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Abstract

In this paper, we investigate two hyperbolic flows obtained by adding forcing terms
in direction of the position vector to the hyperbolic mean curvature flows in [5, 8].
For the first hyperbolic flow, as in [8], by using support function, we reduce it to a
hyperbolic Monge-Ampere equation successfully, leading to the short-time existence of
the flow by the standard theory of hyperbolic partial differential equation. If the initial
velocity is non-negative and the coefficient function of the forcing term is non-positive,
we also show that there exists a class of initial velocities such that the solution of the
flow exists only on a finite time interval [0, Tmay), and the solution converges to a point
or shocks and other propagating discontinuities are generated when ¢ — Tyax. These
generalize the corresponding results in [8]. For the second hyperbolic flow, as in [5],
we can prove the system of partial differential equations related to the flow is strictly
hyperbolic, which leads to the short-time existence of the smooth solution of the flow,
and also the uniqueness. We also derive nonlinear wave equations satisfied by some
intrinsic geometric quantities of the evolving hypersurface under this hyperbolic flow.
These generalize the corresponding results in [5].

1. Introduction

Generally, we refer to a hyperbolic flow whose main driving factor is mean
curvature as the hyperbolic mean curvature flow (HMCF). In [14], Rostein,
Brandon and Novick-Cohen studied a hyperbolic mean curvature flow of inter-
faces and gave a crystalline algorithm for the motion of closed convex polygonal
curves. In [17], Yau has suggested hyperbolic mean curvature flow can be used
to model a vibrating membrane or the motion of a surface. It seems necessary
to study the hyperbolic mean curvature flow because of these applications.

To our knowledge, few kinds of hyperbolic mean curvature flow have been
studied and also few results of these hyperbolic mean curvature flows have
been obtained, see [5, 8, 9] for instance. Now we want to show the motivation
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why we consider the hyperbolic mean curvature flows (1.3) and (1.4) below in this
paper. Actually, it is inspired by the similar situation in the mean curvature
flow. More precisely, Ecker and Huisken [3] considered the problem that a
hypersuface M, immersed in R"*! evolves by a family of smooth immersions
X(-,t): My — R"! as follows

0 _,
-X = H M,

(1) a (x,1) (x,)N(x,1), Vxe My, Vi>0
X(,O) = MO»

where H(x,7) and N(x,) are the mean curvature and unit inner normal vector
of the hypersurface M, = X(My,1) = X,(My), respectively. If additionally the
initial hypersurface Mj is a locally Lipschitz continuous entire graph over a
hyperplane in R"*!, they have proved that the classical mean curvature flow (1.1)
exists for all the time 7 € [0, 00), moreover, each X(-,7) is also an entire graph.
Fortunately, by using a similar way, Mao, Li and Wu [12] proved that if the
above initial hypersurface, a locally Lipschitz continuous entire graph in R"*!,
evolves along the following curvature flow

A

12) %X(x, £) = H(x,)N(x, 1) + é(1) X (x,1), Yxe Mo, ¥1>0

X(70) = M07

where &(7) is a bounded nonnegative continuous function, and H(x, ) and N (x, t)
have the same meanings as those in the flow (1.1), then the curvature flow (1.2)
has long time existence solutions, and each each X(-,¢) is also an entire graph.
This generalizes part of results of Ecker and Huisken, since if ¢(¢) =0 in (1.2),
then this flow degenerates into the classical mean curvature flow (1.1). Similarly,
if ¢(¢) is a bounded continuous function, for a strictly convex compact hyersur-
face in R"! evolving along the curvature flow of the form (1.2), Li, Mao and
Wu [11] proved a similar conclusion as in [10] by mainly using the methods
shown in [10] and [7].

Since we could get these nice results if we add a forcing term in direction of
the position vector to the classical mean curvature flow, we guess maybe it would
also work if we add this kind of forcing term to the hyperbolic mean curvature
flows introduced in [5] and [8] respectively. This process of adding the forcing
term lets us consider the following two initial value problems.

First, we consider a family of closed plane curves F : S! x [0, T) — R? which
satisfies the following evolution equation

*F - |

e (u,t) = k(u, )N (u,t) — Vp+ c(t)F(u,t), Y(u,t)eS x1[0,7)
(13) 4 F(u,0) = Fo(u),

oF

& .0) = fw,
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where k(u,7) and N(u,1) are the curvature and unit inner normal vector of the
plane curve F(u,?) respectively, f(u) € C*(S') is the initial normal velocity, and
Ny is the unit inner normal vector of the smooth strictly convex plane curve
Fo(u). Besides, ¢(7) is a bounded continuous function on the interval [0, T') and
Vp is given by

Vp = T(u,1),

0*F OF .
<6s@t’0t> +c(t)(F,T)

where (-,-) denotes the standard Euclidean metric in R?, and T', s denote the unit
tangent vector of the plane curve F(u,f) and the arc-length parameter, respec-
tively.

Fortunately, we can prove the following main results for this flow.

THEOREM 1.1 (Local existence and uniqueness). For the hyperbolic flow (1.3),
there exists a positive constant Ty > 0 and a family of strictly closed curves F(-,t)
with t €[0,Ty) such that each F(-,t) is its solution.

THEOREM 1.2.  For the hyperbolic flow (1.3), if additionally ¢(t) is non-positive
and the initial velocity f(u) is non-negative, there exists a class of the initial
velocities such that its solution exists only on a finite time interval [0, Tiax).
Moreover, when t — Tmax, one of the following must be true

(I) the solution F(-,t) converges to a single point, or equivalently, the
curvature of the limit curve becomes unbounded,

(I1) the curvature k(-,t) of the curve F(-,t) is discontinuous so that the
solution converges to a piecewise smooth curve, which implies shocks and prop-
agating discontinuities may be generated within the hyperbolic flow (1.3).

Second, we consider that an n-dimensional smooth manifold .# evolves
by a family of smooth hypersurface immersions X (-,#) : .# — R"™! in R™! as
follows
2

%X(x, 1) = H(x,O)N(x,t) + c1 ()X (x,1), Vxe .U, ¥t>0
(1.4) X (x,0) = Xo(x),
e 0) = X (x)

where N (x, ) is the unit inner normal vector of the hypersurface .#, = X (.4, 1) =

X,(A), Xy is a smooth hypersurface immersion of .# into R™!, Xj(x) is a

smooth vector-valued function on .#, and ¢ () is a bounded continuous function.
For this flow, we can prove the following result.

THEOREM 1.3 (Local existence and uniqueness). For the hyperbolic flow (1.4),
if additionally .4 is compact, then there exists a positive constant T, > 0 such that
the initial value problem (1.4) has a unique smooth solution X (x,t) on M x [0, T>).
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The paper is organized as follows. In Section 2, the notion of support
function of F(u,t) will be introduced, which is used to derive a hyperbolic
Monge-Ampere equation leading to the local existence and uniqueness of the
hyperbolic flow (1.3). An example and some properties of the evolving curve
have been studied in Section 3. Theorem 1.2 will be proved in Section 4. In
Section 5, by using the standard existence theory of hyperbolic system of partial
differential equations, we show the short-time existence Theorem 1.3 of the
hyperbolic flow (1.4). Some exact solutions of the hyperbolic flow (1.4) will be
studied in Section 6. The nonlinear wave equations of some geometric quantities
of the hypersurface X(-,#) will be derived in Section 7.

2. Proof of Theorem 1.1

In this section, we will reparametrize the evolving curves so that the hyper-
bolic Monge-Ampere equation could be derived for the support function defined
below. Reparametrizations can be done since for an evolving curve F(-,¢) under
the flow (1.3), the underlying physics should be independent of the choice of the
parameter u € S'. However, before deriving the hyperbolic Monge-Ampére equa-
tion, the following definition in [9] is necessary.

DerFINITION 2.1. A flow F : S! x [0, T) — R? evolves normally if and only if
its tangential velocity vanishes.

We claim that our hyperbolic flow (1.3) is a normal flow, since
d (OF OF oF . [0F O°F
ai <6t’as> = _<V’0’6s) +c(O)(F,T) + <5!’FJZ@S> =0,

and the initial velocity of the flow (1.3) is in the normal direction. Then we
have

2.1 %F(u, 1) = (%F(u, 1),N(u, z))ﬁ(% 1) == o(u, )N (u, 1).
By (1.3) and (2.1), we have

o — g 2
.2) 0 )+ )W) ), g_@_ga_F)

where s =s(-,¢) is the arc-length parameter of the curve F(-,¢):S! — R%.
Obviously, by arc-length formula, we have

0 1 0 1 0 10
(2.3) e 5 Sou " T0F au o ow
0x 0y =
— | +(= ou
ou ou
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here (x,y) is the cartesian coordinates of R?. For the orthogonal frame field
{N,T} of R? by Frenet formula, we have

oT o ON .

2.4 —=kN, —=—kT.

(24) =i,

Now, in order to give the notion of support function, we have to use the unit out
normal angel, denoted by 0, of a closed convex curve F: S! x [0,T) — R* w.r.t
the cartesian coordinates of R>. Then

N = (—cos 8, —sin 6), T= (—sin 0, cos 0),

. 00
correspondingly, we have Fri k and

oN o0 - oT a0 -
-z =—N

(23) ot ot ot ot

v
LEMMA 2.2. The derivative of v with respect to t is i —kov.

Proof. By using (2.1), (2.3), and (2.4), as in [4], we calculate directly as

follows
o, OF *F OF 0°F S0, o
= Z(UT,GZ]V — kavT) = —2v’ko,
which implies our lemma. ]

Then, by using Lemma 2.2, we can obtain

? _o(1a S SIS S E+5_2
o10s Oi\vou) Coou vouor Cos osor

which implies

oT 0 (0F\ - 0o -
E:E(§>N:EN’

.. . . . . 00 0
Combining this equality with (2.1) yields i 6_;7'
Assume F(u,t): S' x [0, T) — R? is a family of convex curves satisfying the
flow (1.3). Now, as in [18], we will use the normal angel to reparametrize the
evolving curve F(-, 1), and then give the notion of support function which is used

to derive the local existence of the flow (1.3). Set
(2.6) F(0,7) = F(u(0,7),1(6,7)),
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where #(0,7) = 7. We claim that under the parametrization (2.6), N and T are
independent of the parameter 7. In fact, by the chain rule we have

L0 0 u 30

% wor A
which implies

W_ W W0 du_ o
ot uor  esauor oo
Therefore,
oT 0T oT dsou (00 | ou\
ERE AT (EH“’E>NO'
Similarly, we have 6_N: — 6—0+kva—u T = 0, then our claim follows.
ot ot ot

Define the support function of the evolving curve F(0,7) = (x(0, 1), y(0, 1))
as follows

S(0,7) = (F(0,7),—N) = x(0,7) cos 0 + y(0,7) sin 0,
consequently,

Sp(0,7) = —x(0,7) sin 0 + y(6,7) cos 0 = (F(0,7),T).
Therefore, we have
2.7) {x(@, 7)=S c.os 0 — Sy sin 0,

y(0,7) = Ssin 0+ Sy cos 0,

which implies the curve F(0,7) can be represented by the support function.
Then we have

(2.8) Soo+ S = —xp sin0+y0cosﬁ—(a—F T)—(

a0’ as 00’ )k
since the evolving curve F(0,7) = F(u(0,1),1(0,7)) is strictly convex, (2.8) makes
sense.

On the other hand, since N and T are independent of the parameter T,

together with (2.1) and (2.6), we have

oF o OF ou | OF oF

furthermore, by the chain rule we obtain

2 2 2 2 2
STT:<6F6 u+6F<8u> L OF o PF _ﬁ>

OF 0s a> 1

ou o2 " ou* \ot oudt ot o’

_(ZF (Y PF o g\ (PF o 3F
“\ou? \or oudt ot’ ouot ot = o0’
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oF =\ Ou O*F ou - B
<<5>f’_N)E+<auazE"N>—"—C(TKF,N)

<a2F ou N) ket e(0)S(0, 7).

oudt ot’

Since F(u,t):S'x [0, T) — R? is a normal flow, which implies

(aa—lj,f'")(u,t) =0,

for all 1€[0,T). By straightforward computation, we have

AN W
SHT_(@%’_N>_E<—@6:’_N>’

oF - OF du OF - ou
STH_(@‘L',T)_(%&[—’_GZ’T)_U&[.

Hence, the support function S(0,7) satisfies

and

u

P So. — k + ¢(7)S(0,7)

2
Sie = <% %,—ﬁ) —k+¢(2)S(0,7) = kv
=k(S3. — 1)+ c(1)S,
combining this equality with (2.8) yields
_Si -1
S+ S
Then it follows from (1.3), (2.6), (2.10) that
SS:e — c()SSpp + (SeeSpo — S7.) + 1 — ¢(1)S* =0,
(2.11) S(0,0) = (Fo,—N) = h(0),
S:(0,0) = —f(0) = ~f (u(6,0)),

where /() and f(0) are the support functions of the initial curve Fy(u(6)) and
the initial velocity of this initial curve, respectively.

Now, we want to use the conclusion of the hyperbolic Monge-Ampére
equation to get the short-time existence of the flow (1.3). Actually, for an
unknown function z(6, ) with two variables 6, t, its Monge-Ampére equation has
the form

(2.12) A+ Bze + Czeg+ Dzgp + E(zeczg0 — 73,) = 0,

here the coeflicients 4, B, C, D, E depend on 7, 0, z, z;, zp. (2.12) is said to be
z-hyperbolic for S, if Az(r, 0,z,2¢,29) := C?> —4BD + 4AE > 0 and zg + B(z,0,

(2.10) +¢(1)S, VY(0,7)eS' x[0,T).
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z,21,29) # 0. We also need to require the z-hyperbolicity at the initial time, in
fact, if we rewrite the initial values as z(0,0) = zy(0), z.(0,0) = z,(0) for the
unknown function z(6,7), 6 € [0,2x], then the corresponding z-hyperbolic condi-
tion is given as follows

A*0,0,20,21,2)) = (C* —4BD + 4A4E)|,_, > 0,
zy + B(0,0,z0,z1,z)) #0,

@ - d220
o’ " g9*’

It is easy to check that (2.11) is a hyperbolic Monge-Ampeére equation. In
fact, for (2.11),

A=1-c(t)S?, B=S, C=0, D=—c(1)S, E=1,
then we have
A*(1,0,S,S;,Sy) = C* —4BD + 44E = 0% — 4S x (—c(1)S) +4(1 — ¢(7)S?) x 1
=4>0,

where z) =

and

1
Soo + B(z,0,S,S:,Sy) = S"(H_S:E £0.

Furthermore, if at least 4(0) € C3([0,2x]) and f(0) € C2([0,27]), then we have
A2(0,0,h, f,hg) =4 >0,

and
hoo + B(0,0, h, f,hg) # 0,

which implies (2.11) is also z-hyperbolic at = 0. Hence, (2.11) is a hyperbolic
Monge-Ampére equation.

Then by the standard theory of hyperbolic equations (e.g., [6, 16]), Theorem
1.1 concerning the local existence and uniqueness of the solution of the hyperbolic
flow (1.3) follows.

3. Some properties of the flow (1.3)

First, we would like to give an example so that we could understand the
hyperbolic flow (1.3) deeply, however, first we need the following lemma.

Lemma 3.1. Consider the initial value problem

Cy
Fy = _70+E(t)r
r(0)=ro >0, r(0)=r,

(3.1)
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where ¢y is a positive constant and ¢(t) is a non-positive bounded continuous
function.  For arbitrary initial data ry > 0, if the initial velocity ry <0, then the
solution r = r(t) decreases and attains its zero point at time ty (in particular, when

ri =0, we have ty) < 1/2—7;0;’0, equality holds iff ¢(t) = 0); if the initial velocity is

positive, then the solution r increases first and then decreases and attains its zero
point at a finite time.

Proof. The proof is similar with the arguments in 5, 14]. The discussion is
divided into two cases.

Casg (I). The initial velocity is non-positive, i.e. r; <0.
Assume r(¢f) >0 for all the time 7> 0. Then by (3.1) we have r, =

—c—:—i- é(t)r <0, then by monotonicity r(f) <r/(0)=r <0 for all ¢>0.

Hence, there exists a time # such that r(#) =0, which is contradict with our

assumption. Moreover, when the initial velocity vanishes, i.e. r,(0) =r; =0, let

¢t be the bound of the function é(¢), ie. |é(f)] < c¢T for all >0, obviously,

multiplying both sides of r, = —c—0+5(t)r by r,, integrating from 0 to ¢ < ¢,
r

and applying the condition r,(0) =r; =0 yield

2
ro r ro )
(3.2) Co 1n7 < 5[ SC()]HT—i—?(ro_r(t) ).

Integrating both sides of (3.2) on the interval [0,7)] and using the condition
r(to) = 0 yield

oe] to /2 0 + rh
ﬁzj e‘“zduzj COdZZJ e‘”zdu—\/c_J

0 21"0 0 2

0 0
where v = 4/In %0. Therefore, we obtain
T Arg Vi3
33 —Ty = < ) < 4 [
(3:3) 20" V2 - 0T 2
where

Obviously, equalities in (3.3) hold simultaneously if and only if ¢t =0, which

implies ¢(¢) =0, in this case, #f) = 20700 which is a conclusion in [5] for
— €o
co = 1.



FORCED HYPERBOLIC MEAN CURVATURE FLOW 509

Case (II). The initial velocity is positive, i.e. r; > 0. From (3.1), we have

t

(3.4) r2(t) = —2co(In r(t) — In rg) +rf +2 Jo c(s)rro(s) ds.

Assume r increases all the time, i.e. r, > 0 for all the time # > 0. Since r > ry >
0, r, >0 and ¢(r) is non-positive, then from (3.4) we obtain

;
r2(t) < —2¢p In P + 77,
0

which implies
(35) ro < }’(t) < e"f/(z"O)ro.

On the other hand, under our assumption, we have

Co Co
———cr<r<——
-

combining this relation with (3.5) results in

. C
B(VO) < Tyt < 767’]2/(26'0) —0,
ro

where

: ¢ 226 € :
B(ro) = mm{——0 — cFrg, —eT1/e0) 2 _ c*e’lz/(z“‘)ro} < 0.
To To

Thus the curve r, can be bounded by two straight lines r, = B(rg)t +r; and

rlroerlz/(z"“)

r=—e "t/ Q"‘”?H—rl, which implies 7, must be negative for ¢ > .
0 0
This is contradict with our assumption. Hence, r, will change sign and become
negative at certain finite time, which implies there exist a finite time #; such that
r(t1) =0. Now, if we assume r(¢) > 0 for all the time 7 > 0, then as in Case (I),
we can prove that r(¢) attains its zero point at a finite time #, > ¢;. Thus in this
case r(¢) increases first and then decreases and attains its zero point at a finite
time. Our conclusion follows by the above arguments. O

Example 3.2. Suppose ¢(z) in the hyperbolic mean curvature flow (1.3) is
also non-positive, and F(-,¢) in (1.3) is a family of round circles with radius r(¢)
centered at the origin. More precisely,

F(u,t) = r(t)(cos u,sinu), r(0) >0,

without loss of generality, we can also choose u=1s to be the arc-length
parameter of the curve F(-,¢#). Then the curvature k(-, ) of the evolving curve
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1
F(-,t) is —, moreover, Vp =0. Substituting these into (1.3) yields

r(8)’
1
(3.6) ==+ e,
r0)=ry>0, r=r.

By Lemma 3.1, we know if the initial velocity r; < 0, then the flow (1.3) shrinks
and converges to a single point at a finite time f#y (in particular, when r; =0,

fo < \/gro, equality holds iff ¢(7) = 0); if the initial velocity is positive, then the

flow (1.3) expands first and shrinks and converges to a single point at a finite
time. One can also interpret this phenomenon by physical principle as in
(5, 8.

Remark 3.3. From this example, we know the necessity of the non-
positivity of the bounded continuous function c¢(¢) if we want to get the con-
vergence of the hyperbolic flow (1.3). That is the motivation why we add
the condition ¢(¢) is non-positive in Theorem 1.2 to try to get the convergence.

Inspired by Chou’s basic idea [1] for proving the convergence of the curve
shortening flow, by using the maximum principle of the second order hyperbolic
partial differential equations shown in [13], we could get the following conclusions
as proposition 3.1 and proposition of preserving convexity in [8]. This is true,
since, comparing with the evolution equations in the proofs of proposition 3.1
and proposition of preserving convexity in [8], one can easily check that the
corresponding evolution equations of the difference of the support functions and
the curvature function under the flow (1.3) only have extra first order terms c(¢)w
and —c(f)k respectively, moreover, these first order terms have no influence on
the usage of the maximum principle.

PropPOSITION 3.4 (Containment principle). Suppose F and F,: S' x [0, Ty)
— R? are convex solutions of (1.3). If Fy(-,0) lies in the domain enclosed by
Fi(-,0) and fr(u) = fi(u), then F>(-,t) is contained in the domain enclosed by
Fl(-,l) for all te [O, T])

ProposITION 3.5 (Preserving convexity). Let ko be the mean curvature of the
initial curve Fy, and let 1 = mingc o2, ko(0). Then, for a C#-solution of (2.11),
one has

(3.7) k(0,t) =n:= err[%)irzl ] ko(0), for tel0, Tmax), 0 € 0,27,
e[0,2n

where k(60,t) is the mean curvature of the evolving curve F(-t), and [0, Tax) is the
maximal time interval of the solution F(-,t) of (1.3).
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4. Convergence

In this section, we want to get the convergence of the hyperbolic flow (1.3).
We assume that ¢(7) is non-positive and initial velocity f(u) is non-negative. In
order to get the convergence, the following lemma is needed.

LemMa 4.1.  The arclength (1) of the evolving closed curve F(-,t) of the flow
(1.3) satisfies

de(n r”

0

&(0,1) do,

and

L]

where 6(0,t) = 6(0,7) = o(u, t), the change of variables from (u,t) to (0,7) satisfies
(2.6).

Proof. The convention of using ¢ for time variable is used here. In addi-
tion, by straightforward computation, we have

de(n) d [ d B N
= Ejsl o(u, t) du = L] 7l o(u, t) du = Ll kov du = Jo ¢ do,
and
dzﬁ(l) 2 a ~ 2n 5
St g ar= | sk - Dkt s ao

_ Jj K(Z_‘;f - 1>k + c(t)S] a0,

. . 0 . .
here v(u,1) is defined in (2.3), ue S!, and the fact —wv(u,7) = —kov is shown in
Lemma 2.2. Therefore, our proof is completed. ! O

Proof of Theorem 1.2. Let [0, Tymax) be the maximal time interval for the
solution F(-,1) of the flow (1.3) with Fy and f as initial curve and the initial
velocity, respectively. We divide the proof into five steps.

Step 1. Preserving convexity

By Proposition 3.5, we know the evolving curve F(S' ) remains strictly
convex and the curvature of F(S' ¢) has a uniformly positive lower bound
minﬁe[O,Zn] k()(g) on S' x [07 Tmax)-

Step 2. Short-time existence

Without loss of generality, we can assume that the origin o of R? is in the
exterior of the domain enclosed by the initial curve Fy. Enclose the initial curve
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Fy by a large enough round circle y, centered at o, and then let this circle
evolve under the flow (1.3) with the initial velocity min, g f(u) to get a solu-
tion y(-,¢). From Example 3.2, we know that the solution y(-,¢) exists only at
a finite time interval [0, Tp), and y(-,7) shrinks into a point as t — Tj. By
Proposition 3.4, we know that F(-,¢) is always enclosed by y(-,#) for all
te[0,Ty). Therefore, we have that the solution F(-,f) must become singular
at some time Tmay < Tp.

Step 3. Hausdorff convergence

As in [1, 8, 18], we also want to use a classical result, Blaschke Selection
Theorem, in convex geometry (c.f. [15]).

(Blaschke Selection Theorem). Let {K;} be a sequence of convex sets which
are contained in a bounded set. Then there exists a subsequence {Kjy} and a
convex set K such that Ky converges to K in the Hausdorff metric.

The round circle p, in Step 2 is shrinking under the flow (1.3), since the
normal initial velocity f is non-negative, this conclusion can be easily obtained
from Lemma 3.1. Since for every time ¢ € [0, Tmax), F(-,7) is enclosed by y(-, 1),
we have every convex set Kp(. , enclosed by F(-,7) is contained in a bounded set
K, enclosed by p,. Thus, by Blaschke Selection Theorem, we can directly
conclude that F(-,f) converges to a (maybe degenerate and nonsmooth) weakly
convex curve F(-, Tma) in the Hausdorff metric.

Step 4. Length of evolving curve

We claim that there exists a finite time 7 < oo such that 2(T) = 0.

As Step 2, we can easily find a round circle ¥, centered at the origin o and
enclosed by the convex initial curve Fy, and then let this circle evolve under the
flow (1.3) with the initial velocity max,.s1 f(u) to get a solution 7(-,7). From
Example 3.2, we know that the solution y(-,7) exists only at a finite time interval
[0, T¢) with Ty < Tyayx, and (-, ¢) shrinks into a point as  — T. By Proposi-
tion 3.4, we know that F(-,) always encloses (-, ) for all z€ [0, Ty). Thus we
know that the support function S(6, ) is nonnegative on the time interval [0, T),
and we can also conclude that (6, 1) = a(u, t) is also nonnegative on the interval
[0, Ty), since

Jo .
(4.1) E:k(u’ t) +c(t)(F,N)(u,t) >0
and o(u,0) = f(u) > 0. The expression (4.1) holds since k has a uniformly
positive lower bound, ¢(7) is non-positive, and (F,N)=—S <0 on the time
interval [0,7)). Hence, we have

2n
(4.2) %:_J &do <0,
dr .

on the time interval [0, 7). ~
On the other hand, since a(u,?) > a(u,0) for all e (0,Ty), which implies

a(0,1) = a(u, 1) > 6(0,0) = a(u,0), for all ze(0,Ty),
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so we have
0é

(43) =

0,1) >0,

for all 1€ (0,7)). Combining (4.3) with the truth

0 05, . 06 do 06 <55>2(0 .00, 0

Jo
20 s a0

il
E(U’Z)Z@(OJ)'§+E(OJ) —@'54'5(0’1) =

06 06\
which indicates

2 2n ~\ 2
(4.4) %ﬂ(’) _ JO [((%) _ 1>k + c(l)S] 6 < 0

on the time interval (0, 7).

Then our claim follows from the facts £(0) > 0, (4.2) and (4.4).

Step 5. Convergence

This step is the same as the step 4 of the proof of theorem 4.1 in [8]. Our
proof is finished. ]

yields

5. Short time existence of the flow (1.4)

In this section, we would like to give the short time existence of the solution
of the hyperbolic mean curvature flow (1.4) by using the method shown in [5].

Now, consider the hyperbolic flow (1.4), additionally, we assume .# is
a compact Riemannian manifold. Endow the n-dimensional smooth compact
manifold .# with a local coordinate system {x'}, | <i<n. Denote by {g;} and
{h;} the induced metric and the second fundamental form on .# respectively,
then the mean curvature is given by

H = g"hy,

where (g7) is the inverse of the metric matrix (g;).
As the mean curvature flow (MCF) case, here we want to use a trick of
DeTurck [2] to show that the evolution equation

2
(5.1) %X(x, 0) = Hix, ON(x, 1) + a1 (0 X (x, 1),

in (1.4) is strictly hyperbolic, then we can use the standard existence theory of the
hyperbolic equations to get the short-time existence of our flow (1.4). However,
first we would like to rewrite (5.1) in terms of the coordinate components.
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Denote by V and A the Riemannian connection and the Beltrami-Laplace
operator on ./ decided by the induced metric {g;}, respectively. Let (-,-) be
the standard Euclidean metric of R"*!. Recall that in this case the Gauss-
Weingarten relations of submanifold can be rewritten as follows

X LOX . on m OX

¢2) R U L R U T

where # is the unit inward normal vector field on .#, and 1",(; is the Christoffel
?*xX  ox
Kl

symbol of the Riemannian connection V, moreover, Ff; =9\ viani oyl |-
X 0X X

Therefore, we have

A X , 0X

AX = g”V,-VjX _ g!/ (m_ U@) = g"h,-]-ﬁ = Hﬁ’

which implies the evolution equation (5.1) can be equivalently rewritten as

>’x k,( X ax) ox

2
ox_ ox\ax
Oxiox/’ ox! ) oxk

(53) o2 9 oxion

(HX.

However, it is easy to see (5.3) is not strictly hyperbolic, since the Laplacian
is taken in the induced metric which changes with X(-,¢), and this adds extra
terms to the symbol. One could get the detailed explanation in the chapter 2 of
[18].

Now, we need to use the trick of DeTurck, modifying the flow (1.4) through
a diffeomorphism of .#, to construct a strictly hyperbolic equation, leading to the
short-time existence. Suppose X (x,7) is a solution of equation (5.1) (or equiv-
alently (5.3)) and ¢, : # — 4 is a family of diffeomorphisms of .#. Let

(5-4) X(x,1) = ¢/ X(x,1),

where ¢, is the pull-back operator of ¢, and denote the diffeomorphism ¢,
by

()@ t) = ¢t(xa t) = {yl(x’ l)vyz(x’ l)7 .- 'ayn(xv t)}

in the local coordinates. In what follows, we need to show the existence of the
the diffeomorphism ¢,, and the equation satisfied by X (x, ) is strictly hyperbolic,
which leads to the short-time existence of X (x, 7), together with the existence of ¢,
and (5.4), we could obtain the short-time existence of X (x, ), which is assumed to
be the solution of the flow (1.4). That is to say through this process we can get
the short-time existence of the flow (1.4).

As in [5], consider the following initial value problem

azyo‘ 6}/” . -
= i(rk_rk

(5.5) 5 = ok 9 Ty = Ty)),

y*(x,0) = x*  p}(x,0) =0,
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where lN"i’f is the Christoffel symbol related to the initial metric g, =
0X 0X .
ﬁ s E (X, O) Since

rk oy* oy ox* = oxk %y

(56) i oxJ ox! ayr T F T dy* oxiox!

which implies the initial problem (5.5) can be rewritten as
G Y e SN L0 L S S
or? oxiox!  oxi oxtT o oxiT V)

y*(x,0) = x*  y}(x,0) =0,

which is an initial value problem for a strictly hyperbolic system. By the
standard existence theory of a hyperbolic system, we know there must exist a
family of diffeomorphisms ¢, satisfying the initial value problem (5.5).

On the other hand, by (5.6), we have

Ag)? = g“ﬁVaVﬁ)?

_ 32X oyt P ox k,ax( ;o ﬁzy"'>

axkax! "9 Gk axl oxi yroyP I oxi\ kT dy7 dxkox!

=g"ViViX = AX,
and then

X X ay*ayf 5 X oyf *X  oX 0%y
o2 0y*0y* ot Ot otoyP ot o2 0y* or?
_ X X yrayf  _PX oy
=N, X Nx = =
X +aOX +55 ayayt ot ot ok o
*X e 0X  O*X oyt oyf  *X oy =
_ k22 Y2 2 P Il AT
oo 9 Vi ok T ayeaye or or T 2aayd or T (0%

gij(rg — 1:,1;) +

_ gl

which is strictly hyperbolic. Hence, by the standard existence theory of hyper-
bolic equations (see [6]), we could get the short-time existence of X(x,t), then
by what we have pointed out before this directly leads to the short-time existence
of the solution, X(x,7), of the equation (5.1), which implies our local existence
and uniqueness Theorem 1.3 naturally.

6. Examples

In this section, by using Lemma 3.1, we investigate the exact solution of
examples given in [5], and find that we could get some similar results, which
implies our hyperbolic flow (1.4) is meaningful.



516 JING MAO

Example 6.1. Suppose c;(#) in the hyperbolic flow (1.4) is non-positive.
Now, consider a family of spheres

X(x,t) = r(t)(cos o cos f§,cos o sin f,sin o),

where o€ [—g,g], pe0,2n]. By straightforward computation, we have the

induced metric and the second fundamental form are

> 2
gn =r°, gn=r"cos o, gp=gy =0,

and
hiy=r, hyp=rcos’a, hyp=hy =0,

respectively. So, the mean curvature is
" 2
H= d 4 h,] = —.
r

Additionally, the unit inward normal vector of each F(-,¢) is # = —(cos a cos f,
cos o sin f3,sin «), hence our hyperbolic flow (1.4) becomes

2
re=—=+c(O)r
r
r(0)=ry >0, r(0)=r,

then by Lemma 3.1, we know for arbitrary r(0) =ry > 0, if the initial velocity
r(0) = r; > 0, the evolving sphere will expand first and then shrink to a single
point at a finite time; if the initial velocity r,(0) =r; <0, the evolving sphere
will shrink to a point directly at a finite time. One could also use the physical
principle to interpret this phenomenon as in [5], which is very simple.

Example 6.2. Suppose c;(¢) in the hyperbolic flow (1.4) is non-positive.
Now, consider a family of round circles

X (x,t) = (r(f) cos a,r(t) sin o),

where o € [0,27]. It is easy to find that the mean curvature and the unit inward

1 . .
normal vector of each X(-,f) are 0 and # = —(cos a,sin o), respectively, then
our hyperbolic flow (1.4) becomes
1
Fy = - + (O

r(0)=ro >0, r(0)=r,

then by Lemma 3.1, we know that the circles will shrink to a point at a finite
time for arbitrary r(0) > 0 and the initial velocity r;.
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Remark 6.3. Comparing with the example 2 in [5], here we would like
to point out the hyperbolic flow (1.4) does not have cylinder solution except
c1(t) =0. In fact, suppose the solution, X(-,?), of the flow (1.4) is a family of
cylinders which takes form

(6.1) X(x,t) = (r(t) cos o, r(¢) sin a, p),

where o € [0,27] and p € [0, py], then as before we could obtain ¢;(#)p = 0 directly,
which implies our claim here. Why the the hyperbolic flow (1.4) does not have
cylinder solution of the form (6.1) if ¢;(¢) dose not vanish? We think that is
because the term ¢;(¢)X(-,¢) not only has component perpendicular to p-axis,
which lets the cylinder move toward p-axis vertically, but also has component
parallel with p-axis, which leads to the moving of cylinder along the p-axis. This
fact implies, after the initial time, the hyperbolic flow (1.4) will change the shape
of the initial cylinder such that the evolving surface X(-,¢) is not cylinder any
more.

7. Evolution equations

In this section, we would like to give the evolution equations for some
intrinsic quantities of the hypersurface X(-,7) under the hyperbolic mean cur-
vature flow (1.4), which will be important for the future study, like convergence,
on this flow. It is not difficult to derive them, since they just have slight changes
comparing with the corresponding evolution equations in [5].

First, from [18], we have the following facts for hypersurface.

LemMmA 7.1.  Under the hyperbolic mean curvature flow (1.4), the following
identities hold

(7.1) Nhy = ViV H + Hhyg" hyy — |A*hy,
(7.2) AA? = 29" g7 hyViV,H + 2|VA|]* + 2H tr(4°) — 2|4]*,
where

A1 = g7g" hychy,  te(4%) = g7 g" g™ highyhg.

THEOREM 7.2. Under the hyperbolic mean curvature flow (1.4), we have
>x azx>

ot?

2 ) 2
(7.4) @:_ij0H6X+ i/(ﬁaX)

ézgg
. = 2Hhy 4+ 20 (Ngy +2 S S
(7.3) hy + 20095+ 2\ 3535 Giaw

o2~ Voo "\ M aax

g [0X X X X PX\ox o’x
9 \oxi vrox! | oxk "9\ oxl" Gtoxs | oxk  droxi |’
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and
~2 2 2
0 //l,'/‘ V/ 2 ki 5 0°X . 0°X
. U Ay — 2Hhihagg"™ + | Ay + g%y 7, | ( 7,
(7.5) 32 hij hithmig"™ + |A|"hy + g™~ hy | 7 preel | e
ark [ ’x
— (’)t] (l’l, W + ¢ (l)hlj

Proof. By the definition of the induced metric and (5.2), we have
gy _ (X ox) (X @x) fox X
o2\ 0r2oxi’ oxJ 0tox!’ 0tox/ Ox'’ 0r20x/
o oX *X  *X ox o,
= (axi (Hn—&—q(t)X),@) +2<m7w> + <@7@(Hn+ L](l)X))
0X ox 0X oX *X  *X
— Y AP < il . il - - =
B H( hig™ ot 6xf) F2al) (6)6" ’ 6xf) * 2<6t6x’7 ’ 6t6x1'>

+ H(aX —hjkgkl BX)

Oxi’ ox!

’X °X
= =2Hh; +2c1()g95 + 2| == ,=—=—
i +2e1(0)gy + (azaxz’azax/>’
which finishes the proof of (7.3).
It is surprising that the evolution equation for the unit inward normal vector
# under the flow (1.4) here has no difference with the one in [5], since in the
process of deriving the evolution equation for 7, the only possible difference

appears in the term

X\ . oXx 0 L 0X ~OH 0X
- _’7. Ui.:_ﬂi.Hﬂ [X Uf:—lji.i..
<n’6126x’>g o (”’axl( it eil) ))g o~ Y oxiow

However, this is the same with the case in [5], since the term

0 L 0X
N I S [/—
<l’l, Ox (CI(Z)X)>g Ox/

vanishes. So, (7.4) follows according to the corresponding evolution equation
in [5].

Actually, (7.5) is easy to be obtained by comparing with the proof of
evolution equation (5.5) in [5], since, between our case and the case in [5], one
could find that the processes of deriving the evolution equations only have slight
difference. However, the deriving process in [5] is a little complicated, so we
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would like to give the detailed steps here so that readers can note the difference
clearly. By (5.2), we have

ohy 0 (. X\ [oi °X e ’X
or o\ axioxd ) T\ axionw | T\ draxiond |
furthermore,

Chy _ (o ex N (o dx (L &X
o2~ \ 012 oxiox/ 0t 0tox1ox/ " 0t20x10x/
i Ex\ ’x Px
=79\ Oxk ox! axiox élé‘xk étﬁxl’ox ox/
ul - X X o°x X o°x ox *x
+ 979" | 7, Ly — v
0toxP 0x!’ 0tox4 0x4 lox’ 0x*’ Oxiox/

?x \(ox *x
_2gk [ 7 ox ,
2 ("’azaxk> <6xl’6t6xi6xf>+< vaion it a)X )>

then one could easily find that the difference between our case and the case in [5]
appears from the last term

which satisfies

Obviously, it will only produce an extra term ¢ (¢)h; comparing with the evolu-
tion equation for the second fundamental form, (5.5), in [5]. So, the evolution
equation (7.5) follows. O

At the end, by Lemma 7.1 and Theorem 7.2, we could derive the following
evolution equations for the mean curvature and the square norm of the second
fundamental form of the hypersurface X(-,¢), which maybe play an important
role in the future study, like convergence, of the hyperbolic flow (1.4) as the mean
curvature flow case.



520 JING MAO

THEOREM 7.3.  Under the hyperbolic mean curvature flow (1.4), we have

~2 2 2

2H s [ PX PX
. S AH 1 HIAP — 244 X
(7.6) a2 +H|A]" 29" <azaxk’azaxl

12X X ork a2y
ok (7 = 2 i 5
+ g (”’amk)( zaxl> 9" %0 \ " araxk

. 0y, 0y, 1050 O,
+29™% g7 g'hy #% — 2g”‘g-”%5 —a()H,

and

0*X 0*X
. A A(A]P) = 2|VAP> 24| +214%g" | 7 i
(7.7) aer * = A4 = 2[VA]> +214]* +2|4)%g el | e

lah_”‘%_ggim jn klh Gmn Pik

ot ot 979 "5 o

o X X
— Qg'm g klhi hal 7 =
9979 Al ("’a:aw) (”’a:w)

% agmn
ot Ot

oy (. o*x
4g”gk1h Ollk <7’l; —515)6”) — 261(I)|A|2.

+2g7g*

+2g™ hichi % (279" 9" + g"g'7g")

Proof. Here we do not give the detailed proof, since in [5] they have given
the detailed and straightforward computation on how to derive the evolution
equations. Moreover, in our case we find that if we want to get our theorem
here, we only need to use the evolution equations (7.3) and (7.5) for the induced
metric and the second fundamental form to replace the old ones in [5] in the
computation. O

Remark 7.4. Here we want to point out an interesting truth. In [11, 12],
we have proved

Lemma ([11, 12]). If the hypersuface X (-,t) of R"' satisfies the curvature
flow of the form (1.2), then

o ~
0 o 0X
) Ly—vim.- 2
(2) 5,0=V'H =,
0

(3) h,,_Ah,, 2Hhyg" hyy + | A hi + E(0)hy,
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A

(4) = H = AH + AP H = &(0)H,

(5) AP = AlAP — 24V AP + 204 = 22(0)|4P,

where U denotes the unit outward normal vector of X(-,1).

Comparing with those corresponding evolution equations derived by Huisken in
[7], the extra terms are 2¢(f)gj, 0, ¢(t)h;, —c(¢t)H, and —2¢(1)|A|%, if we add
a forcing term, ¢(¢)X, to the evolution equation of the mean curvature flow in
direction of the position vector. However, the surprising truth is that if we
add this forcing term to the hyperbolic flow in [5], we find that no matter how
complicated the evolution equations of the intrinsic quantities of the hypersurface
X(-,¢) under the hyperbolic flow (1.4) are, the evolution equations (7.3)—(7.7)
also have the extra terms of the same forms as (1)—(5) by comparing with the
corresponding evolution equations in [5].
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