HOMOTOPY GROUPS OF THE SPACE OF SELF MAPS OF THE PROJECTIVE 3-SPACE

Katsumi Ōshima

Abstract

We compute the homotopy groups of the space of self maps of the 3 dimensional projective space.

1. Introduction

For spaces X and Y with base points, we denote by $\operatorname{map}_*(X,Y)$ the space of maps from X to Y preserving base points. We take the trivial map 0 as the base point of $\operatorname{map}_*(X,Y)$. Homotopical properties of $\operatorname{map}_*(X,Y)$ have long been studied in algebraic topology. In the recent decade, several people have been interested in the case where X is a Lie group and X = Y [6, 7, 8, 13, 14, 15, 16]. In the present note, we study the case $X = Y = \operatorname{SO}(3) = \mathbf{P}^3$ and we compute the homotopy groups $\pi_n(\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3))$ for $n \leq 20$, where \mathbf{P}^3 is the 3-dimensional projective space. As an application to our computations we know $\pi_n(\operatorname{aut}(\mathbf{P}^3))$ for $n \leq 20$, where $\operatorname{aut}(\mathbf{P}^3)$ is the space of self homotopy equivalences of \mathbf{P}^3 . Results will be given in the section 2, and proofs will be given in sections 3, 4 and 5.

I would like to thank Professor Ōshima for his help and support which made me go on with this work.

2. Results

The groups $\pi_n(\text{map}_*(\mathbf{P}^3, \mathbf{P}^3))$ for n = 0, 1, 3 are well-known (cf. (3.1) below): (2.1) $\pi_n(\text{map}_*(\mathbf{P}^3, \mathbf{P}^3))$ $\cong \begin{cases} \mathbf{Z} & n = 0 \ ([\mathbf{12}, \text{ Theorem IIa}] \text{ or } [\mathbf{8}, \text{ Proposition 4.1}]) \\ (\mathbf{Z}_2)^2 & n = 1 \ ([\mathbf{3}, \ (9.1.3)] \text{ or } [\mathbf{6}, \text{ Lemma 7.3}]) \\ (\mathbf{Z}_4)^2 \oplus \mathbf{Z}_3 & n = 3 \ ([\mathbf{17}, \text{ Corollary 5}] \text{ or } [\mathbf{15}, \text{ Lemma 2.1}(6)]) \end{cases}$

²⁰⁰⁰ Mathematics Subject Classification. primary 55Q05; secondary 55P10. Key words and phrases. space of self maps; homotopy group; projective space. Received September 28, 2010; revised December 16, 2010.

Here \mathbf{Z}_k denotes the cyclic group of order k and $(\mathbf{Z}_k)^m$ is the direct sum of m copies of \mathbf{Z}_k . We denote by $\mathbf{Z}_k\{x\}$ the cyclic group of order k generated by x. We write $(\mathbf{Z}_k)^m\{x_1,\ldots,x_m\} = \mathbf{Z}_k\{x_1\} \oplus \cdots \oplus \mathbf{Z}_k\{x_m\}$.

We work in the category of spaces with base points, unless otherwise stated. The base point is denoted by *. We do not distinguish in notation between a map and its homotopy class. We denote the suspension functor by E, that is, $E^nX = X \wedge S^n$ and $E^nf : E^nX \to E^nY$ are the n-fold suspensions of a space X and a map $f: X \to Y$, respectively. For spaces X and Y, we denote the set of homotopy classes of maps from X to Y by [X, Y], that is, $[X, Y] = \pi_0(\max_*(X, Y))$. We follow notations of [18] for elements of homotopy groups of spheres. Given a map $g: S^m \to S^n$ such that $2g \simeq 0$, let $\bar{g}: S^m \cup_{2l_m} e^{m+1} \to S^n$ denote an extension of g, that is, $\bar{g} = g$ on S^m , where $S^m \cup_{2l_m} e^{m+1}$ is the mapping cone of $2l_m$. We should be careful not to confuse Toda's elements \bar{e}_n (resp. $\bar{\mu}_n$) with extensions \bar{e}_n (resp. $\bar{\mu}_n$) of Toda's elements e_n (resp. μ_n). We set

$$\Gamma_n = [S^{n+1} \cup_{2l_{n+1}} e^{n+2}, S^3] \quad (n \ge 0).$$

Notice that Γ_n is a finite abelian group and $E^n(S^1 \cup_{2\iota_1} e^2) = S^{n+1} \cup_{2\iota_{n+1}} e^{n+2}$. We will prove the following assertion in §3.

PROPOSITION 2.1.
$$\pi_n(\text{map}_*(\mathbf{P}^3, \mathbf{P}^3)) \cong \Gamma_n \oplus \pi_{n+3}(S^3)$$
.

We refer $\pi_{n+3}(S^3)$ for $n \le 20$ to [18, 9] (cf. Lemma 4.1(2) below). In order to compute Γ_n , we use the following cofibre sequence

$$(2.2) S^{n+2} \xleftarrow{-2\iota_{n+2}} S^{n+2} \xleftarrow{q_n} S^{n+1} \cup_{2\iota_{n+1}} e^{n+2} \xleftarrow{\iota_n} S^{n+1} \xleftarrow{2\iota_{n+1}} S^{n+1}.$$

Our main result is the following theorem which will be proved in §4.

THEOREM 2.2.

n	0	1	2	3	4	5
Γ_n	0	\mathbf{Z}_2	\mathbf{Z}_2	\mathbf{Z}_4	$(\mathbf{Z}_2)^2$	$(\mathbf{Z}_2)^2$
generators		q_1	$q_2^*\eta_3$	$\overline{\eta_3}$	$q_4^*v', \eta_3\overline{\eta_4}$	$q_5^*(v'\eta_6), \eta_3^2 \overline{\eta_5}$
relations				$2\overline{\eta_3} = q_3^* \eta_3^2$		

6	7	8	9	10	11
\mathbf{Z}_4	\mathbf{Z}_2	0	\mathbf{Z}_2	$\mathbf{Z}_2 \oplus \mathbf{Z}_4$	$(\mathbf{Z}_2)^2 \oplus \mathbf{Z}_4$
$v'\overline{\eta_6}$	$v'\eta_6\overline{\eta_7}$		$q_9^* \varepsilon_3$	$q_{10}^*\mu_3,\overline{arepsilon_3}$	$q_{11}^*arepsilon',arepsilon_3\overline{\eta_{11}},\overline{\mu_3}$
$2(v'\overline{\eta_6}) = q_6^*(v'\eta_6^2)$				$2\overline{\varepsilon_3} = q_{10}^*(\eta_3 \varepsilon_4)$	$2\overline{\mu_3} = q_{11}^*(\eta_3\mu_4)$

12	13
$(\mathbf{Z}_2)^5$	$\left(\mathbf{Z}_{2}\right)^{3}\oplus\mathbf{Z}_{4}$
$q_{12}^*\mu', q_{12}^*(\varepsilon_3\nu_{11}), q_{12}^*(\nu'\varepsilon_6), \varepsilon_3\eta_{11}\overline{\eta_{12}}, \mu_3\overline{\eta_{12}}$	$q_{13}^*(v'\mu_6), \mu_3\eta_{12}\overline{\eta_{13}}, \overline{\varepsilon_3v_{11}}, \varepsilon'\overline{\eta_{13}}$
	$2(\varepsilon'\overline{\eta_{13}}) = q_{13}^*(v'\eta_6\varepsilon_7)$

14	15	16	17
$\mathbf{Z}_2 \oplus \mathbf{Z}_4$	$(\mathbf{Z}_2)^2$	$(\mathbf{Z}_2)^2$	$\mathbf{Z}_2 \oplus \mathbf{Z}_4$
$v'\eta_6\overline{\varepsilon_7},v'\overline{\mu_6}$	$q_{15}^*(\varepsilon_3 v_{11}^2), v'\eta_6\overline{\mu_7}$	$q_{16}^* \overline{\varepsilon}_3, \varepsilon_3 \overline{v_{11}^2}$	$q_{17}^*(\mu_3\sigma_{12}),\overline{ar{arepsilon}_3}$
$2(v'\overline{\mu_6}) = q_{14}^*(v'\eta_6\mu_7)$			$2\overline{\overline{arepsilon}_3} = q_{17}^*(\eta_3\overline{arepsilon}_4)$

18	19
$(\mathbf{Z}_2)^3 \oplus \mathbf{Z}_4$	$\left(\mathbf{Z}_{2}\right)^{4}\oplus\mathbf{Z}_{4}$
$q_{18}^*ar{arepsilon}',q_{18}^*ar{\mu}_3,ar{arepsilon}_3\overline{\eta}_{18},ar{\mu}_3\overline{\sigma}_{12}$	$q_{19}^*(\mu'\sigma_{14}), q_{19}^*(\nu'\overline{\epsilon}_6), \overline{\epsilon}_3\eta_{18}\overline{\eta_{19}}, \mu_3\sigma_{12}\overline{\eta_{19}}, \overline{\mu}_3$
$2\overline{\mu_3\sigma_{12}} = q_{18}^*(\eta_3\mu_4\sigma_{13})$	$2\overline{\overline{\mu}_3}=q_{19}^*(\eta_3\overline{\mu}_4)$

20	21
$(\mathbf{Z}_2)^5$	$(\mathbf{Z}_2)^2 \oplus \mathbf{Z}_4$
$q_{20}^* \overline{\mu}', q_{20}^* (v' \mu_6 \sigma_{15}), \mu_3 \sigma_{12} \eta_{19} \overline{\eta_{20}}, v' \overline{\overline{\epsilon}_6}, \eta_3 \overline{\overline{\mu}_4}$	$q_{21}^*(v'\overline{\mu}_6), \eta_3^2\overline{\mu}_5, v'\overline{\mu_6\sigma_{15}}$
	$2(v'\overline{\mu_6\sigma_{15}}) = q_{21}^*(v'\eta_6\mu_7\sigma_{16})$

Here we have used the following notations: $\overline{\eta_n}=E^{n-3}\overline{\eta_3}, \ \overline{\varepsilon_n}=E^{n-3}\overline{\varepsilon_3}, \ \overline{\mu_n}=E^{n-3}\overline{\overline{\mu_3}}, \ \overline{\overline{\mu_n}}=E^{n-3}\overline{\overline{\mu_3}}$ and $\overline{\mu_n\sigma_{n+12}}=E^{n-3}\overline{\mu_3\sigma_{12}}$ for $n\geq 4$.

Rees [17, Corollary 5] determined Γ_3 by methods different with ours. By Proposition 2.1, Theorem 2.2 and [18, 9], we readily have

COROLLARY 2.3.

n	0	1	2	3	4	5	6
$\pi_n(\text{map}_*(\mathbf{P}^3,\mathbf{P}^3))$	Z	$(\mathbf{Z}_2)^2$	$(\mathbf{Z}_2)^2$	$(\mathbf{Z}_4)^2 \oplus \mathbf{Z}_3$	$(\mathbf{Z}_2)^3$	$(\mathbf{Z}_2)^3$	$\mathbf{Z}_4 \oplus \mathbf{Z}_3$

7	8	9	10	11	12
$\mathbf{Z}_2 \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_5$	\mathbf{Z}_2	$(\mathbf{Z}_2)^3$	$(\mathbf{Z}_2)^2 \oplus (\mathbf{Z}_4)^2 \oplus \mathbf{Z}_3$	$(\mathbf{Z}_2)^4 \oplus (\mathbf{Z}_4)^2 \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_7$	$(\mathbf{Z}_2)^7$

13	14	15	16
$(\mathbf{Z}_2)^4 \oplus \mathbf{Z}_4 \oplus \mathbf{Z}_3$	$(\mathbf{Z}_2)^2 \oplus \mathbf{Z}_4 \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_5$	$(\mathbf{Z}_2)^3 \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_5$	$(\mathbf{Z}_2)^4 \oplus \mathbf{Z}_3$

17	18	19	20
$(\mathbf{Z}_2)^3 \oplus (\mathbf{Z}_4)^2 \oplus \mathbf{Z}_3$	$(\mathbf{Z}_2)^5 \oplus (\mathbf{Z}_4)^2 \oplus \mathbf{Z}_3$	$(\mathbf{Z}_2)^5 \oplus (\mathbf{Z}_4)^2 \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_{11}$	$(\mathbf{Z}_2)^7$

Let $\operatorname{aut}(X)$ denote the space of self homotopy equivalences of X which are not necessarily preserving the base point, and $\operatorname{aut}_*(X)$ the space of based self homotopy equivalences. Then $\operatorname{aut}_*(X)$ is a submonoid of the monoid $\operatorname{aut}(X)$ whose operation is the composition. By [12, Theorem IIa, Theorem IIb] or [1, Corollary 6], we have $\pi_0(\operatorname{aut}_*(\mathbf{P}^3)) \cong \pi_0(\operatorname{aut}(\mathbf{P}^3)) \cong \mathbf{Z}_2$. The following assertion will be proved in §5.

PROPOSITION 2.4. If $n \ge 1$, then $\pi_n(\operatorname{aut}_*(\mathbf{P}^3)) \cong \Gamma_n \oplus \pi_{n+3}(S^3)$ and $\pi_n(\operatorname{aut}(\mathbf{P}^3)) \cong \Gamma_n \oplus \pi_{n+3}(S^3) \oplus \pi_n(\mathbf{P}^3)$.

3. Proof of Proposition 2.1

As is well-known, we have $\mathbf{P}^3 = \mathbf{S}^1 \cup_{2\iota_1} e^2 \cup e^3$ and

(3.1)
$$\pi_n(\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3)) \cong [\mathbf{P}^3 \wedge S^n, \mathbf{P}^3].$$

It follows from (2.1) that the assertion of Proposition 2.1 is true for n = 0, 1. By [4, (3.1)] (or [2]), we have $\mathbf{P}^3 \wedge \mathbf{S}^n \simeq (\mathbf{S}^{n+1} \cup_{2t_{n+1}} e^{n+2}) \vee \mathbf{S}^{n+3}$ for $n \geq 2$. Therefore

$$\pi_n(\text{map}_*(\mathbf{P}^3, \mathbf{P}^3)) \cong [S^{n+1} \cup_{2l_{n+1}} e^{n+2}, \mathbf{P}^3] \oplus \pi_{n+3}(\mathbf{P}^3) \text{ if } n \geq 2.$$

The covering map $p: S^3 \to \mathbf{P}^3$ induces isomorphisms $\Gamma_n \cong [S^{n+1} \cup_{2t_{n+1}} e^{n+2}, \mathbf{P}^3]$ for $n \ge 1$ and $\pi_{n+3}(S^3) \cong \pi_{n+3}(\mathbf{P}^3)$ for $n \ge 0$. Hence we have Proposition 2.1 for $n \ge 2$. This completes the proof of Proposition 2.1.

4. Proof of Theorem 2.2

Let $\pi_k(S^3;2)$ be $\pi_3(S^3)$ if k=3 and the 2-primary subgroup of $\pi_k(S^3)$ if $k \neq 3$.

By applying the cohomotopy functor $[,S^3]$ to the cofibre sequence (2.2), we have the following exact sequence of abelian groups.

$$\pi_{n+2}(S^3) \xrightarrow{(-2\iota_{n+2})^*} \pi_{n+2}(S^3) \xrightarrow{\quad q_n^* \quad} \Gamma_n \xrightarrow{\quad i_n^* \quad} \pi_{n+1}(S^3) \xrightarrow{\quad (2\iota_{n+1})^* \quad} \pi_{n+1}(S^3).$$

Since $(2\iota_k)^*$: $\pi_k(S^3) \to \pi_k(S^3)$ is the multiplication by 2, $(-2\iota_k)^* = (2\iota_k)^*(-\iota_k)^* = -(2\iota_k)^*$ and $(-2)\pi_k(S^3) = 2\pi_k(S^3)$, it follows that the above exact sequence induces the following two exact sequences.

$$(4.1) \pi_{n+2}(S^3) \xrightarrow{2} \pi_{n+2}(S^3) \xrightarrow{q_n^*} \Gamma_n \xrightarrow{i_n^*} \{\beta \in \pi_{n+1}(S^3) \mid 2\beta = 0\} \to 0,$$

$$(4.2) \qquad \pi_{n+2}(S^3; 2) \xrightarrow{2} \pi_{n+2}(S^3; 2) \xrightarrow{q_n^*} \Gamma_n \xrightarrow{i_n^*} \{\beta \in \pi_{n+1}(S^3; 2) \mid 2\beta = 0\} \to 0.$$

We will use the following known results.

LEMMA 4.1. (1) ([10, (2.3)]). For every n, the suspension $E : \pi_n(S^3) \to \pi_{n+1}(S^4)$ is an isomorphism onto a direct summand, that is, there is a homomorphism $\varphi_n : \pi_{n+1}(S^4) \to \pi_n(S^3)$ such that $\varphi_n \circ E$ is the identity. (2) ([18, 9]). We have the following table:

n	1,2	3	4	5	6	7	8	9, 10	11	12	13
$\pi_n(S^3;2)$	0	Z	\mathbf{Z}_2	\mathbf{Z}_2	\mathbf{Z}_4	\mathbf{Z}_2	\mathbf{Z}_2	0	\mathbf{Z}_2	$(\mathbf{Z}_2)^2$	$\mathbf{Z}_2 \oplus \mathbf{Z}_4$
generator		13	η_3	η_3^2	v'	$v'\eta_6$	$v'\eta_6^2$		£3	$\mu_3, \eta_3 \varepsilon_4$	$\eta_3\mu_4, \varepsilon'$

14	15	16	17	18	19	20
$(\mathbf{Z}_2)^2 \oplus \mathbf{Z}_4$	$(\mathbf{Z}_2)^2$	\mathbf{Z}_2	\mathbf{Z}_2	\mathbf{Z}_2	$(\mathbf{Z}_2)^2$	$\left(\mathbf{Z}_{2}\right)^{2}\oplus\mathbf{Z}_{4}$
$\varepsilon_3 v_{11}, v' \varepsilon_6, \mu'$	$v'\mu_6, v'\eta_6\varepsilon_7$	$v'\eta_6\mu_7$	$\varepsilon_3 v_{11}^2$	$\overline{\varepsilon}_3$	$\mu_3\sigma_{12},\eta_3\overline{\varepsilon}_4$	$\bar{\mu}_3, \eta_3 \mu_4 \sigma_{13}, \bar{\epsilon}'$

21	22	23
$(\mathbf{Z}_2)^2 \oplus \mathbf{Z}_4$	$\mathbf{Z}_2 \oplus \mathbf{Z}_4$	$\left(\mathbf{Z}_{2}\right)^{2}$
$v'\overline{\varepsilon}_6, \eta_3\overline{\mu}_4, \mu'\sigma_{14}$	$v'\mu_6\sigma_{15}, \overline{\mu}'$	$v'\overline{\mu}_6, v'\eta_6\mu_7\sigma_{16}$

For each n, we can write $\{\beta \in \pi_{n+1}(S^3;2) \mid 2\beta = 0\} = (\mathbf{Z}_2)^m \{y_1, \dots, y_m\}$ with $m \ge 0$ and $\pi_{n+2}(S^3;2) = \mathbf{Z}_{2^{k_1}}\{x_1\} \oplus \cdots \oplus \mathbf{Z}_{2^{k_l}}\{x_l\}$ with $l \ge 0$ and $k_i \ge 1$ for every $i \le l$. Hence (4.2) induces the following exact sequence:

$$(4.3) 0 \to (\mathbf{Z}_2)^l \{q_n^*(x_1), \dots, q_n^*(x_l)\} \stackrel{\subset}{\to} \Gamma_n \stackrel{i_n^*}{\to} (\mathbf{Z}_2)^m \{y_1, \dots, y_m\} \to 0.$$

The following result can be proved easily. So we omit its proof.

Lemma 4.2. (1) If
$$2\overline{y_j} = 0$$
 for all j in (4.3), then
$$\Gamma_n = (\mathbf{Z}_2)^{l+m} \{q_n^*(x_1), \dots, q_n^*(x_l), \overline{y_1}, \dots, \overline{y_m}\}.$$

(2) If
$$2\overline{y_j} = 0$$
 for all $j < m$ and $2\overline{y_m} = q_n^*(x_l)$ in (4.3), then
$$\Gamma_n = (\mathbf{Z}_2)^{l+m-2} \{q_n^*(x_1), \dots, q_n^*(x_{l-1}), \overline{y_1}, \dots, \overline{y_{m-1}}\} \oplus \mathbf{Z}_4 \{\overline{y_m}\}.$$

In order to determine the group extension of (4.3), we will compute $2\overline{y_j}$ $(1 \le j \le m)$ by using the following two lemmas.

LEMMA 4.3. (1) ([18]). $\pi_{n+4}(S^n; 2) = 0$ for $n \ge 6$, $\pi_{n+5}(S^n; 2) = 0$ for $n \ge 7$, $\pi_{n+6}(S^n; 2) = \mathbb{Z}_2\{v_n^2\}$ for $n \ge 5$, $2v' = \eta_3^3$, $4v_5 = \eta_5^3$, $\eta_{10}\sigma_{11} = \sigma_{10}\eta_{17}$, $\eta_3\varepsilon_4 = \varepsilon_3\eta_{11}$, $2\varepsilon' = \eta_3^2\varepsilon_5$, $2\mu' = \eta_3^2\mu_5$, $v'\varepsilon_6 = \varepsilon'\eta_{13}$, $\eta_3\bar{\varepsilon}_4 = \bar{\varepsilon}_3\eta_{18} = \varepsilon_3^2 = \varepsilon_3\bar{v}_{11}$, $2\bar{\varepsilon}' = \eta_3^2\bar{\varepsilon}_5$, $2\bar{\mu}' = \eta_3^2\bar{\mu}_5$.

(2) ([11]).
$$\eta_3 \mu_4 = \mu_3 \eta_{12}, \ v' \mu_6 = \mu' \eta_{14}, \ v' \bar{\epsilon}_6 = \bar{\epsilon}_3 v_{18}, \ \eta_3 \bar{\mu}_4 = \bar{\mu}_3 \eta_{20}.$$

Proof. By Propositions 5.8 and 5.9, (5.3), (5.5), (7.5), (7.7), (7.12), Lemmas 6.4, 6.6, 12.3, 12.4 and 12.10 of [18], we have (1). We have (2) from Proposition (2.2)(2),(4) and Proposition (2.17)(4),(10) of [11] which were proved by standard methods of [18].

Lemma 4.4. If $\beta \in \pi_{n+1}(S^3;2)$ is of order 2, then every $\bar{\beta} \in [S^{n+1} \cup_{2l_{n+1}} e^{n+2}, S^3]$ satisfies $2\bar{\beta} = q_n^*(\beta \circ \eta_{n+1})$.

Proof. Take $x \in \{2\iota_3, \beta, 2\iota_{n+1}\}_0$ arbitrarily, where $\{\gamma, E^k \delta, E^k \epsilon\}_k$ is the Toda bracket [18]. Then $\{2\iota_3, \beta, 2\iota_{n+1}\}_0 = x + 2\pi_{n+2}(S^3)$ and

$$2\bar{\beta} = 2\iota_3 \circ \bar{\beta} \in \{2\iota_3, \beta, 2\iota_{n+1}\}_0 \circ q_n$$
 (by [18, Proposition 1.9])
= $\{q_n^*(x)\}$ (by (4.1)),

that is, $2\bar{\beta} = q_n^*(x)$. We have

$$Ex \in E\{2\iota_3, \beta, 2\iota_{n+1}\}_0 \subset -\{2\iota_4, E\beta, 2\iota_{n+2}\}_1$$
 (by [18, Proposition 1.3])
= $E(\beta\eta_{n+1}) + 2\pi_{n+3}(S^4)$ (by [18, Corollary 3.7]).

Hence there exists $y \in \pi_{n+3}(S^4)$ such that $Ex = E(\beta\eta_{n+1}) + 2y$, that is, $E(x - \beta\eta_{n+1}) = 2y$. We have $x - \beta\eta_{n+1} = \varphi_{n+2}E(x - \beta\eta_{n+1}) = 2\varphi_{n+2}(y) \in 2\pi_{n+2}(S^3)$ by Lemma 4.1(1) and so $q_n^*(x - \beta\eta_{n+1}) = 0$ by (4.1). Therefore $q_n^*(x) = q_n^*(\beta\eta_{n+1})$. Thus $2\bar{\beta} = q_n^*(\beta\eta_{n+1})$. This completes the proof.

- **4.1.** Γ_n for n = 0, 1, 2, 7, 8, 9. By (4.3) and Lemma 4.1(2), we obtain the results.
- **4.2.** Γ_3 . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to \mathbf{Z}_2\{q_3^*(\eta_3^2)\} \stackrel{\subset}{\to} \Gamma_3 \stackrel{i_3^*}{\to} \mathbf{Z}_2\{\eta_3\} \to 0.$$

By setting $\beta = \eta_3$ in Lemma 4.4, we have

$$(4.4) 2\overline{\eta_3} = q_3^*(\eta_3^2).$$

Hence we have the result by Lemma 4.2(2). From now on, we will denote $E^n \overline{\eta_3}$ by $\overline{\eta_{n+3}}$.

4.3. Γ_n for n=4,15,16. By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to \mathbf{Z}_2\{q_4^*v'\} \stackrel{\subset}{\to} \Gamma_4 \stackrel{i_4^*}{\to} \mathbf{Z}_2\{\eta_3^2\} \to 0.$$

Since $i_4^*(\eta_3\overline{\eta_4}) = \eta_3^2$ and $2(\eta_3\overline{\eta_4}) = (2\eta_3)\overline{\eta_4} = 0$, we obtain the result for n = 4 by Lemma 4.2(1). By similar reason, we obtain the results for n = 15, 16.

4.4. Γ_5 . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to \mathbf{Z}_2\{q_5^*(v'\eta_6)\} \stackrel{\scriptscriptstyle \subset}{\to} \Gamma_5 \stackrel{i_5^*}{\to} \mathbf{Z}_2\{2v'\} \to 0.$$

Since $i_5^*(\eta_3^2\overline{\eta_5}) = \eta_3^3 = 2v'$ by Lemma 4.3(1) and $2(\eta_3^2\overline{\eta_5}) = (2\eta_3^2)\overline{\eta_5} = 0$, we have the result by Lemma 4.2(1).

4.5. Γ_6 . By (4.3) and Lemma 4.1(2), we have the following short exact sequence:

$$0 \to \mathbf{Z}_2\{q_6^*(\nu'\eta_6^2)\} \stackrel{\subset}{\to} \Gamma_6 \stackrel{i_6^*}{\to} \mathbf{Z}_2\{\nu'\eta_6\} \to 0.$$

Since $i_6^*(v'\overline{\eta_6}) = v'\eta_6$ and $2(v'\overline{\eta_6}) = v'(2\overline{\eta_6}) = v'(\eta_6^2q_6) = q_6^*(v'\eta_6^2)$ by (4.4), we have the result by Lemma 4.2(2).

4.6. Γ_{10} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to (\mathbf{Z}_2)^2 \{q_{10}^* \mu_3, q_{10}^* (\eta_3 \varepsilon_4)\} \stackrel{\subset}{\to} \Gamma_{10} \stackrel{i_{10}^*}{\to} \mathbf{Z}_2 \{\varepsilon_3\} \to 0.$$

We have $2\overline{\varepsilon_3} = q_{10}^*(\varepsilon_3\eta_{11}) = q_{10}^*(\eta_3\varepsilon_4)$ by Lemma 4.4 and Lemma 4.3(1). Hence we obtain the result by Lemma 4.2(2). From now on, we will denote $E^n\overline{\varepsilon_3}$ by $\overline{\varepsilon_{n+3}}$.

4.7. Γ_{11} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to (\mathbf{Z}_2)^2 \{q_{11}^* \varepsilon', q_{11}^* (\eta_3 \mu_4)\} \stackrel{\subset}{\to} \Gamma_{11} \stackrel{i_{11}^*}{\to} (\mathbf{Z}_2)^2 \{\mu_3, \eta_3 \varepsilon_4\} \to 0.$$

We have

$$(4.5) 2\overline{\mu_3} = q_{11}^*(\mu_3 \eta_{12}) = q_{11}^*(\eta_3 \mu_4)$$

by Lemma 4.4 and Lemma 4.3(2). On the other hand, $i_{11}^*(\eta_3\overline{\epsilon_4}) = \eta_3\epsilon_4$ and $2(\eta_3\overline{\epsilon_4}) = (2\eta_3)\overline{\epsilon_4} = 0$. Hence we obtain the result by Lemma 4.2(2). From now on, we will denote $E^n\overline{\mu_3}$ by $\overline{\mu_{n+3}}$.

4.8. Γ_{12} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to (\mathbf{Z}_2)^3 \{ q_{12}^* \mu', q_{12}^* (\varepsilon_3 \nu_{11}), q_{12}^* (\nu' \varepsilon_6) \} \stackrel{\subset}{\to} \Gamma_{12} \stackrel{i_{12}^*}{\to} (\mathbf{Z}_2)^2 \{ 2\varepsilon', \mu_3 \eta_{12} \} \to 0.$$

We have $i_{12}^*(\eta_3^2\overline{\epsilon_5}) = \eta_3^2\varepsilon_5 = 2\varepsilon'$ by Lemma 4.3(1) and $2(\eta_3^2\overline{\epsilon_5}) = (2\eta_3^2)\overline{\epsilon_5} = 0$. We have $i_{12}^*(\mu_3\overline{\eta_{12}}) = \mu_3\eta_{12}$ and $2(\mu_3\overline{\eta_{12}}) = (2\mu_3)\overline{\eta_{12}} = 0$. Hence we obtain the result by Lemma 4.2(1).

4.9. Γ_{13} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \rightarrow (\mathbf{Z}_2)^2 \{q_{13}^*(\nu'\mu_6), q_{13}^*(\nu'\eta_6\varepsilon_7)\} \stackrel{\subset}{\rightarrow} \Gamma_{13} \stackrel{i_{13}^*}{\rightarrow} (\mathbf{Z}_2)^3 \{2\mu', \varepsilon_3\nu_{11}, \nu'\varepsilon_6\} \rightarrow 0.$$

We have $i_{13}^*(\mu_3\eta_{12}\overline{\eta_{13}}) = \mu_3\eta_{12}^2 = 2\mu'$ by Lemma 4.3, and $2(\mu_3\eta_{12}\overline{\eta_{13}}) = (2\mu_3)\eta_{12}\overline{\eta_{13}} = 0$. By setting $\beta = \varepsilon_3\nu_{11}$, $\nu'\varepsilon_6$ in Lemma 4.4, we have $2\overline{\varepsilon_3}\nu_{11} = q_{13}^*(\varepsilon_3\nu_{11}\eta_{14}) = 0$ and $2(\nu'\overline{\varepsilon_6}) = q_{13}^*(\nu'\varepsilon_6\eta_{14}) = q_{13}^*(\nu'\eta_6\varepsilon_7)$ from Lemma 4.3(1). Hence we obtain the result by Lemma 4.2(2).

4.10. Γ_{14} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to \mathbf{Z}_2\{q_{14}^*(v'\eta_6\mu_7)\} \stackrel{\subset}{\to} \Gamma_{14} \stackrel{i_{14}^*}{\to} (\mathbf{Z}_2)^2\{v'\mu_6, v'\eta_6\varepsilon_7\} \to 0.$$

We have $i_{14}^*(\nu'\overline{\mu_6}) = \nu'\mu_6$ and $2(\nu'\overline{\mu_6}) = \nu'(2\overline{\mu_6}) = \nu'(\eta_6\mu_7q_{14}) = q_{14}^*(\nu'\eta_6\mu_7)$ by (4.5). We have $i_{14}^*(\nu'\eta_6\overline{\epsilon_7}) = \nu'\eta_6\epsilon_7$ and $2(\nu'\eta_6\overline{\epsilon_7}) = \nu'(2\eta_6)\overline{\epsilon_7} = 0$. Hence we obtain the result by Lemma 4.2(2).

4.11. Γ_{17} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to (\mathbf{Z}_2)^2 \{ q_{17}^*(\mu_3 \sigma_{12}), q_{17}^*(\eta_3 \overline{\epsilon}_4) \} \stackrel{\subset}{\to} \Gamma_{17} \stackrel{i_{17}^*}{\to} \mathbf{Z}_2 \{ \overline{\epsilon}_3 \} \to 0.$$

Since $2\overline{\overline{\epsilon}_3}=q_{17}^*(\overline{\epsilon}_3\eta_{18})=q_{17}^*(\eta_3\overline{\epsilon}_4)$ by Lemma 4.4 and Lemma 4.3(1), we obtain the result by Lemma 4.2(2). From now on, we will denote $E^n\overline{\overline{\epsilon}_3}$ by $\overline{\overline{\epsilon}_{n+3}}$.

4.12. Γ_{18} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \rightarrow (\mathbf{Z}_2)^3 \{q_{18}^* \overline{\epsilon}', q_{18}^* \overline{\mu}_3, q_{18}^* (\eta_3 \mu_4 \sigma_{13})\} \stackrel{\scriptscriptstyle \subset}{\rightarrow} \Gamma_{18} \stackrel{i_{18}^*}{\rightarrow} (\mathbf{Z}_2)^2 \{\mu_3 \sigma_{12}, \eta_3 \overline{\epsilon}_4\} \rightarrow 0.$$

We have $2\overline{\mu_3\sigma_{12}}=q_{18}^*(\mu_3\sigma_{12}\eta_{19})=q_{18}^*(\eta_3\mu_4\sigma_{13})$ by Lemma 4.4 and Lemma 4.3. We have $i_{18}^*(\bar{\epsilon}_3\overline{\eta_{18}})=\bar{\epsilon}_3\eta_{18}=\eta_3\bar{\epsilon}_4$ by Lemma 4.3(1) and $2(\bar{\epsilon}_3\overline{\eta_{18}})=(2\bar{\epsilon}_3)\overline{\eta_{18}}=0$. Hence we obtain the result by Lemma 4.2(2). From now on, we will denote $E^n\overline{\mu_3\sigma_{12}}$ by $\overline{\mu_{n+3}\sigma_{n+12}}$.

4.13. Γ_{19} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to (\mathbf{Z}_2)^3 \{q_{19}^*(\mu'\sigma_{14}), q_{19}^*(\nu'\bar{\epsilon}_6), q_{19}^*(\eta_3\bar{\mu}_4)\} \stackrel{\subset}{\to} \Gamma_{19} \stackrel{i_{19}^*}{\to} (\mathbf{Z}_2)^3 \{2\bar{\epsilon}', \bar{\mu}_3, \eta_3\mu_4\sigma_{13}\} \to 0.$$

We have $i_{19}^*(\bar{\epsilon}_3\eta_{18}\overline{\eta_{19}}) = \bar{\epsilon}_3\eta_{18}^2 = 2\bar{\epsilon}'$ by Lemma 4.3 and $2(\bar{\epsilon}_3\eta_{18}\overline{\eta_{19}}) = (2\bar{\epsilon}_3)\eta_{18}\overline{\eta_{19}} = 0$. We have $2\bar{\mu}_3 = q_{19}^*(\bar{\mu}_3\eta_{20}) = q_{19}^*(\eta_3\bar{\mu}_4)$ by Lemma 4.4 and Lemma 4.3(2). We have $i_{19}^*(\mu_3\sigma_{12}\overline{\eta_{19}}) = \mu_3\sigma_{12}\eta_{19} = \eta_3\mu_4\sigma_{13}$ by Lemma 4.3

and $2(\mu_3\sigma_{12}\overline{\eta_{19}}) = (2\mu_3)\sigma_{12}\overline{\eta_{19}} = 0$. Hence we obtain the result by Lemma 4.2(2). From now on, we will denote $E^n\overline{\mu_3}$ by $\overline{\mu_{n+3}}$.

4.14. Γ_{20} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to (\mathbf{Z}_2)^2 \{q_{20}^*(\bar{\mu}'), q_{20}^*(v'\mu_6\sigma_{15})\} \overset{\subset}{\to} \Gamma_{20} \overset{i_{20}^*}{\to} (\mathbf{Z}_2)^3 \{2(\mu'\sigma_{14}), v'\bar{\epsilon}_6, \eta_3\bar{\mu}_4\} \to 0.$$

We have $i_{20}^*(\mu_3\sigma_{12}\eta_{19}\overline{\eta_{20}})=\mu_3\sigma_{12}\eta_{19}^2=2(\mu'\sigma_{14})$ by Lemma 4.3 and $2(\mu_3\sigma_{12}\eta_{19}\overline{\eta_{20}})=(2\mu_3)\sigma_{12}\eta_{19}\overline{\eta_{20}}=0$. We have $i_{20}^*(v'\overline{\overline{\epsilon}_6})=v'\overline{\epsilon}_6$ and $i_{20}^*(\eta_3\overline{\mu}_4)=\eta_3\overline{\mu}_4$. It follows from Lemma 4.3 and Lemma 4.4 that $2(v'\overline{\epsilon}_6)=q_{20}^*(v'\overline{\epsilon}_6\eta_{21})=q_{20}^*(\overline{\epsilon}_3v_{18}\eta_{21})=0$ and $2(\eta_3\overline{\mu}_4)=q_{20}^*(\eta_3\overline{\mu}_4\eta_{21})=q_{20}^*(\eta_3^2\overline{\mu}_5)=q_{20}^*(2\overline{\mu}')=0$. Therefore we obtain the result by Lemma 4.2(1).

4.15. Γ_{21} . By (4.3) and Lemma 4.1(2), we have the following exact sequence:

$$0 \to (\mathbf{Z}_2)^2 \{ q_{21}^*(v'\overline{\mu}_6), q_{21}^*(v'\eta_6\mu_7\sigma_{16}) \} \overset{\subset}{\to} \Gamma_{21} \overset{i_{21}^*}{\to} (\mathbf{Z}_2)^2 \{ 2\overline{\mu}', v'\mu_6\sigma_{15} \} \to 0.$$

We have $i_{21}^*(\bar{\mu}_3\eta_{20}\overline{\eta_{21}}) = \bar{\mu}_3\eta_{20}^2 = 2\bar{\mu}'$ by Lemma 4.3 and $2(\bar{\mu}_3\eta_{20}\overline{\eta_{21}}) = (2\bar{\mu}_3)\eta_{20}\overline{\eta_{21}} = 0$. We have $i_{21}^*(v'\overline{\mu_6\sigma_{15}}) = v'\mu_6\sigma_{15}$ and $2(v'\overline{\mu_6\sigma_{15}}) = q_{21}^*(v'\mu_6\sigma_{15}\eta_{22}) = q_{21}^*(v'\eta_6\mu_7\sigma_{16})$ by Lemmas 4.4 and 4.3. Hence we obtain the result by Lemma 4.2(2). This completes the proof of Theorem 2.2.

5. Proof of Proposition 2.4

Let map(\mathbf{P}^3 , \mathbf{P}^3) denote the space of self maps of \mathbf{P}^3 not necessarily preserving base point. This is a monoid with respect to the composition operation. Borsuk's fibre theorem [5, Proposition (6.34)] says that the evaluation map $ev: \mathrm{map}(\mathbf{P}^3, \mathbf{P}^3) \to \mathbf{P}^3, \ f \mapsto f(*)$, is a fibration whose fibre is $\mathrm{map}_*(\mathbf{P}^3, \mathbf{P}^3)$, where the base point * is the unit of the group \mathbf{P}^3 . By [12, Theorems IIa, IIb], we have

$$\begin{split} \pi_0(\mathsf{map}(\mathbf{P}^3,\mathbf{P}^3)) &= \pi_0(\mathsf{map}_*(\mathbf{P}^3,\mathbf{P}^3)) \\ &= [\mathbf{P}^3,\mathbf{P}^3] \xrightarrow{\xi}_{\simeq} \mathsf{Hom}(H^3(\mathbf{P}^3;\mathbf{Z}),H^3(\mathbf{P}^3;\mathbf{Z})) \cong \mathbf{Z} \end{split}$$

where ξ assigns f^* to the homotopy class of $f \in \operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3)$. Hence $\operatorname{aut}(\mathbf{P}^3)$ and $\operatorname{aut}_*(\mathbf{P}^3)$ consist of two path components of $\operatorname{map}(\mathbf{P}^3, \mathbf{P}^3)$ and $\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3)$, respectively. Therefore $\pi_0(\operatorname{aut}(\mathbf{P}^3)) \cong \pi_0(\operatorname{aut}_*(\mathbf{P}^3)) \cong \mathbf{Z}_2$ and $\pi_n(\operatorname{aut}(\mathbf{P}^3), \mathbf{1}_{\mathbf{P}^3}) \cong \pi_n(\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3), \mathbf{1}_{\mathbf{P}^3})$ for $n \geq 1$. For any $x \in \mathbf{P}^3$, let $L_x : \mathbf{P}^3 \to \mathbf{P}^3$ denote the map $y \mapsto xy$. Then the map $\mathbf{P}^3 \to \operatorname{map}(\mathbf{P}^3, \mathbf{P}^3)$, $x \mapsto L_x$, is a cross section of ev. Hence the homotopy exact sequence of the fibration ev splits so that $\pi_n(\operatorname{map}(\mathbf{P}^3, \mathbf{P}^3), \mathbf{1}_{\mathbf{P}^3}) \cong \pi_n(\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3), \mathbf{1}_{\mathbf{P}^3}) \oplus \pi_n(\mathbf{P}^3)$. Since all path-components of $\operatorname{map}(\mathbf{P}^3, \mathbf{P}^3)$ have the same homotopy type, $\pi_n(\operatorname{map}(\mathbf{P}^3, \mathbf{P}^3), f) \cong \pi_n(\operatorname{map}(\mathbf{P}^3, \mathbf{P}^3), 0)$ for every

 $f \in \operatorname{map}(\mathbf{P}^3, \mathbf{P}^3)$. Similarly all path components of the following spaces have the same homotopy type, respectively: $\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3)$, $\operatorname{aut}(\mathbf{P}^3)$ and $\operatorname{aut}_*(\mathbf{P}^3)$. Therefore if $n \ge 1$, then we have $\pi_n(\operatorname{aut}_*(\mathbf{P}^3)) \cong \pi_n(\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3))$ and $\pi_n(\operatorname{aut}(\mathbf{P}^3)) \cong \pi_n(\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3)) \cong \pi_n(\operatorname{map}_*(\mathbf{P}^3, \mathbf{P}^3)) \oplus \pi_n(\mathbf{P}^3)$. Hence we obtain Proposition 2.4 by Proposition 2.1.

REFERENCES

- J. C. BECKER AND D. H. GOTTLIEB, Coverings of fibrations, Compositio Mathematica 26 (1973), 119–128.
- [2] W. Browder and E. Spanier, H-spaces and duality, Pacific J. Math. 12 (1970), 411-414.
- [3] T. EGAWA AND H. ŌSHIMA, Maps between small Hopf spaces, Math. J. Ibaraki Univ. 32 (2000), 33-61.
- [4] I. M. James, On sphere-bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
- [5] I. M. James, General topology and homotopy theory, Springer-Verlag, Berlin, 1984.
- [6] A. Kono and H. Ōshima, Commutativity of the group of self-homotopy classes of Lie groups, Bull. London Math. Soc. 36 (2004), 37–52.
- [7] K. MARUYAMA AND H. ŌSHIMA, Homotopy groups of the space of self-maps of Lie groups,J. Math. Soc. Japan 60 (2008), 767-792.
- [8] M. MIMURA AND H. ŌSHIMA, Self homotopy groups of Hopf spaces with at most three cells, J. Math. Soc. Japan 51 (1999), 71–92.
- [9] M. MIMURA AND H. TODA, The n + 20-th homotopy groups of n-spheres, J. Math. Kyoto Univ. 3 (1963), 37–58.
- [10] M. Mimura and H. Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ. 3 (1964), 217–250
- [11] K. ÔGUCHI, Generators of 2-primary components of homotopy groups of spheres, unitary groups and symplectic groups, J. Fac. Sci. Univ. Tokyo 11 (1964), 65–111.
- [12] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math. 58 (1953), 458–480.
- [13] H. Ōshima, Self homotopy set of a Hopf space, Quart. J. Math. 50 (1999), 483-495.
- [14] H. Ōshima, Self homotopy group of the exceptional Lie group G₂, J. Math. Kyoto Univ. **40** (2000), 177–184.
- [15] H. ŌSHMA, The group of self homotopy classes of SO(4), J. Pure App. Algebra 185 (2003), 193–205.
- [16] K. ŌSHIMA AND H. ŌSHIMA, Homotopy groups of the spaces of self-maps of Lie groups II, Kodai Math. J. 32 (2009), 530–546.
- [17] E. REES, Multiplications on projective spaces, Michigan Math. J. 16 (1969), 297-302.
- [18] H. Toda, Composition methods in homotopy groups of spheres, Ann. of math. studies 49, Princeton, 1962.

Katsumi Ōshima IBARAKI UNIVERSITY MITO, IBARAKI 310-8512 JAPAN

E-mail: oshimakatsumi@hotmail.co.jp