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LARGE DEVIATIONS FOR SIMPLE RANDOM WALK ON

SUPERCRITICAL PERCOLATION CLUSTERS

Naoki Kubota

Abstract

We prove quenched large deviation principles governing the position of the random

walk on a supercritical site percolation on the integer lattice. A feature of this model is

non-ellipticity of transition probabilities. Our analysis is based on the consideration of

so-called Lyapunov exponents for the Laplace transform of the first passage time. The

rate function is given by the Legendre transform of the Lyapunov exponents.

1. Introduction

In this paper, we study large deviation principles for the simple random
walk on a supercritical site percolation in Zd with db 2. In recent years, this
problem has been investigated for the random walk in random environment, see
for instance [9, 10, 11]. The above references treat random walks with the
elliptic transition probabilities. However, our model treats non-elliptic transition
probabilities due to the fluctuation of site percolation clusters, so we get over
this problem using the estimates on the graph distance on a supercritical site
percolation.

We now describe the setting. Let db 2. Set W :¼ f0; 1gZ
d

and denote a
configuration of W by o ¼ ðoðxÞÞx AZ d . For p A ð0; 1Þ we consider the space W
equipped with the canonical product s-field G and an i.i.d. product probability
measure Pp such that PpðoðxÞ ¼ 1Þ ¼ p for x A Zd . A site x A Zd is called open
if oðxÞ ¼ 1, and closed otherwise. A sequence g ¼ ðg0; g1; . . . ; gnÞ in Zd is called
nearest neighbor path if jgm � gmþ1j ¼ 1 holds for all 0ama n� 1, where we
always write jxj :¼ jx1j þ � � � þ jxd j for x ¼ ðx1; . . . ; xdÞ A Rd . Furthermore, a

path g is called open if gm is open for all 0ama n. We now denote x $o y
whenever there is an open path from x to y. The open cluster CðxÞ containing
x is then the set of y’s such that x $o y. It is well known that there exists
pc ¼ pcðdÞ A ð0; 1Þ such that when p > pc, we have Ppð0 A CyÞ > 0 and there is
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a unique infinite open cluster Cy ¼ CyðoÞ (see [7, Theorems 1.10 and 8.1] for
instance). Therefore, letting W0 :¼ f0 A Cyg, for p > pc we define the proba-
bility measure P as

PðAÞ :¼ PpðAVW0Þ
PpðW0Þ

; A A G:

For each configuration o A W0, the simple random walk on CyðoÞ is the
Markov chain ððXnÞyn¼0; ðPx

oÞx ACyðoÞÞ on CyðoÞ defined as follows: Pz
oðX0 ¼ zÞ

¼ 1, and the transition probabilities

Pz
oðXnþ1 ¼ xþ e jXn ¼ xÞ ¼ 1

2d
1foðeÞ¼1g � yx; jej ¼ 1;

and

Pz
oðXnþ1 ¼ x jXn ¼ xÞ ¼

X
je 0 j¼1

1

2d
1foðe 0Þ¼0g � yx

for all x; z A CyðoÞ and n A N0, where ðyxÞx AZd are the canonical shifts of the
space W, that is, yxoðyÞ ¼ oðxþ yÞ for x; y A Zd .

We prove the large deviations for the law of scaled position Xn=n of SRWPC
following the same strategy as in [11]. For this, we first study the asymptotics of
the cumulant generating function. Let us introduce HðyÞ :¼ inffnb 0;Xn ¼ yg
as the first passage time through y for the path ðXnÞyn¼0. Define for any lb 0,
o A W0 and x; y A CyðoÞ,

elðx; y;oÞ :¼ Ex
o½expf�lHðyÞg1fHðyÞ<yg�;

alðx; y;oÞ :¼ �log elðx; y;oÞ;
dlðx; y;oÞ :¼ maxfalðx; y;oÞ; alðy; x;oÞg:

ð1:1Þ

Theorem 1.1 (Lyapunov exponents). Let lb 0. Then there exists a non-

random function al : R
d ! ½0;yÞ such that P-a:s:,

lim
n!y

1

T
ðnÞ
x

alð0;T ðnÞ
x xÞ ¼ alðxÞð1:2Þ

holds for all x A Zdnf0g, where T
ðnÞ
x is the position of n-th intersection of infinite

open cluster Cy with the half line xN (see (2.1) below for details). In addition,
alð�Þ has the following properties: for any q > 0 and x; y A Rd ,

alðqxÞ ¼ qalðxÞ;ð1:3Þ
alðxþ yÞa alðxÞ þ alðyÞ;ð1:4Þ
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and

ljxja alðxÞa ðlþ logð2dÞÞrjxj;ð1:5Þ

where r is a constant appearing in (2.3) below. Moreover, alðxÞ is concave
increasing in l and convex in x. In particular, it is jointly continuous in l and x.

Theorem 1.2 (Shape theorem). We have P-a:s: that

lim
jxj!y
x A Cy

alð0; xÞ � alðxÞ
jxj ¼ 0:

holds for all lb 0.

The following theorem is our main result.

Theorem 1.3. The law of Xn=n obeys the following large deviation principle
with the rate function

IðxÞ :¼ sup
lb0

ðalðxÞ � lÞ :

� Upper bound: for any closed subset AHRd , we have P-a:s:,

lim sup
n!y

1

n
log P0

oðXn A nAÞa� inf
x AA

IðxÞ:ð1:6Þ

� Lower bound: for any open subset BHRd , we have P-a:s:,

lim inf
n!y

1

n
log P0

oðXn A nBÞb� inf
x AB

IðxÞ:ð1:7Þ

Remark 1.4. The Markov chain ðXnÞyn¼0 represents only one of natural ways
to define a simple random walk on the supercritical percolation on Zd . Other
possibilities are the simple random walk on supercritical bond-percolation on Zd

and the model that, at each unit of time, the walk moves to a site chosen
uniformly at random from the accessible neighbors, that is, the walk takes no
pauses. We can apply the same strategy taken in this paper to these cases, since
the transition probabilities on a unique infinite cluster are uniformly bounded
from below and the estimates for the graph distance hold as well.

Organization of the paper. We briefly comment on the proof and the
organization of the paper. Our proof basically follows the strategy taken in
[11]. The main di‰culty compared to it lies in Theorem 1.1. The Lyapunov
exponents are easily constructed by the subadditive ergodic theorem, however
we have to require the suitable properties for these. In particular, to prove
the property (1.4) and (1.5) is more complicated since it directly concerns the
configuration of supercritical site percolations. For (1.4), we let x; y A Cy and
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consider random walk paths from x to xþ y. The similar claim is trivial in
[11] since random walk paths can choose any sites as its starting and ending
points. However, in our model, the site xþ y does not necessarily belong to Cy

even though both x and y are in Cy. Thus, it may be impossible to take a
random walk path from x to xþ y for every configuration of supercritical site
percolations. For (1.5), we use the estimates on the graph distance on super-
critical site percolations, since al is bounded by it, see for details (2.7) below.

In Section 2 and 3, we prove Theorems 1.1 and 1.2 with the consideration of
the above comments following the strategy taken in [6, Section 3].

In Section 4, we first prove upper bound of Theorem 1.3 in Subsection
4.1. Furthermore, the rough upper and lower bounds and the properties of the
rate function are here given by using those of the Lyapunov exponents. We next
show the lower bound of Theorem 1.3 in Subsection 4.2. This proof is bit more
complicated. In particular, to extend the shape theorem to a general version is
needed. We finally study the asymptotic of the rate function as x tending to 0.

Notations. We write Ep, E and Ez
o for the expectation with respect to Pp,

P and Ez
o respectively. Moreover, open j � j-balls with center x A Rd and radius

rb 0 are denoted by Bðx; rÞ and closed balls by Bðx; rÞ.

2. Lyapunov exponents

Our goal in this section is to show Theorem 1.1. For the proof, let us first
recall some ergodic properties and percolation estimates. We now define the
maps Tx : W0 ! NU fyg as

TxðoÞ :¼ inffnb 1; nx A CyðoÞg; x A Zd :

The Poincaré recurrence theorem then tells us that P-a:s:, Tx is finite for all
x A Zd , see [8, Theorem 2.3.2] for instance. We can therefore define, up to set
of measure zero, the maps Yx : W0 ! W0 by

Yxo :¼ yTxðoÞ
x o; x A Zd :

Thanks to [3, Lemma 3.3], Yx is invertible, measure preserving and ergodic with
respect to P. Setting for n A N0,

T ðnÞ
x ðoÞ :¼

Xn�1

k¼0

TxðYk
xoÞ;ð2:1Þ

we have by Birkho¤ ’s ergodic theorem and the Kac theorem (see [8, Theorem
2.4.6]) that

lim
n!y

T
ðnÞ
x

n
¼ E½Tx� ¼ PpðW0Þ�1ð2:2Þ

holds P-a:s: and in L1ðPÞ.
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Let Doðx; yÞ be the graph distance on CyðoÞ. Then, [1, Theorem 1.1]
implies that if p > pc then there exist constants rb 1 and c1; c2 > 0 depending
only on p and d such that for all x A Zd ,

Ppð0 $o x;Doð0; xÞ > rjxjÞa c1e
�c2jxj:ð2:3Þ

Moreover, [6, Lemma 2.4] ensures that there exists c3 ¼ c3ðp; dÞ such that

E½Doð0;TxxÞ�a jxjPpðW0Þ�1ðrþ c3jxj�2Þð2:4Þ

holds for all x A Zdnf0g.
For the proof of Theorem 1.1, let us start with the triangle inequality and

integrability properties for al.

Lemma 2.1. For any lb 0 and x; y; z A Cy,

alðx; yÞa alðx; zÞ þ alðz; yÞ:

Proof. We set HzðyÞ :¼ inffnbHðzÞ;Xn ¼ yg. The strong Markov prop-
erty then shows

elðx; yÞbEx
o½expf�lHzðyÞg1fHzðyÞ<yg� ¼ elðx; zÞelðz; yÞ;

which completes the proof. r

Lemma 2.2. For all lb 0, n A N0 and x A Zdnf0g,

E½alð0;TxxÞ�a jxjðlþ logð2dÞÞPpðW0Þ�1ðrþ c3jxj�2Þ;ð2:5Þ
and

E½alð0;T ðnÞ
x xÞ�b jxjlE½T ðnÞ

x �:ð2:6Þ

Proof. We first show (2.5). If 0 $o kx, then let gkðoÞ ¼ ðgk;nðoÞÞ
mkðoÞ
n¼0 be

an open path from 0 to kx with minimal length mkðoÞ ¼ Doð0; kxÞ, which is
chosen by a deterministic algorithm. We then have by the definition of dl,

dlðw;w 0Þa ðlþ logð2dÞÞDoðw;w 0Þ; w;w 0 A Cy:ð2:7Þ
This implies that

E½alð0;TxxÞ�a ðlþ logð2dÞÞE½Doð0;TxxÞ�;
and therefore (2.5) follows from (2.4).

For (2.6), note that HðT ðnÞ
x xÞbT

ðnÞ
x jxj P0

o-a:s: We thus have

E½alð0;T ðnÞ
x xÞ�bE½�log E0

o½expf�lT ðnÞ
x jxjg�� ¼ jxjlE½T ðnÞ

x �;
which proves the lemma. r

Now we are in position to prove Theorem 1.1. The following proposition
now plays the key rule in the proof.
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Proposition 2.3. There exists a nonrandom function Wl : Z
d ! ½0;yÞ such

that the following holds P-a:s: and in L1ðPÞ: for all x A Zd ,

lim
n!y

1

n
alð0;T ðnÞ

x xÞ ¼ lim
n!y

1

n
E½alð0;T ðnÞ

x xÞ�ð2:8Þ

¼ inf
nb1

1

n
E½alð0;T ðnÞ

x xÞ� ¼ WlðxÞ:

Furthermore, we have for x A Zdnf0g,
jxjlPpðW0Þ�1

aWlðxÞa jxjðlþ logð2dÞÞPpðW0Þ�1ðrþ c3jxj�2Þ:ð2:9Þ

Proof. Fix x A Zd and we consider the doubly indexed sequence

Wm;n
l :¼ alðT ðmÞ

x x;T ðnÞ
x x;o; sÞ; 0am < n:

This sequence ðWm;n
l Þm<n satisfies the conditions of the subadditive ergodic

theorem from the ergodicity of Yx and Lemmas 2.1 and 2.2. We can thus
find a function Wl satisfying (2.8).

The upper bound in (2.9) follows immediately from Lemma 2.2. For the
lower bound in (2.9), (2.2) and Lemma 2.2 yield

WlðxÞb jxjl lim
n!y

1

n
E½T ðnÞ

x � ¼ jxjlPpðW0Þ�1;

and the proof is complete. r

The next corollary follows immediately from the above proposition.

Corollary 2.4. Let alðxÞ :¼ PpðW0ÞWlðxÞ for x A Zd . Then P-a:s:, (1.2)
holds for all x A Zdnf0g. Furthermore, (1.3) and (1.5) holds for any q A N and

x A Zd .

Proof. It is easy to see (1.2) from (2.2) and Proposition 2.3. Let us next
show (1.3). We may assume x A Zdnf0g because Wlð0Þ ¼ 0. By the definition

of T
ðnÞ
x and T

ðnÞ
qx , for all kb 0 there exists nk A N0 such that T

ðnkÞ
x x ¼ T

ðkÞ
qx qx

holds. In particular, T
ðnkÞ
x ¼ qT

ðkÞ
qx is verified, and therefore (1.2) implies that

alðqxÞ ¼ q lim
k!y

1

qT
ðkÞ
qx

alð0;T ðkÞ
qx qxÞ ¼ q lim

k!y

1

T
ðnkÞ
x

alð0;T ðnkÞ
x xÞ ¼ qalðxÞ;

which proves (1.3).
We finally show (1.5). The lower bound follows from Proposition 2.3.

Using (1.3) and Proposition 2.3, we obtain for q A N,

alðxÞ ¼
alðqxÞ

q
a jxjðlþ logð2dÞÞðrþ c3jqxj�2Þ:

The upper bound is hence shown by letting q ! y. r
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Proof of Theorem 1.1. Given Lemma 2.1 and Corollary 2.4, it su‰ces to
show that (1.4) holds for any x; y A Zd , since the proof goes in the same line as
that of [11, Proposition 3]. Namely, due to (1.3) we extend alð�Þ to Qd by
alðxÞ ¼ alðxÞ=q and then to Rd by continuity. The properties of alðxÞ as a
function of l and x follow from (1.3), (1.4) and the monotonicity of al in l. See
the above references for details.

We first prove the next claim following the proof of [6, Lemma 3.4] (but
see Remark 2.5 below): for x; y; z A Zdnf0g there exists a sequence nk ¼
nkðjxj; jyj; jzj; jx� zj; jy� zjÞ, kb 1 depending only on jxj, jyj, jzj, jx� zj and
jy� zj such that Pp-a:s:,

lim
k!y

1

k

Xk
i¼1

1fnix;niz ACyg ¼ PpðW0Þ2 ¼ lim
k!y

1

k

Xk
i¼1

1fni y;niz ACyg:ð2:10Þ

We choose c :¼ 4�1 minfjxj; jyj; jx� zj; jy� zjg and define the sequence ðmkÞyk¼1
as follows: n1 :¼ 1 and by induction for kb 1, nkþ1 is defined as

nkþ1 b 2nk max
jxj4jzj þ cþ 1

jxj5jzj � c
;
jyj4jzj þ cþ 1

jxj5jyj � c

� �
:

The random variables ðZkÞyk¼1 are then introduced by

Zk :¼ 1faCðnkxÞ;aCðnkzÞbcnkg:

It follows that for kb 1,

PpðZk 0 1fnkx;nkz ACygÞaPpðcnk aaCðnkxÞ < yÞ þ Ppðcnk aaCðnkzÞ < yÞ
¼ 2Ppðcnk aaCð0Þ < yÞ:

The Borel–Cantelli lemma thereby shows that Pp-a:s:, Zk ¼ 1fnkx;nkz ACyg holds for
all su‰ciently large k, since Ppðcnk aaCð0Þ < yÞ is summable with respect to k,
see [7, Section 8.6]. For the proof of the first equality in (2.10), it su‰ces to
show that

lim
k!y

1

k

Xk
i¼1

Zi ¼ PpðW0Þ2ð2:11Þ

holds Pp-a:s: By the choice of ðnkÞyk¼1, ðZkÞyk¼1 is independent random variables
under Pp. Using the strong law of large numbers, we obtain Pp-a:s:,

lim
k!y

1

k

Xk
i¼1

ðZi � Ep½Zi�Þ ¼ 0:ð2:12Þ
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In addition,

lim
k!y

Ep½Zk� ¼ lim
k!y

PpðaCð0Þb cnkÞ2 ¼ PpðW0Þ2;

which proves (2.11) from (2.12) and Cesaro’s theorem. According to the same
argument as above, the second equality of (2.10) is verified, and therefore we can
construct the desired sequence nk ¼ nkðjxj; jyj; jzj; jx� zj; jy� zjÞ, kb 1.

We now turn to prove (1.4). Without loss of generality we can assume
x; y; xþ y A Zdnf0g. Let nk ¼ nkðjxj; jyj; jx� zj; jy� zjÞ, kb 1 be the sequence
as above and set for kb 1,

Ak :¼ falð0; nkxÞa ðlþ logð2dÞÞrnkjxj;
alð0; nkðxþ yÞÞa ðlþ logð2dÞÞrnkjxþ yj;
alðnkx; nkðxþ yÞÞa ðlþ logð2dÞÞrnkjyjg:

Lemma 2.1 then shows that

1

k

Xk
i¼1

1

ni
E½alð0; niðxþ yÞÞ1Ai

1fnix;niðxþyÞ ACyg�ð2:13Þ

a
1

k

Xk
i¼1

1

ni
E½alð0; nixÞ1Ai

1fnix;niðxþyÞ ACyg�

þ 1

k

Xk
i¼1

1

ni
E½alðnix; niðxþ yÞÞ1Ai

1fnix;niðxþyÞ ACyg�:

On the other hand, we obtain from (2.3) and (2.7) that

Pð1Ak
1fnkx;nkðxþyÞ ACyg 0 1fnkx;nkðxþyÞ ACygÞ

aPðnkx A Cy; alð0; nkxÞ > ðlþ logð2dÞÞrnkjxjÞ
þ Pðnkðxþ yÞ A Cy; alð0; nkðxþ yÞÞ > ðlþ logð2dÞÞrnkjxþ yjÞ
þ Pðnkx; nkðxþ yÞ A Cy; alðnkx; nkðxþ yÞÞ > ðlþ logð2dÞÞrnkjyjÞ

a 3PpðW0Þ�1
c1 expf�c2nkg:

The Borel–Cantelli lemma thereby tells us that P-a:s:, there is a positive integer
K ¼ KðoÞ such that

1Ak
1fnkx;nkðxþyÞ ACyg ¼ 1fnkx;nkðxþyÞ ACygð2:14Þ

holds for all kbK . Furthermore, Corollary 2.4 yields that

lim sup
k!y

1

nk
alð0; nkxÞ � alðxÞ

����
����1fnkx ACyg ¼ 0

holds P-a:s: By (2.10), we have P-a:s:,
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lim sup
k!y

1

k

Xk
i¼1

1

ni
alð0; nixÞ1Ai

1fnix;niðxþyÞ ACyg � alðxÞPpðW0Þ2
�����

�����ð2:15Þ

a lim sup
k!y

1

k

XK�1

i¼1

1

ni
alð0; nixÞ1Ai

1fnix;niðxþyÞ ACyg

þ lim sup
k!y

1

k

Xk
i¼K

1

ni
alð0; nixÞ � alðxÞ

����
����1fnix ACyg

þ lim sup
k!y

alðxÞ
1

k

Xk
i¼K

1fnix;niðxþyÞ ACyg � PpðW0Þ2
�����

�����
¼ 0:

From the bounded convergence theorem the first term in the right-hand side
of (2.13) converges to alðxÞPpðW0Þ2 as k ! y. The same argument as above
shows that the left-hand side of (2.13) converges to alðxþ yÞPpðW0Þ2 as k ! y.

It remains to estimate the second term in the right-hand side of (2.13).
Note that, by the shift invariance of Pp, the second term in the right-hand side of
(2.13) is equal to

1

kPpðW0Þ
Xk
i¼1

1

ni
Ep½alð�ni y; 0Þ1yni ðxþ yÞAi

1f�ni y;0;�niðxþyÞ ACyg�

¼ 1

k

Xk
i¼1

1

ni
E½alð�ni y; 0Þ1yni ðxþ yÞAi

1f�ni y;�niðxþyÞ ACyg�:

In addition, the same argument as in the proof of (2.14) shows that P-a:s:,

1ynk ðxþ yÞAk
1f�nk y;�nkðxþyÞ ACyg ¼ 1f�nk y;�nkðxþyÞ ACyg

holds for all su‰ciently large k. On the other hand, using the shift invariance of
Pp again, one has for kb 1,

E
1

k

Xk
i¼1

1

ni
alð�ni y; 0Þ � alðyÞ

����
����1f�ni y ACy;alð�ni y;0Þaðlþlogð2dÞÞrni jyjg

" #

¼ 1

kPpðW0Þ
Xk
i¼1

Ep

1

ni
alð0; ni yÞ � alðyÞ

����
����1fni y;0 ACy;alð0;ni yÞaðlþlogð2dÞÞrni jyjg

� �
:

Therefore, Corollary 2.4, the bounded convergence theorem and Cesaro’s theorem
ensure that the right-hand side of the above expression converges to zero as
k ! y. We can therefore take a sequence ðkmÞym¼1 of N such that

lim
m!y

1

km

Xkm
i¼1

1

ni
alð�ni y; 0Þ � alðyÞ

����
����1f�ni y ACy;alð�ni y;0Þaðlþlogð2dÞÞrni jyjg ¼ 0
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holds P-a:s: By (2.10), the same strategy as in (2.15) proves that P-a:s:,

lim
k!y

1

k

Xk
i¼1

1

ni
alð�ni y; 0Þ1yni ðxþ yÞAi

1f�ni y;�niðxþyÞ ACyg � alðyÞPpðW0Þ2
�����

�����¼ 0;

and hence, choosing k ¼ km in (2.13), we get (1.4) by letting m ! y. r

Remark 2.5. The argument in [6] contains a small error stating that the
events fjCðkxÞj > ak; jCðkyÞj > akg, kb 1 are independent. The above argu-
ment presents one of the way to fix this.

3. Shape theorem

In this section we give the proof of Theorem 1.2. For this end, let us first
prove the next lemma which plays the role of the maximal lemma used in the
context of random walk in random environment (see [11, Lemma 6]).

Lemma 3.1. Let c4 :¼ ðlþ logð2dÞÞr. Then the following holds P-a:s:: for
all 0 < e A Q there is a positive integer N ¼ Nðe;oÞ such that

supfdlðx; yÞ; y A Cy; jx� yja ejxjga c4ejxj

holds for every x A Cy with jxjbN, where dl is defined as in (1.1).

Proof. Let c5 :¼ 3dðlþ logð2dÞÞ. We first show that there are positive
constants c6 and c7 depending only on p and d such that for all r > 0 and x A Zd

with jxja r,

Pðx A Cy; dlð0; xÞ > c5r
dÞa c6e

�c7r:ð3:1Þ

Note that due to [6, Lemma 2.2], there exist c8 and c9 depending only on p and d
such that for any r > 0 and x A Zd with jxja r,

Ppð0 $o x;Doð0; xÞ > ð3rÞdÞa c8e
�c9r:

It follows from (2.7) that

Pðx A Cy; dlð0; xÞ > c5r
dÞaPpðW0Þ�1

Ppð0 $o x;Doð0; xÞ > ð3rÞdÞ

aPpðW0Þ�1
c8e

�c9r;

which proves (3.1) by choosing c6 :¼ PpðW0Þ�1
c8 and c7 :¼ c9.

Fix e A ð0;yÞVQ. For nb 1 the event An is defined as follows: there exist
x; y A Cy with jxj ¼ n and jx� yja en such that dlðx; yÞ > c4en holds. Taking

rn :¼ 3�1ðc5enÞ1=d for nb 1, we obtain from (2.3) and (3.1),
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PðAnÞa
X
x AZ d

jxj¼n

X
y AZd

jx�yjarn

Pðx; y A Cy; dlðx; yÞ > c4enÞ

þ
X
x AZ d

jxj¼n

X
y AZ d

rn<jx�yjaen

PpðW0Þ�1
Poðx $o y;Doðx; yÞ > rjx� yjÞ

¼ Oðn2d�1e�ðc25c7ÞrnÞ:

This means that the sequence ðPðAnÞÞyn¼0 is summable, and the proof is complete
from the Borel–Cantelli lemma. r

Proof of Theorem 1.2. By the monotonicity and the continuity in l of al
in l and al respectively, the proof goes in the same line as that of [11, Theorem
A]. It su‰ces to show that for a fixed lb 0 and all e A ð0; 1ÞVQ, the following
holds P-a:s:: there exists a positive integer N ¼ Nðe;oÞ such that we have for all
x A Cy with jxjbN,

jalð0; xÞ � alðxÞja ejxj:

To this end, assume that the above statement fails to hold. Then, there are
e0 > 0 and an event of positive probability such that we can choose a sequence
ðxnÞyn¼1 of Cy satisfying jxnj ! y and jalð0; xnÞ � alðxnÞj > e0jxnj. Without
loss of generality we can assume xn=jxnj ! v A Sd�1. Let h be an arbitrary
positive number, which is chosen small enough later. Pick v 0 A Sd�1 VQd with
jv� v 0j < h and M is a positive integer with Mv 0 A Zd . Furthermore, we define
for nb 1,

x 0
n :¼

jxnj
M

� �
Mv 0:

Thanks to [6, Lemma 5.5], P-a:s:, there is a positive integer kn ¼ knðh;oÞ such
that ð1� hÞbjxnj=Mca kn a bjxnj=Mc and knMv 0 A Cy. Therefore,

jxn � x 0
nja hjxnj þMa 2hjxnj

is valid for all su‰ciently large n. In addition, by letting yn :¼ knMv 0, the choice
of kn guarantees that

jxn � ynja 2hjxnj þMh
jxnj
M

� �
a 3hjxnj:

Lemma 3.1 thereby implies that dlðxn; ynÞa 3c4hjxnj holds for all su‰ciently
large n. It follows form Theorem 1.1 and Proposition 2.1 that

jalð0; xnÞ � alðxnÞja 3c6hjxnj þ h
jxnj
M

� �
þ 3ðlþ logð2dÞÞrhjxnj

a chjxnj
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for some c ¼ cðp; dÞ > 0 and for all su‰ciently large n. This is contradiction by
letting ha c�1e0, and hence the proof is complete. r

Remark 3.2. In [11] Zerner proved more general version of Theorem 1.2,
which is called the uniform shape theorem. This guarantees that the shape
theorem is valid with moving starting points, and is used to relate crossing cost to
the Lyapunov exponents in the proof of large deviation lower bound. Unfortu-
nately, the same argument taken in [11] is not applied directly to our model, since
we are not able to apply a martingale method used there due to the fluctuation
of supercritical site percolations. However, we do not need the stronger theorem
as the uniform shape theorem to prove the large deviation principles. We will
state the next corollary for more details.

Corollary 3.3. Let x A Qdnf0g and b A ð0; 1Þ. Then,

lim
n!y

1

n
alðT ðbPpðW0Þbnjxj=McÞ

Mv Mv;T
ðbPpðW0Þnjxj=McÞ
Mv MvÞ ¼ ð1� bÞalðzÞð3:2Þ

holds P-a:s:, where v ¼ x=jxj and M is a positive integer such that Mv A Zd .

Proof. The proof goes in the same line as that of [5, Corollary 3.3].
Namely, due to Lemma 2.1, the left-hand side of (3.2) is bounded from below by

alð0;T ðbPpðW0Þnjxj=McÞ
Mv MvÞ � alð0;T ðbPpðW0Þbnjxj=McÞ

Mv MvÞ;

which converges to ð1� bÞalðxÞ as n ! y due to Corollary 2.4. Moreover, the
left-hand side of (3.2) is bounded from above by

alðT ðbPpðW0Þbnjxj=ðNMÞcNÞ
Mv Mv;T

ðbPpðW0Þnjxj=ðNMÞcNÞ
Mv MvÞ

a
XbPpðW0Þnjxj=ðNMÞc�1

k¼bPpðW0Þbnjxj=ðNMÞc
alðT ðkNÞ

Mv Mv;T
ððkþ1ÞNÞ
Mv MvÞ:

We observe that the right-hand side of the above converges, as n ! y, to
ð1� bÞalðxÞ by Birkho¤ ’s ergodic theorem. See the above reference for details.

r

4. Large deviation estimates

Our goal in this section is to prove Theorem 1.3. We prove upper and
lower bounds of Theorem 1.3 in Subsection 4.1 and 4.2 respectively.

4.1. Upper bound. In this subsection, we prove the upper bound (1.6) of
Theorem 1.3. Let us first mention some properties of the rate function I . We
denote the domain of the rate function I by DI , that is, DI :¼ fx A Rd ; IðxÞ<yg.
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It is easy to see that I is convex on Rd , lower semicontinuous on DI and upper
semicontinuous on the interior ðDI Þo of DI . Furthermore, IðxÞ ¼ y for jxj > 1
and

0a IðxÞa jxjr logð2dÞð4:1Þ

for x A Rd with jxja r�1.

Proof of the upper bound (1.6) in Theorem 1.3. It su‰ces to consider
compact AHRd since IðxÞ ¼ y for jxj > 1. Furthermore, we may assume
0 B A since infx AA IðxÞ ¼ 0 if 0 A A by (4.1). For every d > 0 we define the
d-rate function I d as

I dðxÞ :¼ ðIðxÞ � dÞ5 1

d
:

Set for any lb 0,

AlðdÞ :¼ y A A; alðyÞ � l > inf
x AA

I dðxÞ � d

� �
:

Note that A ¼ 6
lb0

AlðdÞ. Thanks to compactness of A, there are li, 1a iam

such that AliðdÞ, 1a iam cover A, and therefore we have

lim sup
n!y

1

n
log P0

oðXn A nAÞa max
1aiam

lim sup
n!y

1

n
log P0

oðXn A nAliðdÞÞ:

Thus, it su‰ces to prove that the each components for i is bounded uniformly
from above by d� infx AA I dðxÞ, which gives (1.6) by letting d & 0.

Let lb 0 and we may assume without loss of generality that nAlðdÞVCy

0j for all nb 1. Therefore,

1

n
log P0

oðXn A nAlðdÞÞa lþ 1

n
logaðnAlðdÞVZdÞ � 1

n
alð0; yn;lÞ

holds for some maximizing yn;l A nAlðdÞVCy. Using Theorem 1.2 and the fact
that distð0;AlðdÞÞ > 0, we obtain

lim sup
n!y

1

n
log P0

oðXn A nAlðdÞÞ

a l� lim inf
n!y

1

n
ðalð0; yn;lÞ � alðyn;lÞÞ � inf

y AAlðdÞ
alðyÞ

¼ l� inf
y AAlðdÞ

alðyÞ:

Due to the definition of AlðdÞ, the most right-hand side of the above expression
is bounded from above by d� infx AA I dðxÞ. r
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4.2. Lower bound. In this subsection, we prove the lower bound (1.7) of
Theorem 1.3. To do this, we introduce for lb 0, o A W0 and x; y A CyðoÞ the
path measure

P̂P
x;y
l;oðdX�Þ :¼ elðx; yÞ�1 expf�lHðyÞg1fHðyÞ<ygP

x
oðdX�Þ;

and let us prepare the following lemma, whose proof is, by Corollary 3.3, same as
that of [5, Lemma 4.1] and we omit it.

Lemma 4.1. Let x A Qdnf0g and b A ½0; 1Þ. Moreover, let

yð1Þn :¼ T
ðbPpðW0Þbnjxj=McÞ
Mv Mv;

yð2Þn :¼ T
ðbPpðW0Þnjxj=McÞ
Mv Mv:

The following then holds P-a:s::

lim
n!y

P̂P
y
ð1Þ
n ;y

ð2Þ
n

l;o

Hðyð2Þn Þ
ð1� bÞn A ðg1; g2Þ

 !
¼ 1ð4:2Þ

for all l > 0, g1; g2 A R satisfying

0a g1 < a 0
lþðxÞa a 0

l�ðxÞ < g2:ð4:3Þ

Proof of the lower bound (1.7) in Theorem 1.3. It is su‰cient to prove that
P-a:s:,

lim inf
t!y

1

n
log P0

oðXn A nBðz; rÞÞb�IðzÞð4:4Þ

holds for all z A Qdnf0gVDI and 0 < r A Q. To this end, set l� :¼ supflb 0;
a 0
lðzÞb 1g with the convention sup j ¼ 0. It is easy to check that IðzÞ ¼
al� ðzÞ � l� in the case l� < y, and IðzÞ ¼ liml!yðalðzÞ � lÞ otherwise. We
first treat the case l� < y. Suppose l� ¼ 0, and then a 0

l�ðzÞ < 1 for all l > 0.
We now consider the site

yn :¼ T
ðbPpðW0Þnjzj=McÞ
Mv Mv;

where v ¼ z=jzj and M is an positive integer such that Mv A Zd . By (2.2),
jyn � nzj < en holds for all e > 0 and all su‰ciently large n. Therefore, choosing
e A ð0; rÞ, we have Bðyn;RÞH nBðz; rÞ for all R > 0 for all su‰ciently large n. It
follows that the left-hand side of (4.4) is bigger than

lim inf
n!y

1

n
flog P0

oðHðynÞa nÞ þ log Pyn
o ðXmþHðynÞ A Bðyn;RÞ for all m A ½0; n�Þg

b lim inf
n!y

1

n
flog E0

o½expf�lHðynÞg1fHðynÞang� þ log Pyn
o ðXR ¼ ynÞn=Rg
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for l > 0. Theorem 1.2 and Lemma 4.1 hence tell us that the above expression
is greater than

�alðzÞ þ
1

R
log Pyn

o ðXR ¼ ynÞ:

According to [4, Theorem 2.2], Pyn
o ðXR ¼ ynÞ is bounded below by cðR log RÞd=2

for some positive constant c ¼ cðp; dÞ, and therefore we get (4.4) by letting
R ! y and l & 0.

In the cases l� A ð0;yÞ, thanks to Corollary 3.3, we can apply the same
strategy of the proof of [11, Theorem B]. Furthermore, in the case l� ¼ y, (4.4)
follows from the argument as in the proof of [5, Theorem 1.4]. We thus refer
the reader to the above references for more details. r

We close this section with a comment on the asymptotics of the rate function
as x ! 0.

Proposition 4.2. There exist positive constants C and C 0 depending only on
p and d such that

Cjxj2 a IðxÞaC 0jxj2ð4:5Þ
holds for all x A ðDI Þo su‰ciently close to 0. In particular, the zero set of the rate
function fx A Rd ; IðxÞ ¼ 0g is a single point f0g.

Proof. We first recall that according to [2, Theorem 1, Remark 7 and
Proposition 6.1], there exist positive constants c, c 0, C, C 0 depending only on p
and d such that P-a:s:,

c 0n�2=d expf�C 0jyj2=ngaP0
oðXn�1 ¼ yÞ þ P0

oðXn ¼ yÞa cn�2=d expf�Cjyj2=ng
for all su‰ciently large n and for all y A Cy with Doð0; yÞa n. For the proof,
it su‰ces to check by the continuity of I on ðDI Þo that (4.5) holds for every
x A Qd . We now choose e > 0 and x A Qd satisfying

eþ jxj < r�1;ð4:6Þ
where r is the constant appearing in (2.3). Then, set v ¼ x=jxj and let M be an

positive integer such that Mv A Zd . Moreover, choosing x 0
n :¼ T

ðbPpðW0Þnjxj=McÞ
Mv Mv,

by (4.6) and (2.2) we have x 0
n A nBðx; dÞ and Doð0; x 0

nÞa n for su‰ciently large n.
It follows from Theorem 1.3 that

� inf
y ABðx; dÞ

IðyÞb lim sup
n!y

1

n
log

X
y A nBðx; dÞ
Doð0;yÞan

c 0n�2=d expf�C 0jyj2=ng

0
BBB@

1
CCCA

b lim sup
n!y

1

n
logðc 0n�2=d expf�C 0jx 0

nj
2=ngÞ

bC 0ðjxj � dÞ2
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for su‰ciently small jxj and d > 0, which proves the upper bound by letting
d & 0. Choosing B ¼ Bðx; dÞ in (1.7), we can see the lower bound in the same
manner. r
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