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TORSION POINTS OF ELLIPTIC CURVES
WITH GOOD REDUCTION

MASAYA Y ASUDA

Abstract

We consider the torsion points of elliptc curves over certain number fields with good
reduction everywhere.!

Introduction

It is well known that there do not exist elliptic curves over Q with good
reduction everywhere. The existence of elliptic curves with good reduction
everywhere over quadratic fields was observed by Comalada [2]. We recall
that an admissible elliptic curve over a number field K is an elliptic curve defined
over K, which has good reduction everywhere with a non-trivial 2-division point
rational over K. Comalada classified admissible elliptic curves over real qua-
dratic fields, dealing with certain diophantine equations in units of real quadratic
fields (see [2]). In his paper [7], Kida computed the torsion subgroup of the
Mordell-Weil group of admissible elliptic curves over certain real quadratic fields
and showed that an admissible elliptic curve over a certain quadratic field K has
only K-rational points of order p for small prime p. In this paper, we consider
the torsion points of prime order of elliptic curves over certain number fields
with good reduction everywhere. For each prime number p, we let {, denote a
primitive p-th root of unity. Our main result is the following:

THEOREM 0.1. Let K be a number field having a real place and let p be a
prime number.  Suppose that p does not divide the class number of K({,) and the
ramification index e, satisfies e, < p — 1 for all primes p of K above p. Let E
be an elliptic curve over K with good reduction everywhere. Then E has no
K-rational points of order p.

Let p be an odd prime number. Let K be a number field and let Ok denote
its ring of integers. Our main idea to prove above result is to examine the
extensions of a diagonalizable group scheme y, by a constant group scheme
Z./pZ over the ring Og. Schoof studied the extensions of 4, by Z./pZ over Ok,
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using the equivalence of categories between the category of (x-group schemes
and the category of triples (Gi, G»,0) where G is a finite flat ¢x-group scheme,
G, is a finite flat Og[l/p]-group scheme and 0: G ® Ok[l/p] — G, ® Ok[1/p]
is an isomorphism of (Ok|[l/p]-group schemes (see [9]). Here the ring Ok is the
inverse limit of the ring Ok /p"0Ok for ne N. In a similar way, we consider the
extensions of Z/pZ by p, over Ok. In order to study the extensions of Z/pZ by
#, over Ok, we calculate the extensions of Z/pZ by w, over the completion O ,,
at the prime p of K over p by using Dieudonné theory (see [3]).

Finally we study the finite flat group schemes of prime order over the ring of
integers of imaginary quadratic fields K with class number one. In applications,
we consider the existence of abelian varieties over K with good reduction
everywhere. The existence of such abelian varieties over cyclotomic fields
was studied by Schoof (see [9]). According to Schoof’s result, there do not
exist non-zero abelian varieties over K = Q(y/m) with good reduction everywhere
for me {—1,-2,-3,—7,—11} under the Generalized Riemann Hypothesis (see
[9]). Using Schoof’s approach for the non-existence results of abelian varieties
with good reduction everywhere, we get the following result:

THEOREM 0.2. Let K = Q(\/m) be an imaginary quadratic field with class
number one and let p be an odd prime number such that p does not divide m and
(m/p) = 1.  Suppose that p does not divide the class number of K({,). Let A be
an abelian variety over K with bad reduction only at the primes of K over p.
Then A has no complex multiplication over K.

As a corollary, we get the following result:

COROLLARY 0.3. There do not exist non-zero abelian varieties over K =
Q(v—19) with good reduction everywhere and complex multiplication over K.

NoOTATION. The symbols Z, Q, and C denote, respectively, the ring of
rational integers, the field of rational numbers, and the field of complex numbers.
If G is a group scheme over a ring R, and n € Z, we write G|n| for the kernel of
multiplication [n];: G — G.

1. Finite flat group schemes over complete discrete valuation rings with
low ramification

Let 4= W(k) be the ring of Witt vectors over a perfect field k of
characteristic p > 0. Let o be the Frobenius automorphism on k and A.
We consider the Dieudonné ring Dy = A[F, V], where FV = VF = p, and for
each Ae A, FA=0(A)F and AV = Vo(1). Let (4’,m) be the valuation ring of
a finite totally ramified extension K’ of K, with e =[K’: K] the absolute
ramification index of A’. Assume e < p—1. The category of finite flat com-
mutative group schemes over 4 with p-power order is denoted by #%, and

FF,4 is the full subcategory of objects killed by p. We define #%,,, %, etc.
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in a similar manner. Using the anti-equivalence from 97?/?/1/ to the category of
finite Honda systems killed by p, we calculate the extensions of group schemes
over A’ of order p.

1.1. Review of Honda systems
We recall here the theory of Honda systems (cf. [3]).
For each finite k-algebra R with radical R}, we set

CWi(Rr) = {f = (f-n)p=o | fon € R and for almost all n, f_, € R}}.

Let S, € Z[Xo, ..., Xm; Yo,..., Y] denote the m-th addition polynomial for p-
Witt vectors. The functor CWj, is a group functor with respect to the operation

(ffn)nzo + (g*n)nzo = (h*n))1207
where
hoy = 1m Sy (fonm, - SoniGon—my -y G—n)-

m—oo

The structure of Di-module on CWj is defined by the relations

F((f*”)nZO) = ( . 7]17;1’ M 7/(‘)]’)7
V((f—n)nzo) = ( .- af—n—la ce vf—1)7
[O‘K(ffn)nzo) = ( c (Gin“) —ny O‘fO)7

where o ek and [¢] = (...,0,0,0) € W(k) = A is the Teichmiiller representative
for «. Let G, = Spec Ry be a p-group scheme over k and let A: Ry — R; ® Ry
be the comultiplication. For each f = (f.,),.,€ CWi(Ri), we set Af =
(Afn)pso € CWi(Ry ® Ry), similarly, f®1=(/,®1),., and 1®f =

(1 ®fﬂ1)n20~ We set
M(Gy) ={f e CWi(Ry) | Af = F®1+1® f} = Hom(Gy, CWy),

where the structure of Dy-module on M(Gy) is induced by the corresponding
structure on CWj.

Let M be a Di-module. Define M) =A4®,M as a Dy-module,
using o:A4 — A, with operators F(A®Xx)=0(A)®F(x) and V(A1®x) =
o' (A)® V(x). We have A-linear maps Fy: M) — M and Vy: M — MY,
with Fo Vo = py and VoFy = py).  We define My to be the direct limit of the
diagram

M
m@AM V—> p_ln1®AM(1)
eroM "\wlM
M
AQM L A®,MD

in the category of A’-modules, where ¢}?, @M are the obvious maps,
VML ®x)=p'A® Vo(x), and FM(L® x) = A® Fy(x). More explicity, M
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is the quotient of (4’ ®, M) @ (p~'m®, M) by the submodule
{(00" () = FM(w), 0 (w) = VM) [uem®@, M, we A @, MV}.
There are canonical A’-linear maps
A @4 M — My,
Ty p ' mE, MY MA/,
Vu: My — A @M

(the last one induced by 1® Vy on 4'®,M and p®id on p~'m®, MWD).
Using the natural 4-linear maps M — A’ @ 4 M % M4 and M) — p~'m®, MY
we have the commutative diagram

F 40

MM M MWD
p‘lm ®, MO Im M, Vi A'®, MO

When M has finite A-length, the commutative diagram above induces k-linear
isomorphisms

Ker Fy ~ Ker #);, Coker Fy ~ Coker %,
Ker Vy ~ Ker 73;, Coker Vy ~ Coker ¥y,

(see [3, Lemma 2.4]). The functor M~» My is exact on the category of Dy-
modules of finite A-length (see [3, Lemma 2.2]).

Fix G =Spec Re #%,.. We denote by Ry and Rk the closed and generic
fibers respectively of R over A'. Set M = M(Gy), where Gy = Spec Ry € FFy.
Define a continuous A-linear map

WR CWk(Rk) — RKr/pR
by
wr(( Zp’”a” (mod pR),
n>0

where a_, € R is a lift of a_, € R, (see [S, Ch. II, Section 5.2]). We define
L4/(G) to be the kernel of the A’-linear map

My — CWi (R) = (CWi(Ry)) = Rg:/mR,

where wf; is induced by wg and a natural surjection A4’ ®, CWi(Ry) —
CWi. 4(Ri). The objects of the category SH -+, of finite Honda systems over A4’
consist of (L, M) where M is a Di-module of finite A-length and where L is an
A’-submodule of My such that the canonical k-linear map

L/mL — Coker Z ),
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is an isomorphism and the restriction of ¥y to L = M, is mjectlve The full
subcategory of objects killed by p is denoted by SH,. For any G in 54, we
define LM 4 (G) = (L4 (G), M(Gy)). Note that LMA/(G) is an object in SHA,
and the contravariant functor LMy : FF 4 — SH 4 1s fully faithful and essen-
tially surJectlve (see [3, Theorem 3. 6]) The contravariant functor LM, induces

a functor LM o from ,//A, to SH”, - which is an anti-equivalence of categories.

1.2. Finite flat group schemes of order p

We now consider the finite flat group schemes over 4’ of order p. Oort and
Tate construct certain group schemes over A’ of order p as follows (see [8,
Theorem 2]): For any pair a,be A" with a-b = p, define

Ga» = Spec A'[x]/(x" — ax)

and the comultiplication is given by

xP
A()_x®1+l®x+—2— ,
PEWE T Wy
in which wy,...,w,_; are certain units of 4’. In particular, G, , ~ Z/pZ is a

constant group scheme and G, ~ y, is a diagonalizable group scheme. Let a,
b, ¢, d be elements of A" with a-b=p and ¢-d =p. Then G,;, and G, 4 are
isomorphic to each other if and only if there is a unit ue (4')" with

c=u""a, d=u""b.

According to the classification of finite group schemes of order p due to Oort and
Tate, for any group scheme G over A of order p, there are a,b e A’ witha-b=p
such that G is isomorphic to G, as group schemes over A’.

Remark 1.1. For any complete noetherian local ring R with
residue characteristic p >0, Oort and Tate showed that (a,b)— G, =
Spec R[x]/(x? — ax) gives a bijection between equivalence classes of factorizations
p=a-b of pin R and the isomorphism classes of R-groups of order p.

For a € A’, we let a denote the residue class in k represented by a. Accord-
ing to the Dieudonné theory, finite flat group schemes over k of order p
correspond in a one-to-one way to giving a module of length one over the ring
k[F,V]. For any pair a,be A" with a-b=p, (G,), corresponds to the
Dieudonné module

k[F,V]/k[F,V]-(F —a,V —b'/?).

Fix a uniformizer = of 4’ and let v be a valuation of 4’ with v(n) =1. For
any pair a,b € A" with a-b = p, consider the finite Honda system LM,/ (G, 5).
Fix a,be A’ with a-b=p. For the convention, set G=G,, and R=
A'lx]/(x? —ax). We proceed case by case.
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Cast v(a) = 0.

The Dieudonné module M(Gy) is isomorphic to k[F, V]-module M = ke with
Fe=ae and Ve =0. In this case, A’-linear map Fy; : p~'m®, M) — M, is
an isomorphism. Since (L4 (G), M) consists of a finite Honda system, we see
that A’-submodule L4 (G) of My is trivial.

Caste v(b) = 0.

The Dieudonné module M(Gy) is isomorphic to k[F, V]-module M = ke with
Fe=0 and Ve=b'/Pe. Since the Cartier dual of G,, is Gj,, we see that
L4/(G) = My due to the construction of the dual Honda system (see [3, p. 292—
293]).

Casg v(a),v(b) > 0.

Let v(a)=¢ (1 </ <e—1). The Dieudonné module M (Gy) is isomorphic
to k[F,V]-module M = ke with Fe=0 and Ve =0, in which e corresponds
to the element (...,0,0,x) € M(Gy) = M(Ry). In this case, any u € M4 can be
uniquely written in the form

v/ nP~!
u=<1 ® e, — ®oje+ -+ —— ®ae1e>7
P P
with og,...,o.1 € k. Easy calculation shows that

e—1
wi(u) = 8ox + %&fax +- 4 np & jax (mod mR) € Rg//mR,

with @, € A" any lift of o, € k. We can see that wi(u) =0 if and only if

an®~’
o =---=0deys_1 =0 and oco+< 7 )af/:O.

Therefore, by definition, A’-submodule L, (G) of My is equal to the set

ane—/
oco—i—( » )Otf/zo .
1.3. Extensions of group schemes of order p
The category SH/{, is an abelian category. More precisely, if

n.e—/ 7.L.p—l
(1 ® ape, » ® Ote_s€ + - - +7 ® ocele> € My

®: (L],M]) — (Lz,Mz)
is a morphism in SH//:,, then Ker 9 = (L', M’) and Coker ¢ = (L", M") satisfy
M' =XKer[M, — M|, M" = Coker[M; — M,)]
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and
L'=(M"),NLy, L"=image[L, — (M), — (M"),],

and the natural map Coker[Ll — L] — L" is an 1somorph1sm (see [3, Theorem
4.3)). Let My, M, € SHY,. Consider the group Ext 50 (D, M) of equlvalence
classes of exact sequences 0 — Mi; — WM — Wi, — 0 in “the category SH’,. Put
My = (L1, M), M= (L,M) and I, = (L, M). Then the above sequence is
exact if and only if the induced sequences of Dj-modules 0 — M| — M —
M; — 0 and of A’-modules 0 — L; — L — L, — 0 have this property.

Let a, b, ¢, d be elements of A’ with a-b = p and ¢-d = p. Using the anti-
equivalence LM I ,/'/A/ — SH/ 4, We obtain that

Ext'~ (Gup, Ged) ~ Bxtls (LM 4(Gey), LM 4/(Gap)).

eI
We now consider the group Ext1~ (LMA/(GC,d),LMAf(G(,,b)). Set LM 4(Ggp)
= (Ll,Ml) and LMA/(G ) (Lz,Mz) Fix
(L7 M) S EXtSAI:If ((Lz, Mz), (Ll, M]))
A/

SHf

Since M| and M, are k[F,V]-modules of length one, we write M; = ke; and
M, = ke, as before. Then we can choose a basis {e,e’} for M as a k-vector
space as follows:

(1) 0 M LML Mo,
where f(e;) =e, g(e) =0 and g(e’) =e,. Since the exact sequence
0— (MI)A/ —>MA/ — (Mz)A, — 0

is split as 4’-modules, the 4’-submodule L of M, is uniquely determined by L;
and L,. Therefore it suffices to consider the structure of k[F,V]-module on
M. 1If the actions F and V on M are given by

Fe=oe+pe/, Ve=oe+pf'e
Fe' =ye+de’, Ve =ye+d'e
with o, f,7,8,0',8',7',8' € k, we simply write
/ !
F=(* Py wo(* P
7 0 y o
We proceed case by case.
Cask v(a) = v(c) =0.

Since the sequence (1) is exact as k[F, V]-modules, we obtain that the actions of

F and V on M are given by
0 p
V:
) v=(o o)

r_(
~\o0

o R
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with o, fek. Since FV =VF =0 on M, we get f =0. Therefore the actions
of F and V' on M are given by

F*d(x V*OO
~\o0 ¢/ \0o o)’

with o € k. Note that by these actions on M, (L, M) becomes a finite Honda
system.

Cask v(a) =v(d) = 0.

A similar calculation shows that the actions of F and V' on M are given by
a o 0 0
F - V = —
(0 0) 7= an)

Cast v(a) =0, 1 <v(c) <e— 1.

with o € k.

A similar calculation shows that the actions of F and V' on M are given by
a o 0 0
F = =
(5 5) v=(o o)

Case 1 <v(a),v(c) <e—1.

with o € k.

Since the sequence (1) is exact as k[F, V']-modules, we obtain that the actions of
F and V on M are given by

(0o ()

with «,f e k. Since the canonical k-linear map L/mL — Coker %) is an
isomorphism, we get « = 0. Therefore the actions of F and V' on M are given

by
() (0

with f e k. Note that by these actions on M, (L, M) becomes a finite Honda
system.
Considering the Cartier dual, we get the following results:

THEOREM 1.2. Let q = p/ and assume k = F,. Leta, b, c, d be elements of
A" with a-b=p and c-d = p.
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1) If v(a) #0 and v(c) =0, we have Ext;%,(GM,, G.q)=0.
2) If v(a) =0 or v(c) #0, we have

dime EXt1~ (Ga,b, Gc,d) = f

——

Proof. (1) In this case, we see that G, is connected while G,  is étale.
This implies that Extffz,(Gavb, Geq) =0.
(2) This follows from calculations above. O

2. Extensions of w, by Z/pZ and of Z/pZ by p,

Let K be a number field and p be a prime number. In this section, we
consider the groups of extensions of a diagonalizable group scheme u, by a
constant group scheme Z/pZ and of extensions of Z/pZ by p, over the ring of
integers Ok of K.

2.1. An equivalence of categories
Let R be a Noetherian ring, let p € R and let Grp denote the category of
finite flat R-group schemes. Let

R=1im R/p"R

and let C be the category of triples (Gi, Gz, 0) where G is a finite flat ﬁ-group
scheme, G, is a finite flat R[l/p]-group scheme and

0: G ®x R[1/p] = G2 @y, R[1/p]

is an isomorphism of R[1/p]-group schemes. Morphisms in C are pairs of
morphisms of group schemes that are compatible with the morphisms 6. The
functor Griz — C that sends an R-group scheme G to the triple

(G®rR,G®xR[1/p],id ® R[1/p])
is an equivalence of categories (see [1, Theorem 2.6]). The equivalence of

categories above gives the following result (see [9, Corollary 2.4]):

THEOREM 2.1. Let G and H be two finite flat group schemes over R. There
is a natural exact *“Mayer-Vietoris” sequence

0 — Homg(G, H) — Homy(G, H) x Homgy (G, H) — HomR[l/p](G, H)

. Exth(G, H) — Exth(G, H) x Exth, (G, H) — Extl, (G, H),

[1/17](

where & maps an R[1/p]-morphism ¢ : G — H to the extension of G by H that
corresponds to the triple

((H x G)y, (H x G)
where 0(h,g) = (h+ ¢(g),9).

&ii/p) 0)s
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In the applications, R is the ring of integers of a number field K, the element
p is a prime number, and G and H are p-group schemes. Then G and H are
¢tale over R[1/p] and we can identify them with their Galois modules. The
Galois action is unramified outside p. The ring R is a finite product of finite
extensions of Z,. Finally, the ring R[l1/p] = K®Q, is a product of p-adic
fields. Over each of these fields the group schemes can be identified with their
local Galois modules.

2.2. Extensions of w, by Z/pZ and of Z/pZ by p,

Let p be a prime number and let {, denote a primitive p-th root of unity.
Let K be a number field and let Ok and Ok denote its ring of integers and its
group of units. For each prime p of K over p, let e, and f, denote the
ramification index and the residue degree of p in the extension K/Q, respectively.

THEOREM 2.2. Let K be a number field and let p be a prime number.
Suppose that p does not divide the class number of K((,) and the ramification
index e, satisfies e, < p—1 for all primes p of K over p. Then we have

(1) Exty, (u,,Z/pZ) = 0.

(2) dimg, Exte, ,(Z/pZ,p,) < 3, fo-

Here the index ‘p’ means ‘the p-torsion part.

Proof. (1) This is proved by Schoof (see [9, Theorem 2.6]).

(2) Since e, < p—1 for all primes p over p, the p-th roots of unity
are not contained in any of the completions at p. This implies that
Hom@K[1 /9l (Z/pZ,1,) = 0. Therefore, by Theorem 2.1, there is an exact sequence

0 — Exty, (Z/pZ,1,) — Exty (Z/pZ,1,) x Exty, 1, (Z/pZ, 1)
1
— Ext@K[l/p](Z/pZ,,up).

Fix Ge Ext(lﬁK’ (Z/pZ, ), which is split over Og. Since G is killed by p and
split over (g, the extension L obtained by adjoining the points of G to K (&)
has degree dividing p and is unramified at all primes. Since p does not divide
the class number of K((,), it follows that L = K({,). Therefore G is split over
Ok[1/p] and hence G is split over Okx. Therefore we have

dimg, Extclﬂkyp(Z/pZ, #,) < dimg, Ext}ﬁkﬁp(Z/pZ, 1)
This completes the proof by Theorem 1.2. O

The group Extéakﬁp(Z/pZ,up) may be non-trivial when the ring Ok contains
certain units. The group schemes constructed by Katz and Mazur provide
examples of such non-trivial extensions (see [6, Interlude (8.7)]). Let R be a ring
and let ee R*. Consider the R-algebra

-1
A= @ RLX)/(X] =2
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For any R-algebra S with connected spectrum, the S-points of 7, = Spec A are
pairs (s,i) with 0 <i < p—1 and se S satisfying s”» =¢'. The scheme T, is a
finite flat R-algebra scheme with multiplication of two pairs (s,i) and (¢, j) given
by

. ) (st,i+j if i+ j<p,
(s,z>-<z,/>={ iy
(st/e,i+j—p) ifi+j=p.

The group scheme T, is killed by p. The projection 4 — R[Xo]/(X) —1)
induces a closed flat immersion of g, in 7,. There is an exact sequence

0—w,— T, — Z/pZ — 0.

Two extensions 7, and T, are isomorphic whenever ¢/¢’ is a p-th power. If R is
a field, the points of 7, generate the field extension R({,, /).

3. Finite flat group schemes of prime order over certain number fields

Let K be a number field. Let Ok and O denote its ring of integers and its
group of units. We shall review here the classification of group schemes of
prime order over Ok due to Oort and Tate (see [8]). Fix a prime number p.
Let M be the set of non-generic points of Spec(Cx) and let M), denote the set of
p e M such that p divides p. For each pe M, let Ok, , denote the completion
of Ok at p, let K, denote the field of fractions of Ok ,, and let U, denote the
group of units in Ok ,. For each pe M,, we let v, denote the corresponding
normalized discrete valuation of K, let k, denote the residue field of Ok , and let
u+— i denote the residue class map OUg , — k,. Let Cg denote the idele class
group of K. Let E denote the functor which associates with commutative ring R
with unity the set E(R) of isomorphism classes of R-groups of order p. Then
they showed that the square

E(Ox) — 11 E(Ck.)
peM

g l |

E(K) — I E(K;)
peM

is cartesian (see [8, Lemma 4]). Using class field theory, there are canonical
bijections
E(K) ~ Homeon (Ck, F, ),

E(K;) ~ Homeon (K, F)) (pe M) and

E(Ok ) ~ Homcom(KpX/U F;) (peM\M,),

PrEp

where Hom,o,, denotes the continuous homomorphisms (see [8, Lemma 6]). Via
these bijections the arrows in the diagram (2) are induced by the canonical
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homomorphisms K — Ck and K — K /U,. If G is an Og-group scheme of

order p, we shall denote by lp eHomcom(CK,FX) the idéle class character
determined by G ®, K, and by np the correspondmg character of K, for
each pe M. For each peMp, we let np = v(a), where a € Ok , is such that
G®g, Ok,p =~ (Ga b)c in the notation of remark 1.1. Note that « is deter-
mined up to Up by G ®q, Ok,p, hence np is uniquely determined by G. They

showed the followmg theorem (see [8, Theorem 3]):

THEOREM 3.1. The map G +— (wc,(n})c)peMp) gives a bijection between the
isomorphism classes of Uk-groups of order p and the systems (,(ny),. M,,)
consisting of a continuous homomorphism  : Cx — ¥ and for each p e M, an
integer n, such that 0 < n, < v,(p), which satisfy the following conditions:

(1) For peM\ »» W is unramified at p, ie. Y,(Up) =1,

(2) For pe M, ‘Pp( u) = (Nmy, /g, ()™
Here y, : K — FX denotes the local character induced by  via the canonical map
Ky — Ck and Nmk ,/E, denotes the norm map.

For a given family of integers (my),. M, there is either no idéle class
character  satisfying (1) and (2) of Theorem 3.1, or the set of all idele characters
is a principal homogeneous space under the group of homomorphisms of the
ideal class group CI(K) of K into F;. Therefore, if the class number of K is
prime to (p —1), there is at most one y for each family (ny),. M,

3.1. Imaginary quadratic fields of class number one

Let K = Q(y/m) be a quadratic field, where m is a square-free integer. Let
{, denote a primitive n-th root of unity. Set

N |m|  if m=1 (mod4),
| 4jm| if m=2,3 (mod4).

We have K < Q({y). For an odd prime p and integer a not divisible by p, we
let (a/p) denote the quadratic residue symbol. We give here a lemma which we
use later.

Lemma 3.2.  Let p be an odd prime number. Let n denote the degree of the
extension Q((,.n)/K((,). Suppose p divides neither n nor the class number of the
cyclotomic field Q((,.y).  Then the class number of the field K((,) is not divisible
by p.

Proof. 1If the class number of the field K({,) is divisible by p, then there
exists an abelian extension H/K({,) which is unramified everywhere of p-power
degree. Since p is prime to n, the abelian extension H - Q((,.n)/Q((,n) is
unramified everywhere of p-power degree. By assumption, this is a contadiction.

O
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Assume that K is an imaginary quadratic field of class number one. As is
well known, there are nine imaginary quadratic fields of class number one.
These fields are

Q(\/__l)v Q(\/—_Z), Q(\/jg)v Q(\/__7), Q(V _11)7
Q(V-19), Q(vV-43), Q(vV=67), Q(vV—163).

We consider the finite flat group schemes over Ok of prime order.

PrROPOSITION 3.3. Let p be an odd prime number such that p does not ramify
in K. Then the only group schemes of order p over Uk are w, and Z/pZ.

Proof. 1In the case that (m/p) = —1, this is proved by Oort and Tate (see [8,
Corollary of Theorem 3]). In the case that (m/p) = 1, there are two primes p, p
in K over p. We introduce the usual notation. For any integral ideal a of K,
we let U(a) be the subgroup of the idéle group Ag of K defined by

U(a) ={seAg|sp e U, and s, =1 (mod a0 ,) for all primes p}.
Let U(a) be the image of U(a) of the canonical map Ay — Ck and set
Cl(K,a) = Cx/U(a).
Since the field K has no real places, there is an exact sequence
1 — (Og/a)*/img OF — CI(K,a) — CI(K) — 0,

where img 0% denotes the image of U5 of the natural map O — (U /a)”.

For the family (n,,n;) = (1,0), we assume that there is a continuous
homomorphism ¢ : Cx — F satisfying the conditions (1) and (2) of Theorem
3.1. Then we have a surjective homomorphism  : CI(K,p) — F, induced by
. Since the class number of K is equal to 1, we have an isomorphism

(Okx/p)™ /img O% ~ CI(K,p).

Since +1 € O, this is a contradiction. In a similar way, there is no idele class
character y satisfying the conditions (1) and (2) of Theorem 3.1 for the family
(ny,n;) = (0,1).  Therefore the Uk-group schemes of order p are u, and Z/pZ.

O

An abelian variety over a number field & is said to have good reduction if it
has good reduction at every finite place of the ring of integers of k. We now
consider an abelian variety 4 over K with good reduction. Recently, Schoof
proved that for every conductor f € {1,3,4,5,7,8,9,12} there do not exist non-
zero abelian varieties over Q({,) with good reduction (see [9, Theorem 1.1]).
Assuming the Generalized Riemann Hypothesis (GRH), he proved the same
results when f = 11 and 15 (see [9, Theorem 1.1]). Therefore there do not exist
non-zero abelian varieties over K = Q(y/m) with good reduction everywhere for
me{-1,-2,-3,—7,—11} under the GRH.
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Let K =Q(y/m) be an imaginary quadratic field with class number one.
Let p be an odd prime number such that p does not ramify in K. We now
consider an abelian variety 4 over K with bad reduction only at the primes of K
over p. Let o/ be the Néron model of 4 over Ox. Since A has bad reduction
only at the primes of K over p, note that .«/[p”] is a finite flat group scheme over
Ok[1/p]. Let p be a prime of K over p. Note that any finite flat group scheme
over K, of p-power order admits a prolongation over Ok , (see [5, Théoreme
3.3.3]). Therefore there is a finite flat group scheme G over Ok such that G is
isomorphic to .o/[p"] over Uk[l/p], using the equivalence of categories between
the category Gr,, of Ok-group schemes and the category C of triples (Gi, G2, 0)
where G is a finite flat (x-group scheme, G, is a finite flat ¢x[1/p]-group scheme
and 0: G, ® Og[l/p] — G, ® Og[1/p] is an isomorphism of @k[1/p]-group
schemes. For the convention, we simply write .</[p"] for G.

LEMMA 3.4. Let p be an odd prime number such that p does not ramify in K
and (m/p) =1. Assume A has complex multiplication over K. Then the finite
flat group scheme </[p"| admits a filtration

0=G,c G- =G =Gy = A p"]

by closed flat subgroup schemes such that successive subquotients G;/Giy1 have
order p.

Proof. Let G be a simple subgroup scheme of «/[p"]. Set L =K(G(K))
and let S, be the p-Sylow subgroup of Gal(L/K). Since 4 has complex
multiplication over K, it follows that the group Gal(K(A[p"])/K) is abelian
(see [10, Corollar 2 of Theorem 5]).

Therefore the group Gal(L/K) is abelian and hence the S,-fixed points
G(K)* is a Gal(L/K)-submodule of G(K). Since

#G(K) = #G(K)™ (mod p),

we see that G(K)¥ is non-trivial. Since G is simple, it follows that G(K) =
G(K)®. Let L' be the fixed field of S,. Then G(K) is a Gal(L'/K)-module.
By assumption, there are two primes p, p of K over p. If v is a non-
archimedean place, set Ubg”):{xe U,|v(x—1) 2n}. Let A4 be the norm
subgroup of Ay defined by

V=[x < I] v |-K*,
vEP,P

where U, = C* for the archimedean places v and K* is the image of K* on the
diagonal. By class field theory, there is a surjection Ag /A" — Gal(L'/K). Let
Vi be the image of the global units of K in

L =U,/U" x U/ U
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Then we have the exact sequence

0—>1"/VK—>A,X</JV—>AIX(/<<H U)K) — 0.

Here, the last quotient is isomorphic to the ideal class group of K, which is
trivial. Therefore the group Gal(L'/K) has exponent dividing p—1. The
F,[Gal(L'/K)]-module G(K) is therefore a product of 1-dimensional eigenspaces.
Since G is simple, there is only one such eigenspaces and G has order p. In a
similar way, the finite flat group scheme .«/[p”] admits a filtration

OZGSCGXflC"'CGlCG():eQ/[pn]

by closed flat subgroup schemes such that successive subquotients G;/G;y; have
order p. O

THEOREM 3.5. Let K = Q(\/m) be an imaginary quadratic field with class
number one and let p be an odd prime number such that p does not ramify in K
and (m/p) = 1. Suppose that p does not divide the class number of K((,). Let A
be an abelian variety over K with bad reduction only at the primes of K over p.
Then A has no complex multiplication over K.

Proof. Assume A has complex multiplication over K. Since the class
number of K is equal to 1, any extension over (g of constant p-group schemes
by one another is constant. Considering the Cartier dual, any extension over (g
of diagonalizable p-group schemes by one another is diagonalizable. Note that
the only group schemes over Uk of order p are w, and Z/pZ by Proposition 3.3.
By Lemma 3.4 and the proof of [9, Theorem 2.1], there is an exact sequence

0> M- dp"l—-C—0

with M diagonalizable and C constant. By the proof of [9, Theorem 2.1], we
have that dim 4 = 0. ]

Let K = Q(v/—19) and set p = 5. Since the class number of the cyclotomic
field Q({ys) is not divisible by p (see [13]), it follows that the class number of
K({,) is not divisible by p by Lemma 3.2. As a corollary, we get the following.

THEOREM 3.6. There do not exist non-zero abelian varieties over K =
Q(vV—19) with good reduction everywhere and complex multiplication over K.

3.2. Elliptic curves over certain number fields with good reduction

It is well known that there is no elliptic curves over Q with good reduction.
On the other hand, several examples of such curves over quadratic fields are
known. An elliptic curve defined over a number field & is called g-admissible if it
satisfies the conditions below:
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1. it has good reduction over k,

2. it has a k-rational point of order 2,

3. it admits a global minimal model.
If it satisfies only (1) and (2), then it is called admissible. In his paper [2],
Comalada showed that there exists an admissible elliptic curve over K = Q(y/m)
(0 < m < 100) if and only if

m=6,7,14,22,38,41,65,77, 86.

Example. The elliptic curve E over K = Q(1/6) with Weierstrass equation
2+ V6xy — y = x> — (24 V6)x?

is g-admissible. This can be seen from the fact that the discriminant of E is equal
to the unit (54 2v/6)°. The three points of order 2 of E have their x-coodinates

1 1+V6+ (V=2+V-3)i

equal to x = ) and
—V6x + 1
—

respectively. Their y-coordinates

. . . 1. . .
are given by y = The point with x = —5 is the only 2-rational point

that is rational over K. The curve E has exactly six points defined over K.

1 1
They are (0,0) and its multiples (2++/6,—5—2V6), (— —,7>,
(2 46,0, (0,1) and oo. 22(v6-2)

Let K be a number field and let p be an odd prime number. Let E be an
elliptic curve over K with good reduction. We now consider the K-rational
points of order p in the elliptic curve E. Suppose there exists a K-rational point
P of order p in the elliptic curve E. Using the Weil pairing e, : E[p] x E[p] —
#,, we can define a map E[p] — u, by Q+ ¢,(P,0Q). Since the point P is
rational over K, this map gives an exact sequence

3) 0—Z/pZ — E[p] — p, — 0.

of Gal(K/K)-modules. Let & be the Néron model of the elliptic curve E over
Ok. Since the elliptic curve E has good reduction over K, note that &[p] is a
finite flat group scheme over (k.

LemmA 3.7.  Suppose that the ramification index e, satisfies e, < p — 1 for all
primes p of K over p. Then the exact sequence (3) of Gal(K/K)-modules induces
an exact sequence

0—Z/pZ — &[p| - p, — 0

of finite flat group schemes over (Ok.

Proof. For any finite flat group schemes G over (g, there is a one-to-one
correspondence between closed flat subgroup schemes between G over (Ox and
G®yg, K over K. For any finite flat group schemes G over Ok, , of p-power
order, by the assumption, G is uniquely determined up to isomorphism by the
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isomorphism type of its generic fiber (see [12, Propositon 4.5.1]). Therefore a
constant group scheme Z/pZ is a subgroup scheme of &[p] over 0. There
exists an exact sequence

(4) 0—>Z/pZ—>cgJ[p]—>G—>0

of finite flat group schemes over (k. Since G ® K is isomorphic to a diago-
nalizable group scheme p, by the exact sequence (3), G is isomorphic to a
diagonalizable group scheme p, over Ux. This completes the proof. O

Combining the above result with Theorem 2.2, we get the following result:

THEOREM 3.8. Let K be a number field having a real place and let p be a
prime number.  Suppose that p does not divide the class number of K((,) and the
ramification index e, satisfies e, < p — 1 for all primes p of K above p. Let E be
an elliptic curve over K with good reduction. Then E has no K-rational points of
order p.

Proof. Suppose there exists a K-rational point of order p in the elliptic
curve E. By Lemma 3.7, there exists an exact sequence

0—Z/pZ — &[p] — u, — 0

of finite flat group schemes over (k. Set E = E;. Since the above exact
sequence of finite flat group schemes over (k is split by Theorem 2.2, there
exists an elliptic curve E; over K and a K-isogeny E; — E; with kernel u,.
Then the image of the Galois submodule Z/pZ gives a point of order p in Ej.
Continuing in this fashion, we obtain a sequence of K-isogenies

El—E — -,

where each isogeny has kernel p,. Since all the E; has good reduction over K,
we see that E; ~ E; for some i < j (see [4, Satz 6]). Composing our K-isogenies
gives a endomorphism f : E; — E; defined over K. If P, e E;(K) is the image
of Pe E(K), then by construction P; ¢ Ker f. Since deg f is a power of p, we
see that f is a non-scalar endomorphism. Therefore the elliptic curve E; has
complex multiplication by some order ¢ in an imaginary quadratic field K’, and
we have an isomorphism (see [11, Ch. 2, Proposition 1.1])

[[]: 0 ~ End(E;)
such that for any invariant differential w e Qp, on E;,
[o]*w =aw for all ae 0.

Let o be the element of @ such that [¢] = f € Endg(E;). Considering the action
of Endg(E;) on HY(E;/K,Qp) ~ K, we have xe KNK’ = Q. This is a con-
tradiction. O

As a corollary, we get the following result:
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COROLLARY 3.9. Let K = Q(\/6) or Q(\/7). Let E be an elliptic curve over
K with good reduction. Then E has no K-rational points of order p for any prime
number p > 5.

Proof. Let & be the Néron model of E over Ok. Since E has good
reduction at the prime of K over 2, the elliptic curve &(F,) has at most
3 +2v2 < 7 points. Therefore E has no K-rational points of order p for any
prime number p > 7. Set p=5. We consider the case K = Q(v/6). Since the
class number of the cyclotomic field Q({}y) is not divisible by p (see [13]), the
class number of K({,) is not divisible by p by Lemma 3.2. By Theorem 3.8,
the elliptic curve E has no K-rational points of order p. We now consider the
case K = Q(v/7). Since the class number of the cyclotomic field Q((,4) is not
divisible by p (see [13]), the class number of K({,) is not divisible by p by
Lemma 3.2. This completes the proof by Theorem 3.8. O

The following table is all taken from [2] and [7]. In the table, all the
isomorphism classes of g-admissible elliptic curves having good reduction over the
three fields K = Q(y/m) (m =6,7,14) are listed. Each isomorphism class con-
tains a curve having a Weierstrass equation of the form

2 2
Y= X3+ ar X~ + agx,

on which the point (0,0) is of order 2. For each curve, the data given in the
table are Comalada’s code E;, m, ay, a4, the j-invariant, and the torsion subgroup
T of the Mordell-Weil group. The coefficients a, a4 and the j-invariant are
given by expressions containing the fundamental unit ¢ of K and its conjugate &.

Table 1. Elliptic curves having good reduction over Q(v/6), Q(v7), Q(v/14)

m a ay J T
E | 6| —26-1) 4e (20)* 7./6Z
Ey | 6 | —14@—1) | 48 | 64(4e* +1)%/¢ 7/2Z
Es | 6 | l4e—De | 4e | 64(4e* +1)%/¢* Z/6Z
E | 7| —(14282) | 1663 (255)° Z)2Z x Z)2Z
Ey | 7| 2(1+262) 1 (2566 + &)° Z/AZ
En | 7| —20+22) | 1 (2566 + )’ 7/2Z
Es | 7 8c— 1 16¢2 (-15)* Z/4Z
Ey | 7| —@Be—1) | 162 (-15)* Z./4Z
Eis | 14 | =3(e—1)/2 | 16¢ (-15)° 7./27Z
Eq | 14| 3@-1) —¢ (255)° 7./27
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