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A CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS
IN COMPLEX EUCLIDEAN SPACES WITH LEGENDRE CURVES

YuNn MyunGg On

Abstract

In [1], B. Y. Chen provided a new method to construct Lagrangian surfaces in C2
by using Legendre curves in S3(1) < C>. In this paper, we investigate the similar
methods to construct some Lagrangian submanifolds in complex Euclidean spaces
C" (n>=3).

1. Introduction

A regular curve z : I — S?~!(r) = C" in the hypersphere S?*~!(r) of radius r
centered at the origin of C" is called a Legendre curve if <{z'(¢),iz(¢#)> =0
identically. The idea of special Legendre curves was introduced by B. Y. Chen
in his paper [2]. The similar notion was introduced by the author, in [6], to find
the explicit construction of Lagrangian isometric immersion of a real-space-form
M"(c) into a complex-space-form M"(4c). For I=1,....k, let z: I} x--- X
I, — S*1(1) — C" be a sum of / unit speed Legendre curves z; : I; — S?"~1(r;)
e C" and a C"-valued function z;; of the variables #1,...,#, i.e.

z=z1(t1) + 22(t2) + -+ z1(tr) + 2 (B, tigas - -5 1)

i 0z111 02141
’ l’atl-H IR étk

(zyizyy = z,izhy = -+ = z,iz;y = 0.

We define that z is an /-th Legendre translation submanifold in S**~'(1) = C".
Since {z;(tj)}jl:1 are orthonormal tangent vector fields, we can choose k —/

such that {zi,... } spans tangent space satisfying

orthonormal vector fields Z,...,Z; by taking Gram-Schmidt process to the
0z 0z 5 .

tangent vector fields i L and thus {z1,...,2), 2141, .. ., 2k} are
Ot1 oty

orthonormal tangent frame fields.

2000 Mathematics Subject Classification. Primary 53C42; Secondary 53C40.

Key words and phrases. Lagrangian submanifolds, Legendre curves, special Legendre translation
submanifolds.

Received February 24, 2009.

521



522 YUN MYUNG OH

Hence, z, iz, z{,...,2}, Zit1s- -2k, 02}, ..,12], 1Zj41,...,1Zx form orthonor-
mal vector fields defined on I} x --- x I. Thus there exist orthonormal normal
vector fields Ajyo,..., A, defined along z such that z, iz, z{,...,z], Zi11,. .., 2k,
iZ{, ..., 0z}, iZ141, ..., iZk, Agy2,- .. A, iAgsa, ..., iA, form an orthonormal basis
on C". With respect to the above orthonormal frame fields,

o B

where a, = a,(t1,...,t), bg =bp(t1,...,t) are real valued functions.
If this expression can be reduced to

(11) ZJ{/ = —zZj + l'/ljZ]{ — Zajs“A.ﬂ%
o

where A, = Ay ,(t1) + -+ Ak »(t) are associated orthonormal normal vector
fields and 4, =a;,(4)z;(t;) for some real valued functions a;, = a;.(t)
(j=1,...,0), then z =z(#;,..., ) is called an Ith special Legendre translation
submanifold in $*"~(1) — C". The curvature of the curves z; are defined as
A= <zjf’,izjf>. Here, we can easily notice that if k=1, then z(¢) becomes a
special Legendre curve as in [2]. Also, we note here that every (n— 1)-th
Legendre translation submanifold in S?~! = C" is special.

We need the following lemma.

Lemma 1 [1]. Let A, B be two vectors in C" and z, w be two complex
numbers. Then we have

<ZA7 M}B> = <Za M}><A7 B> =+ <iZ7 W><A7 lB>7

12 (zA,iwB) = (z,w){A,iB) + {z,iw){A4, B,

where {z,w) = Real(zW) denote the real part of the complex number zw, w the
complex conjugate of w, and {A,B) denotes the canonical inner product of the
vector A and B in the complex Euclidean n-plane C".

As a converse of the definition of Legendre translation submanifold, we have
the following proposition.

PROPOSITION 1. If z=z{(t;)+ -+ 2, 1(ty1) : [y X -+~ x I,_1 — S?"71(1)
= C" is a sum of unit speed Legendre curves satisfying

(1.3) z =iljz; —z

for some nonzero real valued functions J;, j=1,...,n—1, then z is an (n — 1)-th
Legendre translation submanifold.
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Proof. Tt suffices to show that {z, iz]f> =0,j=1,...,n—1. Since <z,z_;> =

0, and <z, zjf’> = —1, we have {z, i)v-zjf —z) =—1 and then 4;(z, iz}} =0. Since
A; is nonzero, <z,izjf =0 identically for all j=1,...,n—1. |
Next, we provide the example of a k-th special Legendre translation
submanifold in S < C™'. Let A,.... (K=2), @iz, s@inits---
A k+2, - - -, Ak, nr1 be real numbers such that
n+1
}Lj >0, 1+ Z Ai o0lj o0 = 0,
oa=k+2
1 ! +t ! for 1+ nZH 2
[ e — = a .,
i Vi ’ Bt ol

©=7; +4y; for 1 <j#i<k.
Then
z=z1(1) + -+ z(tk)

= s /11 ( 2yl 0,... ) 17a1 k+2y -5 d1 n+1>e((}u1+/l|)/2)it1

2y \py — A
wt A < =2y ((Gr—py)/2)it
+ = P aOa"'717a1.k 2y..-,0] 1€ 1=h !
2y \ig + 4 a "
= A 2y, )
+ A 0,... ,L,O, s L2y |
2155 1= 2
+ 'uj * Aj 07 cey _ZV/ 707 sy lvaj,k+27 e 7aj‘n+l e((l/iﬂj)/nitj
217, 1+ 2
_ ) )
R Hie — Mk <() . Yk L ar i, 7ak’n+1>e((;-/c+/lk)/2>’tk
217y e — 7k
A -2 ) )
e % < ceey ke L ak k2 - - 7ak,n+1>e(<ﬂkﬂ/‘)/z>”k
2147k M + A

defines a special Legendre translation submanifold in $**!(1) — C"*!| that is, it
satisfies

Z; = _ZJJFMJZ]‘ E :a_,,aA_/,a

(z,iz{y =0 for j=1,... .k,

where A, = Aj 4+ -+ Ak, are some associated orthonormal normal vector
fields satisfying 4;, = a;,z; for j=1,...,k and a =k +2,...,n+ 1.



524 YUN MYUNG OH

2. Main results

In this chapter, we construct some Lagrangian submanifolds in complex
Euclidean space C" using an (n — 1) special Legendre translation submanifold.

THEOREM 1. Let f : I} — C* be a regular curve defined on an open interval
Liandz: L x - x I, = S™(r) = C" be a sum of unit speed Legendre curves z;
in S?"~\(r;) defined on an open interval I Then we have the following.

(@) If z=1z(t2) +z3(t3) + -+ zu(ty) is an (n—1) Legendre translation
submanifold, then, for any function p;:I; — C, j=2,...,n the map

(2.1) L(s,ta,....ty) = f()z(t2y ..., tn) — zn: J:pj(t)z;(t) dt
j=2

is a Lagrangian isometric immersion of M" = (U,g) into C", where the set U is
defined as

U:={(s,t2,....tn) ey x L--- x I, : f(s5) # p;(t;) for all j=2,... ,n}

and the metric g is the induced metric given by
(22) g =IO ds® + Y _1f(s) = pi)]* dyy
=2

(b) Conversely, if f does not contain any circular arcs, and if L as in (2.1) is a
Lagrangian immersion, then z=zy(ty) + - +2z,(t,) : h x --- x I, — S 1(r)
C" is an (n—1) Legendre translation submanifold.

Proof. Let f: I — C* be a regular curve defined on an open interval I;
and z: L x --- x I, — §?71(r) = C" be a smooth C"-valued map defined on a

product of open intervals I,...,I,. Using (2.1), we have
oL ! - / .
(23) Li=-= ")zt sta)s Ly = (f(8) = pi(6))(4), J=2,-0m.

Now, applying Lemma 1 and using (2.3) yield

Ly, Ly =1 (s)I,

<L57Lrj> = <if/7f(s) - pj(tj)><zv lZ/,(Z])>a

Ly Ly = /() = pi)]*, j=2.....n

<Ltjale> = <l(f(s) - pl)?f(s) - pk(lk)><zla Z.Z]i,>, ] 75 k = 27 cee an

Since z is an (n — 1) Legendre translation submanifold, we can find the induced

metric g on U given as in (2.2) from (2.4) and also, {Ly,iL;) = {Ly,iL; > = 0 for
all j,k=2,...,n which imply that the map L is Lagrangian.

(2.4)
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For (b), suppose L, defined in (2.2) is a Lagrangian isometric immersion.
The similar computation shows that {L,iL,> = {f'(s), f(s) — p;(4)><z, iz}(:,»))
= 0 identically. If there exist one j such that {f'(s), f(s) — p;(#;)> =0 for all s

. . d .
in an open subinterval Iy < [;, then %| fs) — pj(t_,-)|2 = 0 which means for each

ti € I;, the curve f is contained in a circle centered at p;(¢;). It is impossible so
that if f does not contain any circular arcs, then we have {z, izjf (t;)> =0 for all
j=2,...,n and thus z becomes an (n— 1) Legendre translation submanifold.

O

The next theorem shows the extrinsic properties of the immersion.

THEOREM 2. Let f:I) — C* be a unit speed curve, z:I) X ---x I, —
S 1(1)=C" an (n—1)th Legendre translation submanifold, p;:1I; — C,
j=2,...,n complex valued functions, and L: (U,g) — C" be the Lagrangian
isometric immersion defined by

n

(2.5) L(s,ta, ... ty) = f(8)z(t2, ..., ty) — ijpj(t)z_;(t) dt.

J=2

Then we find

(@) Ly is an eigenvector of the shape operator Ay, with eigenvalue i, where K
is the curvature function of f.

(b) For j=2,...,n, L, is an eigenvector of the shape operator A‘]L// if and
only if pp=---=p,=p are constants and f(s)=cs+ p for some ce€ C with
le] = 1.

(c) L is totally geodesic if and only if n=2, p»=p is a constant, f(s) =
es+ p, |e| =1, z is a great circle in S*(1) and L = (f — p)z = csz for a constant c.

Proof.  From (2.5), we have

26) Ly = f"(s)z, Ly = f"(s)z,
Ly, =—pizi+(f —p))z, Ly =0, i#j=2,...,n,

By applying Lemma 1 to (2.6), we obtain
(Lo, ilsy = {f"(9)z, 82> = K,
(Lys,iLyy = (L), iLgy = (Ly,iLyy =0, k # j
(LyyyyiLsy = Ly iLy> = 'S i(f = p)),s
Ly, iLyy = k()| f = pill> — pilf = p)>, J=2,..m,

where ]zj(tj) = <zjf’ ,iz}) is the curvature function of the curve z;. Let ej = Ly,
lj

e =
T =l

(2.7)

, j=2,...,n. Then ej,ey,...,e, are orthonormal frame fields.
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Therefore, the second fundamental form /4 is

hier,er) = K(s)Jer,
h(elae) = ,uJe 5
(2.8) SR
hiej, e;) = wiJer + o;Je;,
h(eivej):07 fOI'l#]:Z,...,n,
SIS = pi) 1 ,
where ;= L P/) o =——"3 3(Kj(fj)|f—l7j|2 - <P_,{,l(f—17j)>) and
= nl f=nl i
K —< iz> for j=2,...,n. We can ecasily see that L; is an eigenvector of

Ay, Wlth elgenvalue K Whlch is the curvature function of f.

For (b), L, is an eigenvector of AJL, if and only if {f",i(f — p;)> =0 for
j=2,...,n which implies that the position vector 7;(s) = f(s) — pi(t;) is always
tangent to the curve y; for any fixed #;. Thus, for each #;, y; is a part of a line
through 0 of C. Therefore, there exist unit vector ﬁelds ¢; in C such that
7i(s) = f(s) = pj(4j) = ¢;(tj)s which yields () = =cu(ts) =¢, pr=-=
pn = p, wWhere ¢ and p are constants in C. Thus, f(s) =cs+ p and |c] = 1.

Suppose L is totally geodesic. From the second statement (b), we know
that x =0. By (2.8), it suffices to show that o; =0 for j=2,...,n which is
equivalent to x;(z;) =0. It is impossible unless n =2 which means that

z:h — S3(1) = C? is a great circle in S3(1). O

3. Application

The following result shows examples of Lagrangian submanifolds in complex
Euclidean space using the main results discussed before.

THEOREM 3. Let f:I) — C* be a unit speed curve, z:I) X --- x I, —
S2=1(1) = C" a (n—1)-th special Legendre translation submanifold, p;: I, —
C, j=2,...,n complex valued functions. Then L:(U,g) — C", defined as in
(2.5), is minimal if and only if, up to rigid motions of C", one of the following
holds:

(@) If n=2, then L is either a totally geodesic immersion or an open portion
of the Lagrangian catenoid, up to dilations and rigid motions.

(b) If n>=3, then L= (f — p)®z is a complex extensor where f(s(x)) =
p+x+iy(x) is a unit speed curve satisfying a differential equation

(y_xy/)n+1 — c(y”)"71(1 +y/(x)2)27n

for a constant ¢ and z =zy+--- 4z, is a sum of circles z;j’s in C"
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Proof. The induced metric on U is

g—ds+2|f (1))| dt;.

Then e; = Ly, ¢j = | f | =2,...,n are orthonormal frame fields and using

these frames and the 1nduced metric g, we have

Veer=Vee=V,e; =0, fori#j=2,...,n,

Vejej,M .
(3.1 If = pil?
Vyer = Sll;i——EL-,, —2,....n
|f - P/|

Using the Codazzi equation and (2.8), we have, for j=2,...,n, (V,h)(e1,¢) =
(Ve h)(ej,e;) which gives

S =pp
(32) e1(yy) = (k= 2u) :
j Ly Pj|2
<f/a f - p>
(3.3) e1(o) = ¢(1y) — ==
I/ = pil
Because of the minimality condition, (2.8) implies
(3'4) K+ﬂ2+'.'+ﬂn:O’ e}(ﬂ]):O’ a/:07 j:2""’n
and then
(3.5) 15 (IS (5) = piI* = <}, i(f = )y = 0.
(3.6) (e = 2p)<pj, /"> =0
By differentiating the equation (3.5) with respect to s, we obtain
(3.7) if'spiy =265 f", f(s) =

Another differentiating the equation (3.7) with respect to s and replacing f” by
ixf' yields
(3.8) wf's pp> + 2icp + 25K, f(s) — pj> = 0.

Now, we can consider two cases.
Case (a) Suppose x =0. It is immediate to know that x; =0 for all j =
2,...n from (3.8). Since o; =0, j=2,...,n, (3.3) and (3.7) imply that

0 <<f’,i(f—p/)>> _ 2w
01 f = pil? ol -pl
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If there exist ,u # 0, then the above equation implies {f — pj, pj> =0 and thus
|f(s) — pj(t])| ;, =0 which means that for each s, every curve p; is contained in a
circle centered at f(s) which is impossible. Therefore, we can conclude that for
all j=2,...,n, u;=0. Therefore, L is totally geodesic and then by theorem 2,
n must be 2.

Case (b) Assume that x # 0. Differentiating (3.8) with respect to s and
replacing f” by ixf’, we find that

0 =r>Cf', py = 215" f = pi> + K< )y + 26w, f = by
By applying (3.7) and (3.8), the above becomes that
22Kk, f = pyy + 26 i i(f = py)D
=1 pl> + k' Py

1
— 2 f o>+ 2K”?i(<f/7 if = p)y - K)

2K,

= 2K2Kj<f/,f — pj> — + 2x' K]<f (f - pj)>

Thus, we have x'x; = 0. Suppose there exits a j such that x; # 0. Then x must
be a nonzero constant which implies f is a circle in C*. For each s, and ¢,
£() = pi(t) = () = o f'5F" + <(s) = pyyif ">if which implies that py =

= py equal to a constant p since f is a unit circle. Then (3.5) implies that x; = 0
for all j =2,...,n which is a contradiction to our assumption. Therefore, x; =0
for all j=2,...,n. Now, each z; is a circle in C" and by (3.5), and (3.8),
<f’,ip]f>= <f’,pjf>:0, j=2,...,n which implies that for each s and ¢,
S(s) = pi(t;)) = c1(s) f'(s) + c2(s)if'(s) for some two functions ¢; and ¢, of s,
yielding p>(f2) = --- = pu(t,) = p become a constant. Therefore, u, =--- = p,

= W = u(s). Now, then (2.5) becomes L(s,t2,...,%,)=(f—p)-
(za+-+-4z,). Therefore, from (3.4), we obtain
(3-9) |f = pIPK(s) + (n = DS i(f = p)> =

By differentiating the equation (3.9) with respect to s, we get

KL = pIP + (14 DS f = py =0
and then it yields

612 2/(n+1)
(3.10) - pP = (K())

for a real constant a. By substituting (3.10) into (3.9), we get

1
(3.11) 'S = py = ——a¥ ()0



A CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS 529

Let’s reparametrize f(s(x)) = p+ x+iy(x). Then
y—xy

(12) k=i =— 2D G Ty )

(14 ()"
From (3.11) and (3.12), we obtain that

n+1
(3.13) (y _ xy/)n+1 — c(y//)nfla + y/(x)2)2fn, c= (ni 1) a4

If n =2, then this equation was completely solved by Bang-Yen Chen in his
paper [1] which is that up to dilations and rigid motions, the Lagrangian
immersion L is an open portion of the Lagrangian catenoid.

Now, we assume that n > 3. Put y; =y, yo =)' and y; = »”. Then the
above equation is equivalent to the system:

!

Y1 =D)2 yé = )3,

(3.14) o 2" 2 ((n + Dxys(r = xp2)" + 20087 2 = m)(1+ »3)'"yays)
3 c(n—1)ys?

It follows from Picard’s theorem that, for a given initial conditions: y3(sp) > 0,

»2(80) = »9, yi(so) = y{ for any constants y{ and pJ, the initial value problem
has a unique solution in some open interval around sp. O
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