this is a (time inhomogeneous) continuous time random
walk. To simplify our notation, we assume that K =1 and w; =1, so that
W is a time homogeneous random walk with mean waiting time 1/N. It is

1 1
standard to see that — W™ (¢) converges to ¢ and — (W (¢) — Nt) converges
S W(0) converg T (W) = Vi) conver

to a standard Brownian motion as a law of large numbers and an invariance
principle respectively. In this case, we have scaled the process in space, not in
time. Nevertheless we have a law of large numbers and an invariance principle,
since adding independent Poisson measures plays a speed up (time scaling) role.
The situation for YV and Z" (defined below) is the same, so the expressions
“hyperbolic” and “parabolic” scaling according as the space scaling factors 1/N
and 1/v/N respectively. (In the “parabolic” scaling case, we may also need
some Centering)

Let {z}},., be successive P01sson epochs of vy with 7} <z}, for all n > 1.
To simplify our notation, we set 7} =0. We define & ! by o-algebra generated
by Poisson epochs {z!;n > 0}. By the direct computation, we have the following
formula for Y;(¢);
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K t

y1+ Zf;(yl){l - exp(J wi(s) ds)} ifo<r<t],
=1 0

® no-{ , |
Zﬁ(O){l—exp(—J W;(s)ds)} ifr) <t<tl, n>1

=1 T

1
We define “parabolically” scaled centered tagged particle dynamics ZI¥ by
ZY¥ () = VN(YM (1) = Yi(1).
Set p;, q; for 1 </ <K by

t
pi(s, 1) = exp <—J wi(u) du), qi(s, 1) =1— pi(s, 1)
for s <t We also set t!(¢) :== max{t! <#,n>0}. Furthermore, we set a;(t) =
(al-,l(z)val,z(t)? cee aal,K(t))> [)1(1) = (pl,l(t)7/)l$2(t)a s 7p1,K(t)) by

e { Tlmpe0,0)  if <'(5) =0,
111((1‘) = | ] |
T (0)pe(z'(2),0) if 71 (£) > 0,

_ (7))
P1i(1) ~—m7

for 1 <k < K. Note that a;, p, are ' measurable random functions. Fur-
thermore both of them depend only on the last Poisson time, i.c., if 7} <7 <7l |,
then they depend only on z!. We also note that p,(z)) =0 for all n > 0. Fur-
thermore, each component of aj, p, is a smooth function except {z};n > 0} and
each component of p; is a strictly increasing function for each interval [z}, 7). )
for n > 0.

Let {B;;1 < j < K} be independent Brownian motions, which are indepen-
dent of the Poisson random measures. We denote by pj , the derivative of the
absolutely continuous part of p; ,. We set a jump diffusion process @;(t) =

(@171([), @1,2([), o ,@1\1{(1)) by

0O «(1) == J p{’k(s) dBy(s) — Jo O i (s)vi(ds),

0

for 1 <k < K. Note that ®; ,(¢) has the expression

t

014 = | PR Bt

We define a jump diffusion process Wi(¢) = (¥1,1(7), ¥1,2(7), ..., ¥1.x(2)) by

(4) \Pl,k(l) = alﬁk(t)G)l’k(t).
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By applying Ito formula to f(a; «(7),® (7)) with f(x,y) = xy, we have

1

P1ul0) = | a4 (9O1E) do+ | 1)/l dBs) = | Fram(ay

- J0 Zilzgz; Frels) ds+ Joal’k(s) p{ﬁk(s) dBy(s) — JO‘Pl,k(S)Vl(dS)a

for 1 <k < K. Then we define Z, by

(5) Zi(0) = 3 Wil)
k=1

These processes jump to 0 at each Poisson time z! for n > 1. By the definition
of ®, the law of W, in the time interval [r,l,r,ﬁ 1) coincides with that of

ay (t )B/C n(p1 (D), where Bk . 1s another standard Brownian motion. This is a
typical continuous Markov Gaussian process (see Propositions 3.3, 3.4 below).
By the definition, the components of ¥; are independent. Therefore Z(t) in
the time interval [z}, 7)) is a Gaussian process with covariance I'(s,?) =
Z,ﬁil ar k(s)ar k(1)py 4 (s) for tl,s<t<z),. If K>2, then Z(¢) is not a

n’
Markov process in general.

THEOREM 2.2. Assume that the following relations hold true with probability

one:

N 1

W =m=o(z) W)

izle(w/ = w1y = ") = filn) = 0<L> (N — ), for 1 <k <K,
N4 / VN

al 1
g (wj = Wi) fk(o>:0<ﬁ), (N — o), for 1 <k <K.

Then Z{ conditioned on F U converges weakly in the Skorohod topology to Z,
condztloned on 7.

We interpret Z;, W, as follows: For each Poisson time {t!:n>1}, the
processes are reset to 0. In each time interval [r;,r; 1), n=0,1,2,..., the
process Z) is a centered continuous Gaussian process with covariance F(s 1) =
Zk 1 ank(s)ar i (t)py x(s) for s < ¢, which is decomposed into a sum of indepen-
dent centered continuous Markov Gaussian processes. We note that a (¢)
corresponds to the expected number of particles behind the tagged particle
with the same intensity w;. Hence each centered continuous Markov Gaussian
process is constructed by particles behind the tagged particle with the same
intensity.
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Remark 2.3. We suppose that the set of intensities is infinite. If we add
some extra assumptions on intensities and initial configurations, then our proof
below is applicable and Z" converges to some centered Gaussian process, which
is continuous except for the Poisson time {rl;n > 1}.

We also consider a ‘“‘parabolically” scaled centered multi-tagged particle
system. We define ZV = ZNL = (ZN zZN ..., Z)) by

z' (1) = VN(Y (1) - Yi(1)),

for 1 <I/<L. Let{zl},., be successive Poisson epochs with respect to v; with

i<zl foralln>1for 1</<L. Forl<I<Lsett)=0,

/(1) = max{r! <t,n >0}

and
(1) = max{</(1); 1 < I < L}.
We also set

qx(s, 1) / _i
Pk(s, l‘)’ pk(sv t) - atpk(sa Z)'

pk(s> t) =

Let {B;;;1 <i<L,1<j<K} be independent Brownian motions, which are
independent of the Poisson random measures. Then we define a jump diffusion

process E(t) = (Ei.j(l))lgigL,lgng by
t
= () = J DT (1), 5) dBy ,(5)
We set R(?) := (Ri(f), Rx(¢),...,R.(¢)) a permutation of (1,2,...,L) such
that
YR (1) = YRy (1) = -+ = Y,y (1),

where if Ygy(¢) = Yg, ()(?), then we set R;(z) < R;11(7). Namely, by means
of R(f), we arrange Y (1) = (Y1(¢), Ya(?),..., Y.(¢)) in descending order. We set
S(t) = (S1(1),82(2),...,Sc(¢)) a permutation of (1,2,...,L) such that Rg,) =1
for 1 </<L.

We set

al’O(TL(Z)) =0,

a1 (1)) = {fk@z)pk(o ) RO =0, and 1</,
Fie(0) pe(t RO (1), 7(2)) if RO (1) £0, and 1 <1 < L,

for 1 <k <K. We define ¥(t) = (W1x(?)1</<r.1<k<x DY
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Si(1)
Wi k(t) = Pra (e () pr(e(0), ) + Y \/af‘"(fL(t)) —a/~hE(T (1))

5
X{_ t Wi (s)p.
(6) (1)
o], me
¥4 (2h(1) = {(‘)Pz,k<rL<r)—> i)ftl::r(wt)isj ),

k (‘L’L (1),8)Zk(s) ds
)

1),s) dEjﬁk(s)},

Then we define Z(t) = (Z,(¢), Z>(¢),...,Z1(t)) by
K
(7) Z[(l) = Z‘P[_k(l).
k=1
LemMMA 2.4. The law of W) x(t) defined by (4) coincides with that by (6) for
1 <k <K. Therefore the law of Z(t) defined by (5) coincides with that by (7).
We set FL:=o({tl;n>0}U{z2;n>0}U---U{ct;n>0}).
THEOREM 2.5. Assume that

1
y—y= 0(ﬁ>, (N — o), almost surely for 1 <l <L,

N ) . ) 1
;I(Wj =wi)l(y;" 2 »') — fe(y) = O(ﬁ)’

(N — o) almost surely 1 <I <L, 1 <k <K,

=[ =

1 & 1
— Y 1(w; =w) — fx(0 :0<—>, N — o) almost surely for 1 <k < K.
F 2100 =0 = A0 =o(75). (¥ = )

Then ZN = (ZN,zY,...,Z)) conditioned on FY converges weakly in the
Skorohod topology to Z = (Z\,Z,...,Z;) conditioned on F".

We interpret this process as follows: The jump times of each component
coincide with its Poisson times. Each component of the process is given by
a sum of independent centered Markov Gaussian processes. The “hyperboli-
cally” scaled tagged particles Y divide [0, 1) interval into L + 1 layers. For each
Poisson time {tl;n > 1}, the layers are reset. The height of the layer is
interpreted as expected normalized number of particles in the layer. In each
layer, the height is divided into expected normalized number of particles with the
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same intensity in the layer. We interpret that each centered Markov Gaussian
process is constructed by particles with the same intensity in corresponding
layer. We also interpret these centered Markov Gaussian processes as shrunk
version of that in the single tagged particle case. Each centered Markov
Gaussian process is held in common by Z; if the corresponding layer is behind

(e (1))

3. Proof of Theorem 2.2

To prove the main theorem, we have only to show the tightness and the
convergence of finite dimensional distribution. Namely, if we prove following
two lemmas, then we conclude the proof of Theorem 2.2:

LemMA 3.1.  The sequence {Z\;N > 1} conditioned on F'

is tight.
LeMMA 3.2.  The finite dimensional characteristic function of ZI conditioned
on F! converges to that of Z; conditioned on T O

First we give fundamental results on Gaussian process.

ProposiTION 3.3 [19, Proposition 13.7], [24, Chap. III Sec. 1, Exercise 1.13].
Let X be a Gaussian process with covariance I'.  Then X is a Markov process if
and only if T'(s,u)l'(¢,1) =T (s, )T (¢t,u) for s <t < u.

PropOSITION 3.4 [24, Chap. III Sec. 1, Exercise 1.13]. Suppose that a is
continuous and does not vanish and p is a continuous strictly positive and non
decreasing function. If we set Y(t) = a(t)B(p(t)), where B is a Brownian motion,
then Y is a centered Gaussian process with covariance T(s,t) = a(s)a(t)p(s) for
s < 1.

Second we give the following formula for Y}V (z) (cf [11, YéN)]), which plays
an important role in the proof, and compute several quantities.

In the time interval [z}, 7}, ,), for each j # 1, the order of the values Y;" and
Y/.N changes at most once at 7, the first Poisson time with respect to v; in the time

interval [z}, 7). ,). By the definition of Y;¥, we have

N
o +%ZI<YJ-N<0> > Y O)1(y((0,1) = 1) if 7'(r) =0,

® vo=9
N;Hv/((r‘m,z}) > 1) if 7!(1) > 0.

By simple computation, we have



418 YUKIO NAGAHATA

By the assumption of the Theorem 2.2, we have

9) Yi() - E[YN(@) | 7! = 0(\/lﬁ>, (N — o0) uniformly in 7.

Hence we have
E[ZN(t)| 7' =0(1), (N — o) uniformly in .
Set p/, ¢/ for j>2 by

K
= > " 100 = w)pe(e' (0,0, ¢/(1) =D 10wy = wi)au(z' (1), 0).

K
k=1 k=1

Then it is easy to see that p/(1) = P(v;((z!(),7]) = 0) and ¢/(¢) = P(v;((z'(z),1])
>1). We define W, for j>2 by

Wj(t) = Wy(1) — EIW;(1) | 7 '],
Wi(1) = 1(v((z' (1), 1)) > 1).

Then we have

E[W(t)| 7' =0, for all ¢,
(10) EW;(s)W; ()| 7] = ¢/(s)p’ (1), if s <1 and 7'(s) = '(2),
E[W;(s)W;(1)| 7] = 0, if 7'(s) <7'(7).
Furthermore we have
S0 0) > VoW i 0 =0,

SOV ORI ACIERE

M- 11-

I|
)

/0] if 7!(¢) > 0.

2| =

J

We define a g-algebra 4 by 4 = (7' Ua(t) Ua(W;(t))) for some stopping time
t. Then by the definition of W;, we have

(12)  E[(Wi(t+5) — Wi(1)* | 9] < 2{E[(vi([t,t +5)) = 1) | %] + Cs} < 4Cs
for C = sup; sup, w;(s), if 7' (1) = 7' (1 +3).
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It is easy to compute the finite dimensional characteristic function of W;

conditioned on # ! as follows: Set t = (2,19, ..., t)?qo, (2 T AT (0
tm,,) which satisfies 0 < ¢ < 12 < <r<n<n <<t <y <
<1l < t” < <<t < TnH and X = (x?,xg,...,x?no,xll,le,...,x;ql,...,xf’,
Xy, xt) e RM where M =Y m*. Then we have
n  mk
i) ey k 1
(13) 9l(x) := E |exp \/7122 Wi(th)xk ) | 7

n
-1-3 3 St

—ZZ Zq P (tf)xExf + o(xP),

i=1 I=i+l

where [x| = /301 S0 (xF)%.

Since {v;; jz 1} is 1ndependent Poisson random measure, by the definition of
ZY and by using (9), (11), and (13), we conclude that @ the finite dimensional
characteristic function of Z conditioned on # U'is given by

n ’,”1(
exp(V—lZZZf(lf‘)xf‘) 9’1]
k=0 i=1

}770 N
exp{m[Z{#ZI(Yj’V(O) > YlN(O))Wj(tJQ)

(14)  oNx):=E

=F

i=1

n o m N
SR I EES 9w S w08
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K N
exp{Z(— Zl w; = wy)1 Zle)
=1 j=2

0

m m’—1 m°
ZCH(I?)P/( Z Z qi(t Pl t; X; xl>

| —
=l -

i=1 i=1 [=i+1

X
-~

2|~

N n mk

1
E 1(w; = wy (E E E ai(ef) pu(ef) ()
= k=1 i=1

k
qi(t p/ ll xx,))—i—o(l)}
i+1

Proof of Lemma 3.1. Since Z{¥(z,) =0 for all N >1, n>0, thanks to
Aldous’s tightness criterion and Chebyshev’s inequality, it is enough to prove
that

n mk—1

3

k=1 i=1 [

E[{ZIN([)}Z | Tn <1< Tn-H] < C
E{ZM((t146)-) = Z ()Y |5y < t < 7] < G5,
for some constant C for all stopping time ¢ < T and J > 0 (see [2]). Here t+6’

designates min{z+0J',7} ;}. Since {W};j > 2} is independent, by (9), (10) and
(11), we conclude that

E{ZY (0} |nh <1< 7))
< {E[(Y] () - [V ()| 7)) 5} < 1<) )] +o(1)}

{ ZE )1, <l<Tn+1]+0(1)}32(1+0(1))7

for all stopping time ¢.
By (12), we have

E[(Wy((1+8")=) = Wi(0)* |7, <1 < 1,4
= E[E[(W;((t +8")=) = W;(0)* | 9] |z, < 1 < 1,.] < 4C0.

since we have 7+6' = min{r+6', 7). }. O]

Proof of Lemma 3.2. By the assumption of the Theorem 2.2, the definition
of a, p, and (14), we conclude that ®" converges to
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1s) Hexp{——zzpl, (1)

k=0 i

- Zn: Z Z p1( Da j(t)a (1 )xkxlk}

k=0 i=0 I=i+l

which is the product of characteristic functions of a Gaussian process with
covariance I'(s, ) = aj j(s)a1 ;(t)p; ;(s) for s <¢. By Proposition 3.3, Proposition
3.4, each term of (15) coincides with the finite dimensional characteristic function
of ¥, ; conditioned on #'. Hence we conclude that (15) coincides with the
finite dimensional characteristic function of Z conditioned on Z'. O

4. Proof of Lemma 2.4

In this section following identity plays a key role: By the definition of py,
we have

(16) l’k(S, [) = Pk(s, u)pk(u> t)
fors<u<t 1<k<K. Werecall that ¥, ;(¢) defined by (4) has an expression

t

1) = [ 000140 5+ [ a6 o) i) - [ W)

1

t
:J A1) ds—i—J L ausls) dO1s(5)
(¢ ' (¢t

Let u be a stopping time such that z'(f) <u <t. Then we have

t t

a{yk(S)G)l_k(S) ds -‘rJ al,k(s) dG)l,k(S)-

u

W (1) = 1) +j

u

By the definition of aj«, p;, and p, we have

J ay 1 (5)®1 x(s) ds

u

- _J;Wk(s)ahk(s)@l,k( u) ds — J; Wils)ails )<J“t I#Eg)’)d&(( )> "

By (16), we have ayi(s)=a;x(u)pi(u,s). We also have %pk(u,s):

—Wi(8) p(u,s) and pi(u,u) = 1. Hence we have

t

thk(s)alﬁk(s)(al,k(u) ds — \Pl,k(u)J () pr (1) ds = P14 () (pr (s 0) — 1),

u u
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We set gi(z!(7)) by
ge(z' (1) = {fk(J’l) if 7'(1) =0,

J(0)  otherwise.

Then by using (16) and the definition of p;(s, ), we have

sl

= ol (D) J“’" ”“‘S<u ,,fffi)d’?" ) S

= o ()l

Similarly we have
[ ar465) d®1.406) =\l () jlpml(z),s)

f\/gk kaus,/pkus ) dBy(s)

Summarizing these identities, we have

W1 () = P () pe, 1) + 1/ 9e (21 (1) pi(2 (1), )

[ s ([ yoiten am) a
+Jupk<u,s>Jp,;<7s> dBk<s>}-

Substituting t“*) for u and comparing this and (6), we have only to prove
following identity:

It is trivial since

S1(7)
> (@M0) — oK (0) = a () = g7 (1) pr (e (1), ). O

=1
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5. Proof of Theorem 2.5

Outline of the proof of Theorem 2.5 is the same as that of Theorem
2.2. Namely, we have only to show the tightness and the convergence of the
finite dimensional characteristic function.

Since the proof of the tightness is the same as that in Lemma 3.1, we omit
the proof.

In order to see the characteristic function, we define Wji forl<i<L, j>1
with i # j by

W) = Wil) - E|

¢ ()| 7Y, Wit =1y (1), > 1).

Since |W/| <1, we have

1
VN,
z) =
\/IN W0 +o(1) if 7i(1) > 0,

for 1<i<L (cf. (I11)). Since v; are independent Poisson measures, {W;;
Jj=L+1} with W= W', w7, ..., w}) are independent random vectors.
Hence finite dimensional distribution of Z¥ converges to some Gaussian random
variables. Therefore we only observe the limit of the covariance.

By the definition of VI/,"(z), for 1 <ik<L, jyl>L+1, s<t we have

E[Wj(1)| 74 =0

' q/(t%(s),s)p/(¢'(2),¢) if j=1, and 7/(r) < t¥(s),
E[W/ (W[ (s)| 71 =< ¢/ (x/(),5)p/(t¥(s), 1) if j=1, and t¥(s) < 7'(1) <>,

0 if j#1, or s <1'(1).
Since p/(a,c) = p’/(a,b)p’/(b,c) for a < b < c, we have

EW/ (W[ (s)| F"]

¢/ (t(s),)p (x'(1), 7()p/(e*(s), 1) if j =1, and ='(1) < 7¥(s),
= ¢/ (2 (8),s) p/ (¥ (), 7' (1)) p/ (< (2),£) if j =1, and T5(s) < 7/(¢) <,
0 if j#1, or s <7'(1).

We set gi(ti(z)) by

Jelyi) if /(1) = 0,

gi(t'(1)) = {fk(O) otherwise.

Then for 1 <i,k <L, s<t, we have
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N N
EZY0ZY )| 7 =~ 3 S EWi W) | FY
J=Li1i=L+1

ng Pl (1), 7(9)) g (X (5), 8) pic(z(5), 1)
if 7/(1) < 7*(s) and g.(7'(1)) < gu(t*(s)),
ZQK Pe((5), 7' (0) g (2 (1), 5) i (z'(1), 1)
if (s )'S 7i(f) < s and g.(t¥(s)) < gi(7'(2)),
0, if s<7'(1),

as N — co. Note that the condition g¢,(7/(r)) < g,("(s)) (and g,(z*(s)) <
g (ti(2))) makes sense iff 7/(z) = t(s) = 0, since if 7/(z) < t(s), then we have
9n(z'(1) < (T () (if T4(s) < (2), then we have gi(k(s)) < g(r'(1)).

We set Yj(7) for 1 <j<L, 1<k<K by

Tj,k(t):_Jl<)
Th(t

Then by the definition of =, we have
(17)  ENx(0) |71 =0,
E[Yj (1) Y1,m(s) |=97L}

B {pk(‘[L(l‘), Oqr(tV(s),s) if j=1,k =m, and tV(s) = t%(2),
0 otherwise,

t t

AP T4 o+ [ pu(E0,9) 41409,

for s <t

We define {t};n >0} by {t&;n>0}= U, Azlin > 0} with tF <<k, for
n=0. Supposethatr()—r and t¥(r) = 7}, for some n > 0, mzl By the
definition of ¥, x(7), we have

Si(1)
W1a(1) = Wit ) pe(eh e +ZW () — a1 (2 ) Y (1)

j=1

L L
{le( n+m l)pk( n+m—l77‘-n+m_)

SI(Tner )

+ Z \/aj‘k(rrltlmfl) - ajil’k(‘[/{jrmfl)YJ k( n+m )}pk( n+m’ Z)
j=1

Si(t)

—+ Z \/a/ k( n+ ) - ajfl"k(TnLij)Yi?k(t)

J=1
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_\Pl k( n+m l)pk( n+m l’t)

n+m

+ Z \/a/ k B —aJ lk( nefr— I)Yj,k(fr];rm )pk( n+m7t)
S/<1:+ln+l -)
+ Z \/aj k(Tner) - Cl] L k( n+m)quk([)'
=

Inductively, we have

(18) k(1) = Pri(y) pi(zy s 1)
m S’(TL: :17)
+ Z Z \/a'/"k(rlh—m—u) - aj_l’k(rrll‘-%m—u)
u=0 j=1

X Y/ k( Tntm—u+1 )pk( Tntm— u+17[)

S'(Trf;rnﬂl ) -
+ Z \/a].'k(fl%-&-m) - aj L k(T"-FWl)Yjvk(Z)’
j=1
m I(TL: a-)
= \/a]'k(fz%-&-m—u) - ajil’k(‘[rlzl—o-m—u)
u=0 Jj=1

X

L
Yjsk(Tnerfqul )Pk( Tntm— u+1’[)

L
S <Tn+m+l 7)

+ Z \/aj"k(flh-m) - ajil‘k(frll‘-%m)rﬁ,k(t)v
=

since W, x(tk) =0, by our assumption.
By the definition of g, we have g (s,u)pi(u,t) + qi(u,t) = qi(s, t) for s <
u <t Suppose that s <t t/(f) =L, /(s) =<k, , tt(s) = L and tl(7) =

n+m> n+m-+uv

TJ;HHH, for some n,z >0, m,v > 1. In this situation, we have S;(t,,,, .\ .11 —)
;S[( wimio_ui1—)» for 0 <u <w. By using these results, (17) and (18), we
ave

E[¥Y) x(0)¥1(s) | 7]
S/(T:‘+/11+r—u+l )
k 1,k L L
= Z Z {aw ( n+m+b u) - au (Tner u)}pk( n+m+L u’Tr1+n1+v u+1)

w=1

L L L
X Qk(T,,+,,1+v_u, Tn+m+v—u+l )pk(rn-&-m-‘rv—u-&-l ’ )Pk( n+m+L u+1» )
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v—1
= gk(Tj([))pk(Tk([)ﬂ T](S)) Z pk(‘t'l(s), T:J+m+v—u)pk(TrIlJ+n1+v—u’ 7‘-rlz‘-Hn+v—u+l)
u=0

L L L L
X gk (TIH-I‘}’H-U—LH Tn+m+v—u+l )pk (Tn+m+v—u+l ’ Z)pk (Tn+m+v—u+1 ’ S)

+ Pk(fl(s)v TF: o) PI(T F ¢+1)61k(f,{“+m+m S)Pk(fr]f+m+u—u+1 1)

= ge(e (1)) pe(! (1), 7' (5)) pre(2' (5), ) (' (5),, ).

Similarly, we suppose that s < and t/(s) < 7/(¢) < s, then we have

(2 (1) pic(x!(s), /(1) pic(/ (1), ) (27 (1), 5)

B ¥a(s)| 7Y = 76 = (0 =0 and gu(w(0) <aule(9)
: ' i (! () pr (2 (5), 7/ (2)) pic (27 (1), D) que (2 (1), 5)
otherwise.
Hence we have done. O
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