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Abstract

We show that M 2n�1 is a real hypersurface all of whose geodesics orthogonal to the

characteristic vector x are mapped to circles of the same curvature 1 in an n-dimensional

nonflat complex space form ~MMnðcÞð¼ CPnðcÞ or CHnðcÞ) if and only if M is a Sasakian

manifold with respect to the almost contact metric structure from the ambient space
~MMnðcÞ. Moreover, this Sasakian manifold M is a Sasakian space form of constant

f-sectional curvature cþ 1 for each cð0 0Þ.

1. Introduction

We denote by ~MMnðcÞ, nf 2 a complex n-dimensional complete and simply
connected Kähler manifold of constant holomorphic sectional curvature cð0 0Þ.
That is, ~MMnðcÞ is holomorphically isometric to either an n-dimensional complex
projective space CPnðcÞ of constant holomorphic sectional curvature c or an n-
dimensional complex hyperbolic space CHnðcÞ of constant holomorphic sectional
curvature c according as c is positive or negative. As is well-known, every real
hypersurface M 2n�1 of ~MMnðcÞ admits an almost contact metric structure ðf; x; h; gÞ
induced from this ambient space. Making use of such a structure, many
geometers have studied actively real hypersurfaces in nonflat complex space
forms (c.f. [9]).

On the other hand, the theory of contact geometry has been developed also
by many geometers (for details, see [5]). Sasakian manifolds and Sasakian space
forms are analogues to Kähler manifolds and complex space forms, respectively.
J. Berndt ([4]) showed that a Sasakian space form of constant f-sectional curva-
ture dð0 1Þ is realized as a Hopf hypersurface with two distinct constant principal
curvatures in a nonflat complex space form (see Lemma 2). In this context we
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study Sasakian space forms from submanifold theoretical point of view. It is
well-known that a ð2n� 1Þ-dimensional Sasakian space form of constant f-
sectional curvature 1 is a unit sphere S2n�1ð1Þ. This sphere is totally umbilic in
Cn and is the only real hypersurface all of whose geodesics are mapped to circles
of the same curvature 1 in the ambient space Cn. It is hence natural to come to
consider real hypersurfaces all of whose geodesics are mapped to circles of the
same positive curvature in a complex n-dimensional nonflat complex space form
~MMnðcÞ. However, unfortunately there exist no such real hypersurfaces in this
space ~MMnðcÞ because this space admits no totally umbilic real hypersurfaces.

Motivated by this fact, we are interested in investigating real hypersurfaces
all of whose geodesics orthogonal to the characteristic vector x are mapped to
circles of the same positive curvature in a nonflat complex space form. The
main purpose of this paper is to characterize Sasakian space forms by such a
condition among real hypersurfaces in a nonflat complex space form ~MMnðcÞ
(Theorem 1 and Remark 2). This, together with results in [3], gives us many
nice geometric properties of geodesics on Sasakian space forms (Proposition 2).
For example, when c > 8, the Sasakian space form of constant f-sectional curva-
ture cþ 1 is a Berger sphere.

In the last section, we show directly that in the case of c > 0 the metric of
our realization of a Sasakian space form of constant f-sectional curvature cþ 1
coincides with the metric of the standard example of a Sasakian space form given
in [5].

2. Preliminaries

We first review fundamental notion in contact geometry (see [5]). Let
M 2n�1 ðnf 2Þ be a di¤erentiable manifold endowed with an almost contact
metric structure ðf; x; h; gÞ. That is, this structure satisfies the following iden-
tities:

f2X ¼ �X þ hðX Þx; fx ¼ 0; hðxÞ ¼ 1; gðfX ; fYÞ ¼ gðX ;Y Þ � hðX ÞhðYÞ

for all vectors X , Y on M. We say M to be a Sasakian manifold if the structure
tensor f satisfies the di¤erential equation

ð‘XfÞY ¼ gðX ;YÞx� hðYÞXð2:1Þ

for all tangent vectors X ;Y A TM, where ‘ denotes the Riemannian connection
of the metric g of M. A Sasakian manifold is called a Sasakian space form
of constant f-sectional curvature c if the sectional curvature Kðu; fuÞ :¼
gðRðu; fuÞfu; uÞ satisfies Kðu; fuÞ ¼ c for each unit vector u orthogonal to
x. The following is a Sasakian analogue of Schur’s Theorem.
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Theorem A. If the f-sectional curvature at each point of a Sasakian mani-
fold M of dimensionf 5 does not depend on the choice of f-section at that point,
then it is constant on M. The curvature tensor is given by

RðX ;YÞZ ¼ cþ 3

4
fgðY ;ZÞX � gðX ;ZÞYg

þ c� 1

4
fhðXÞhðZÞY � hðYÞhðZÞX þ gðX ;ZÞhðY Þx� gðY ;ZÞhðX Þx

þ gðZ; fYÞfX � gðZ; fX ÞfY þ 2gðX ; fYÞfZg;
where c is the constant f-sectional curvature of M.

In this paper, we denote by M 2n�1ðcÞ a ð2n� 1Þ-dimensional Sasakian space
form of constant f-sectional curvature c. For the standard construction of
Sasakian space forms, see pp. 114–115 in [5]. The following is the unique
existence theorem of Sasakian space forms.

Theorem B. For any two simply connected complete Sasakian manifolds of
constant f-sectional curvature c, there exists an isomorphism between them which
preserves their almost contact metric structures.

We next review the fundamental theory of real hypersurfaces. Let M 2n�1 be
a real hypersurface with a unit normal local vector field N of an n-dimensional
Kähler manifold ð ~MM; g; JÞ with Riemannian metric g and Kähler structure J.
The Riemannian connections ~‘‘ of ~MM and ‘ of M are related by the following
formulas of Gauss and Weingarten:

~‘‘XY ¼ ‘XY þ gðAX ;YÞN;ð2:2Þ
~‘‘XN ¼ �AXð2:3Þ

for arbitrary vector fields X and Y on M, where g is the Riemannian metric of
M induced from the ambient space ~MM and A is the shape operator of M in
~MM. An eigenvector X of the shape operator A is called a principal curvature
vector of M in ~MM and an eigenvalue l of A is called a principal curvature of M in
~MM. We denote by Vl the eigenspace associated to the principal curvature l,
namely we set Vl ¼ fv A TM jAv ¼ lvg.

It is well-known that M has an almost contact metric structure induced
from the Kähler structure of the ambient space ~MM. That is, we have a quartet
ðf; x; h; gÞ defined by

gðfX ;YÞ ¼ gðJX ;YÞ; x ¼ �JN and hðXÞ ¼ gðx;X Þ ¼ gðJX ;NÞ:
It follows from (2.2), (2.3) and ~‘‘J ¼ 0 that

ð‘XfÞY ¼ hðY ÞAX � gðAX ;Y Þx;ð2:4Þ
‘Xx ¼ fAX :ð2:5Þ

We here clarify the meaning of the condition that a real hypersurface M is
a Sasakian manifold with respect to the almost contact metric structure of the
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ambient Kähler manifold ~MM. On an orientable connected real hypersurface M
in a Kähler manifold ~MM, we have an almost contact metric structure ðf; x; h; gÞ
associated with a unit normal vector N of M in ~MM. Clearly the quartet
ðf;�x;�h; gÞ is also an almost contact metric structure on M which is associated
with a unit normal �N. We call a real hypersurface M Sasakian if M satisfies
either (2.1) or

ð‘XfÞY ¼ �gðX ;YÞxþ hðYÞX

for all vectors X ;Y A TM.
In the following, we consider real hypersurfaces in an n-dimensional nonflat

complex space form ~MMnðcÞð¼ CPnðcÞ or CHnðcÞ). Denoting the curvature ten-
sor of M by R, we have the equation of Gauss given by

gðRðX ;YÞZ;WÞð2:6Þ
¼ ðc=4ÞfgðY ;ZÞgðX ;WÞ � gðX ;ZÞgðY ;WÞ þ gðfY ;ZÞgðfX ;WÞ

� gðfX ;ZÞgðfY ;WÞ � 2gðfX ;YÞgðfZ;WÞg
þ gðAY ;ZÞgðAX ;WÞ � gðAX ;ZÞgðAY ;WÞ:

We usually call M a Hopf hypersurface if the characteristic vector x is a principal
curvature vector at each point of M. For a Hopf hypersurface M 2n�1 ðnf 2Þ in
a nonflat complex space form ~MMnðcÞ, the principal curvature d corresponding to
the characteristic vector field x is locally constant on M. Furthermore, every
tube of su‰ciently small constant radius around each Kähler submanifold of a
nonflat complex space form ~MMnðcÞ is a Hopf hypersurface. This fact tells us that
the notion of Hopf hypersurfaces is natural in the theory of real hypersurfaces in
a nonflat complex space form (see [9]).

In CPnðcÞ ðnf 2Þ, a Hopf hypersurface all of whose principal curvatures are
constant is locally congruent to one of the following:

(A1) A geodesic sphere of radius r, where 0 < r < p=
ffiffiffi
c

p
;

(A2) A tube of radius r around totally geodesic CPlðcÞ ð1e le n� 2Þ,
where 0 < r < p=

ffiffiffi
c

p
;

(B) A tube of radius r around complex hyperquadric CQn�1, where 0 <
r < p=ð2

ffiffiffi
c

p
Þ;

(C) A tube of radius r around CP1ðcÞ � CPðn�1Þ=2ðcÞ, where 0 < r <
p=ð2

ffiffiffi
c

p
Þ and nðf 5Þ is odd;

(D) A tube of radius r around complex Grassmann CG2;5, where 0 < r <
p=ð2

ffiffiffi
c

p
Þ and n ¼ 9;

(E) A tube of radius r around Hermitian symmetric space SOð10Þ=Uð5Þ,
where 0 < r < p=ð2

ffiffiffi
c

p
Þ and n ¼ 15.

These real hypersurfaces are said to be of types ðA1Þ, ðA2Þ, (B), (C), (D) and
(E). Summing up real hypersurfaces of types ðA1Þ and ðA2Þ, we call them
hypersurfaces of type (A). The numbers of distinct principal curvatures of these
real hypersurfaces are 2; 3; 3; 5; 5; 5, respectively. The principal curvatures of
these real hypersurfaces in CPnðcÞ are given as follows (see [9]):
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ðA1Þ ðA2Þ ðBÞ ðC;D;EÞ
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One should notice that in CPnðcÞ a tube of radius r ð0 < r < p=
ffiffiffi
c

p
Þ around totally

geodesic CPlðcÞ ð0e le n� 1Þ is congruent to a tube of radius ððp=
ffiffiffi
c

p
Þ � rÞ

around totally geodesic CPn�l�1ðcÞ.
In CHnðcÞ ðnf 2Þ, a Hopf hypersurface all of whose principal curvatures

are constant is locally congruent to one of the following (cf. [9]):
(A0) A horosphere in CHnðcÞ;
(A1;0) A geodesic sphere of radius r ð0 < r < yÞ;
(A1;1) A tube of radius r around totally geodesic CHn�1ðcÞ, where 0 <

r < y;
(A2) A tube of radius r around totally geodesic CH lðcÞ ð1e le n� 2Þ,

where 0 < r < y;
(B) A tube of radius r around totally real totally geodesic RHnðc=4Þ,

where 0 < r < y.
These real hypersurfaces are said to be of types ðA0Þ, ðA1Þ, ðA1Þ, ðA2Þ and (B).
Here, type ðA1Þ means either type ðA1;0Þ or type (A1;1Þ. Summing up real
hypersurfaces of types ðA0Þ, ðA1Þ and ðA2Þ, we call them hypersurfaces of type

(A). A real hypersurface of type (B) with radius r ¼ ð1=
ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ has

two distinct constant principal curvatures. Except this real hypersurface of type

(B) with radius r ¼ ð1=
ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ, the numbers of distinct principal

curvatures of these real hypersurfaces are 2; 2; 2; 3; 3, respectively. The principal
curvatures of these real hypersurfaces in CHnðcÞ are given as follows (cf. [9]):

ðA0Þ ðA1; 0Þ ðA1; 1Þ ðA2Þ ðBÞ
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ffiffiffiffiffi
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A real hypersurface M of a nonflat complex space form ~MMnðcÞ, nf 2 is
called totally h-umbilic if its shape operator A is of the form A ¼ aI þ bhn x for
some smooth functions a and b on M. This definition is equivalent to saying
that Au ¼ au for each vector u on M which is orthogonal to the characteristic
vector x of M, where a is a smooth function on M. It is known that every
totally h-umbilic hypersurface is a member of Hopf hypersurfaces with constant
principal curvatures. The following classification theorem of totally h-umbilic
hypersurfaces M shows that these two functions a and b are automatically
constant on M (see [9]):

Theorem C. Let M 2n�1, nf 2 be a totally h-umbilic hypersurface of a
nonflat complex space form ~MMnðcÞ with shape operator A ¼ aI þ bhn x. Then M
is locally congruent to one of the following:

(P) A geodesic sphere of radius r ð0 < r < p=
ffiffiffi
c

p
Þ in CPnðcÞ, where a ¼

ð
ffiffiffi
c

p
=2Þ cotð

ffiffiffi
c

p
r=2Þ and b ¼ �ð

ffiffiffi
c

p
=2Þ tanð

ffiffiffi
c

p
r=2Þ;

(Hi) A horosphere in CHnðcÞ, where a ¼ b ¼
ffiffiffiffiffi
jcj

p
=2;

(Hii) A geodesic sphere of radius r ð0 < r < yÞ in CHnðcÞ, where a ¼
ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ and b ¼ ð

ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ;

(Hiii) A tube of radius r ð0 < r < yÞ around totally geodesic complex hyper-

plane CHn�1ðcÞ in CHnðcÞ, where a ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2Þ and

b ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ.

Every totally h-umbilic hypersurface has two distinct constant principal cur-
vatures a and aþ bð¼ dÞ. For the later use we prepare the following lemma
(see [9]).

Lemma 1. For a real hypersurface M in a nonflat complex space form
~MMnðcÞ ðnf 2Þ, the following conditions are mutually equivalent.

(1) M is of type ðAÞ.
(2) fA ¼ Af.
(3) gðð‘XAÞY ;ZÞ ¼ ðc=4Þð�hðY ÞgðfX ;ZÞ � hðZÞgðfX ;YÞÞ for arbitrary vec-

tors X , Y and Z on M.

In this paper, real hypersurfaces of types (A), (B), (C), (D) and (E) in ~MMnðcÞ
are said to be standard real hypersurfaces. It is well-known that every standard
real hypersurface M is a homogeneous real hypersurface of ~MMnðcÞ, namely M is
an orbit of some subgroup of the full isometry group Ið ~MMnðcÞÞ of ~MMnðcÞ (see [9]).

At the end of this section we review the definition of circles in Riemannian
geometry. A real smooth curve g ¼ gðsÞ parameterized by its arclength s in a
Riemannian manifold M with Riemannian connection ‘ is called a circle of cur-
vature k if it satisfies the ordinary di¤erential equations ‘ _gg _gg ¼ kYs, ‘ _ggYs ¼ �k _gg
with a field Ys of unit vectors along g. Here kðf 0Þ is constant and Ys is called
the unit principal normal vector of g. A circle of null curvature is nothing but a
geodesic. The definition of a circle is equivalent to saying that it is a curve
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g ¼ gðsÞ on M with Riemannian metric g satisfying the ordinary di¤erential
equation

‘ _ggð‘ _gg _ggÞ þ gð‘ _gg _gg;‘ _gg _ggÞ _gg ¼ 0:ð2:7Þ

3. Geodesics on Sasakian hypersurface in ~MMnðcÞ

We shall start by classifying all Sasakian real hypersurfaces in a nonflat
complex space form ~MMnðcÞ. The following lemma is essentially due to Berndt
[4]. We here give its complete proof for the sake of readers’ convenience.

Lemma 2. Let M 2n�1 ðnf 2Þ be a connected Sasakian real hypersurface of
a nonflat complex space form ~MMnðcÞ. Then M is locally congruent to one of the
following homogeneous real hypersurfaces of the ambient space ~MMnðcÞ:

i) A geodesic sphere GðrÞ of radius r with tanð
ffiffiffi
c

p
r=2Þ ¼

ffiffiffi
c

p
=2 ð0 < r <

p=
ffiffiffi
c

p
Þ in CPnðcÞ;

ii) A horosphere in CHnð�4Þ;
iii) A geodesic sphere GðrÞ of radius r with tanhð

ffiffiffiffiffi
jcj

p
r=2Þ ¼

ffiffiffiffiffi
jcj

p
=2 ð0 <

r < yÞ in CHnðcÞ ð�4 < c < 0Þ;
iv) A tube of radius r around totally geodesic CHn�1ðcÞ with tanhð

ffiffiffiffiffi
jcj

p
r=2Þ ¼

2=
ffiffiffiffiffi
jcj

p
ð0 < r < yÞ in CHnðcÞ ðc < �4Þ.

In these cases, M has constant f-sectional curvature cþ 1.

Proof. Suppose that our real hypersurface M is a Sasakian manifold.
Then it follows from (2.1) and (2.4) that

gðX ;Y Þx� hðY ÞX ¼ hðYÞAX � gðAX ;YÞxð3:1Þ

for all vectors X ;Y A TM. Setting X ¼ Y ¼ x in Equation (3.1), we see that x
is principal. Hence we can choose a principal curvature vector u orthogonal to
x. Then, setting Y ¼ x in Equation (3.1), we find that Au ¼ �u, so that the
tangent bundle TM of M is decomposed as TM ¼ fxgR lV�1, where V�1 ¼
fX A TM jAX ¼ �Xg. This, together with Theorem C, shows that our real
hypersurface M is a totally h-umbilic hypersurface with coe‰cients a ¼ �1 and
b ¼ c=4 in ~MMnðcÞ. Here, we change the unit normal vector N into �N for each
hypersurface in Theorem C. Then we know that M is locally congruent to one
of i), ii), iii) and iv) in Lemma 2. Next, for each unit vector u perpendicular to
x, we compute the f-sectional curvature Kðu; fuÞ of our real hypersurface M.
It follows from Equation (2.6) and the equality A ¼ �I þ ðc=4Þhn x that
Kðu; fuÞ ¼ cþ 1.

Conversely, we suppose that our real hypersurface M is locally congruent to
one of i), ii), iii) and iv) in Lemma 2. We then see that the shape operator A of
our real hypersurface M is of the form A ¼ �I þ ðc=4Þhn x by changing N into
�N for each hypersurface in Theorem C. This, combined with (2.4), yields
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(2.1), so that M is a Sasakian manifold. Thus we can obtain the conclusion of
our Theorem. r

Remark 1. (1) Each real hypersurface i), ii), iii) and iv) in Lemma 2 is
complete and simply connected. In particular, when c > 0 or �4 <
c < 0, it is compact.

(2) The proof of Lemma 2 shows that M is a Sasakian manifold if and
only if M is totally h-umbilic in ~MMnðcÞ with shape operator A ¼
�I þ ðc=4Þhn x.

The following theorem is closely related to Lemma 2 in the case of c > 0 (for
details, see [6]).

Theorem D. Let M be a real hypersurface in CPnðcÞ, nf 3 on which the
f-sectional curvature H is constant. Then M is locally congruent to one of the
following:

(1) A geodesic sphere GðrÞ ð0 < r < p=
ffiffiffi
c

p
Þ with H ¼ cþ ðc=4Þ cot2ð

ffiffiffi
c

p
r=2Þ

> c;
(2) A ruled real hypersurface with H ¼ c;
(3) A real hypersurface on which there is an integrable distribution of codi-

mension two such that its each leaf lies on some totally geodesic CPn�1ðcÞ
as a ruled real hypersurface with H ¼ c.

Note that a real hypersurface M in Theorem D is Sasakian if and only if M
is of Case i) in Lemma 2.

We are now in a position to prove the following which gives a geometric
meaning of all Sasakian real hypersurfaces M in a nonflat complex space form
~MMnðcÞ in terms of the extrinsic shape of some geodesics on M.

Theorem 1. Let M be a connected real hypersurface in a nonflat complex
space form ~MMnðcÞ. Then the following three conditions are mutually equivalent:

(1) M is a Sasakian manifold;
(2) M is a Sasakian space form of constant f-sectional curvature cþ 1;
(3) There exist orthonormal vectors v1; v2; . . . ; v2n�2 orthogonal to x at each

point p of M satisfying the following two conditions:
i) All geodesics gi ¼ giðsÞ on M with gið0Þ ¼ p and _ggið0Þ ¼ vi ð1e ie

2n� 2Þ are mapped to circles of the same curvature 1 in ~MMnðcÞ;
ii) All geodesics gij ¼ gijðsÞ on M with gijð0Þ ¼ p and _ggijð0Þ ¼ ðvi þ vjÞ=

ffiffiffi
2

p

ð1e i < je 2n� 2Þ are mapped to circles of the same curvature 1 in
~MMnðcÞ.

Proof. By virtue of the discussion in the proof of Lemma 2, we only need
to verify that Conditions (1) and (3) are equivalent.

Suppose Condition (1). The shape operator A of M is expressed as A ¼
�I þ ðc=4Þhn x. We take a unit vector v orthogonal to x at an arbitrary fixed
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point p of M. It satisfies Av ¼ �v. Let g ¼ gðsÞ be the geodesic g ¼ gðsÞ with
gð0Þ ¼ p and _ggð0Þ ¼ v on M. We then have

‘ _gggð _gg; xÞ ¼ gð _gg;‘ _ggxÞ ¼ gð _gg; fA _ggÞ ðfrom ð2:5ÞÞ
¼ gð _gg;Af _ggÞ ðfrom Lemma 1Þ
¼ �gðfA _gg; _ggÞ ¼ 0:

This, together with gð _ggð0Þ; xÞ ¼ gðv; xÞ ¼ 0, shows that the tangent vector _ggðsÞ is
perpendicular to xgðsÞ for each s. Hence, again by using Lemma 1 we see that

‘ _ggkA _ggþ _ggk2 ¼ 2gðð‘ _ggAÞ _gg;A _ggþ _ggÞ ¼ 2gðð‘ _ggAÞ _gg;A _ggÞ þ 2gðð‘ _ggAÞ _gg; _ggÞ ¼ 0:

This, combined with A _ggð0Þ þ _ggð0Þ ¼ Avþ v ¼ 0, yields that A _ggðsÞ þ _ggðsÞ ¼ 0 for
each s. Therefore, from (2.2) and (2.3) we have

~‘‘ _gg _gg ¼ gðA _gg; _ggÞN ¼ �N

and

~‘‘ _ggð�NÞ ¼ � _gg:

Thus we can see that the geodesic g on a Sasakian real hypersurface M is a
mapped to a circle of the same curvature 1 in the ambient space ~MMnðcÞ, and get
Condition (3).

Next, we take orthonormal vectors v1; v2; . . . ; v2n�2 at a point p of a real
hypersurface M satisfying Condition (3). Then, from (2.7) they satisfy

~‘‘ _ggi
~‘‘ _ggi _ggi ¼ � _ggi:ð3:2Þ

On the other hand, from (2.2) and (2.3) we have

~‘‘ _ggi
~‘‘ _ggi _ggi ¼ gðð‘ _ggiAÞ _ggi; _ggiÞN� gðA _ggi; _ggiÞA _ggi:ð3:3Þ

Comparing the tangential components of (3.2) and (3.3), we see that

gðA _ggi; _ggiÞA _ggi ¼ _ggi;

so that at s ¼ 0 we get

gðAvi; viÞAvi ¼ vi for 1e ie 2n� 2;

which yields that

Avi ¼ vi or Avi ¼ �vi for 1e ie 2n� 2:ð3:4Þ

This implies that x is a principal curvature vector, because hAx; vii ¼ hx;Avii ¼ 0
for 1e ie 2n� 2. Therefore M is a Hopf hypersurface with at most three
distinct principal curvatures 1;�1 and d ¼ gðAx; xÞ at its each point. On the
other hand, applying the same discussion as above to Condition ii) of (3) in
Theorem 1, we get the following corresponding to Equation (3.4):

Aððvi þ vjÞ=
ffiffiffi
2

p
Þ ¼ ðvi þ vjÞ=

ffiffiffi
2

p
or Aððvi þ vjÞ=

ffiffiffi
2

p
Þ ¼ �ðvi þ vjÞ=

ffiffiffi
2

p
ð3:5Þ
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for 1e i < je 2n� 2. Thus, from (3.4) and (3.5) we can see that either Avi ¼ vi
ð1e ie 2n� 2Þ or Avi ¼ �vi ð1e ie 2n� 2Þ holds. This implies that our real
hypersurface M is totally h-umbilic with coe‰cient a ¼G1 in the ambient space
~MMnðcÞ. We hence get Condition (1). r

Remark 2. As an immediate consequence of the proof of Theorem 1, we
know that on each Sasakian real hypersurface M 2n�1 ðnf 2Þ every geodesic
g ¼ gðsÞ whose initial vector _ggð0Þ is orthogonal to xgð0Þ is mapped to a circle of
the same curvature 1 in a nonflat complex space form ~MMnðcÞ.

In consideration of Lemma 1 and the proof of Theorem 1 we find the
following:

Proposition 1. Let M be a connected real hypersurface of a nonflat complex
space form ~MMnðcÞ. Then M is of type either ðA0Þ or type ðA1Þ if and only if there
exist orthonormal vectors v1; v2; . . . ; v2n�2 orthogonal to x at each point p of M
satisfying the following two conditions:

i 0) All geodesics gi ¼ giðsÞ on M with gið0Þ ¼ p and _ggið0Þ ¼ vi ð1e ie
2n� 2Þ are mapped to circles of positive curvature in ~MMnðcÞ;

ii 0) All geodesics gij ¼ gijðsÞ on M with gijð0Þ ¼ p and _ggijð0Þ ¼ ðvi þ vjÞ=
ffiffiffi
2

p

ð1e i < je 2n� 2Þ are mapped to circles of positive curvature in ~MMnðcÞ.

The following theorem tells us that Theorem 1 is no longer true if we remove
Condition ii) of (3) in the assumption of Theorem 1.

Theorem 2. For a connected real hypersurface M 2n�1 ðnf 2Þ in a nonflat
complex space form ~MMnðcÞ, the following two conditions are mutually equivalent:

(1) M 2n�1 is a Sasakian space form of constant f-sectional curvature cþ 1 or
it is locally congruent to a tube of radius p=4 around totally geodesic
CPlð4Þ ð1e le n� 2Þ in CPnð4Þ;

(2) There exist orthonormal vectors v1; v2; . . . ; v2n�2 orthogonal to x at each
point p of M satisfying that all geodesics gi ¼ giðsÞ on M with gið0Þ ¼ p
and _ggið0Þ ¼ vi ð1e ie 2n� 2Þ are mapped to circles of the same curva-
ture 1 in ~MMnðcÞ.

Proof. We suppose Condition (2). The discussion in the proof of Theorem
1 shows that M has constant f-sectional curvature cþ 1 or is a Hopf hyper-
surface with at most three distinct (constant) principal curvatures 1;�1 and d ¼
gðAx; xÞ at its each point. In the following, we shall consider the latter case.
The classification theorems of Hopf hypersurfaces with constant principal curva-
tures imply that this non-Sasakian Hopf hypersurface M is one of the hyper-
surfaces of types ðA0Þ, ðA1Þ, ðA2Þ and (B). This, together with the tables of
principal curvatures in Section 2, implies that the real hypersurface M is locally
congruent to a tube of radius p=4 around totally geodesic CPlð4Þ ð1e le n� 2Þ
in CPnð4Þ. Hence we obtain Condition (1).

Condition (1) follows from Condition (2) by using Lemma 2 and the proof
of Theorem 1. r
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Remark 3. (1) Theorems 1 and 2 are local statements. If we add the
condition that M is complete and simply connected to the assumptions,
then these theorems are global results.

(2) Every circle of curvature 1 in Theorems 1 and 2 lies on a totally real
totally geodesic surface RP2ðc=4Þ (resp. RH 2ðc=4Þ) of constant sectional
curvature c=4 in CPnðcÞ (resp. CHnðcÞ). It is a simple curve, but is not
necessarily closed. A circle of curvature 1 in Theorems 1 and 2 is closed
if and only if c > �4. In particular, when c ¼ �4, every circle of cur-
vature 1 in Theorems 1 and 2 is a horocycle on CHnð�4Þ (for details, see
[1, 2]).

4. The length spectrum of a Sasakian space form

In this section, let M denote an arbitrary totally h-umbilic hypersurface of a
nonflat complex space form ~MMnðcÞ with nf 2. In order to investigate geometric
properties of geodesics on a complete and simply connected Sasakian space form
M 2n�1ðcþ 1Þ of constant f-sectional curvature cþ 1, we study those of geodesics
on this hypersurface M. The following discussion is indebted to [3].

Our hypersurface M is a nice Riemannian homogeneous manifold. Such
a manifold M is known as an example of a naturally reductive Riemannian
homogeneous manifold (see [7, 8]). This fact implies that each geodesic g on the
hypersurface M is a homogeneous curve, namely the curve g is an orbit of some
one-parameter subgroup of the isometry group IðMÞ of M, so that it is a simple
curve.

We recall the congruence theorem for geodesics on the hypersurface M. To
do this, for a geodesic g on M, we define its structure torsion rg by rg ¼ gð _gg; xgÞ.
Clearly, it satisfies �1e rg e 1. Moreover, the computation in the proof of
Theorem 1 shows that rg is constant along g.

For geodesics on the hypersurface M, we can classify them by means of their
structure torsions as follows. We say that two smooth curves g1, g2 on M are
congruent to each other if there exists an isometry j of M satisfying g2ðsÞ ¼
ðj � g1ÞðsÞ for all s. When these curves g1, g2 are geodesics on the hypersurface
M, it is known that they are congruent to each other with respect to the isometry
group IðMÞ of M if and only if their structure torsions rg1 and rg2 satisfy
jrg1 j ¼ jrg2 j.

As a matter of course, for each cð< 0Þ every horosphere of CHnðcÞ has no
closed geodesics, because each geodesic on every horosphere is a horocycle in the
ambient space CHnðcÞ. But for other totally h-umbilic hypersurfaces M, using
the above congruence theorem, we can investigate the number of congruence
classes of closed geodesics on M. We emphasize that each totally h-umbilic
hypersurface M, which is not congruent to a horosphere of CHnðcÞ, has countably
infinite congruence classes of closed geodesics.

We here pay particular attention to totally h-umbilic hypersurfaces of
CPnðcÞ. Every geodesic sphere GðrÞ ð0 < r < p=

ffiffiffi
c

p
Þ of CPnðcÞ is a Riemannian
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homogeneous space, which is not isometric but di¤eomorphic to a standard
sphere, with maximal sectional curvature K ¼ cþ ðc=4Þ cot2ð

ffiffiffi
c

p
r=2Þ and minimal

sectional curvature ðc=4Þ cot2ð
ffiffiffi
c

p
r=2Þ. Moreover, when the radius r satisfies

tan2ð
ffiffiffi
c

p
r=2Þ > 2, this geodesic sphere GðrÞ in CPnðcÞ is so-called a Berger sphere.

That is, the sectional curvatures of GðrÞ with tan2ð
ffiffiffi
c

p
r=2Þ > 2 lie in the interval

½dK ;K � with some d A ð0; 1=9Þ but it has closed geodesics of length shorter than

2p=
ffiffiffiffi
K

p
(see [10]). Indeed, if we take an arbitrary integral curve of the char-

acteristic vector field x on GðrÞ, then it is a closed geodesic whose length is
2p sinð

ffiffiffi
c

p
rÞ=

ffiffiffi
c

p
. This length is shorter than 2p=

ffiffiffiffi
K

p
if tan2ð

ffiffiffi
c

p
r=2Þ > 2.

Furthermore, this closed geodesic is the only closed geodesic on GðrÞ with respect

to the isometry group IðGðrÞÞ of GðrÞ of length less than 2p=
ffiffiffiffi
K

p
.

We here clarify some fundamental properties of geodesics on a complete
and simply connected Sasakian space form M 2n�1ðcþ 1Þ of constant f-sectional
curvature cþ 1 for each cð0 0Þ. By virtue of the above discussion and Lemma 2
we have the following:

Proposition 2. (1) Every geodesic g on M 2n�1ðcþ 1Þ is a homogeneous
curve, that is the curve g is an orbit of some one-parameter subgroup of the
isometry group IðM 2n�1ðcþ 1ÞÞ;

(2) Two geodesics g1, g2 on M 2n�1ðcþ 1Þ are congruent to each other with
respect to the isometry group IðM 2n�1ðcþ 1ÞÞ of M 2n�1ðcþ 1Þ if and only
if their structure torsions rg1 and rg2 satisfy jrg1 j ¼ jrg2 j;

(3) M 2n�1ð�3Þ has no closed geodesics and every geodesic on this manifold
can be considered as a horocycle in CHnð�4Þ;

(4) M 2n�1ðcþ 1Þ, c0�4 has countably infinite congruence classes of closed
geodesics;

(5) When c > 8, M 2n�1ðcþ 1Þ is a Berger sphere.

For other detailed information on the length spectrum, see [3].

5. The metric of a certain Sasakian space form M 2n�1ðcþ 1Þ

In this section, we pay particular attention to the metric of a complete and
simply connected Sasakian space form with constant f-sectional curvature cþ 1
for each c > 0.

We investigate the metric g of i) in Lemma 2. To do this, we must clarify
the relation between the metrics of CPnðcÞ and S2nþ1ðc=4Þ of constant sectional
curvature c=4 through the Hopf fibration p : S2nþ1ðc=4Þ ! CPnðcÞ. We denote
by Sm½R� an m-dimensional standard sphere of radius R. So we can set

S2nþ1½R� ¼ fz ¼ ðz0; . . . ; znÞ A Cnþ1 j jz0j2 þ � � � þ jznj2 ¼ R2g ¼ S2nþ1 1

R2

� �
:
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As is well-known, the standard inner product h ; i of Cnþ1 is given by hX ;Yi ¼
Reð

Pn
i¼0 X

iY iÞ. Note that the horizontal part Ĥzz of p : S2nþ1½R� ! CPnð4=R2Þ
at ẑz A S2nþ1½R� is expressed as

Ĥzz ¼ fðẑz; X̂X Þ A fẑzg � Cnþ1 j hẑz; X̂Xi ¼ hiẑz; X̂Xi ¼ 0g:

Then the meric g defines the metric ĝg of S2nþ1½R� which degenerates along the
vertical vector iẑz as follows. For any ðẑz; X̂X Þ; ðẑz; ŶY Þ A TẑzS

2nþ1½R� ¼ fX̂X A Cnþ1 j
hẑz; X̂Xi ¼ 0g, we take two horizontal vectors

X̂X � iẑz

R
; X̂X

� �
iẑz

R
¼ X̂X � 1

R2
hiẑz; X̂Xiiẑz; ŶY � iẑz

R
; ŶY

� �
iẑz

R
¼ ŶY � 1

R2
hiẑz; ŶYiiẑz A Ĥzz:

By direct computation we have

ĝgððẑz; X̂XÞ; ðẑz; ŶYÞÞ ¼ X̂X � 1

R2
hiẑz; X̂Xiiẑz; ŶY � 1

R2
hiẑz; ŶYiiẑz

� �

¼ hX̂X ; ŶYi� 2

R2
hiẑz; X̂Xihiẑz; ŶYiþ 1

R4
hiẑz; X̂Xihiẑz; ŶYikiẑzk2

¼ hX̂X ; ŶYi� 1

R2
hiẑz; X̂Xihiẑz; ŶYi;

so that

ĝgððẑz; X̂XÞ; ðẑz; ŶYÞÞ ¼ hX̂X ; ŶYi� 1

R2
hiẑz; X̂Xihiẑz; ŶYið5:1Þ

for each ðẑz; X̂XÞ; ðẑz; ŶYÞ A TẑzS
2nþ1½R�.

On the other hand, we denote by GðrÞ ¼ Gðr; 4=R2Þ a geodesic sphere of
radius r ð0 < r < Rp=2Þ in CPnð4=R2Þ. The inverse image p�1ðGðrÞÞ is expressed
as

p�1ðGðrÞÞ ¼ S1½R1� � S2n�1½R2�; R2
1 þ R2

2 ¼ R2:

We here remark that R1 ¼ R cosðr=RÞ and R2 ¼ R sinðr=RÞ. Indeed, we can
set R1 ¼ R cos y, R2 ¼ R sin y. It is known that the hypersurface p�1ðGðrÞÞ of
S2nþ1½R� has two constant principal curvatures �R2=ðRR1Þ, R1=ðRR2Þ. This
shows that the principal curvatures l1, d of the geodesic sphere GðrÞ are expressed
as l1 ¼ R1=ðRR2Þ, d ¼ ðR1=ðRR2ÞÞ � ðR2=ðRR1ÞÞ. On the other hand, l1 can
be expressed as l1 ¼ ð

ffiffiffi
c

p
=2Þ cotð

ffiffiffi
c

p
r=2Þ ¼ ð1=RÞ cotðr=RÞ. We hence find that

y ¼ r=R.
Next, in order to define a di¤eomorphism j : S2n�1ð1Þð¼ S2n�1½1�Þ ! GðrÞ,

we consider a di¤eomorphism ~jj : S2n�1ð1Þ ! ~jjðS2n�1ð1ÞÞ ðHS1½R1� � S2n�1½R2�Þ
given by ~jjðzÞ ¼ ðR1;R2zÞ. Then we get a desirable mapping j : S2n�1ð1Þ ! GðrÞ
as j ¼ p � ~jj. We here note that

ðd ~jjÞzðz;X Þ ¼ ð0;R2XÞ:ð5:2Þ
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We shall compute the metric ga on S2n�1ð1Þ defined by ga ¼ j�g, which is the
pullback of g by j. It follows from (5.1) and (5.2) that

gaððz;X Þ; ðz;Y ÞÞ ¼ ĝgðððR1;R2zÞ; ð0;R2XÞÞ; ððR1;R2zÞ; ð0;R2Y ÞÞÞ
¼ hð0;R2X Þ; ð0;R2Y Þi

� 1

R2
hiðR1;R2zÞ; ð0;R2XÞihiðR1;R2zÞ; ð0;R2Y Þi

¼ R2
2hX ;Yi� R4

2

R2
hiz;Xihiz;Yi

¼ R2
2ðhX ;Yi� hiz;Xihiz;YiÞ þ R2

1R
2
2

R2
hiz;Xihiz;Yi:

On the other hand, Remark 1(2) gives us equations R1 ¼ RR2, R2=ðRR1Þ ¼ c=4

and R2
1 þ R2

2 ¼ R2. Thus we see R ¼ 2=
ffiffiffi
c

p
, R1 ¼ 4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðcþ 4Þ

p
, R2 ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffi
cþ 4

p
.

We hence know that the metric g of the geodesic sphere GðrÞ is realized as the
following metric ga which is nothing but the deformation of the standard metric
g0 of S2n�1ð1Þ:

ga ¼ 4

cþ 4
ðg0 � hn hÞ þ 4

cþ 4

� �2
hn h:

Therefore we conclude that the metric g of i) in Lemma 2 coincides with the
well-known metric on a standard example of a complete and simply connected
Sasakian space form with constant f-sectional curvature cþ 1 for each c > 0 (see
[5]).
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