T. GOTOH
KODAI MATH. J.
34 (2011), 317-337

WRONSKIAN MATRICES AND WEIERSTRASS GAP SET FOR
A PAIR OF POINTS ON A COMPACT RIEMANN SURFACE

ToHrUu GOTOH

1. Introduction

Let X be a compact Riemann surface and Py, ..., P, be distinct points on it.
Then the Weierstrass semigroup for Pi,..., P, is defined by

there exists a meromorphic
H(Py,...,Py) =X (my,...,my) e (Ng)"| function / on X such that
dlvoo(f) =mPy+---+m,P,

Here Ny denotes the set of non-negative integers, and div.,(f) denotes the polar
divisor of the meromorphic function f. It is known that H(Py,...,P,) becomes
a subgroup of the additive semigroup (Ng)” =Ny x -+ x Ny (n-times product).
The complement of H(Py,...,P,) in (Np)" is called the Weierstrass gap set (gap
set for short) for Py,...,P,, and it is denoted by G(Pi,...,P,):

G(P],...,Pn) = (NQ)”\H(P],...,P”).

These sets are related closely to the concept of base points. In fact, an n-
tuple of nonnegative integers (m, ..., m,) belongs to H(Py,...,P,) if and only if
the effective divisor my Py + - - - + m, P, is base-point-free. Because any divisor is
base-point-free provided its degree is grater than 2¢g (g denotes the genus of X),
the Weierstrass gap set is of finite. We are mainly interested in the cardinality of
the Weierstrass gap sets.

The case of n =1 is the classical Weierstrass point theory. It is well known
that the gap set for any point always consists of g integers, which are called the
gap numbers at the point. The case of n =2 has been studied first by Kim [K],
in which he proved that the cardinality of the gap set for a pair of points is
bounded from below by (g + 3¢g)/2 and from above by (3g*> +g)/2. The upper
bound is attained when and only when both points are hyperelliptic Weierstrass
points. The cases of n=3,4 were studied by Isii [I], in which he obtained
similar results to Kim’s results (partially for n = 4). The cases of n = 5 remain
to be unknown at present. Balico and Kim [BK] have proposed a conjecture on
the range of the cardinality of the gap set for n points. Results by Kim and Ishii
support their conjecture.
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When n =1, the gap numbers at a point P can be interpreted as orders of
holomorphic 1-forms on X at P. In fact an integer o belongs to G(P) if and
only if there exists a holomorphic 1-form w such that ordp(w) = o — 1. In this
article, we study the gap set for a pair of points from this point of view. In
section 2, we characterize the Kim’s bijection (denoted by x in this article)
between the gap sets for a single point in terms of the orders of holomorphic
I-form (Theorem 2.6). This characterization gives a good basis for the space of
holomorphic 1-forms on X with respect to a pair of distinct points. Such a basis
is useful to controll the Wronskian matrix associated to an effective divisor
supported by the pair of distinct points. Because the dimension of the space
of meromorphic functions associated to an effective divisor is computed by the
rank of a certain Wronskian matrix (Theorem 2.1), such a basis turns out to be
usefull in the study on the gap set for a pair of points. In section 3, we use the
method of the Wronskian matrices developed in section 2 in order to obtain the
expressions of the cardinality of the Weierstrass gap sets for a pair of distinct
points due to Kim and Homma.

Section 4 and 5 will be devoted to investigate a pair of points for which the
cardinality of the Weierstrass gap set attains the lowest bound g(g + 3)/2. In the
classical Weierstrass point theory (namely the case n = 1), the Weierstrass points
are characterized as zeros of a holomorphic section of a certain holomorphic line
bundle over X. To be exact, the holomorphic line bundle is the g(g + 1)/2-times
tensor product of the canonical line bundle of X, and the holomorphic section
is the Wronskian determinant associated to a basis of the space of holomorphic
1-forms. After making preparations on triangulations of the Wronskian matrices,
we construct a family of holomorphic sections of a certain holomorphic line
bundle over X x X. Then we show that a necessary and sufficient condition for
the Weierstrass gap set for a pair of points to have the lowest cardinality is that
at least one of the holomorphic sections in the family does not vanish at the pair
of points (Theorem 5.2). As a consequence, we find that the cardinality of the
Weierstrass gap set for a pair of points attains the lowest bound on an open and
dense subset in X x X\A(X). This formalism seems to be an analogy to the
classical Weierstrass point theory mentioned above.

In the final section 6, we calculate the holomorphic section defined in section
5 in the case where X is a hyperellptic Riemann surface.

2. Wronskian matrices and Weierstrass gap sets

Let X be a compact Riemann surface of genus g and w be a holomorphic
I-form on X. Taking a local coordinate function z on an open subset U in X,
we write w = f dz, where f is a holomorphic function defined on U. Then, for
a non-negative integer v, we set

o (P) = zzf (P) (PeU).
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Although this value depends on the choice of a local coordinate function, we use
the notation whenever any confusion may not occur.

For holomorphic 1-forms w;,...,w, (not necessarily linearly independent)

on X, a point P in X and a non-negative integer v, we define a / x v matrix by
o(P) of(P) - o (P)
Wolor,...cop] = | @2(P) @(P) - o7 (P)
w/(P) wj(P) - o (P)

For an effective divisor D =v, Py +---+v,P,, where Piy,...,P, are distinct

points in X, we put further
WD[CUl,...,CO/] = (Wvlpl[a)l,...,a)/],..., anpn[wl,...,a)/}),

which is a matrix with / rows and deg D =v; +---+ v, columns. We call the
matrix the Wronskian matrix associated to an effective divisor D and holomorphic
1-forms wy,...,w, on X. When v; =0 for some i, we understand for the i-th
matrix W,plwy,...,o/] to be ommited.

Let Q(X) denote the space of holomorphic 1-forms on X and wy,...,w, be
a basis of Q(X). If 4 is an invertible g X g matrix, we obtain a new basis
(@1,...,04)4 of Q(X) from wy,...,w,. The Wronskian matrices associated to
these bases are related as

(1) Wpl(wr,...,w)A] ="4- Wplwi, ..., o,

The Local coordinate functions chosen to define the Wronskian matrices are fixed
in this formula.

The divisor of a meromorphic function f on X is denoted by div(f). For a
divisor D, we denote, as usual, by 4°(D) the dimension of the space consisting of
all meromorphic functions f on X which satisfy div(f) = —D. The following
formula which express 4°(D) in terms of a Wronskian matrix is one of the
consequences of the Riemann-Roch Theorem. This plays essential roles in our
study on the Weierstrass gap sets.

THEOREM 2.1.  Let D be an effective divisor on X and wy,...,w, be a basis
of Q(X). Then we have

h°(D) = deg D + 1 — rank Wplwy, ..., o).

This formula can be found in the Gunning’s text [G, Lemma 17 (p. 118)].
By definition, for a divisor D, a point P is a base point of D if and only if an
equality #°(D) = h°(D — P) holds. Thus Theorem 2.1 implies

COROLLARY 2.2.  Let D be an effective divisor on X and wi, ... ,w, be a basis
of Q(X). Then for a point P contained in the support of D, the following are
mutually equivalent.
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(1) P is a base point of D.
(2) rank Wplwy,...,w4| = rank Wp_plwy,...,04) + L.

Note that any point not contained in the support of D is not a base point of it.

Now let P and Q be distinct points in X. As was mentioned in the
introduction, the Weierstrass semigroup H(P, Q) is related to the concenpt of
base points of a divisor and some Wronskian matrices as well.

CoROLLARY 2.3. Let wi,...,w, be a basis of Q(X). Then for a pair
(m,n) € Ng x Ny, the following are mutually eqivalent.

(1) (m,n) belongs to H(P,Q).

(2) T he effective divisor mP + nQ is base-point-free.

(3) K°(mP +nQ) = h°((m — 1)P +nQ) = h°(mP + (n — 1)Q).

)

rank I/VmP+nQ[Cola ceey Cl)g] = rank W(m—l)P-&-nQ[wh s 7609]
= rank I/VmP+(n—1)Q[w1> s 7609]'
In [K], Kim have defined a map from G(P) to G(Q), which plays a central

role in his study on G(P, Q). For a gap number o at P, we define after Kim
(B, in his notation)

() :=min{f = 1] (e, f) € H(P, Q)}.

Then u(o) is a gap number at Q, and the correspondence o +— u(a) defines a
bijection between G(P) and G(Q). We want to investigate how the map u
relates to the orders of holomorphic 1-forms on X. To begin with, we show the

PRrROPOSITION 2.4.  For a gap number o at P and a holomorphic 1-form w on
X which satisfy ordp(w) = o — 1, we have the following inequality
ordp(®) = pu(a) — 1.

Proof. Let wy,...,w, be a basis of Q(X) such that w; = w. Suppose we
have inequalities ordg(w) = f = 1, then the Wronskian matrices are

(1) (B-1)
Wc{P+,b’Q[w1,...,C()g]—<0 0 o (P)’wl(Q) RO (Q))

Wplwa, . .., @,] Wgolws, ..., o]

0 -ovvn- 0

< aP .
0 -onnn 0
Wia—1yprpol®n, - . . 4] = (




WRONSKIAN MATRICES AND WEIERSTRASS GAP SET 321
oa—1
Because wi )(P) #0,
rank WuPJr/}Q[a)l, . ,wg]

......... (o=1)
_ rank 0 o (P)| O 0
W(x,l)p[wL...,wg] 0] WﬁQ[a)z,...,wg]

= rank W,_1)pipolor, ..., o4 +1,

and hence Corollary 2.3 implies that («,f) does not belong to H(P, Q). There-
fore if (a,f) belongs to H(P,Q), then the inequality ordp(w) < f necessarily
holds. Especially we obtain the inequality ordg(w) < u(x) — 1. O

COROLLARY 2.5. Let P and Q be distinct points in X and the sets of gap
numbers at those points be G(P) = {a,...,0,}, G(Q) ={p,...,B,}. Suppose
there exists a basis w, ... ,w, of Q(X) such that ordp(w;) = o; — 1 and ordg(w;) =
Bi—1 for each i=1,...,9. Then u(a;) =p; for each i=1,...,g.

Proof. The assumption and Proposition 2.4 show that {f,..., ﬂg}z
{u(on), ..., (ag)} and B; < (o) (i=1,...,9). Therefore we obtain u(o) = f;
for each i=1,...,9. &

It is obvious that almost all @ do not attain the equality in Proposition 2.4.
Next we consider when this is the case.

THEOREM 2.6. For each gap number o at P, there exists a holomorphic
I-form @ whose orders at P and Q are o.— 1 and p(o) — 1 respectively.

Before proceeding to prove the theorem, we note the following lemma which
is easy to see.

Lemma 2.7.  For holomorphic 1-forms w1, ...,w, on X and any point P, the
following are equivalent.

(1) wi,...,0, are linearly independent over C.

(2) rank W plwi, ...,/ = for some v = 1.

Proof of Theorem 2.6. Let oy =1<o <--- <oy(< 2g) be the gap num-
bers at P with o =a;. Then we can take a basis wi,...,w, of Q(X) whose
orders are given by ordp(w;) =o; —1 (j=1,...,9). In what follows, we shall
construct a holomorphic 1-form « and a positive integer f that satisfy the
following:

(2) ordp(w) =a—1, ordp(w)=pF—1 and (a,p)e H(P,Q).

Then we find f = u(o) by the definition of u(x) and Proposition 2.4, and the
assertion of the theorem will be obtained.
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Now because j,...,w, are linearly independent, Lemma 2.7 implies that
rank Wypolw;, wit1,..., 04 =g —i+1>rank Wyplwi1,...,04 =g —1,

for sufficiently large v, so that the following f exists:
f:=min{v = 1 |rank Wyp|w;, wi;1,...,w4| > rank Wglwi1,...,w4}.

Note that the property ordp(w;) =o;—1 (j=1,...,9) implies the following
equalities.

rank W, pipolwi, ..., 04 = rank Weolwiii, ..., w4 + i,
(3) rank W(%._l)pr[a)l, . ,C()g] = rank W‘[gQ[COi, Wit],y--- ,a)g] +i—1,
rank Wa‘p+(/,a_1>Q[co1, ce ,wg] = rank W([)’—l)Q[wi—o—l; ce ,wg] + .

We first consider the case where f =1. In this case, because of the
definition of f and

wi(Q) )
Wolw;i, wir1, ..., 0, = ,
Q[ 1 g] (WQ[CO,'JA,...,COQ}
we have w;(Q) # 0 and Wpplwiy1,...,w,] = O. Therefore ordp(w;) =0=/—1
and (3) implies
rank W“ip+Q[601, ey a)g] = rank W(“I._Up_,_/;Q[a)], c ,a)g]
=rank W, plwi,..., 04 =1i.

Thus (o, f) = (a;, 1) belongs to H(P, Q) by Corollary 2.3, and hence w; itself and
f =1 satisfy (2).

We next consider the case where > 1. In this case, by the definition of £,
we have the following equalities

4) rank Wg_1)olw;, @1, ..., 4] = rank Wig_pyolwirt, ..., o4,
(5) rank Wgolw;, i1, ...,04) = rank Wpolwiy1, ... o4 + 1.
Because

Wip-noloi]

Wig-1)0loi, @41, . ..

W] = ( Wip-1)olwi] > _ Ws-1yolwit1]
Y Wip-nelwisi; ..., o]

Wip-1olwy]
(4) implies that the (f — 1)-dimensional row vector Wz_jplw;] can be written

as a linear combination of the row vectors Ws_1yplwit1],..., Wip—1)plwy]. Thus
we can write

(6) Wip-noloi] = e Wip-noloist] + -+ i Wip-noloy),
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where c¢q,...,c,—; are complex constants. Then define a holomorphic 1-form w
by

W =W — W] — -+ — Cg—iWy.

We shall show that these w and f constructed as above satisfy (2).

First since ordp(w;) =o; — 1, ordp(wit1) =oir1 —1,...,ordp(wy) =0y — 1
are strictly increasing series, ordp(w) = ordp(w;) =, — 1 =a — 1.

Second we have ) (Q) =w"(Q) — C1w,@1(Q) — i — ey (Q) =0 for
each v=0,1,...,f — 2 by the definition of w and (6), and so ordp(w) = f — 1.
If we suppose #~1(Q) =0, then o"""(0) = 1/ (Q) = -+ — ¢y i’ (0),

which implies
Weolwi] = et Wyolwin] + -+ + ¢4-i Wpolwy].

However this contradicts to (5), and we have ordp(w) = — 1.
Finally we show that («,f) belongs to H(P, Q). To this end, it is sufficient
to show the equalities

rank Wap+ﬂQ[a)1, e, Wi 1,0, Wiy ,a)g]
= rank W(a,I)PJrﬁQ[CUl, sy Wi 1, W, Wi 1y e ey wg]
= rank WotP+(ﬂfl)Q[wla ey Wi 1, W, Wi 1y ey wg]7

because of Corollary 2.3.  On the other hand, the Wronskian matrices associated
to a new basis wi,...,wi_1,0,®;,...,0, of Q(X) still satisfy the same equalities
as in (3). Hence we have only to show the equalities

rank Wgolw, @iy, ..., w,] = rank Wgolwiy1, ..., 04 + 1
= rank Wz_1)pl®is1,. .., 04 + 1.

Now by the definition of w, the matrix Wyp|w,w;, ...,w,| is obtained by making
use of suitable row operations to the matrix Wpglw;, wi;1,...,w,], so that they
have the same rank. Therefore because of the definiton of p,

rank Wpolw, w1, ..., w4 = rank Weolw;, 041, - .., @4)
=rank Wpplwii1,. .., 04 + 1.

On the other hand, because ordg(w) = —1 as we have shown above,

0 «vvovenenns 0 o F~D(Q)
-1
o1 "(0)
rank Wpolw, ®it1, ..., w,] = rank
Wig—1)0l®it1, - .., 0] :
-1
o (0)

= rank W 1)ol®ii1,..., 00 + 1. ¢
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As an immediate consequence of Proposition 2.4 and Theorem 2.6, we have
another interpretation for the map u: G(P) — G(Q) in terms of holomorphic
1-forms:

u(o) = maX{/f >

there exists @ € Q(X) such that
ordp(w) =a—1 and ordg(w)=F—1 ("

Now let o be a gap number at P and take a holomorphic 1-form @ with
ordp(w) = a — 1 and ordg(w) = u(x) — 1. Then because the degree of a canon-
ical divisor is equal to 2g — 2,

(60— 1)+ (u(2) — 1) = ordp(w) 4 ordg(w) < 2g — 2.
Hence for each gap number o« at P, we have an inequality

(7) o+ u(o) < 2g.

ProproSITION 2.8. The following are equivalent:

(1) o+ u(ex) =2g for each o€ G(P).

(2) h%(aP + u(e)Q) = g+ 1 for each o e G(P).

(3) Both P and Q are hyperelliptic Weierstrass points in X. Especially X
must be a hyperelliptic Riemann surface.

Here a point in X is called a hyperelliptic Weierstrass point provided its least
non-gap number is equal to 2.

Proof. (1)< (2): A general result on the range of 4°(D) for divisors D
shows the equivalence between (1) and (2). See, for instance, the figure at page
331 in [C].

(1) = (3): Taking summation on o € G(P) in the equality o + u(a) = 2g, we
obtain
®) wi(P) + wi(Q) =¢? — g =220 1)
where Wt(P) := 3, p) % — ¢g(g9 + 1)/2 denotes the Weierstrass weight at a point
P. In general, it is known that the Weierstrass weight at a point P satisfies the
inequalities 1 < wt(P) < g(g — 1)/2 and the equality wt(P) = g(g — 1)/2 holds if
and only if P is a hyperelliptic Weierstrass point. Thus (8) implies (3).

(3)= (1): In this case, the gap numbers are G(P)= G(Q)={1,3,...,
2g — 1}. Then by virture of the inequality (7), the map ux must be determined
as u(o) =2g — o, because u is a bijection. &

Compare the argument in the proof of Theorem 3.2 in [K].

3. The Cardinality of the Weierstrass gap sets

In this section, by means of the Wronskian matrices, we will derive expres-
sions of the cardinality of the Weierstrass gap set for a pair of distinct points due
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to Kim and Homma. As a result, we give a necessary and sufficient condition
for the Weierstrass gap set for a pair of distinct points to have the lowest
cardinality g(g + 3)/2 in terms of the Wronskian matrix.

Let P and Q be distinct points in X and o; =1<o <--- <o, be gap
numbers at P. By virture of Theorem 2.6, we can take a basis wi,...,w, of
Q(X) with ordp(w;) = o; — 1 and ordg(w;) = u(o;) — 1 foralli=1,...,9. Then
the Wronskian matrix associated to an effective divisor mP 4+ nQ and the basis

1,...,04 of Q(X) is of the form such as
Wonpinol®1, . .., 04 = (Wyplon, ..., 04, Waglwi, . .., o4))
Ap e " V(PO e 0 By - =1 ()
0 0 Ay ~ovvveen é’"—U(p) 0 -0 By wvvvvenn wE"*U(Q)
=1 0 orer-n. 0 4 a)[(m_l)(P) [ wlﬁ'lfl)(Q) ,
O v e [ I 0 Bl+1 wz(iIl)(Q)
1 0 By coeeeeeeeeens w;nil)(Q)

where we put 4; = * (P) and B; =™ V(Q) (i=1,...,9). For each

i i
non-negative integers m and n, we set

on = #{i 2 1|0y < m} = max{i 2 1]o; < m),

tn = #{j Z 1] > 0 and u(ey) < n},

where #S denotes the cardinality of the set S. Then the rank of

Wnpsnol@i, . .., w,4) is equal to 6,y + T, and so Theorem 2.1 implies

9) WO(mP +nQ) =m+n+1— 06, — Ty

In addition, if we set o_; =1, 1 =0, 7_;, = To,», then we obtain the following
equalities:

/’lo(WlP—l-l’lQ) - ho((m - 1)P+”Q> =l+o0u1—0n+ Tm—1n — Tm,n,
O (mP +nQ) —h°(mP + (n—1)Q) = 1 + Tyt — Ty

oo = {—1 (m e G(P)),

0 (m¢a(p)),

1 (meG(P) and wu(a,,) < n),

Em=ln = Tonn = {o (me G(P) and w(oy,) > n),
-1 (u(oy) =n for some j> ag,),

- {0 (u(oy) # n for all j > g,).

Tm,n—1 — Tm,n
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Because of these equalities and Corollary 2.3, we find that each (m,n) € Ny x Ny
belongs to G(P, Q) if and only if m € G(P) and u(o,,) > n, or u(x;) = n for some
j > an,. Therefore setting

G' = {(m,n) e Ny x No|m e G(P) and u(o,,) > n},

G" = {(m,n) € Ng x Ny | (o) = n for some j > g,,},

Gy = G"N(G(P) x Ny),

G/ = G"N(H(P) x Np),

the gap set G(P, Q) is decomposed as G(P,Q) = G'UG" = G'UGJUG]. The
cardinality of these components are given by

PN - glg+1)
#G'=D )= 3 F=wO)+T

BeG(Q)

g
" _ o 9le-1
#GO - ;(Q l) - 2 )
#Glﬂ = Z (g —Op) = Wt<P) +9.

me H(P)
0=m=2g-2

On the other hand, G'NGJ = 7 {(o4, ()| j > i and u(o;) < p(oy)}, and so
we set

(1) == #{(%,2') € G(P) x G(P) |« > o' and u(x) < u(a)},

then #(u) = #G'NG{/. Note that #(u) is nothing but the Homma’s “+” defined
in [H]. Summarizing the argument above, we obtain an expression of the cardi-
nality of the gap set G(P,Q):

(10) #G(P, Q) = #G' + #G| + #G{ — #G' NG}
= Wi(P) + wt(Q) — 1(u) + g(g + 1).

This is the Homma’s expression of #G(P, Q) appeared in [H, Theorem 1 (p. 340)].
To obtain the other expression of #G(P,Q), we note

Ty, (o) = #{] = |] > 04 = i and :u(“]) < ﬂ(ai)}v

and hence

g
() = Toue) = D Tuula):
i=1 o

eG(P)
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Putting m = o, n = p(o) in the equality (9) and taking summation on o € G(P),
we obtain

g(g+3)'

S WP+ u(2)0) = wi(P) +wi(0) — 1) + £

oeG(P)

Hence (10) implies the another expression of the cardinality of the gap set
G(P,Q):
glg—1)

#G(P,0) = > h'(aP+ u(2)Q) + 3

e G(P)

This is the Kim’s expression of #G(P, Q) appeared in [K, Theorem 3.1 (p. 79)].
In consequence of (10), Homma have mentioned the equivalence between the
first two in the lemma below.

Lemma 3.1. Let P and Q be distinct points in X. Then the following are

equivalent.
1) #a(p.9) =1

(2) Both P and Q are non-Weierstrass points and the map p: G(P) — G(Q) is
given by u(iy=g+1—i (i=1,...,9).

the lowest cardinality)

(3) There exists a basis w1, ...,w, of Q(X) associated to which the Wron-

skian matrix Wypi4olo1, ..., w4 turns to be of the form
A x x x| 0 -+ 0 B
0 A4, x * . By %

(11) W!/P+QQ[°017"'7CO!I]: . . . . )

: " * | 0 . * %
0 --- 0 A4,|B;, * x *

where Ai,..., Ay and By,..., B, are non-zero complex numbers.

Proof:  We give a proof only for the equivalence between (2) and (3).

If we suppose (2), both P and Q have the same gap numbers 1,2,...,g. By
virture of Theorem 2.6, we can take a basis wy,...,®, of Q(X) whose orders are
ordp(w;) =i—1and ordg(w;) = u(i)—1=g—i (i=1,...,9). Then the Wron-
skian matrix Wyp golwi,...,w,| turns to be of the form (11).

Conversely, if the Wronskian matrix Wyp,go[wi,...,®,] is of such a form
(11), the gap numbers are G(P) = G(Q) = {1,2,...,g}, that is, both P and Q are
non-Weierstrass points and the orders of w; are ordp(w;) =i — 1 and ordgp(w;) =
g —i. Then Corollary 2.5 shows u(i)=g+1—i (i=1,...,9).

4. Triangulations of the Wronskian matrices

Throughout the present section, we let g be a positive integer and f,..., f,
be holomorphic functions defined on an open subset U in the complex plane C.
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The Wronskian matrix associated to fi,...,f; is define to be a square g x g
matrix

fi ff e Sl
J -(g—1)
Wih, f]=| 2 S S

Its determinant (called the Wronskian determinant) is denoted by W (fi,..., f;).

We begin with providing an explicit formula of the upper triangular matrix
obtained by making use of a succession of row operations to the Wronskian
matrix. The triangulation formulas obtained below will be used in the next
section to investigate a pair of distinct points for which the Weierstrass gap set
have the lowest cardinality g(g + 3)/2. For this purpose, Lemma 3.1 suggests
that two kinds of triangulations are needed, that is, upper triangulations and
lower anti-triangulations. For a square n x n matrix 4 = (ay), its anti-diagonal
entry is an entry a; with i+ j=mn+1. The matrix 4 is called an upper (resp.
lower) anti-triangular matrix if a; =0 for i+ j>n+1 (resp. i+ j<n+1).

Now define an upper triangular g x g matrix WA2[fy,..., f,], lower triangular
g x g matrices Li[fi,...,fy] (k=1,...,9—1) and L[fi,...,f;] as follows:

f fll . f](i—z) fl(j_l)
fHof fz(’*z) fz(jfl)

WAL Sy = =Ty ™ (1sigjsg),
! 0
0
0 . 0 |
Lelfis- o fy] =10 - (i;(ﬁj"wlﬁf’“) 1 ,
. 0 :
| Wl it
0O --- 0 - W(fl,...,fk)g o --- 0 1
k-th column

Lifv - Sl = Lol Jl oo Lol s Sol - il ol
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Here we put W(fi,...,fi-1) =1 when i =1. Then we have the following trian-
gulation formula for the Wronskian matrices:

Lifiseo s Sl W ) = WAL ).

In order to obtain holomorphic objects, we set

g—1

Tiow[f1,- -5 fgl = < W(ﬁ,---7ﬁ)>L[fi,.--7ﬂ;L
k=1
g—1

W™ fi,..., [ ;—( W(fi,. ..,f,)) WA A, Sy
k=1

Then Tiow[fi,...,fy] (resp. W™[fi,..., f,]) is a lower (resp. upper) triangular
matrix with entries in ¢(U) (as usual ¢(U) denotes the space of holomorphic
functions on U), and the following equality holds:

Tlow[.fl, oo afg] : W[fla oo 7fg] = Wup[ﬁv cee v/fg]
We note that the entries of Tiow[fi,-- -, f;,] are given precisely by

g 1
i 1y - , .
(12) Tlow[fla"'vfy] ( )+j (f ]:[Wfl,
Wi U
for 1 £j<i=<g. Here the circumflex over a term means that it is to be
ommited. We also note that because their i-th diagonal entries (i = 1,...,g) are
given by

g—1

Towlfis -5 folu = L L WA, - S,

1

g—l
WS Sl = %;“f; [IWh. fo),
sy e

for K point z in U, Tew[fi,...,fyl(z) 1is invertible if and only if
W(fi,...,fi)(z) #0, while W™[fi,..., f,](z) is invertible if and only if
Hk:1 W(fi,... fi)(z) #0

The lower anti-triangulation version to the above can be obtained by
applying the argument above to f,,...,f;. Namely if we set

0 1

<

>
I

K (9 x g matrix),
- 0

T fi,- s Jgl = R Tiowlfys -, /il - R="Tiowl g, -, fil,
Wiowan 155 fo] := R- W™ [fy, ..., fil,
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then T[f1,..., f;] (resp. Wiowan[f1,---,fy]) 18 @ upper (resp. lower anti-) trian-
gular matrix with entries in O(U), and the following equality holds:

Tup[flv“wﬂ}] ' W[f177f4] = I/I/lowan[fiv-~~af;1]'

Their i-th diagonal and anti-diagonal entries (i =1,...,g) are given by
g—1
Tup[.fl, cee af;/]ij = H W(fg; cee )_f‘g+1*k)7
k=1
W(ﬁh e 7ﬁ+]aﬁ) -
Wiow: s Sl g1 = : W(fy, ..., k)
10w4n[f1 fl/] Lg+1—i W(fg, o 7fi+l) 1 (fll fg+1 k)

For later use, we introduce some notation. For a square g x g matrix
A = (a;), we denote by 0'(A4) the i-th principal minor (i=1,...,9) of 4, and
moreover we put d;(4) := d'(RA), where R is the anti-diagonal matrix mentioned
above. Precisely those are defined by

apg o A Ag—iv1,1 - Ag—iyl,i

Then the Wronskian determinants appeared above are denoted as

W(flv’ﬁ) = JI(W[flavfg]) and W(fgv"'?fﬁl—i) :51(W[f1’af;1])

Summarizing the argument above, we obtain the following.

LemMa 4.1.  Let f1,..., fy be holomorphic functions defined on an open subset
U in C. Then there exist a lower triangular matrix Tiow[fi, ..., fy] and an upper
triangular matrix T"[f1,..., fy] both with entries in O(U) which have the follow-
ing properties. Let z be a point in U.

(1) Suppose that T1?_ 6" (W[ fi,..., f;])(z)) #0, then Tiow[f1,- .., f3](z) is an in-
vertible lower triangular matrix, for which the product (Tiow[f1, - - -, f3](2)) -
(W[h,..., fy(2)) turns to an invertible upper triangular matrix.

(2) Suppose that T1!_, 6;(W[fi,..., f;](z)) #0, then T*[fi,..., f,](z) is an in-
vertible upper triangular matrix, for which the product (T"P[f1,. .., fy](2)) -
(WA, ..., f3](2)) turns to an invertible lower anti-triangular matrix.

5. The lowest cardinality for #G(P, Q)

Let wi,...,w, be a basis of Q(X), U and V be open subsets of X with local
coordinate functions z and w respectively. We then write w; = f; dz = h; dw
(i=1,...,9), where f; and h; are holomorphic functions defined respectively on
U and V.
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We now use the triangular matrices constructed in the previous section to
define a holomorphic function on U x V, namely we set

Ylor,. .. o4z, w) Hél i, 14)(2)

X géi((ﬂow[ﬁ, s ) - (W, ) (W),

Then this function relates to the cardinality of G(z,w) as follows.

PROPOSITION 5.1.  Under the notation as above, suppose we are given distinct
points z in U and w in V. Then the condition y(z,w) # 0 implies #G(z,w) =
9(g +3)/2.

Proof. We will show the existence of a basis of Q(X) associated to which
the Wronskian matrix of the effective divisor gz + gw turns to be of the form
(11). |

First since [, 6'(W|[fi...., fy](z)) # 0 by the condition Y[w, ..., w,](z,w)
# 0, the lower triangular matrix Tiow[f1,- .., fy](z) must be invertible by Lemma
4.1.(1). Thus we can define a new basis @y,...,@, of Q(X) by

(Cb],...,d)g) = (0)17-“ [ ) : (tTlOW[fl?"'af;]](Z))'

Write &; f dz=h;dw on U and V respectively as before. Then on account
of (1), the Wronskian matrix W] 1,...,f]( ) is equal to (Tiow[fi,-.., fyl(2))-
(W[h,..., fy](2)), which turns to an invertible upper triangular matrix because
of ALemma} 4.1.(1). Moreover also (1) implies that the Wronskian matrix
Wihi, ..., hy)(w) is given by

Wihi, ... h)W) = (Tiowlfis- -, £51(2)) - (Whi, ... hg](W)).
Thus we have [T, (W lhi,...,hy)(w)) # 0 by the condition Y[wy,...,wy](z,w)

# 0, and hence Lemma 4.1.(2) implies that TP[h,,. ..,hg]( w) turns to an inver-
tible upper triangular matrix. Thus we can further define a new basis @1, ..., d,
of Q(X) by

(@1,...,05) = (@1,...,@04) - (‘T™[hy,... h]W)).

Write @; = f, dz = h; dw on U and V respectively as well. Then also on account
of (1), the Wronskian matrix associated to hy,...,h,; at w is

Wiy, ... h))(w) = (T, (W) - (Wlhy, ... ) (W),

which turns to an invertible lower anti-triangular matrix by Lemma 4.1.(2).
On the other hand, the Wronskian matrix associated to fj,..., f, at z is

Wi £ 1) = (T, )W) - (W, 1),
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which turns to an invertible upper triangular matrix because so are the both
factors on the right as we have shown above. Consequently the Wronskian
matrix

WgZ-o—gn/'[é)lv cee 7C§g] = (W[ “17 cee 7f;](2)7 W[illv cee ai’g](w))
associated to the effective divisor gz + gw turns to be of the form (11). O

Next in order to obtain a global object (some holomorpic section of a certain
holomorphic line bundle over X x X), we want to find the transition low for
V(z,w) in changing the local coordinate functions. Let Z and w be another local
coordinate functions defined respectively on U and V, and write w; =f; dZ =
h;dw (i=1,...,g) as above. Then the holomorphic function ¥[wi, ... ,w,](Z, W)
on UXx Vis deﬁned by using f; and %; as well as [, .. ,4)(z,w). 1f we put
A =dz/dz and y = dw/dw, the Wronskian matrices ass001ated to fi,...,fy and
fis---, f; (we write down only for these and omit for Ay,...,h, and hy, ..., hy)
are subjected to the following transition low in changing the local coordinate
functions:

(13) Wi fi)(2) = (Wi, [)E) - Az).
Here A(z) is a g x g upper triangular matrix of the following form:
oA
0 i 3.
A)=| . . .
o -~ 0 2

As for the Wronskian determinant, (13) implies the transition low
W (fivseoos i) (2) = 22" PW (L )(E),
for each sequence 1 <ij <---<i, <g¢g, so that we have

Tiowlfis- -, fyl(2) = A(2) 22T AL L £1E).

Therefore each factor of Y[wi,...,w,)(z,w) is subjected respectively to the
following transition lows:

{:]Q

M[AWAUFMNWWMHW Wlifi,.... flE),

1 i=1

Oi(Tiowlfr, -5 Jg)(2)) - (W, -, hgl(w))

1

@

_ i(z)(g*wz(ﬁl) /12 1 (w)? 9lg+1)(g+2)/6

g ~ ~

< [Toi(Towlhrs - @) - Wl ) (7).

i=1



WRONSKIAN MATRICES AND WEIERSTRASS GAP SET 333

Consequently, we obtain the following transition low for ywi,...,w,](z,w) in
changing the local coordinate functions:

(14) lp[wla cee va](za W)

d3 I+ D)(g*+g+H/12 7 1o glg+1)(9+2)/6 _
-(Z©) (o) Bon.....op)(z9).
This means the following. Let Ky be the canonical line bundle of X and
pi: X x X — X be the projection to the i-th component, namely p;(x,x2) := x;
(i=1,2). Using the notation above, we put on U x V,

Wi, ..., 0,)(z,w) = Ylor, ..., 0]z, w) (dz) 20TVETIDN2 @ () @9loD052)/6
Then Y[w;,...,w,] defines a global holomorphic section of the holomorphic line
bundle

ergg(g+l)(g3+g+4)/12 ® p;Kgg(.a+l>(g+2)/6 X x X,

These holomorphic sections describe a pair of points for which the cardinality of
the Weierstrass gap set attains the lowest bound.

THEOREM 5.2. For a pair of distinct points P, Q in X, the following are
equivalent.
(1) #G(P,Q) =g(g9 +3)/2.
(2) There exists a basis wi,...,04 of Q(X) for which Plw,...,w,(P,Q)
# 0.

Proof. The implication (2) = (1) is due exactly to Proposition 5.1.

Conversely suppose that the cardinality of G(P,Q) is equal to g(g+ 3)/2.
Then by virture of Lemma 3.1.(3), we can take a basis wy,...,w, of Q(X) asso-
ciated to which the Wronskian matrix Wypiolo1,..., 04 = (W[fi,..., fi](P),
Wihi, ..., hg)(Q)) is of the form (11), f; and h; being locally defined holomorphic
functions as above. In this case, L[fi,...,f;](P) becomes the identity matrix,
and we have

g-1 (G*+9+2)/2 /
k=1 i=1

because Ai,...Ay, Bi,...,B, are non-zero complex numbers. O

Therefore if we put

Z = {(P, 0)e X x X\A(X)‘#G(R 0 +3g},

2
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this set is discribed as

Z = U {(P,0) e X x X\A(X) |¥|wi,...,04(P,0) # 0}

basisl’;;.f. (SIéX)
Especially Z is an open and dense subset in X x X\A(X).
We remark that Homma [H, Proposition 3 (p. 344)] has proved for Z to
be open and dense in X for a smooth curve X in characteristic 0. He used the
concept of order-sequences of linear systems on X.

6. Hyperelliptic Riemann surfaces

In this section, we examine the results obtained in the preceding sections
in the case where the Riemann surface is hyperelliptic. In [K] and [H], the
cardinalities of gap sets for pairs of distinct points on a hyperelliptic Riemann
surface have been calculated. In fact, the results are valid for hyperelliptic
curves in an arbitrary charastaristic. Those are summarized as the table below
(we follow the formalism due to [H]). W-point means Weierstrass point.

P, 0 H 1(u) #G(P, Q)
Both P and Q are W-points | u(x) =2g —a glg—1)/2 | g(3g+1)/2
P is not a W-point and wla) =20 —1 glg—1)/2 | glg+1)
Q is a W-point
Neither P or Q is not u(e) =«a 0 glg+1)
W-points and a(P) = Q
Neither P or Q is not wo)=g+1—a|glg—1)/2| glg+3)/2

W-points and o(P) # Q

Here ¢ denotes the hyperelliptic involution.

In what follows, we will calculate the holomorphic section Ww;,...,w,]
defined in the preceding section for a hyperelliptic Riemann surface. Then we
will observe that the non-generic loci (namely the first three cases) in the table
above appear as the irreducible components of the zero locus of the holomorphic
section.

Let b1,bs,...,bygr be distinct complex numbers and a a non-zero complex
number. Then a hyperelliptic Riemann surface Y of genus g is constructed as
the affine plane curve in C? defined by the equation y2 = a(x — b)(x —by)---
(x — byyq2) with additional two points at infinity to compactify it. It is then
known that the Weierstrass points on Y are (by,0),..., (byg42,0). Moreover the
hyperelliptic involution ¢ : ¥ — Y is defined by o(x, y) = (x,—y). Holomorphic
I-forms w, =x*dx/y (6 =0,...,9—1) on Y form a basis of Q(Y). We put
fy:=x*/y away from y =0.
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First we explain how the cardinality of the gap set for a pair of distinct
points on Y is computed by means of Wronskian matrices associated to
an effective divisor. For instance, let P = (x,y) and Q = (£,%7) be distinct
points with o(P) = Q. This means that x=¢ and y= -7 #0, and hence
Wyplwo, ... ,w4-1] = —Wyplwo, ..., w4-1]. It is then straightforward that the
Wronskian matrix W,p,4o[wo,...,®,1] can be deformed by certain row oper-
ations to the following form:

) (%)(”M% () (%)“(

R 7160 N I = )

S Gy T Gl
y n

This together with Corollary 2.5 imply that G(P)= G(Q)={1,2,...,9} and
w(e) =o for any o. Therefore #(x) =0 and #G(P,0)=g¢g(g+1) by (10).
When (P,Q) are on the other loci in the table above, the similar but slightly
involved calculations also work to obtain #G(P, Q).

Second we shall calculate the function Y[w, ..., w,—1]((x, »), (&,1)). All the
calculations are elementary and routine, we write down only a recipe in the
following. When y # 0 and # # 0, we can take x and ¢ as the local coordinate
functions around there. Then as for the Wronskian determinants, we have

(15) W(fo,--., fi-1 (Hk|>

— l i—1 xifj
(16) W (foreos Tt fi) e 9) = —— | T # | 5
(l _]) k=0 Y
fe# j—1
for 1 = j<i=<g. These (15), (16) and (12) imply
i PN i
A Tl fimllly = G0 (7] )80 ).

Here AY(x, y) is defined by

g1
A(g)(x,y) (W(fo,--., fi- (HH ) elg-1)/2°

<«

i=1 i=1 k=0

in which the second equality comes from (15). The entries of W[fy,. .., fy—1](&,n)
are given by

min{i—1,j—1} i— 1) . ) (j=1-k)
(18) Wlfo,..., fyl(Em)y > %(%1)5’”‘(% :

k=0 n
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where (1/7)"™ denotes the n-th derivative of 1/ by &. Thus (17) and (18) imply
(19) (Tlow[f(): e 7@71]()@ )’) : W[fbu e 7]2171](6777))1/

min{i—1,j—1} . . (j=1-k)
o —1 j—1 11

AW ST (! kk!(l )( )(x—é)’ ‘ "(—) .
k=0 k k 7

Hence the i-th anti-principal minor of Tiow[fo, - -, f—11(x, ¥) - W[fo,- .., fa=1]1(E,n)
is given by

(20) 0i(Tiowl 0, - - fg—1](x, ) - Wfo, ..., fy-1](S,m))
g-14 4 i(g—1i)
_ g—i— (x=29)
= (-1)"? 1/2<HHkl> (H )>7(y9(91>/277)i.

a=1 k=0 B=1

Therefore from (15) and (20), we have obtained

e\ (g-1)/3 g(g+1)/2
@) lﬁ[wo,--~7wg1]((x,y),(f,f7))=c<%) ,

where the constant C is given by C:= (IT¢' TTiZb k) /™2 (19, TT/=0 k)2

Remark 6.1. Both y#0 and ##0 are assumed in the expression
(21). When those are not the case, we can also obtain an expression of the
function by using the transition low (14) in changing the local coordinate
functions. For example, we consider the function at y =0 and # # 0. Then
we can take y and ¢ as the local coordinate functions around (x,0) and (&,7)
respectively. Then the transition low (14) implies that

- e\ (97 +9+4)/12
Jlon. ..ol . G = () Hons 04105 1), (E1)

<(x _ gl (x/)<g3+g+4>/6>g<g“>/2
= C B

y(ngg+2)/2;7

where x' = dx/dy. Because x'/y is holomorphic at y = 0, Y[w, . ..,y 1]((x, y),
(&) is holomorphic at ((x,0),(<,n)) (7 #0).
In consequence of the expression of Y[w,...,w,_1], we find the following.
1. As for the special basis wp,wi,...,w,-1 of Q(Y) as above, the car-
dinality of #G(P, Q) attains the lowest value g(g + 3)/2 if and only if
Y(wi,..., 0P, 0) #0.
2. The irreducible components of the zero locus of W(wy,...,w,-1] are
(i) {Weierstrass point} x Y,
(ii) Y x {Weierstrass point},
(iii) the graph of the hyperellptic involution g,
which have been appeared in the table above.
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This seems to suggest a relation between the irreducible components of the zero
locus of W[w,...,w,—1] and the cardinality of the gap set in general.
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