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HOMOTOPY GROUPS OF THE SPACE OF SELF
MAPS OF THE PROJECTIVE 3-SPACE

Katsumr OsHIMA

Abstract

We compute the homotopy groups of the space of self maps of the 3 dimensional
projective space.

1. Introduction

For spaces X and Y with base points, we denote by map, (X, Y) the space of
maps from X to Y preserving base points. We take the trivial map O as the base
point of map,(X,Y). Homotopical properties of map,(X,Y) have long been
studied in algebraic topology. In the recent decade, several people have been
interested in the case where X is a Lie group and X = Y [6, 7, 8, 13, 14, 15, 16].
In the present note, we study the case X = ¥ = SO(3) = P? and we compute the
homotopy groups 7,(map, (P, P?)) for n <20, where P* is the 3-dimensional
projective space. As an application to our computations we know 7,(aut(P?))
for n <20, where aut(P?) is the space of self homotopy equivalences of P3.
Results will be given in the section 2, and proofs will be given in sections 3, 4
and 5.

I would like to thank Professor Oshima for his help and support which made
me go on with this work.

2. Results
The groups 7,(map, (P, P?)) for n =0, 1,3 are well-known (cf. (3.1) below):
(2.1)  my(map, (P*,P?))
Z n=0 ([12, Theorem Ila] or [8, Proposition 4.1])
~{ (Zy)* n=1 ([3, (9.1.3)] or [6, Lemma 7.3])
(Zs)*®Z; n=3 (17, Corollary 5] or [15, Lemma 2.1(6)))
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Here Z; denotes the cyclic group of order k and (Z;)™ is the direct sum of m
copies of Z;. We denote by Z;{x} the cyclic group of order k generated by x.
We write (Zg)"{x1,...,Xm} =Zi{x1} ® - ® Zy{xm}.

We work in the category of spaces with base points, unless otherwise
stated. The base point is denoted by *. We do not distinguish in notation
between a map and its homotopy class. We denote the suspension functor by E,
that is, E"X = X AS" and E"f : E"X — E"Y are the n-fold suspensions of a
space X and a map f: X — Y, respectively. For spaces X and Y, we denote
the set of homotopy classes of maps from X to Y by [X, Y], that is, [X, Y] =
no(map, (X, Y)). We follow notations of [18] for elements of homotopy groups
of spheres. Given a map g : S” — S” such that 2g ~ 0, let g : S”" Uy, ™! — §”
denote an extension of g, that is, § = g on S™, where S” U,, ¢”*! is the mapping
cone of 2z,,. We should be careful not to confuse Toda’s elements &, (resp. f,)
with extensions g, (resp. &,) of Toda’s elements ¢, (resp. u,). We set

1—~n — [Sn+l U2 e;H—Z7 83} (l’l > 0)

In+1

Notice that T, is a finite abelian group and E"(S' Uy, €?) = S""' Uy, ., "2 We
will prove the following assertion in §3.

PrOPOSITION 2.1.  7,(map, (P?,P?) =2 T, @ 7, 3(S°).

We refer 7,.3(S®) for n <20 to [18, 9] (cf. Lemma 4.1(2) below).
In order to compute I, we use the following cofibre sequence

(2.2) Sn+2 fz’ﬂ Sn+2 (‘1_" Sn+1 UZ:,M en+2 (L Sn+1 (2’"_+1 S"+1.
Our main result is the following theorem which will be proved in §4.

THEOREM 2.2.

n 0l 1] 2 3 4 5
T, 0|Zy| Z Z, (Z,)* (Z,)*
generators Q| @ s a3V’ msiia | 45 (v'ng), 3
relations 2775 = ¢;n3
6 7 8] 9 10 11
Z Z, (0| Z, 7, Zy (Z,)’ @ Z4
V'1Ts V1617 45¢3 qioM3, €3 4118, 63715 15
2(v'Te) = g5 (vV'ng) 283 = qio(msea) | 2085 = 47y (13144)
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12 13
(Z>)° (2>)' @ Z4

qitt' g2 (e3vin), 412, (v'e6), e311 7, 15711

q13(V' 1), l3maTT35 83911, €113

2(e'm3) = 4i3(v'n1¢7)

14

15

16

17

7, DLy

(22)°

(2,)°

V)

D Zs4

i = e
V1687,V g

qis(e3viy), Vst

% = 2
41663, €3V11

C]f7(ﬂ3012), &

2(v'itg) = qi4(v'nety)

28 = ‘]1*7(77354)

18

19

(2, ©Z4

(2,)* @24

*x wl * = - — -
q18¢ 5 91813, €311, H3012

qio(1'a14), 419 (V'E6), 831157195 30127719, 3

215012 = q13(13444013)

2/2_3 = 41*9(7731[‘4)

20

21

(2>)°

(Z,)* ® Z4

q30l' s @20(V' 16T15) s 113512119720, V'8, 11314

43, (V' i), n3fls, V' IO T

2(\//#60'15) = q5 (V/776:u70-16>

Here we have used the following notations: 7, = E" i35, & = E" 38, I, =

3
E" M3, &n

B
=E""&, @,

= E" 30, and WG, 1 = E"*men for n > 4.

Rees [17, Corollary 5] determined I's by methods different with ours. By
Proposition 2.1, Theorem 2.2 and [18, 9], we readily have

COROLLARY 2.3.

n 0 1 2 3 4 5 6
ma(map, (P, P) | Z | (22) | (22)* | (Za)’ @ Zs | (Z2)° | (Z2)’ | Z4 @ Zs
7 8 9 10 11 12
7 @7 D75 |7y | (22) | (22 @ (24)* D3 | (1) @ (24)* DL D 27| (Z,)]
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13 14 15 16
() @24 DLy | (2, DL ®Ly DLs | (£,) @ DZs | (2,) @ Zs

17 18 19 20
(Z2) ® (24)’ ®Zs | (£2)’ @ (Z4)’ ®Zs | (£2)’ @ (24)' @ Zs D Ly, | (Z2)]

Let aut(X) denote the space of self homotopy equivalences of X which are
not necessarily preserving the base point, and aut,(X) the space of based self
homotopy equivalences. Then aut.(X) is a submonoid of the monoid aut(X)
whose operation is the composition. By [12, Theorem Ila, Theorem IIb] or [1,
Corollary 6], we have ng(aut,(P*)) = mo(aut(P?)) = Z,. The following assertion
will be proved in §5.

PropoSITION 2.4. If n>1, then my(aut,(P?) =T, ®n,3(S°) and
ma(aut(P)) = T, @ 7,,3(S?) ® 7, (P?).

3. Proof of Proposition 2.1

As is well-known, we have P? =S'U,, ¢?Ue’® and
(3.1) n,(map, (P?, PY)) = [P A S", P

It follows from (2.1) that the assertion of Proposition 2.1 is true for n = 0,1. By
[4, (3.1)] (or [2]), we have P> AS" ~ (S""' Uy, "*?) vS"™ for n > 2. Therefore

ma(map, (P?,PY)) = [S"1 Uy, ., "2 P3| @ m,3(P?) if n>2.

In+1

The covering map p:S* — P3 induces isomorphisms T, = [S""' Uy, "2 P?]
for n > 1 and 7,,3(S*) = 7,,3(P?) for n > 0. Hence we have Proposition 2.1 for
n >2. This completes the proof of Proposition 2.1.

4. Proof of Theorem 2.2

Let 7;(S3;2) be 73(S?) if k=3 and the 2-primary subgroup of m;(S?) if
k #3.

By applying the cohomotopy functor | ,83} to the cofibre sequence (2.2), we
have the following exact sequence of abelian groups.

(=2t42)" q, iy (tus1)”
nn+2(SS) —_— 7T,1+2(S3) 1—‘n Tl+1 (S3) —1> T+1 (SS)

Since (21)" : m(S?) — 7 (S?) is the multiplication by 2, (—21)" = (2u)" (—x)" =
—(2)" and (=2)m(S?) = 27, (S?), it follows that the above exact sequence
induces the following two exact sequences.
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2 (I); Ilj
(4.1) 73:2(S) = 2 (87) % T = {B w0 (S7) [ 28 = 0} — 0,
42)  1a(S%2) B e (S%2) T, 1 {f e muir (S%2) |28 = 0} — 0.

We will use the following known results.

Lemma 4.1. (1) (10, (2.3)]). For every n, the suspension E :m,(S*) —
nn+1(S4) is an isomorphism onto a direct summand, that is, there is a
homomorphism ¢, : 7t,11(S*) — 7,(S*) such that ¢, 0 E is the identity.

(2) (18, 9]). We have the following table:

n 1,234 5|6 7 8 19,10 | 11 12 13
(S52) | 0 |Z|Zy |2y |2y | Zy | Zo | O |Zo| (Zo) |Z:DZy
generator s | m3 | V| Ve | Vg &3 | 3,138 | M3kas€’

14 15 16 17 18 19 20
(Z:)* ® Z4 (Z5)* Z, 7, |7, (Z5)* (Z,)* @ Z4
evin, Vg i | Vg Viger | Vingty | eV | & | 13012, 1388 | Hi3, 314013, &'

21 22 23
(2, @24 7,07, (Z,)*

I — ! i =/ ! = I
Vi€, N3la, W O14 | V UgO15, 10 | V U,V Hell7016

For each n, we can write {f € m,,1(S%;2) |28 =0} = (Z2)"{y1,..., ym} With
m=>0 and 7,5(S*2) = Zy {x1} ® - ® Zpi, {x;} with />0 and k; > 1 for
every i < /. Hence (4.2) induces the following exact sequence:

(43) 0= (Z)"g () g (0} S T (Zo)" {31y v} — O,
The following result can be proved easily. So we omit its proof.
Lemma 4.2. (1) If 2y; =0 for all j in (4.3), then

Ty = (Z2) ™" {gy (x1), - @y (00), 7T, T}
(2) If 29, =0 for all j <m and 2y, = q;;(x;) in (4.3), then
Ty = (Z2)"" gy (1), i (5-1), P 1} @ Za{ T}

In order to determine the group extension of (4.3), we will compute
2y; (1 < j <m) by using the following two lemmas.
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Lemma 4.3. (1) ((18]). 7,a(S";2) =0 for n > 6, m,.5(S";2) =0 for n =7,
Tui6(S™2) = Zo{v2} for n=5, 2V =n3, 4vs=ni, non =c10n7,
n3es = ey, 26 = n3es, 20 = n3ps, Ve = '3, 138 = B3y = &3 = v,
28" = nles, 20" = n3is.

(2) ((M]). 73p4 = 13012, V'lle = W14y V'E6 = 83918, N3fls = [3120-

Proof. By Propositions 5.8 and 5.9, (5.3), (5.5), (7.5), (7.7), (7.12), Lemmas
6.4, 6.6, 12.3, 12.4 and 12.10 of [18], we have (1). We have (2) from Proposition
(2.2)(2),(4) and Proposition (2.17)(4),(10) of [11] which were proved by standard
methods of [18]. O

Lemvma 44, If Bem,1(S%2) is of order 2, then every Be[S""' Uy,
"2, 8% satisfies 28 = q; (o ,.1)-

Proof. Take x € {213, 8, 21,11}, arbitrarily, where {y, EX5, Eke}, is the Toda
bracket [18]. Then {213, f,21,41}, = x+27tn+2(S3) and

28 =2130F€{213,B,2t,11}p0 g, (by [18, Proposition 1.9])
={4,(x)} (by (4.1)),
that is, 28 = ¢/(x). We have
Ex e E{213,8, 21,11}y = —{2u4, Ef, 21,42}, (by [18, Proposition 1.3])
= E(Bi,s1) + 2m013(S*)  (by [18, Corollary 3.7)).

Hence there exists yem,3(S*) such that Ex= E(fy,.)+2y, that is,

E(x—pru) =2y We  have  x— B, g = 0 0E(x — Bityir) = 20,,0(0) €
27,:2(S*) by Lemma 4.1(1) and so ¢ (x—fn,,,) =0 by (4.1). Therefore

q:(x) = q:(Pn,s1). Thus 28 = q:(Bn,.,). This completes the proof. O

41. T, for n=0,1,2,7,8,9. By (4.3) and Lemma 4.1(2), we obtain the
results.

42. T'3. By (4.3) and Lemma 4.1(2), we have the following exact se-
quence:

c iy
0 — Za{q;(m3)} — T3 = Za{ns} — 0.
By setting ff =#; in Lemma 4.4, we have
(4.4) 23 = 43 (n3).

Hence we have the result by Lemma 4.2(2). From now on, we will denote E"7j;
by 77,13
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43. T, for n=4,15,16. By (4.3) and Lemma 4.1(2), we have the fol-
lowing exact sequence:

0= Zo{giv'} = Tu = Zo{n3} — 0.
Since i; (175772) = 13 and 2(n3773) = (213)77; = 0, we obtain the result for n =4 by
Lemma 4.2(1). By similar reason, we obtain the results for n =15, 16.
44. Ts. By (4.3) and Lemma 4.1(2), we have the following exact se-
quence:
0 — Zo{qi (v'ng)} = T's > Z,{2v'} — 0,

Since i (n3775) =n3 = 2v' by Lemma 4.3(1) and 2(53775) = (2n2)775 = 0, we have
the result by Lemma 4.2(1).

45. Ts. By (4.3) and Lemma 4.1(2), we have the following short exact
sequence:
0 — Zo{qi(vn)} S T %, Z:{v'ng} — 0.
Since i (v'77g) = v'ne and 2(v'ifg) = v/ (2775) = v/ (n2qs) = q; (v'n?) by (4.4), we have
the result by Lemma 4.2(2).

4.6. T'jp. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:

0 — (Z2)*{qiot3, ajo(m3e4)} — T1o = Zo{es} — 0.

We have 28 = q{y(e31711) = ¢jy(#3¢4) by Lemma 4.4 and Lemma 4.3(1). Hence
we obtain the result by Lemma 4.2(2). From now on, we will denote E”"&; by

Ent3.

47. T';. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:

0— (Z2)2{4T13/>4T1 (113044) } — T (ZZ)Z{ﬂ3>77384} — 0.
We have
(4.5) 215 = q11 (13m12) = q11 (1324)

by Lemma 4.4 and Lemma 4.3(2). On the other hand, if|(#3&) = #3¢4 and
2(n384) = (2173)84 = 0. Hence we obtain the result by Lemma 4.2(2). From now
on, we will denote E"i3 by m,3.

48. TI'jp. By (43) and Lemma 4.1(2), we have the following exact
sequence:

0 — (Z2)*{qiot, air(e3vn1) afs(Ves)} = Tia = (Z2)7{2¢, sy} — 0.
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We have i}, (n3%5) = n3es = 2¢' by Lemma 4.3(1) and 2(385) = (213)8s = 0. We
have i}, (137712) = sty and 2(us77;) = (2u3)7;, = 0. Hence we obtain the result
by Lemma 4.2(1).

49. TI';s. By (43) and Lemma 4.1(2), we have the following exact
sequence:

- i
0 — (Z2){a53(V'ite), a3 (V') } — Tiz = (Z2)* {24/, e3v11,v'eg} — 0.

We have if5(u310713) = tsni, =21’ by Lemma 4.3, and 2(u31157753) =
(Qus)niiz = 0. By setting ff=e3vyy, veg in Lemma 4.4, we have 2&8v =
qi3(e3viiny) =0 and 2(v'&) = q{3(v'esl1s) = q15(v'nge7) from Lemma 4.3(1).
Hence we obtain the result by Lemma 4.2(2).

4.10. Tj4. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:
0 — Zo{qjy(v'nerr)} = T1a = (Z2)*{V g, V'nger}y — 0.
We have i, (v'itg) = v'ius and 2(v'1g) = v'(21t6) = v'(nsprq14) = qi4(v'nept7) by

(4.5). We have if,(v'ne&7) = v'nger and 2(v'ngg7) = v'(2ns)e7 = 0. Hence we
obtain the result by Lemma 4.2(2).

4.11. Tj7. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:

0 — (Z2)*{q:(13012), 417(13%4)} = Ti7 > Zo{&3} — 0.

Since 283 = q{;(&31115) = q{7(n384) by Lemma 4.4 and Lemma 4.3(1), we obtain
the result by Lemma 4.2(2). From now on, we will denote E”"23 by &,.3.

4.12. T3. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:

3 * = * — * < i 2 -
0— (Zy) {61188’7‘118#3>‘118(’73ﬂ4013)} = Ig = (Z2) {13012, 1384} — 0.

We have 253612 = ¢i5(430127719) = q15(n3144013) by Lemma 4.4 and Lemma 4.3.
We have ij5(&373) = &3 = 17384 by Lemma 4.3(1) and 2(&75) = (2&3)773 = 0.
Hence we obtain the result by Lemma 4.2(2). From now on, we will denote
E"3612 by 1,30+ 12-

4.13. Tj9. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:

< i o
0 — (Z2)*{gio('014), 419 (v'es), aio(m3fa)} = T19 = (Z2) {28, i3, a1} — 0.

We have ify(8sn57719) = &anffg = 26/ by Lemma 4.3 and 2(&n75) =
(283)msmg = 0. We have 2/ = qjy(i31120) = qio(n3/l4) by Lemma 4.4 and
Lemma 4.3(2). We have ijy(u3012719) = #3012019 = 3444013 by Lemma 4.3
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and 2(u301279) = (2u3)012719 = 0. Hence we obtain the result by Lemma
4.2(2). From now on, we will denote E"fi; by fi,, 3.

4.14. Ty. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:

0 — (Zo)*{q (@), 430 (V' 116015)} — Tap = (Z2)*{2(pd'014), V'Es, 113004} — O.

We have i3)(13012119720) = 13012179 = 2('o14) by Lemma 4.3 and 2( 3012771972
= (2u3)a12119729 = 0. We have i5,(v'es) = v'&e and i5)(11344) = 113144 1t follows
from Lemma 4.3 and Lemma 4.4 that 2(v'&s) = ¢5,(V'&21) = ¢30(E3VisHa) =0

and 213%) = d30(ns7tatn) = 43 (1) = 430(2') = 0. Therefore we obtain the
result by Lemma 4.2(1).

4.15. Ty. By (4.3) and Lemma 4.1(2), we have the following exact
sequence:

0 — (Z2){a3,(V'is), 431 (V'n6tt7016)} = Tt = (Z2)* {28,V ugo15} — 0.

We have i (fsn20701) = Haftzg = 2/ by Lemma 4.3 and  2(@#2071) =
(283)m0751 = 0. We have i3, (v'iig015) = v'ptg01s and 2(v'[5015) = ¢35, (v 16015122)
= ¢3,(v'nsi;016) by Lemmas 4.4 and 4.3. Hence we obtain the result by Lemma
4.2(2). This completes the proof of Theorem 2.2.

5. Proof of Proposition 2.4

Let map(P?, P?) denote the space of self maps of P* not necessarily preserv-
ing base point. This is a monoid with respect to the composition operation.
Borsuk’s fibre theorem [5, Proposition (6.34)] says that the evaluation map
ev:map(P? P¥) — P3, f i f(x), is a fibration whose fibre is map, (P>, P?),
where the base point  is the unit of the group P*. By [12, Theorems Ila, IIb),
we have

7o(map(P, P*)) = mo(map, (P*, P*))
= [P3,PY] é Hom(H*(P3Z), H3(P*,Z)) = Z

where ¢ assigns f* to the homotopy class of f € map*(P3,P3). Hence aut(P3)
and aut,(P?) consist of two path components of map(P*,P*) and map, (P*,P?),
respectively. Therefore 7p(aut(P?)) = my(aut,(P*)) = Z, and 7,(aut(P?), 1p:) =
my(map(P*, P?), 1p5) and m,(aut.(P*), 1ps) = m,(map, (P*,P?), 1,3) for n> 1.
For any xeP? let L,:P?>— P? denote the map y~— xy. Then the map
P? — map(P?,P?), x+— L., is a cross section of ev. Hence the homotopy
exact sequence of the fibration ev splits so that z,(map(P* P3), 1p:) =
m,(map, (P?, P), 1p:) @ m,(P?).  Since all path-components of map(P*, P*) have
the same homotopy type, m,(map(P*,P?),f) = n,(map(P*,P?),0) for every
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fe map(P3,P3). Similarly all path components of the following spaces have the
same homotopy type, respectively: map, (P> P?), aut(P?) and aut,(P?).
Therefore if n > 1, then we have 7,(aut, (P?)) = z,(map, (P*, P?)) and 7, (aut(P?))
~ 7,(map(P*, P?)) = n,(map, (P*, P*)) @ 7,(P?). Hence we obtain Proposition
2.4 by Proposition 2.1.
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