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LARGE DEVIATIONS FOR SIMPLE RANDOM WALK ON
SUPERCRITICAL PERCOLATION CLUSTERS

Naok1i KuBoTA

Abstract

We prove quenched large deviation principles governing the position of the random
walk on a supercritical site percolation on the integer lattice. A feature of this model is
non-ellipticity of transition probabilities. Our analysis is based on the consideration of
so-called Lyapunov exponents for the Laplace transform of the first passage time. The
rate function is given by the Legendre transform of the Lyapunov exponents.

1. Introduction

In this paper, we study large deviation principles for the simple random
walk on a supercritical site percolation in Z¢ with d > 2. In recent years, this
problem has been investigated for the random walk in random environment, see
for instance [9, 10, 11]. The above references treat random walks with the
elliptic transition probabilities. However, our model treats non-elliptic transition
probabilities due to the fluctuation of site percolation clusters, so we get over
this problem using the estimates on the graph distance on a supercritical site
percolation. .

We now describe the setting. Let d >2. Set Q:={0,1}*" and denote a
configuration of Q by @ = (w(x)),.,«. For pe(0,1) we consider the space Q
equipped with the canonical product o-field ¥ and an i.i.d. product probability
measure P, such that P,(w(x) = 1) = p for xe Z. A site x € Z“ is called open

if w(x) =1, and closed otherwise. A sequence y = (Jo,71,---,7,) in Z¢ is called
nearest neighbor path if |y, —v,.| =1 holds for all 0 <m <n—1, where we
always write |x|:= |x;|+---+ |xq| for x = (x1,...,xs) e R?. Furthermore, a

path y is called open if y,, is open for all 0 <m <n. We now denote x &y
whenever there is an open path from x to y. The open cluster C(x) containing
x is then the set of ’s such that x <> y. It is well known that there exists
Ppe = pc(d) € (0,1) such that when p > p., we have P,(0 € %,) >0 and there is
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a unique infinite open cluster %, = ¥, (®) (see [7, Theorems 1.10 and 8.1] for
instance). Therefore, letting Qg :={0€ %}, for p> p. we define the proba-
bility measure P as

P,(ANQ)

=————>  Ade%.
Pp(QO)

P(4):

For each configuration w € Qp, the simple random walk on %, (®) is the
Markov chain ((X,),”,, (P3) e, (@) On G (w) defined as follows:  P;(Xo = z)
=1, and the transition probabilities

, 1
Po (X1 = x+e| X, = x) :ﬂl{w((’)zl} oly, le]=1,

and

. 1
PL(Xpp =x| Xy =x) =Y 24 Hole)=0p © O

le=1

for all x,z€ %, (w) and ne Ny, where (0.). ,« are the canonical shifts of the
space Q, that is, 0.w(y) = w(x+ y) for x,ye Z%.

We prove the large deviations for the law of scaled position X, /n of SRWPC
following the same strategy as in [11]. For this, we first study the asymptotics of
the cumulant generating function. Let us introduce H(y) :=inf{n > 0; X,, = y}
as the first passage time through y for the path (X,), ,. Define for any 1 >0,
weQ and x,y € G (),

e(x, y, ) == Eglexp{—AH (y) 1 {#(y)<w}];
(11) a}.(x7y7w) = 710g ei(xv y?w)a
d).(x7 y760) = max{“l(x7 Y, 60), az(%% (U)}

THEOREM 1.1 (Lyapunov exponents). Let 1> 0. Then there exists a non-
random function o; : RY — [0, 0) such that P-a.s.,

(1.2) 1m—L@wJWm=mm

n—oo Té")

holds for all x € Z\{0}, where T s the position of n-th intersection of infinite
open cluster €., with the half line xN (see (2.1) below for details). In addition,
o,(:) has the following properties: for any q >0 and x,y € RY,

(1.3) w(gx) = qo;(x),
(1.4) (X + ) < 0i(x) + (),
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and
(L5) AX| < i (x) < (4 + log(2d))p| x|,

where p is a constant appearing in (2.3) below. Moreover, o,(x) is concave
increasing in A and convex in x. In particular, it is jointly continuous in A and x.

THEOREM 1.2 (Shape theorem). We have P-a.s. that

a;(0,x) — a;(x) —0

holds for all 2 > 0.
The following theorem is our main result.

THEOREM 1.3.  The law of X, /n obeys the following large deviation principle
with the rate function

I(x) :=sup(oz(x) — 4) :
120

« Upper bound: for any closed subset A = R?, we have P-as.,

(1.6) lim supl log P°(X, e nd) < —inf I(x).

n—owo N xed

« Lower bound: for any open subset B = R?, we have P-a.s.,

(L.7) liminfl log P (X, € nB) > —inf I(x).
n

n—oo XeB

Remark 1.4.  The Markov chain (X)), represents only one of natural ways
to define a simple random walk on the supercritical percolation on Z¢. Other
possibilities are the simple random walk on supercritical bond-percolation on Z¢
and the model that, at each unit of time, the walk moves to a site chosen
uniformly at random from the accessible neighbors, that is, the walk takes no
pauses. We can apply the same strategy taken in this paper to these cases, since
the transition probabilities on a unique infinite cluster are uniformly bounded
from below and the estimates for the graph distance hold as well.

Organization of the paper. We briefly comment on the proof and the
organization of the paper. Our proof basically follows the strategy taken in
[11]. The main difficulty compared to it lies in Theorem 1.1. The Lyapunov
exponents are easily constructed by the subadditive ergodic theorem, however
we have to require the suitable properties for these. In particular, to prove
the property (1.4) and (1.5) is more complicated since it directly concerns the
configuration of supercritical site percolations. For (1.4), we let x,y € €, and
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consider random walk paths from x to x+ y. The similar claim is trivial in
[11] since random walk paths can choose any sites as its starting and ending
points. However, in our model, the site x + y does not necessarily belong to %,
even though both x and y are in 4,. Thus, it may be impossible to take a
random walk path from x to x+ y for every configuration of supercritical site
percolations. For (1.5), we use the estimates on the graph distance on super-
critical site percolations, since a; is bounded by it, see for details (2.7) below.

In Section 2 and 3, we prove Theorems 1.1 and 1.2 with the consideration of
the above comments following the strategy taken in [6, Section 3].

In Section 4, we first prove upper bound of Theorem 1.3 in Subsection
4.1. Furthermore, the rough upper and lower bounds and the properties of the
rate function are here given by using those of the Lyapunov exponents. We next
show the lower bound of Theorem 1.3 in Subsection 4.2. This proof is bit more
complicated. In particular, to extend the shape theorem to a general version is
needed. We finally study the asymptotic of the rate function as x tending to 0.

NortaTioNs. We write E,, E and E for the expectation with respect to P,
P and E respectively. Moreover, open | -|-balls with center x € R? and radius
r >0 are denoted by B(x,r) and closed balls by B(x,r).

2. Lyapunov exponents

Our goal in this section is to show Theorem 1.1. For the proof, let us first
recall some ergodic properties and percolation estimates. We now define the
maps Ty :Qy— NU{w0} as

To(w) :=inf{n > l;nx € 6, (w)}, xeZ.

The Poincaré recurrence theorem then tells us that P-a.s., T, is finite for all
xeZ? see [8, Theorem 2.3.2] for instance. We can therefore define, up to set
of measure zero, the maps ®, : Qy — Q) by

0.0 =0y, xeZ?

Thanks to [3, Lemma 3.3], ®, is invertible, measure preserving and ergodic with
respect to P. Setting for n e Ny,

n—1

(2.1) T (w) =) Tu(Ow),
k=0

we have by Birkhoff’s ergodic theorem and the Kac theorem (see [8, Theorem
2.4.6]) that

(n)
(2.2) im = = E[T] = P)(Q)) "'

n—oo n

holds P-a.s. and in L!'(P).
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Let D,(x,y) be the graph distance on %, (w). Then, [I, Theorem 1.1]
implies that if p > p. then there exist constants p > 1 and ¢j,¢; > 0 depending
only on p and d such that for all x e Z,

(2.3) P,(0 & x, Dy (0,x) > plx|) < creeP,
Moreover, [6, Lemma 2.4] ensures that there exists ¢3 = ¢3(p,d) such that
(2.4) E[D,,(0, T\x)] < [x|Py(Q0) " (p + e3/x7?)

holds for all x € Z4\{0}.
For the proof of Theorem 1.1, let us start with the triangle inequality and
integrability properties for a;.

LemMA 2.1. For any A >0 and x,y,z € €,
a;(x,y) < a;(x,2) + a;(z,p).

Proof. We set H.(y) :=inf{n > H(z); X, = y}. The strong Markov prop-
erty then shows

e;(x,y) = Eglexp{—2H:(y)}{1.(y)<0}] = €:(x, 2)es(z, ),
which completes the proof. O

LEmMMA 2.2. For all 2> 0, neNy and x € Z9\{0},

(2.5) E[a;(0, Tox)] < |x|(Z + log(2d)) P,(Q0) ' (p + e3|x| %),
and
(2.6) E[a;(0, T!"x)] > |[x|2E[T"].

Proof. We first show (2.5). If 0 < kx, then let y,(w) = (ykﬁn(co)):i(()w) be
an open path from 0 to kx with minimal length my(w) = D, (0, kx), which is
chosen by a deterministic algorithm. We then have by the definition of d;,

(2.7) d;(w,w'") < (A+10g(2d)) Doy (w,w'),  w,w' € €.
This implies that
E[a;(0, Tix)] < (4 +10g(2d))E[D,,(0, Txx)],

and therefore (2.5) follows from (2.4).
For (2.6), note that H(Tx(”)x) > Tx(">|x| PY-as. We thus have

Ela;(0, T x)] > E[-log E0fexp{—AT"|x|}]] = [x|ZE[T{"),

which proves the lemma. O

Now we are in position to prove Theorem 1.1. The following proposition
now plays the key rule in the proof.
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PROPOSITION 2.3.  There exists a nonrandom function W : Z¢ — [0, ) such
that the following holds P-a.s. and in L'(P): for all x € Z9,

(2.8) lim 1(1;(0 T"y) = lim lE[aA(O T y)]

n—oo n n—oon

= inf 1E[aA(O TMx)] = W(x).

n>1n
Furthermore, we have for x € Z\{0},
(2.9)  [x|AP,(Qo) " < Wi(x) < [x] (4 + log(2d))Py(Q0) ' (p + e3]x] 7).

Proof. Fix xeZ" and we consider the doubly indexed sequence

W= a(TMx, T"x,0,6), 0<m<n.

A

This sequence (W,;""),._, satisfies the conditions of the subadditive ergodic
theorem from the ergodicity of ®, and Lemmas 2.1 and 2.2. We can thus
find a function W) satistying (2.8).

The upper bound in (2.9) follows immediately from Lemma 2.2. For the
lower bound in (2.9), (2.2) and Lemma 2.2 yield

1
W,(x) = |x|4 l1m nE[ M) = |x|AP, Q)"
and the proof is complete. ]
The next corollary follows immediately from the above proposition.

COROLLARY 2.4. Let o;(x) := P,(Qo)W;(x) for xe Z?. Then P-as., (1.2)
holds for all x e Z7\{0}. Furthermore (1.3) and (1.5) holds for any q €N and
xeZ.

Proof. 1t is easy to see (1.2) from (2.2) and Proposition 2.3. Let us next
show (1 3). We may assume x € Z\{0} because W;(0) =0. By the definition

of T ) and qu, for all k > 0 there exists n; € Ny such that T )y = T<x>qx
holds. In particular, T = qT, (,Q is verified, and therefore (1.2) implies that

a;(0, T{")x) = qouy(x),

X

o,(gx) =g lim 74 (0, T< gx) =g¢q 11m

k— o0 (]T( T(”A)

which proves (1.3).
We finally show (1.5). The lower bound follows from Proposition 2.3.
Using (1.3) and Proposition 2.3, we obtain for ¢ € N,

:(x) = “‘(j ) < x](2 + log2d))(p + eslgx| ).

The upper bound is hence shown by letting ¢ — co. O
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Proof of Theorem 1.1. Given Lemma 2.1 and Corollary 2.4, it suffices to
show that (1.4) holds for any x, y € Z¢, since the proof goes in the same line as
that of [11, Proposition 3]. Namely, due to (1.3) we extend a;(-) to Q by
a;(x) = o;(x)/q and then to R? by continuity. The properties of o;(x) as a
function of A and x follow from (1.3), (1.4) and the monotonicity of @, in 4. See
the above references for details.

We first prove the next claim following the proof of [6, Lemma 3.4] (but
see Remark 2.5 below): for x,y zeZ\{0} there exists a sequence n; =
mie(|x], |y, |z]; |x = z|, [y = 2[), k=1 depending only on |x[, |y, |z|, [x—z| and
|y — z| such that P,-a.s.,

C1E T R
(2.10) ]CIL)HOIC%;I{NIX,H,‘ZE(Q"L} = Pp(QO) = ]}Lr&%;l{my,mze’ﬁx}'
We choose ¢ := 47! min{|x|,|y|,|x — z|,|y — z|} and define the sequence (my);~,
as follows: n;:=1 and by induction for k > 1, ng.; is defined as

x| v]z| + ¢+ 1 |y|vz|+c+1}

M1 = 20k max{ »
X[ Alzl—e 7 XAyl =

The random variables (Z;);Z, are then introduced by

Zk = 1{#C(nkx)‘#c(”kz) >y}

It follows that for k > 1,

P]J(Zlc # l{nkx7)1kze%/@}) < Pp(cnk < #C(”kx) < OO) + Pp(cnk < #C(nkz) < OO)
=2P,(ceni < #C(0) < 0).

The Borel-Cantelli lemma thereby shows that Py-a.s., Zy = 1y, y p,zc%,} holds for
all sufficiently large k, since P,(cni < #C(0) < o0) is summable with respect to k,
see [7, Section 8.6]. For the proof of the first equality in (2.10), it suffices to
show that

.1
@) i

k
> Zi= P ()’
i=1
holds P,-a.s. By the choice of (nx),,, (Zk),—, is independent random variables
under P,. Using the strong law of large numbers, we obtain P,-a.s.,

k
(2.12) lim %Z(zi ~ E,[Z]) = 0.

ko K4
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In addition,
lim E,[Z;] = lim P,(#C(0) = cmi)* = P, ()7,
k— o0 k—o0
which proves (2.11) from (2.12) and Cesaro’s theorem. According to the same
argument as above, the second equality of (2.10) is verified, and therefore we can
construct the desired sequence ny = ni(|x|, |y, |z, |x — z|, |y — z]), k> L.
We now turn to prove (1.4). Without loss of generality we can assume

x, ¥, x+ ye ZN\{0}. Let ny = m(|x],|y|,|x — z|,|y — z|), k=1 be the sequence
as above and set for k > 1,

Ai = {a;(0,mex) < (4 log(2d))pnic|x|,
a3 (0,m(x + 7)) < (7 + log(2d))pmix + ],
a3 (e, me(x + 7)) < (2+ log(2d))pme v}
Lemma 2.1 then shows that

k
1
(2.13) %Z— [a;(0,ni(x + J’))lAll{n,vn(Vﬂ) %}]

=

k
1
EE " E[a; (0, m:)1 g Vg (et 3) e 6,01
=1

—_

k
%Z— [ (nix, ni(x + V) 1a e my(ct ) e %, 1)

=

On the other hand, we obtain from (2.3) and (2.7) that
Py Ve n o) ey # Vmpxom(xry) e, })
< P(mx e ,a,(0,nex) > (A +log(2d))pni|x|)
+P(ni(x+ ) € €0, a;(0,mi(x + ) > (A + log(2d)) pry|x + y|)
+ P(mex, ni(x + p) € Gop, ay(mix, ni(x + y)) > (4 + log(2d))pnk| y])
< 3P,(Q) 'er exp{—cami }.

The Borel-Cantelli lemma thereby tells us that P-a.s., there is a positive integer
K = K(w) such that

(2'14) lAk l{nk,n n(x+y)eb,} — l{nkx,nk(x+y) €6}
holds for all £ > K. Furthermore, Corollary 2.4 yields that

. 1
lim sup|—a; (0, mgx) — 0 (x) |1 xe, 1 =0
k—o0 k

holds P-a.s. By (2.10), we have P-a.s.,
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(2.15) lim sup

k—o0

k
1
%ZI’T (0 nx)lA l{nlx ni(x+y)eb,}t — ( )Pp(QO)z

K—-1
< lim sup — Z ;Cl,{(o, nix)lAfl{n,-x,;1i(x+y) €6}

_a) OI/ZX)—OC/( )

l{n;xe C }
k— o0

+ hm sup oy(x

Zl{mn(m b}~ p(90)2’

=0.

From the bounded convergence theorem the first term in the right-hand side
of (2.13) converges to O(,{(X)PP(Q())Z as k — oo. The same argument as above
shows that the left-hand side of (2.13) converges to o;(x + y)P (Qo) as k — oo.

It remains to estimate the second term in the right- hand side of (2.13).
Note that, by the shift invariance of P,, the second term in the right-hand side of
(2.13) is equal to

1
kP,()

1

; EP [ai(_niyv 0) 1(');11-(\-+)»)Ai 1{—’11‘}" 0,—ni(x+y)e %;}]
i

- -

S|

E[ai(_n[y7 O) 19;1[(,\4 1A 1{7n,y, —ni(x+y) e, }] .

x| =

i=1

In addition, the same argument as in the proof of (2.14) shows that P-a.s.,

19,1,( (et ) Ak 1{*"/(}’-, —m(x+y) €6} — 1{*"1(}’-, —ni(x+y) €%}

holds for all sufficiently large k. On the other hand, using the shift invariance of

P, again, one has for k > 1,
—n;y,0 (y)ll{—n,-yem,az(—n,-y,O)<<A+1og<2d>>pn,-y}}

3o
@@z%

Therefore, Corollary 2.4, the bounded convergence theorem and Cesaro’s theorem
ensure that the right-hand side of the above expression converges to zero as
k — oo. We can therefore take a sequence (ky,),,_; of N such that

1
a;(0,n;y) — oz (y )‘l{n,-y,owm,a;«o,my)<<z+1og<2d)>,nn.-y|}}

Kin

lim E
m— ’)O m

i=1

_a) —h; y7 ( )‘1{n,-ye(é'y,?a,;(n,-y.O)S(/l+10g(2d))pn,-|y} =0
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holds P-a.s. By (2.10), the same strategy as in (2.15) proves that P-a.s.,

k— o0

1 &1
lim %Z;ai(_niy? 0)16’”,.(”})&1{711;)7, —ni(x+y)ebn} — O(i(y)Pp(Q()>2 — 07
i=1""

and hence, choosing k = k,, in (2.13), we get (1.4) by letting m — 0. O

Remark 2.5. The argument in [6] contains a small error stating that the
events {|C(kx)| > ak,|C(ky)| > ak}, k> 1 are independent. The above argu-
ment presents one of the way to fix this.

3. Shape theorem

In this section we give the proof of Theorem 1.2. For this end, let us first
prove the next lemma which plays the role of the maximal lemma used in the
context of random walk in random environment (see [11, Lemma 6]).

LemMa 3.1. Let ¢4 := (A +1og(2d))p. Then the following holds P-a.s.: for
all 0 <ee€Q there is a positive integer N = N(g,w) such that

sup{d;(x,y); ¥ € €, |x — y| < &|x[} < caelx]
holds for every x € €, with |x| > N, where d) is defined as in (1.1).

Proof. Let c¢s:=39+1log(2d)). We first show that there are positive
constants ¢ and ¢; depending only on p and d such that for all » > 0 and x € Z¢
with |x| <r,

(3.1) P(x € %.,d;(0,x) > csr?) < cge .

Note that due to [6, Lemma 2.2], there exist ¢g and ¢y depending only on p and d
such that for any » >0 and xe Z¢ with |x| <r,

P,(0 & x, D,y(0,x) > (3r)7) < eze™®".
It follows from (2.7) that
P(x € G0, d;(0,x) > csr?) < P,(Q0) ' Py(0 & x, D, (0, x) > (3r)9)
< Pp(Q0) ese ™,
which proves (3.1) by choosing c¢g := Pp(Qo)flcg and ¢7 1= ¢o.

Fix ¢€ (0,00)NQ. For n>1 the event 4, is defined as follows: there exist
X,y € %y with |x| =n and |x — y| < én such that d)(x, y) > csen holds. Taking

Py = 3*1(C5£n)1/d for n > 1, we obtain from (2.3) and (3.1),
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<Y Y Poyebudix,y) > cion)

xeZ? yez!
[X[=n |x—y|<r,

+ Z Z P]}(Qo)flpw(x&)@Dw(x’y) >p|x_y|)

xeZ? yEZ’j
[x[=n m<|x—y|<en

_ 6)(”2417167(02“‘7)}3,)'

This means that the sequence (P(4,)),~, is summable, and the proof is complete
from the Borel-Cantelli lemma. O

Proof of Theorem 1.2. By the monotonicity and the continuity in A of a;
in A and o, respectively, the proof goes in the same line as that of [11, Theorem
A]. It suffices to show that for a fixed 4 > 0 and all ¢ € (0,1) N Q, the following
holds P-a.s.: there exists a positive integer N = N (g, ) such that we have for all
X €€, with |x| > N,

|a; (0, x) — o (x)| < glx].

To this end, assume that the above statement fails to hold. Then, there are
& > 0 and an event of positive probability such that we can choose a sequence
(xn),; of €, satisfying |x,| — oo and |a,(0,x,) — o;(x,)| > €o|x,|. Without
loss of generality we can assume x,/|x,] — ve SY'. Let n be an arbitrary
positive number, which is chosen small enough later. Pick v’ € S“"'N Q¢ with
|v—v'| < and M is a positive integer with Mv' € Z¢. Furthermore, we define

f()r n> 1,
! ‘xn|
xn = M/

Thanks to [6, Lemma 5.5], P-a.s., there is a positive integer k, = k,(1,®) such
that (1 —#)||xu/M] < ky < ||x4|/M| and k,Mv' € €,,. Therefore,

|xn _xy/1| < ’7|xn| +M < 277|X,,|

is valid for all sufficiently large n. In addition, by letting y, := k, Mv’, the choice
of k, guarantees that

= 2l = 20l + | | < 3.

Lemma 3.1 thereby implies that d;(x,, y,) < 3can|x,| holds for all sufficiently
large n. It follows form Theorem 1.1 and Proposition 2.1 that

00,5%) = 3,052 < Sl 1| 3| 30 + log(2d s

< cn|x,|



SRW ON PERCOLATION CLUSTERS 571

for some ¢ = ¢(p,d) > 0 and for all sufficiently large n. This is contradiction by
letting # < ¢~ !¢y, and hence the proof is complete. O

Remark 3.2. In [11] Zerner proved more general version of Theorem 1.2,
which is called the uniform shape theorem. This guarantees that the shape
theorem is valid with moving starting points, and is used to relate crossing cost to
the Lyapunov exponents in the proof of large deviation lower bound. Unfortu-
nately, the same argument taken in [11] is not applied directly to our model, since
we are not able to apply a martingale method used there due to the fluctuation
of supercritical site percolations. However, we do not need the stronger theorem
as the uniform shape theorem to prove the large deviation principles. We will
state the next corollary for more details.

COROLLARY 3.3. Let x € Q/\{0} and e (0,1). Then,

1
(32) lim —Cl/l(T[E}?J(Qw/m‘xl/MJ)Ml), T}E}fﬁ(go)”\ﬂ/MﬁMv) — (1 _ ﬂ)oc;,(z)

n—wn
holds P-a.s., where v=x/|x| and M is a positive integer such that Mv e Z°.

Proof. The proof goes in the same line as that of [5, Corollary 3.3].
Namely, due to Lemma 2.1, the left-hand side of (3.2) is bounded from below by

(0, TALPH@MIMY o o o (L2l

which converges to (1 — f)a;(x) as n — oo due to Corollary 2.4. Moreover, the
left-hand side of (3.2) is bounded from above by

(T LB/ MOIN) (L2 @/ NMIN)
LPy(Qo)n|x|/ (NM)]~1 . .
< Z a,l(T/i,,,fv)MU, T/E;U+1)N)MU).
le=Py(Qo)pnlx|/(NM)]

We observe that the right-hand side of the above converges, as n — oo, to
(I = B)a;(x) by Birkhoff’s ergodic theorem. See the above reference for details.
Ul

4. Large deviation estimates

Our goal in this section is to prove Theorem 1.3. We prove upper and
lower bounds of Theorem 1.3 in Subsection 4.1 and 4.2 respectively.

4.1. Upper bound. In this subsection, we prove the upper bound (1.6) of
Theorem 1.3. Let us first mention some properties of the rate function /. We
denote the domain of the rate function I by Z;, that is, Z; := {x € R%; I(x) < o0}.
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It is easy to see that / is convex on RY, lower semicontinuous on Z; and upper
semicontinuous on the interior (2,)° of ;. Furthermore, I(x) = oo for |x| > 1
and

4.1) 0 < I(x) < |x|p log(2d)
for xe RY with |x| <p~'.

Proof of the upper bound (1.6) in Theorem 1.3. Tt suffices to consider
compact 4 < R? since I(x) = oo for |x| > 1. Furthermore, we may assume

0¢ A since infycq I(x) =0 if 04 by (4.1). For every J >0 we define the
d-rate function 7° as

Set for any 4 > 0,
A;(0) == {y € A;0;(y) = 4> inf I°(x) —(5}.

Note that 4 = U;.zo A;(9). Thanks to compactness of A, there are 4;, | <i<m
such that A4,,(0), 1 <i<m cover A, and therefore we have

1 1
lim sup . log P? (X, e nd) < max limsup p log P2 (X, € nd;,(9)).

n— 00 1<i<m ;50

Thus, it suffices to prove that the each components for i is bounded uniformly
from above by & —inf,c4 1°(x), which gives (1.6) by letting & \, 0.

Let 2 >0 and we may assume without loss of generality that nd,(6) N %,
# 0 for all n > 1. Therefore,

" log PO(X, € nA;(0)) < 7+ log #(nA;(0) NZ) 1 a3(0, )

holds for some maximizing y, ; € n4;(0) N%.,,. Using Theorem 1.2 and the fact
that dist(0,A4;(5)) > 0, we obtain

. 1
lim sup . log PY (X, € n4;(9))

n— oo

1
< A —liminf - n) — n - dnfy
< A= liminf —(a(0, yu2) = #2(¥n.2)) duf o ()

=J— inf ay(y).
)relglz((S) * (y)

Due to the definition of 4,(d), the most right-hand side of the above expression
is bounded from above by ¢ —inf,.4 I°(x). n
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4.2. Lower bound. In this subsection, we prove the lower bound (1.7) of
Theorem 1.3. To do this, we introduce for 1 >0, w e Qy and x, y € €, (w) the
path measure

PYY(dX) == ei(x, y) " exp{—=AH(y) M (n(y)<cn) P (dX),

NG

and let us prepare the following lemma, whose proof is, by Corollary 3.3, same as
that of [5, Lemma 4.1] and we omit it.

Lemma 4.1. Let x € Q\{0} and fe[0,1). Moreover, let

(1> o T(LPI)(QO)/{”M/MDM

Yo Mv v,
y,sz) = T]E}fp(go)”‘xl/MDMv.

The following then holds P-a.s.:

oo (HOWP)
4.2 lim P} 7 =1
( ) nLnOlO A, <(1 _ﬁ)l’l € (yl,yZ)
for all 2. >0, y,,7, € R satisfying
(4.3) 0<y <af,(x) <af (x) <.

Proof of the lower bound (1.7) in Theorem 1.3. It is sufficient to prove that
P-a.s.,,

(4.4) li£n inf% log P°(X, e nB(z,r)) = —I(z)

holds for all ze Q/\{0}NZ; and 0 < re Q. To this end, set A, := sup{i > 0;
a}(z) > 1} with the convention sup®=0. It is easy to check that I(z) =
o, (z) — A« in the case A, < oo, and I(z) =lim;_ . (o;(z) — A) otherwise. We
first treat the case 4. < co. Suppose A, =0, and then o) (z) <1 for all 4> 0.
We now consider the site

Y = TI(VIL::’p(Qo)ﬂ\Z\/MJ)]‘/[U7
where v=z/|z| and M is an positive integer such that Mve ZY. By (2.2),
|vn — nz| < en holds for all ¢ > 0 and all sufficiently large n. Therefore, choosing
¢ € (0,7), we have B(y,, R) < nB(z,r) for all R > 0 for all sufficiently large n. It
follows that the left-hand side of (4.4) is bigger than

lim inf %{log P%(H(y,) <n)+log P2 (Xt i(y,) € B(yn,R) for all me [0,n])}

n—oo

- , , :
> liminf — {log Eylexp{~2H (yu) (s (y,)<n)) +log P} (X = yu)""}
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for A > 0. Theorem 1.2 and Lemma 4.1 hence tell us that the above expression
is greater than

1
—OC;L(Z) —|—E IOg Pi;"(XR = y,,,)

According to [4, Theorem 2.2], P}"(Xg = y,) is bounded below by ¢(R log R)“’/2
for some positive constant ¢ = ¢(p,d), and therefore we get (4.4) by letting
R — oo and A, 0.

In the cases 4, € (0, 0), thanks to Corollary 3.3, we can apply the same
strategy of the proof of [11, Theorem B]|. Furthermore, in the case 1. = o0, (4.4)
follows from the argument as in the proof of [5, Theorem 1.4]. We thus refer
the reader to the above references for more details. O

We close this section with a comment on the asymptotics of the rate function
as x — 0.

PROPOSITION 4.2.  There exist positive constants C and C' depending only on
p and d such that

(4.5) Clx* < I(x) < C'|x)?

holds for all x € (2;)° sufficiently close to 0. In particular, the zero set of the rate
function {x e RY;I(x) =0} is a single point {0}.

Proof. We first recall that according to [2, Theorem 1, Remark 7 and
Proposition 6.1], there exist positive constants ¢, ¢/, C, C’ depending only on p
and d such that P-a.s.,

'n 1 exp{=C'|y*/n} < Py(Xom1 = ) + Po(Xy = y) < en” > exp{—Cly|*/n}

for all sufficiently large n and for all y € 4., with D,(0,y) <n. For the proof,
it suffices to check by the continuity of I on (Z;)° that (4.5) holds for every
xeQ? We now choose ¢ >0 and x e Q¢ satisfying

(4.6) e+ X <p!,

where p is the constant appearing in (2.3). Then, set v = x/|x| and let M be an
positive integer such that Mv € Z. Moreover, choosing x/ := T,E}f”(g”)"lx‘/ M po,
by (4.6) and (2.2) we have x/, € nB(x,0) and D, (0, x) < n for sufficiently large n.

It follows from Theorem 1.3 that

|
— inf I(y) > limsup —log| Y7 'n M exp{~C'|y*/n)

y€B(x,0) n—oo yenblx.)
D, (0,y)<n

> lim sup% log(c'n/* exp{—C'|x!|*/n})

n—oo

> C'(|x| —9)*
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for sufficiently small |x| and J > 0, which proves the upper bound by letting
0\, 0. Choosing B = B(x,0) in (1.7), we can see the lower bound in the same
manner. O
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