A CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES WITH LEGENDRE CURVES

YUN MYUNG OH

Abstract

In [1], B. Y. Chen provided a new method to construct Lagrangian surfaces in \mathbb{C}^2 by using Legendre curves in $S^3(1) \subset \mathbb{C}^2$. In this paper, we investigate the similar methods to construct some Lagrangian submanifolds in complex Euclidean spaces \mathbb{C}^n $(n \ge 3)$.

1. Introduction

A regular curve $z:I\to S^{2n-1}(r)\subset {\bf C^n}$ in the hypersphere $S^{2n-1}(r)$ of radius r centered at the origin of ${\bf C^n}$ is called a Legendre curve if $\langle z'(t),iz(t)\rangle=0$ identically. The idea of special Legendre curves was introduced by B. Y. Chen in his paper [2]. The similar notion was introduced by the author, in [6], to find the explicit construction of Lagrangian isometric immersion of a real-space-form $M^n(c)$ into a complex-space-form $\tilde{M}^n(4c)$. For $l=1,\ldots,k$, let $z:I_1\times\cdots\times I_k\to S^{2n-1}(1)\hookrightarrow {\bf C^n}$ be a sum of l unit speed Legendre curves $z_i:I_i\to S^{2n-1}(r_i)\in {\bf C^n}$ and a ${\bf C^n}$ -valued function z_{l+1} of the variables t_{l+1},\ldots,t_k , i.e.

$$z = z_1(t_1) + z_2(t_2) + \dots + z_l(t_l) + z_{l+1}(t_{l+1}, t_{l+2}, \dots, t_k)$$
 such that $\left\{z'_1, \dots, z'_l, \frac{\partial z_{l+1}}{\partial t_{l+1}}, \dots, \frac{\partial z_{l+1}}{\partial t_k}\right\}$ spans tangent space satisfying
$$\langle z, iz'_1 \rangle = \langle z, iz'_2 \rangle = \dots = \langle z, iz'_l \rangle = 0.$$

We define that z is an l-th Legendre translation submanifold in $S^{2n-1}(1) \subset \mathbf{C^n}$. Since $\{z_j'(t_j)\}_{j=1}^l$ are orthonormal tangent vector fields, we can choose k-l orthonormal vector fields $\tilde{z}_{l+1},\ldots,\tilde{z}_k$ by taking Gram-Schmidt process to the tangent vector fields $\left\{\frac{\partial z_{l+1}}{\partial t_{l+1}},\ldots,\frac{\partial z_{l+1}}{\partial t_k}\right\}$ and thus $\{z_1',\ldots,z_l',\tilde{z}_{l+1},\ldots,\tilde{z}_k\}$ are orthonormal tangent frame fields.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C42; Secondary 53C40.

Key words and phrases. Lagrangian submanifolds, Legendre curves, special Legendre translation submanifolds.

Received February 24, 2009.

Hence, z, iz, z_1' , ..., z_l' , \tilde{z}_{l+1} , ..., \tilde{z}_k , iz_1' , ..., iz_l' , $i\tilde{z}_{l+1}$, ..., $i\tilde{z}_k$ form orthonormal vector fields defined on $I_1 \times \cdots \times I_k$. Thus there exist orthonormal normal vector fields A_{k+2} , ..., A_n defined along z such that z, iz, z_1' , ..., z_l' , \tilde{z}_{l+1} , ..., \tilde{z}_k , iz_1' , ..., iz_l' , $i\tilde{z}_{l+1}$, ..., $i\tilde{z}_k$, A_{k+2} , ..., A_n , iA_{k+2} , ..., iA_n form an orthonormal basis on \mathbb{C}^n . With respect to the above orthonormal frame fields,

$$z_j'' = -z_j + i\lambda_j z_j' - \sum_{\alpha} a_{\alpha} A_{\alpha} + \sum_{\beta} b_{\beta} i A_{\beta},$$

where $a_{\alpha} = a_{\alpha}(t_1, \dots, t_k)$, $b_{\beta} = b_{\beta}(t_1, \dots, t_k)$ are real valued functions. If this expression can be reduced to

(1.1)
$$z_j'' = -z_j + i\lambda_j z_j' - \sum_{\alpha} a_{j,\alpha} A_{j,\alpha},$$

where $A_{\alpha}=A_{1,\alpha}(t_1)+\cdots+A_{k,\alpha}(t_k)$ are associated orthonormal normal vector fields and $A'_{j,\alpha}=a_{j,\alpha}(t_j)z'_j(t_j)$ for some real valued functions $a_{j,\alpha}=a_{j,\alpha}(t_j)$ $(j=1,\ldots,l)$, then $z=z(t_1,\ldots,t_k)$ is called an lth special Legendre translation submanifold in $S^{2n-1}(1)\hookrightarrow \mathbf{C^n}$. The curvature of the curves z_j are defined as $\lambda_j=\langle z''_j,iz'_j\rangle$. Here, we can easily notice that if k=1, then z(t) becomes a special Legendre curve as in [2]. Also, we note here that every (n-1)-th Legendre translation submanifold in $S^{2n-1}\subset \mathbf{C^n}$ is special.

We need the following lemma.

Lemma 1 [1]. Let A, B be two vectors in \mathbb{C}^n and z, w be two complex numbers. Then we have

(1.2)
$$\langle zA, wB \rangle = \langle z, w \rangle \langle A, B \rangle + \langle iz, w \rangle \langle A, iB \rangle,$$

$$\langle zA, iwB \rangle = \langle z, w \rangle \langle A, iB \rangle + \langle z, iw \rangle \langle A, B \rangle,$$

where $\langle z, w \rangle = Real(z\overline{w})$ denote the real part of the complex number $z\overline{w}$, \overline{w} the complex conjugate of w, and $\langle A, B \rangle$ denotes the canonical inner product of the vector A and B in the complex Euclidean n-plane \mathbb{C}^n .

As a converse of the definition of Legendre translation submanifold, we have the following proposition.

PROPOSITION 1. If $z = z_1(t_1) + \cdots + z_{n-1}(t_{n-1}) : I_1 \times \cdots \times I_{n-1} \to S^{2n-1}(1)$ $\subset \mathbb{C}^n$ is a sum of unit speed Legendre curves satisfying

$$z_j'' = i\lambda_j z_j' - z$$

for some nonzero real valued functions λ_j , $j=1,\ldots,n-1$, then z is an (n-1)-th Legendre translation submanifold.

Proof. It suffices to show that $\langle z, iz_j' \rangle = 0$, $j = 1, \ldots, n-1$. Since $\langle z, z_j' \rangle = 0$, and $\langle z, z_j'' \rangle = -1$, we have $\langle z, i\lambda_j z_j' - z \rangle = -1$ and then $\lambda_j \langle z, iz_j' \rangle = 0$. Since λ_j is nonzero, $\langle z, iz_j' \rangle = 0$ identically for all $j = 1, \ldots, n-1$.

Next, we provide the example of a k-th special Legendre translation submanifold in $S^{2n+1} \subset \mathbf{C}^{\mathbf{n}+1}$. Let $\lambda_1, \ldots, \lambda_k$ $(k \ge 2), a_{1,k+2}, \ldots, a_{1,n+1}, \ldots, a_{k,k+2}, \ldots, a_{k,n+1}$ be real numbers such that

$$\lambda_j > 0, \quad 1 + \sum_{\alpha = k+2}^{n+1} a_{i,\alpha} a_{j,\alpha} = 0,$$

$$1 = \frac{1}{\gamma_1} + \dots + \frac{1}{\gamma_k} \quad \text{for } \gamma_j = 1 + \sum_{\alpha = k+2}^{n+1} a_{j,\alpha}^2,$$

$$\mu_j^2 = \lambda_j^2 + 4\gamma_j \quad \text{for } 1 \le j \ne i \le k.$$

Then

$$\begin{split} z &= z_{1}(t_{1}) + \dots + z_{k}(t_{k}) \\ &= \frac{\mu_{1} - \lambda_{1}}{2\mu_{1}\gamma_{1}} \left(\frac{2\gamma_{1}}{\mu_{1} - \lambda_{1}}, 0, \dots, 1, a_{1,k+2}, \dots, a_{1,n+1} \right) e^{((\lambda_{1} + \mu_{1})/2)it_{1}} \\ &+ \frac{\mu_{1} + \lambda_{1}}{2\mu_{1}\gamma_{1}} \left(\frac{-2\gamma_{1}}{\mu_{1} + \lambda_{1}}, 0, \dots, 1, a_{1,k+2}, \dots, a_{1,n+1} \right) e^{((\lambda_{1} - \mu_{1})/2)it_{1}} \\ &+ \dots + \frac{\mu_{j} - \lambda_{j}}{2\mu_{j}\gamma_{j}} \left(0, \dots, \frac{2\gamma_{j}}{\mu_{j} - \lambda_{j}}, 0, \dots, 1, a_{j,k+2}, \dots, a_{j,n+1} \right) e^{((\lambda_{j} + \mu_{j})/2)it_{j}} \\ &+ \frac{\mu_{j} + \lambda_{j}}{2\mu_{j}\gamma_{j}} \left(0, \dots, \frac{-2\gamma_{j}}{\mu_{j} + \lambda_{j}}, 0, \dots, 1, a_{j,k+2}, \dots, a_{j,n+1} \right) e^{((\lambda_{j} - \mu_{j})/2)it_{j}} \\ &+ \dots + \frac{\mu_{k} - \lambda_{k}}{2\mu_{k}\gamma_{k}} \left(0, \dots, \frac{2\gamma_{k}}{\mu_{k} - \lambda_{k}}, 1, a_{k,k+2}, \dots, a_{k,n+1} \right) e^{((\lambda_{k} + \mu_{k})/2)it_{k}} \\ &+ \frac{\mu_{k} + \lambda_{k}}{2\mu_{k}\gamma_{k}} \left(0, \dots, \frac{-2\gamma_{k}}{\mu_{k} + \lambda_{k}}, 1, a_{k,k+2}, \dots, a_{k,n+1} \right) e^{((\lambda_{k} - \mu_{k})/2)it_{k}} \end{split}$$

defines a special Legendre translation submanifold in $S^{2n+1}(1) \hookrightarrow \mathbb{C}^{n+1}$, that is, it satisfies

$$z_j'' = -z_j + i\lambda_j z_j' - \sum_j a_{j,\alpha} A_{j,\alpha}$$
$$\langle z, iz_j' \rangle = 0 \quad \text{for } j = 1, \dots, k,$$

where $A_{\alpha} = A_{1,\alpha} + \cdots + A_{k,\alpha}$ are some associated orthonormal normal vector fields satisfying $A_{j,\alpha} = a_{j,\alpha}z_j$ for $j = 1, \dots, k$ and $\alpha = k + 2, \dots, n + 1$.

Main results 2.

In this chapter, we construct some Lagrangian submanifolds in complex Euclidean space \mathbb{C}^n using an (n-1) special Legendre translation submanifold.

THEOREM 1. Let $f: I_1 \to \mathbb{C}^*$ be a regular curve defined on an open interval In and $z: I_2 \times \cdots \times I_n \to S^{2n-1}(r) \subset \mathbb{C}^n$ be a sum of unit speed Legendre curves z_j in $S^{2n-1}(r_j)$ defined on an open interval I_j . Then we have the following.

(a) If $z = z_2(t_2) + z_3(t_3) + \cdots + z_n(t_n)$ is an (n-1) Legendre translation

submanifold, then, for any function $p_i:I_i\to \mathbb{C},\ j=2,\ldots,n$ the map

(2.1)
$$L(s, t_2, \dots, t_n) = f(s)z(t_2, \dots, t_n) - \sum_{j=2}^n \int_0^{t_j} p_j(t)z_j'(t) dt$$

is a Lagrangian isometric immersion of $M^n = (U,g)$ into \mathbb{C}^n , where the set U is defined as

$$U := \{(s, t_2, \dots, t_n) \in I_1 \times I_2 \dots \times I_n : f(s) \neq p_j(t_j) \text{ for all } j = 2, \dots, n\}$$

and the metric g is the induced metric given by

(2.2)
$$g = r^2 |f'(s)|^2 ds^2 + \sum_{j=2}^n |f(s) - p_j(t_j)|^2 dt_j$$

(b) Conversely, if f does not contain any circular arcs, and if L as in (2.1) is a Lagrangian immersion, then $z = z_2(t_2) + \cdots + z_n(t_n) : I_2 \times \cdots \times I_n \to S^{2n-1}(r) \subset$ \mathbb{C}^n is an (n-1) Legendre translation submanifold.

Proof. Let $f: I_1 \to \mathbb{C}^*$ be a regular curve defined on an open interval I_1 and $z: I_2 \times \cdots \times I_n \to S^{2n-1}(r) \subset \mathbb{C}^n$ be a smooth \mathbb{C}^n -valued map defined on a product of open intervals I_2, \ldots, I_n . Using (2.1), we have

(2.3)
$$L_s = \frac{\partial L}{\partial s} = f'(s)z(t_2, \dots, t_n), \quad L_{t_j} = (f(s) - p_j(t_j))z'_j(t_j), \quad j = 2, \dots, n.$$

Now, applying Lemma 1 and using (2.3) yield

(2.4)
$$\begin{cases} \langle L_{s}, L_{s} \rangle = r^{2} | f'(s)|^{2}, \\ \langle L_{s}, L_{t_{j}} \rangle = \langle if', f(s) - p_{j}(t_{j}) \rangle \langle z, iz'_{j}(t_{j}) \rangle, \\ \langle L_{t_{j}}, L_{t_{j}} \rangle = | f(s) - p_{j}(t_{j})|^{2}, \quad j = 2, \dots, n \\ \langle L_{t_{j}}, L_{t_{k}} \rangle = \langle i(f(s) - p_{j}), f(s) - p_{k}(t_{k}) \rangle \langle z_{j}, iz'_{k} \rangle, \quad j \neq k = 2, \dots, n \end{cases}$$

Since z is an (n-1) Legendre translation submanifold, we can find the induced metric g on U given as in (2.2) from (2.4) and also, $\langle L_s, iL_{t_i} \rangle = \langle L_{t_i}, iL_{t_k} \rangle = 0$ for all j, k = 2, ..., n which imply that the map L is Lagrangian.

For (b), suppose L, defined in (2.2) is a Lagrangian isometric immersion. The similar computation shows that $\langle L_s, iL_{t_i} \rangle = \langle f'(s), f(s) - p_i(t_i) \rangle \langle z, iz_i'(t_i) \rangle$ $\equiv 0$ identically. If there exist one j such that $\langle f'(s), f(s) - p_j(t_j) \rangle = 0$ for all s in an open subinterval $I_0 \subset I_1$, then $\frac{d}{ds}|f(s) - p_j(t_j)|^2 = 0$ which means for each $t_i \in I_i$, the curve f is contained in a circle centered at $p_i(t_i)$. It is impossible so that if f does not contain any circular arcs, then we have $\langle z, iz_i'(t_j) \rangle \equiv 0$ for all $j=2,\ldots,n$ and thus z becomes an (n-1) Legendre translation submanifold.

The next theorem shows the extrinsic properties of the immersion.

Theorem 2. Let $f:I_1\to {\bf C}^*$ be a unit speed curve, $z:I_2\times\cdots\times I_n\to S^{2n-1}(1)\subset {\bf C}^n$ an (n-1)th Legendre translation submanifold, $p_j:I_j\to {\bf C}$, $j=2,\ldots,n$ complex valued functions, and $L:(U,g)\to \mathbb{C}^n$ be the Lagrangian isometric immersion defined by

(2.5)
$$L(s, t_2, \dots, t_n) = f(s)z(t_2, \dots, t_n) - \sum_{j=2}^n \int_0^{t_j} p_j(t)z_j'(t) dt.$$

Then we find

- (a) L_s is an eigenvector of the shape operator A_{JL_s} with eigenvalue κ , where κ is the curvature function of f.
- (b) For $j=2,\ldots,n,$ L_{t_j} is an eigenvector of the shape operator $A_{JL_{t_j}}$ if and only if $p_2=\cdots=p_n=p$ are constants and f(s)=cs+p for some $c\in \mathbb{C}$ with
- (c) L is totally geodesic if and only if n = 2, $p_2 = p$ is a constant, f(s) = pcs + p, |c| = 1, z is a great circle in $S^3(1)$ and L = (f - p)z = csz for a constant c.

Proof. From (2.5), we have

(2.6)
$$L_{ss} = f''(s)z, \quad L_{st_j} = f'(s)z'_j,$$

$$L_{t_jt_j} = -p'_jz'_j + (f - p_j)z''_j, \quad L_{t_it_j} = 0, \quad i \neq j = 2, \dots, n,$$

By applying Lemma 1 to (2.6), we obtain

$$\langle L_{ss}, iL_{s} \rangle = \langle f''(s)z, if'z \rangle = \kappa,$$

$$\langle L_{ss}, iL_{t_{j}} \rangle = \langle L_{st_{j}}, iL_{s} \rangle = \langle L_{st_{j}}, iL_{tk} \rangle = 0, \quad k \neq j$$

$$\langle L_{t_{j}t_{j}}, iL_{s} \rangle = \langle L_{st_{j}}, iL_{t_{j}} \rangle = \langle f', i(f - p_{j}) \rangle,$$

$$\langle L_{t_{i}t_{i}}, iL_{t_{i}} \rangle = k_{j}(t_{j}) ||f - p_{j}||^{2} - \langle p'_{j}, i(f - p_{j}) \rangle, \quad j = 2, \dots, n,$$

where $k_i(t_i) = \langle z_i'', iz_i' \rangle$ is the curvature function of the curve z_i . Let $e_1 = L_s$, $e_j = \frac{L_{t_j}}{|f - n_i|}, \quad j = 2, \dots, n.$ Then e_1, e_2, \dots, e_n are orthonormal frame fields.

Therefore, the second fundamental form h is

(2.8)
$$h(e_{1}, e_{1}) = \kappa(s)Je_{1},$$

$$h(e_{1}, e_{j}) = \mu_{j}Je_{j},$$

$$h(e_{j}, e_{j}) = \mu_{j}Je_{1} + \alpha_{j}Je_{j},$$

$$h(e_{i}, e_{j}) = 0, \text{ for } i \neq j = 2, \dots, n,$$

where $\mu_j = \frac{\langle f', i(f-p_j) \rangle}{|f-p_j|^2}$, $\alpha_j = \frac{1}{|f-p_j|^3} (\kappa_j(t_j)|f-p_j|^2 - \langle p'_j, i(f-p_j) \rangle)$ and $\kappa_j = \langle z''_j, iz'_j \rangle$ for $j = 2, \ldots, n$. We can easily see that L_s is an eigenvector of A_{JL_s} with eigenvalue κ which is the curvature function of f.

For (b), L_{t_j} is an eigenvector of $A_{JL_{t_j}}$ if and only if $\langle f', i(f-p_j) \rangle = 0$ for $j=2,\ldots,n$ which implies that the position vector $\gamma_j(s)=f(s)-p_j(t_j)$ is always tangent to the curve γ_j for any fixed t_j . Thus, for each t_j , γ_j is a part of a line through 0 of ${\bf C}$. Therefore, there exist unit vector fields c_j in ${\bf C}$ such that $\gamma_j(s)=f(s)-p_j(t_j)=c_j(t_j)s$ which yields $c_2(t_2)=\cdots=c_n(t_n)=c$, $p_2=\cdots=p_n=p$, where c and p are constants in ${\bf C}$. Thus, f(s)=cs+p and |c|=1.

Suppose L is totally geodesic. From the second statement (b), we know that $\kappa = 0$. By (2.8), it suffices to show that $\alpha_j = 0$ for j = 2, ..., n which is equivalent to $\kappa_j(t_j) = 0$. It is impossible unless n = 2 which means that $z : I_2 \to S^3(1) \subset \mathbb{C}^2$ is a great circle in $S^3(1)$.

3. Application

The following result shows examples of Lagrangian submanifolds in complex Euclidean space using the main results discussed before.

THEOREM 3. Let $f: I_1 \to \mathbb{C}^*$ be a unit speed curve, $z: I_2 \times \cdots \times I_n \to S^{2n-1}(1) \subset \mathbb{C}^n$ a (n-1)-th special Legendre translation submanifold, $p_j: I_j \to \mathbb{C}$, $j=2,\ldots,n$ complex valued functions. Then $L:(U,g)\to \mathbb{C}^n$, defined as in (2.5), is minimal if and only if, up to rigid motions of \mathbb{C}^n , one of the following holds:

- (a) If n = 2, then L is either a totally geodesic immersion or an open portion of the Lagrangian catenoid, up to dilations and rigid motions.
- (b) If $n \ge 3$, then $L = (f p) \otimes z$ is a complex extensor where f(s(x)) = p + x + iy(x) is a unit speed curve satisfying a differential equation

$$(y - xy')^{n+1} = c(y'')^{n-1} (1 + y'(x)^2)^{2-n}$$

for a constant c and $z = z_2 + \cdots + z_n$ is a sum of circles z_i 's in \mathbb{C}^n .

Proof. The induced metric on U is

$$g = ds^2 + \sum_{j=1}^{n} |f(s) - p_j(t_j)|^2 dt_j^2.$$

Then $e_1 = L_s$, $e_j = \frac{L_{t_j}}{|f - p_j|}$, j = 2, ..., n are orthonormal frame fields and using these frames and the induced metric g, we have

(3.1)
$$\nabla_{e_{1}}e_{1} = \nabla_{e_{1}}e_{j} = \nabla_{e_{i}}e_{j} = 0, \quad \text{for } i \neq j = 2, \dots, n,$$

$$\nabla_{e_{j}}e_{j} = \frac{-\langle f', f - p_{j} \rangle}{|f - p_{j}|^{2}}e_{1},$$

$$\nabla_{e_{j}}e_{1} = \frac{\langle f', f - p_{j} \rangle}{|f - p_{i}|^{2}}e_{j}, \quad j = 2, \dots, n.$$

Using the Codazzi equation and (2.8), we have, for j = 2, ..., n, $(\nabla_{e_j} h)(e_1, e_j) = (\nabla_{e_1} h)(e_j, e_j)$ which gives

(3.2)
$$e_1(\mu_j) = (\kappa - 2\mu_j) \frac{\langle f', f - p_j \rangle}{|f - p_j|^2}$$

(3.3)
$$e_1(\alpha_j) = e_j(\mu_j) - \alpha_j \frac{\langle f', f - p_j \rangle}{|f - p_j|^2}$$

Because of the minimality condition, (2.8) implies

(3.4)
$$\kappa + \mu_2 + \dots + \mu_n = 0$$
, $e_j(\mu_j) = 0$, $\alpha_j = 0$, $j = 2, \dots, n$ and then

(3.5)
$$\kappa_{j}(t_{j})|f(s) - p_{j}|^{2} - \langle p'_{j}, i(f - p_{j}) \rangle = 0.$$

$$(3.6) (\kappa - 2\mu_i) \langle p_i', f' \rangle = 0$$

By differentiating the equation (3.5) with respect to s, we obtain

(3.7)
$$\langle if', p_i' \rangle = 2\kappa_i \langle f', f(s) - p_j \rangle$$

Another differentiating the equation (3.7) with respect to s and replacing f'' by $i\kappa f'$ yields

(3.8)
$$\kappa \langle f', p'_j \rangle + 2\kappa_j + 2\kappa \kappa_j \langle if', f(s) - p_j \rangle = 0.$$

Now, we can consider two cases.

Case (a) Suppose $\kappa = 0$. It is immediate to know that $\kappa_j = 0$ for all $j = 2, \ldots, n$ from (3.8). Since $\alpha_j = 0, j = 2, \ldots, n$, (3.3) and (3.7) imply that

$$0 = \frac{\partial}{\partial t_j} \left(\frac{\langle f', i(f - p_j) \rangle}{|f - p_j|^2} \right) = \mu_j \frac{2\langle f - p_j, p_j' \rangle}{|f - p_j|^2}$$

If there exist $\mu_j \neq 0$, then the above equation implies $\langle f - p_j, p_j' \rangle = 0$ and thus $|f(s) - p_j(t_j)|_{t_j}^2 = 0$ which means that for each s, every curve p_j is contained in a circle centered at f(s) which is impossible. Therefore, we can conclude that for all $j = 2, \ldots, n$, $\mu_j = 0$. Therefore, L is totally geodesic and then by theorem 2, n must be 2.

Case (b) Assume that $\kappa \neq 0$. Differentiating (3.8) with respect to s and replacing f'' by $i\kappa f'$, we find that

$$0 = \kappa^2 \langle if', p_i' \rangle - 2\kappa^2 \kappa_i \langle f', f - p_i \rangle + \kappa' \langle f', p_i' \rangle + 2\kappa' \kappa_i \langle if', f - p_i \rangle$$

By applying (3.7) and (3.8), the above becomes that

$$2\kappa^{2}\kappa_{j}\langle f', f - p_{j} \rangle + 2\kappa'\kappa_{j}\langle f', i(f - p_{j}) \rangle$$

$$= \kappa^{2}\langle if', p_{j}' \rangle + \kappa'\langle f', p_{j}' \rangle$$

$$= 2\kappa^{2}\kappa_{j}\langle f', f - p_{j} \rangle + 2\kappa'\kappa_{j}\left(\langle f', i(f - p_{j}) \rangle - \frac{1}{\kappa}\right)$$

$$= 2\kappa^{2}\kappa_{j}\langle f', f - p_{j} \rangle - \frac{2\kappa'\kappa_{j}}{\kappa} + 2\kappa'\kappa_{j}\langle f', i(f - p_{j}) \rangle$$

Thus, we have $\kappa' \kappa_j = 0$. Suppose there exits a j such that $\kappa_j \neq 0$. Then κ must be a nonzero constant which implies f is a circle in \mathbf{C}^* . For each s, and t_j , $f(s) - p_j(t_j) = \langle f(s) - p_j, f' \rangle f' + \langle f(s) - p_j, if' \rangle if'$ which implies that $p_2 = \cdots = p_n$ equal to a constant p since f is a unit circle. Then (3.5) implies that $\kappa_j = 0$ for all $j = 2, \ldots, n$ which is a contradiction to our assumption. Therefore, $\kappa_j = 0$ for all $j = 2, \ldots, n$. Now, each z_j is a circle in $\mathbf{C}^{\mathbf{n}}$ and by (3.5), and (3.8), $\langle f', ip'_j \rangle = \langle f', p'_j \rangle = 0$, $j = 2, \ldots, n$ which implies that for each s and t_j , $f(s) - p_j(t_j) = c_1(s)f'(s) + c_2(s)if'(s)$ for some two functions c_1 and c_2 of s, yielding $p_2(t_2) = \cdots = p_n(t_n) = p$ become a constant. Therefore, $\mu_2 = \cdots = \mu_n = \frac{\langle f', i(f-p) \rangle}{|f-p|^2} = \mu(s)$. Now, then (2.5) becomes $L(s, t_2, \ldots, t_n) = (f-p) \cdot (z_2 + \cdots + z_n)$. Therefore, from (3.4), we obtain

$$(3.9) |f - p|^2 \kappa(s) + (n - 1) \langle f', i(f - p) \rangle = 0$$

By differentiating the equation (3.9) with respect to s, we get

$$\kappa'(s)|f-p|^2 + (n+1)\kappa\langle f', f-p\rangle = 0$$

and then it yields

(3.10)
$$|f - p|^2 = \left(\frac{a^2}{\kappa(s)}\right)^{2/(n+1)}$$

for a real constant a. By substituting (3.10) into (3.9), we get

(3.11)
$$\langle if', f - p \rangle = \frac{1}{n-1} a^{4/(n+1)} \kappa(s)^{(n-1)/(n+1)}$$

Let's reparametrize f(s(x)) = p + x + iy(x). Then

(3.12)
$$\kappa = \langle f'', if' \rangle = \frac{y''(x)}{(1 + y'(x)^2)^{3/2}}, \quad \langle if', f - p \rangle = \frac{y - xy'}{(1 + y'(x)^2)^{1/2}}$$

From (3.11) and (3.12), we obtain that

$$(3.13) (y - xy')^{n+1} = c(y'')^{n-1} (1 + y'(x)^2)^{2-n}, c = \left(\frac{1}{n-1}\right)^{n+1} a^4$$

If n = 2, then this equation was completely solved by Bang-Yen Chen in his paper [1] which is that up to dilations and rigid motions, the Lagrangian immersion L is an open portion of the Lagrangian catenoid.

Now, we assume that $n \ge 3$. Put $y_1 = y$, $y_2 = y'$ and $y_3 = y''$. Then the above equation is equivalent to the system:

$$y_1' = y_2, \quad y_2' = y_3,$$

$$(3.14) \quad y_3' = \frac{-(1+y_2^2)^{n-2}((n+1)xy_3(y_1-xy_2)^n + 2cy_3^{n-1}(2-n)(1+y_2^2)^{1-n}y_2y_3)}{c(n-1)y_3^{n-2}}$$

It follows from Picard's theorem that, for a given initial conditions: $y_3(s_0) > 0$, $y_2(s_0) = y_2^o$, $y_1(s_0) = y_1^o$ for any constants y_1^o and y_2^o , the initial value problem has a unique solution in some open interval around s_0 .

REFERENCES

- B. Y. Chen, Construction of Lagrangian surfaces in complex Euclidean plane with Legendre curves, Tsukuba J. Math. 29 (2005).
- [2] B. Y. CHEN, Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tohoku Math. J. 51 (1999), 13–20.
- [3] B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277-297.
- [4] B. Y. CHEN, Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces, Bull. Inst. Math. Acad. Sinica 31 (2003), 151–179.
- [5] B. O'NEILL, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
- [6] Yun Myung Oh, Explicit construction of Lagrangian isometric immersion of a real-space-form M^n into a complex-space-form $\tilde{M}^n(4c)$, Math. Proc. Camb. Phil. Soc. 132 (2002), 481–508.

Yun Myung Oh
DEPARTMENT OF MATHEMATICS
ANDREWS UNIVERSITY
BERRIEN SPRINGS, MI 49104
USA
E-mail: ohy@andrews.edu