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TORSION POINTS OF ELLIPTIC CURVES

WITH GOOD REDUCTION

Masaya Yasuda

Abstract

We consider the torsion points of elliptc curves over certain number fields with good

reduction everywhere.1

Introduction

It is well known that there do not exist elliptic curves over Q with good
reduction everywhere. The existence of elliptic curves with good reduction
everywhere over quadratic fields was observed by Comalada [2]. We recall
that an admissible elliptic curve over a number field K is an elliptic curve defined
over K , which has good reduction everywhere with a non-trivial 2-division point
rational over K . Comalada classified admissible elliptic curves over real qua-
dratic fields, dealing with certain diophantine equations in units of real quadratic
fields (see [2]). In his paper [7], Kida computed the torsion subgroup of the
Mordell-Weil group of admissible elliptic curves over certain real quadratic fields
and showed that an admissible elliptic curve over a certain quadratic field K has
only K-rational points of order p for small prime p. In this paper, we consider
the torsion points of prime order of elliptic curves over certain number fields
with good reduction everywhere. For each prime number p, we let zp denote a
primitive p-th root of unity. Our main result is the following:

Theorem 0.1. Let K be a number field having a real place and let p be a
prime number. Suppose that p does not divide the class number of KðzpÞ and the
ramification index ep satisfies ep < p� 1 for all primes p of K above p. Let E
be an elliptic curve over K with good reduction everywhere. Then E has no
K-rational points of order p.

Let p be an odd prime number. Let K be a number field and let OK denote
its ring of integers. Our main idea to prove above result is to examine the
extensions of a diagonalizable group scheme mp by a constant group scheme
Z=pZ over the ring OK . Schoof studied the extensions of mp by Z=pZ over OK ,
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using the equivalence of categories between the category of OK -group schemes
and the category of triples ðG1;G2; yÞ where G1 is a finite flat ÔOK -group scheme,
G2 is a finite flat OK ½1=p�-group scheme and y : G1 n ÔOK ½1=p� ! G2 n ÔOK ½1=p�
is an isomorphism of ÔOK ½1=p�-group schemes (see [9]). Here the ring ÔOK is the
inverse limit of the ring OK=p

nOK for n A N. In a similar way, we consider the
extensions of Z=pZ by mp over OK . In order to study the extensions of Z=pZ by
mp over OK , we calculate the extensions of Z=pZ by mp over the completion OK ;p

at the prime p of K over p by using Dieudonné theory (see [3]).
Finally we study the finite flat group schemes of prime order over the ring of

integers of imaginary quadratic fields K with class number one. In applications,
we consider the existence of abelian varieties over K with good reduction
everywhere. The existence of such abelian varieties over cyclotomic fields
was studied by Schoof (see [9]). According to Schoof ’s result, there do not
exist non-zero abelian varieties over K ¼ Qð

ffiffiffiffi
m
p
Þ with good reduction everywhere

for m A f�1;�2;�3;�7;�11g under the Generalized Riemann Hypothesis (see
[9]). Using Schoof ’s approach for the non-existence results of abelian varieties
with good reduction everywhere, we get the following result:

Theorem 0.2. Let K ¼ Qð
ffiffiffiffi
m
p
Þ be an imaginary quadratic field with class

number one and let p be an odd prime number such that p does not divide m and
ðm=pÞ ¼ 1. Suppose that p does not divide the class number of KðzpÞ. Let A be
an abelian variety over K with bad reduction only at the primes of K over p.
Then A has no complex multiplication over K.

As a corollary, we get the following result:

Corollary 0.3. There do not exist non-zero abelian varieties over K ¼
Qð

ffiffiffiffiffiffiffiffiffi
�19
p

Þ with good reduction everywhere and complex multiplication over K.

Notation. The symbols Z, Q, and C denote, respectively, the ring of
rational integers, the field of rational numbers, and the field of complex numbers.
If G is a group scheme over a ring R, and n A Z, we write G½n� for the kernel of
multiplication ½n�G : G ! G.

1. Finite flat group schemes over complete discrete valuation rings with
low ramification

Let A ¼WðkÞ be the ring of Witt vectors over a perfect field k of
characteristic p > 0. Let s be the Frobenius automorphism on k and A.
We consider the Dieudonné ring Dk ¼ A½F ;V �, where FV ¼ VF ¼ p, and for
each l A A, Fl ¼ sðlÞF and lV ¼ VsðlÞ. Let ðA 0;mÞ be the valuation ring of
a finite totally ramified extension K 0 of K , with e ¼ ½K 0 : K � the absolute
ramification index of A 0. Assume e < p� 1. The category of finite flat com-
mutative group schemes over A with p-power order is denoted by FFA, andgFFFFA is the full subcategory of objects killed by p. We define FFA 0 , gFFFFA 0 , etc.
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in a similar manner. Using the anti-equivalence from gFFFFA 0 to the category of
finite Honda systems killed by p, we calculate the extensions of group schemes
over A 0 of order p.

1.1. Review of Honda systems
We recall here the theory of Honda systems (cf. [3]).
For each finite k-algebra Rk with radical R0

k, we set

CWkðRkÞ ¼ f f ¼ ð f�nÞnb0 j f�n A Rk and for almost all n; f�n A R0
kg:

Let Sm A Z½X0; . . . ;Xm;Y0; . . . ;Ym� denote the m-th addition polynomial for p-
Witt vectors. The functor CWk is a group functor with respect to the operation

ð f�nÞnb0 þ ðg�nÞnb0 ¼ ðh�nÞnb0;

where

h�n ¼ lim
m!y

Smð f�n�m; . . . ; f�n; g�n�m; . . . ; g�nÞ:

The structure of Dk-module on CWk is defined by the relations

Fðð f�nÞnb0Þ ¼ ð. . . ; f p
�n; . . . ; f

p
0 Þ;

Vðð f�nÞnb0Þ ¼ ð. . . ; f�n�1; . . . ; f�1Þ;
½a�ðð f�nÞnb0Þ ¼ ð. . . ; ðs�naÞf�n; . . . ; af0Þ;

where a A k and ½a� ¼ ð. . . ; 0; 0; aÞ A WðkÞ ¼ A is the Teichmüller representative
for a. Let Gk ¼ Spec Rk be a p-group scheme over k and lets : Rk ! Rk nRk

be the comultiplication. For each f ¼ ð f�nÞnb0 A CWkðRkÞ, we set sf ¼
ðsf�nÞnb0 A CWkðRk nRkÞ, similarly, f n 1 ¼ ð f�n n 1Þnb0 and 1n f ¼
ð1n f�nÞnb0. We set

MðGkÞ ¼ f f A CWkðRkÞ jsf ¼ f n 1þ 1n f g ¼ HomðGk;CWkÞ;
where the structure of Dk-module on MðGkÞ is induced by the corresponding
structure on CWk.

Let M be a Dk-module. Define Mð1Þ ¼ AnA M as a Dk-module,
using s : A! A, with operators F ðln xÞ ¼ sðlÞnF ðxÞ and Vðln xÞ ¼
s�1ðlÞnVðxÞ. We have A-linear maps F0 : M

ð1Þ !M and V0 : M !Mð1Þ,
with F0V0 ¼ pM and V0F0 ¼ pMð1Þ . We define MA 0 to be the direct limit of the
diagram

mnA M ���!VM

p�1mnA Mð1Þ???yjM
0

x???jM
1

A 0nA M  ���F M

A 0nA Mð1Þ

in the category of A 0-modules, where jM
0 , jM

1 are the obvious maps,
VMðln xÞ ¼ p�1lnV0ðxÞ, and FMðln xÞ ¼ lnF0ðxÞ. More explicity, MA 0
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is the quotient of ðA 0nA MÞl ðp�1mnA Mð1ÞÞ by the submodule

fðjM
0 ðuÞ � FMðwÞ; jM

1 ðwÞ � VMðuÞÞ j u A mnA M;w A A 0nA Mð1Þg:
There are canonical A 0-linear maps

iM : A 0nA M !MA 0 ;

FM : p�1mnA Mð1Þ !MA 0 ;

VM : MA 0 ! A 0nA Mð1Þ

(the last one induced by 1nV0 on A 0nA M and pn id on p�1mnA Mð1Þ).
Using the naturalA-linear mapsM ! A 0nA M !iM MA 0 andMð1Þ ! p�1mnA Mð1Þ,
we have the commutative diagram

Mð1Þ ���!F0
M ���!V0

Mð1Þ???y ???y ???y
p�1mnA Mð1Þ ���!FM

MA 0 ���!VM
A 0nA Mð1Þ:

When M has finite A-length, the commutative diagram above induces k-linear
isomorphisms

Ker F0 FKer FM ; Coker F0 FCoker FM ;

Ker V0 FKer VM ; Coker V0 FCoker VM

(see [3, Lemma 2.4]). The functor McMA 0 is exact on the category of Dk-
modules of finite A-length (see [3, Lemma 2.2]).

Fix G ¼ Spec R A FFA 0 . We denote by Rk and RK 0 the closed and generic
fibers respectively of R over A 0. Set M ¼MðGkÞ, where Gk ¼ Spec Rk A FFk.
Define a continuous A-linear map

wR : CWkðRkÞ ! RK 0=pR

by

wRðða�nÞÞ ¼
X
nb0

p�nâapn

�n ðmod pRÞ;

where âa�n A R is a lift of a�n A Rk (see [5, Ch. II, Section 5.2]). We define
LA 0 ðGÞ to be the kernel of the A 0-linear map

MA 0 ! CWk;A 0 ðRkÞ ¼ ðCWkðRkÞÞA 0 !
w 0
R
RK 0=mR;

where w 0R is induced by wR and a natural surjection A 0nA CWkðRkÞ !
CWk;A 0 ðRkÞ. The objects of the category SH

f
A 0 of finite Honda systems over A 0

consist of ðL;MÞ where M is a Dk-module of finite A-length and where L is an
A 0-submodule of MA 0 such that the canonical k-linear map

L=mL! Coker FM
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is an isomorphism and the restriction of VM to LJMA 0 is injective. The full
subcategory of objects killed by p is denoted by fSHSH f

A 0 . For any G in FFA 0 , we
define LMA 0 ðGÞ ¼ ðLA 0 ðGÞ;MðGkÞÞ. Note that LMA 0 ðGÞ is an object in SH

f
A 0

and the contravariant functor LMA 0 : FFA 0 ! SH
f
A 0 is fully faithful and essen-

tially surjective (see [3, Theorem 3.6]). The contravariant functor LMA 0 induces

a functor gLMLMA 0 from gFFFFA 0 to fSHSH f
A 0 which is an anti-equivalence of categories.

1.2. Finite flat group schemes of order p
We now consider the finite flat group schemes over A 0 of order p. Oort and

Tate construct certain group schemes over A 0 of order p as follows (see [8,
Theorem 2]): For any pair a; b A A 0 with a � b ¼ p, define

Ga;b ¼ Spec A 0½x�=ðxp � axÞ

and the comultiplication is given by

sðxÞ ¼ xn 1þ 1n xþ b

1� p

Xp�1
i¼1

xi

wi

n
xp�i

wp�i
;

in which w1; . . . ;wp�1 are certain units of A 0. In particular, G1;p FZ=pZ is a
constant group scheme and Gp;1 F mp is a diagonalizable group scheme. Let a,
b, c, d be elements of A 0 with a � b ¼ p and c � d ¼ p. Then Ga;b and Gc;d are
isomorphic to each other if and only if there is a unit u A ðA 0Þ� with

c ¼ up�1a; d ¼ u1�pb:

According to the classification of finite group schemes of order p due to Oort and
Tate, for any group scheme G over A 0 of order p, there are a; b A A 0 with a � b ¼ p
such that G is isomorphic to Ga;b as group schemes over A 0.

Remark 1.1. For any complete noetherian local ring R with
residue characteristic p > 0, Oort and Tate showed that ða; bÞ 7! Ga;b ¼
Spec R½x�=ðxp � axÞ gives a bijection between equivalence classes of factorizations
p ¼ a � b of p in R and the isomorphism classes of R-groups of order p.

For a A A 0, we let a denote the residue class in k represented by a. Accord-
ing to the Dieudonné theory, finite flat group schemes over k of order p
correspond in a one-to-one way to giving a module of length one over the ring
k½F ;V �. For any pair a; b A A 0 with a � b ¼ p, ðGa;bÞk corresponds to the
Dieudonné module

k½F ;V �=k½F ;V � � ðF � a;V � b1=pÞ:

Fix a uniformizer p of A 0 and let v be a valuation of A 0 with vðpÞ ¼ 1. For
any pair a; b A A 0 with a � b ¼ p, consider the finite Honda system LMA 0 ðGa;bÞ.
Fix a; b A A 0 with a � b ¼ p. For the convention, set G ¼ Ga;b and R ¼
A 0½x�=ðxp � axÞ. We proceed case by case.
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Case vðaÞ ¼ 0.

The Dieudonné module MðGkÞ is isomorphic to k½F ;V �-module M ¼ ke with
Fe ¼ ae and Ve ¼ 0. In this case, A 0-linear map FM : p�1mnA Mð1Þ !MA 0 is
an isomorphism. Since ðLA 0 ðGÞ;MÞ consists of a finite Honda system, we see
that A 0-submodule LA 0 ðGÞ of MA 0 is trivial.

Case vðbÞ ¼ 0.

The Dieudonné module MðGkÞ is isomorphic to k½F ;V �-module M ¼ ke with
Fe ¼ 0 and Ve ¼ b1=pe. Since the Cartier dual of Ga;b is Gb;a, we see that
LA 0 ðGÞ ¼MA 0 due to the construction of the dual Honda system (see [3, p. 292–
293]).

Case vðaÞ; vðbÞ > 0.

Let vðaÞ ¼ l ð1a la e� 1Þ. The Dieudonné module MðGkÞ is isomorphic
to k½F ;V �-module M ¼ ke with Fe ¼ 0 and Ve ¼ 0, in which e corresponds
to the element ð. . . ; 0; 0; xÞ A MðGkÞ ¼MðRkÞ. In this case, any u A MA 0 can be
uniquely written in the form

u ¼ 1n a0e;
p

p
n a1eþ � � � þ

pp�1

p
n ae�1e

� �
;

with a0; . . . ; ae�1 A k. Easy calculation shows that

w 0RðuÞ ¼ âa0xþ
p

p
âa
p
1axþ � � � þ

pe�1

p
âa
p
e�1ax ðmod mRÞ A RK 0=mR;

with âan A A 0 any lift of an A k. We can see that w 0RðuÞ ¼ 0 if and only if

a1 ¼ � � � ¼ ae�l�1 ¼ 0 and a0 þ
ape�l

p

� �
a
p
e�l ¼ 0:

Therefore, by definition, A 0-submodule LA 0 ðGÞ of MA 0 is equal to the set

1n a0e;
pe�l

p
n ae�leþ � � � þ

pp�1

p
n ae�1e

� �
A MA 0

����a0 þ ape�l

p

� �
a
p
e�l ¼ 0

( )
:

1.3. Extensions of group schemes of order p
The category SH

f
A 0 is an abelian category. More precisely, if

j : ðL1;M1Þ ! ðL2;M2Þ

is a morphism in SH
f
A 0 , then Ker j ¼ ðL 0;M 0Þ and Coker j ¼ ðL 00;M 00Þ satisfy

M 0 ¼ Ker½M1 !M2�; M 00 ¼ Coker½M1 !M2�
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and
L 0 ¼ ðM 0ÞA 0 VL1; L 00 ¼ image½L2 ,! ðM2ÞA 0 ! ðM 00ÞA 0 �;

and the natural map Coker½L1 ! L2� ! L 00 is an isomorphism (see [3, Theorem

4.3]). Let M1;M2 A fSHSH f
A 0 . Consider the group Ext1eSH f

A 0
ðM2;M1Þ of equivalence

classes of exact sequences 0!M1 !M!M2 ! 0 in the category fSHSH f
A 0 . Put

M1 ¼ ðL1;M1Þ, M ¼ ðL;MÞ and M2 ¼ ðL2;M2Þ. Then the above sequence is
exact if and only if the induced sequences of Dk-modules 0!M1 !M !
M2 ! 0 and of A 0-modules 0! L1 ! L! L2 ! 0 have this property.

Let a, b, c, d be elements of A 0 with a � b ¼ p and c � d ¼ p. Using the anti-

equivalence gLMLMA 0 : gFFFFA 0 ! fSHSH f
A 0 , we obtain that

Ext1eFFA 0
ðGa;b;Gc;dÞFExt1eSH f

A 0
ðLMA 0 ðGc;dÞ;LMA 0 ðGa;bÞÞ:

We now consider the group Ext1eSH f

A 0
ðLMA 0 ðGc;dÞ;LMA 0 ðGa;bÞÞ. Set LMA 0 ðGa;bÞ

¼ ðL1;M1Þ and LMA 0 ðGc;dÞ ¼ ðL2;M2Þ. Fix

ðL;MÞ A Ext1eSH f

A 0
ððL2;M2Þ; ðL1;M1ÞÞ:

Since M1 and M2 are k½F ;V �-modules of length one, we write M1 ¼ ke1 and
M2 ¼ ke2 as before. Then we can choose a basis fe; e 0g for M as a k-vector
space as follows:

0!M1 !
f
M !g M2 ! 0;ð1Þ

where f ðe1Þ ¼ e, gðeÞ ¼ 0 and gðe 0Þ ¼ e2. Since the exact sequence

0! ðM1ÞA 0 !MA 0 ! ðM2ÞA 0 ! 0

is split as A 0-modules, the A 0-submodule L of MA 0 is uniquely determined by L1

and L2. Therefore it su‰ces to consider the structure of k½F ;V �-module on
M. If the actions F and V on M are given by

Fe ¼ aeþ be 0; Ve ¼ a 0eþ b 0e 0;

Fe 0 ¼ geþ de 0; Ve 0 ¼ g 0eþ d 0e 0;

with a; b; g; d; a 0; b 0; g 0; d 0 A k, we simply write

F ¼ a b

g d

� �
; V ¼ a 0 b 0

g 0 d 0

� �
:

We proceed case by case.

Case vðaÞ ¼ vðcÞ ¼ 0.

Since the sequence (1) is exact as k½F ;V �-modules, we obtain that the actions of
F and V on M are given by

F ¼ a a

0 c

� �
; V ¼ 0 b

0 0

� �
;
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with a; b A k. Since FV ¼ VF ¼ 0 on M, we get b ¼ 0. Therefore the actions
of F and V on M are given by

F ¼ a a

0 c

� �
; V ¼ 0 0

0 0

� �
;

with a A k. Note that by these actions on M, ðL;MÞ becomes a finite Honda
system.

Case vðaÞ ¼ vðdÞ ¼ 0.

A similar calculation shows that the actions of F and V on M are given by

F ¼ a a

0 0

� �
; V ¼ 0 0

0 d 1=p

� �
;

with a A k.

Case vðaÞ ¼ 0, 1a vðcÞa e� 1.

A similar calculation shows that the actions of F and V on M are given by

F ¼ a a

0 0

� �
; V ¼ 0 0

0 0

� �
;

with a A k.

Case 1a vðaÞ; vðcÞa e� 1.

Since the sequence (1) is exact as k½F ;V �-modules, we obtain that the actions of
F and V on M are given by

F ¼ 0 a

0 0

� �
; V ¼ 0 b

0 0

� �
;

with a; b A k. Since the canonical k-linear map L=mL! Coker FM is an
isomorphism, we get a ¼ 0. Therefore the actions of F and V on M are given
by

F ¼ 0 0

0 0

� �
; V ¼ 0 b

0 0

� �
;

with b A k. Note that by these actions on M, ðL;MÞ becomes a finite Honda
system.

Considering the Cartier dual, we get the following results:

Theorem 1.2. Let q ¼ p f and assume k ¼ Fq. Let a, b, c, d be elements of
A 0 with a � b ¼ p and c � d ¼ p.

392 masaya yasuda



(1) If vðaÞ0 0 and vðcÞ ¼ 0, we have Ext1FFA 0
ðGa;b;Gc;dÞ ¼ 0.

(2) If vðaÞ ¼ 0 or vðcÞ0 0, we have

dimFp
Ext1eFFA 0

ðGa;b;Gc;dÞ ¼ f :

Proof. (1) In this case, we see that Ga;b is connected while Gc;d is étale.
This implies that Ext1FFA 0

ðGa;b;Gc;dÞ ¼ 0.
(2) This follows from calculations above. r

2. Extensions of mp by Z=pZ and of Z=pZ by mp

Let K be a number field and p be a prime number. In this section, we
consider the groups of extensions of a diagonalizable group scheme mp by a
constant group scheme Z=pZ and of extensions of Z=pZ by mp over the ring of
integers OK of K .

2.1. An equivalence of categories
Let R be a Noetherian ring, let p A R and let GrR denote the category of

finite flat R-group schemes. Let

R̂R ¼ lim � R=pnR

and let C be the category of triples ðG1;G2; yÞ where G1 is a finite flat R̂R-group
scheme, G2 is a finite flat R½1=p�-group scheme and

y : G1 nR̂R R̂R½1=p� ! G2 nR½1=p� R̂R½1=p�

is an isomorphism of R̂R½1=p�-group schemes. Morphisms in C are pairs of
morphisms of group schemes that are compatible with the morphisms y. The
functor GrR ! C that sends an R-group scheme G to the triple

ðGnR R̂R;GnR R½1=p�; idnR R̂R½1=p�Þ

is an equivalence of categories (see [1, Theorem 2.6]). The equivalence of
categories above gives the following result (see [9, Corollary 2.4]):

Theorem 2.1. Let G and H be two finite flat group schemes over R. There
is a natural exact ‘‘Mayer-Vietoris’’ sequence

0! HomRðG;HÞ ! HomR̂RðG;HÞ �HomR½1=p�ðG;HÞ ! HomR̂R½1=p�ðG;HÞ

!d Ext1RðG;HÞ ! Ext1
R̂R
ðG;HÞ � Ext1R½1=p�ðG;HÞ ! Ext1

R̂R½1=p�ðG;HÞ;

where d maps an R̂R½1=p�-morphism j : G ! H to the extension of G by H that
corresponds to the triple

ððH � GÞR̂R; ðH � GÞR½1=p�; yÞ;

where yðh; gÞ ¼ ðhþ jðgÞ; gÞ.
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In the applications, R is the ring of integers of a number field K , the element
p is a prime number, and G and H are p-group schemes. Then G and H are
étale over R½1=p� and we can identify them with their Galois modules. The
Galois action is unramified outside p. The ring R̂R is a finite product of finite
extensions of Zp. Finally, the ring R̂R½1=p�GKnQp is a product of p-adic
fields. Over each of these fields the group schemes can be identified with their
local Galois modules.

2.2. Extensions of mp by Z=pZ and of Z=pZ by mp
Let p be a prime number and let zp denote a primitive p-th root of unity.

Let K be a number field and let OK and O�K denote its ring of integers and its
group of units. For each prime p of K over p, let ep and fp denote the
ramification index and the residue degree of p in the extension K=Q, respectively.

Theorem 2.2. Let K be a number field and let p be a prime number.
Suppose that p does not divide the class number of KðzpÞ and the ramification
index ep satisfies ep < p� 1 for all primes p of K over p. Then we have

(1) Ext1OK
ðmp;Z=pZÞ ¼ 0:

(2) dimFp
Ext1OK ;p

ðZ=pZ; mpÞa
P

pjp fp.

Here the index ‘p’ means ‘the p-torsion part’.

Proof. (1) This is proved by Schoof (see [9, Theorem 2.6]).
(2) Since ep < p� 1 for all primes p over p, the p-th roots of unity

are not contained in any of the completions at p. This implies that
HomÔOK ½1=p�ðZ=pZ; mpÞ ¼ 0. Therefore, by Theorem 2.1, there is an exact sequence

0! Ext1OK
ðZ=pZ; mpÞ ! Ext1

ÔOK
ðZ=pZ; mpÞ � Ext1OK ½1=p�ðZ=pZ; mpÞ

! Ext1
ÔOK ½1=p�ðZ=pZ; mpÞ:

Fix G A Ext1OK ;p
ðZ=pZ; mpÞ, which is split over ÔOK . Since G is killed by p and

split over ÔOK , the extension L obtained by adjoining the points of G to KðzpÞ
has degree dividing p and is unramified at all primes. Since p does not divide
the class number of KðzpÞ, it follows that L ¼ KðzpÞ. Therefore G is split over
OK ½1=p� and hence G is split over OK . Therefore we have

dimFp
Ext1OK ;p

ðZ=pZ; mpÞa dimFp
Ext1

ÔOK ;p
ðZ=pZ; mpÞ:

This completes the proof by Theorem 1.2. r

The group Ext1OK ;p
ðZ=pZ; mpÞ may be non-trivial when the ring OK contains

certain units. The group schemes constructed by Katz and Mazur provide
examples of such non-trivial extensions (see [6, Interlude (8.7)]). Let R be a ring
and let e A R�. Consider the R-algebra

A ¼0
p�1

i¼0
R½Xi�=ðX p

i � e iÞ:
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For any R-algebra S with connected spectrum, the S-points of Te ¼ Spec A are
pairs ðs; iÞ with 0a ia p� 1 and s A S satisfying sp ¼ e i. The scheme Te is a
finite flat R-algebra scheme with multiplication of two pairs ðs; iÞ and ðt; jÞ given
by

ðs; iÞ � ðt; jÞ ¼ ðst; i þ jÞ if i þ j < p;

ðst=e; i þ j � pÞ if i þ jb p:

�
The group scheme Te is killed by p. The projection A! R½X0�=ðX p

0 � 1Þ
induces a closed flat immersion of mp in Te. There is an exact sequence

0! mp ! Te ! Z=pZ! 0:

Two extensions Te and Te 0 are isomorphic whenever e=e 0 is a p-th power. If R is
a field, the points of Te generate the field extension Rðzp;

ffiffi
e

pp Þ.

3. Finite flat group schemes of prime order over certain number fields

Let K be a number field. Let OK and O�K denote its ring of integers and its
group of units. We shall review here the classification of group schemes of
prime order over OK due to Oort and Tate (see [8]). Fix a prime number p.
Let M be the set of non-generic points of SpecðOKÞ and let Mp denote the set of
p A M such that p divides p. For each p A M, let OK ;p denote the completion
of OK at p, let Kp denote the field of fractions of OK ;p, and let Up denote the
group of units in OK;p. For each p A Mp, we let vp denote the corresponding
normalized discrete valuation of K , let kp denote the residue field of OK ;p and let
u 7! u denote the residue class map OK;p ! kp. Let CK denote the idèle class
group of K . Let E denote the functor which associates with commutative ring R
with unity the set EðRÞ of isomorphism classes of R-groups of order p. Then
they showed that the square

EðOKÞ ���! Q
p AM

EðOK ;pÞ???y ???y
EðKÞ ���! Q

p AM
EðKpÞ

ð2Þ

is cartesian (see [8, Lemma 4]). Using class field theory, there are canonical
bijections

EðKÞFHomcontðCK ;F
�
p Þ;

EðKpÞFHomcontðK�p ;F�p Þ ðp A MÞ and

EðOK ;pÞFHomcontðK�p =Up;F
�
p Þ ðp A MnMpÞ;

where Homcont denotes the continuous homomorphisms (see [8, Lemma 6]). Via
these bijections the arrows in the diagram (2) are induced by the canonical
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homomorphisms K�p ! CK and K�p ! K�p =Up. If G is an OK -group scheme of

order p, we shall denote by cG A HomcontðCK ;F
�
p Þ the idéle class character

determined by GnOK
K , and by cG

p the corresponding character of K�p , for

each p A M. For each p A Mp, we let nG
p ¼ vðaÞ, where a A OK;p is such that

GnOK
OK;p F ðGa;bÞOK; p

in the notation of remark 1.1. Note that a is deter-

mined up to U
p�1
p by GnOK

OK ;p, hence nG
p is uniquely determined by G. They

showed the following theorem (see [8, Theorem 3]):

Theorem 3.1. The map G 7! ðcG; ðnG
p Þp AMp

Þ gives a bijection between the

isomorphism classes of OK-groups of order p and the systems ðc; ðnpÞp AMp
Þ

consisting of a continuous homomorphism c : CK ! F�p and for each p A Mp an
integer np such that 0a np a vpðpÞ, which satisfy the following conditions:

(1) For p A MnMp, c is unramified at p, i.e. cpðUpÞ ¼ 1,
(2) For p A Mp, cpðuÞ ¼ ðNmkp=Fp

ðuÞÞ�np .
Here cp : K

�
p ! F�p denotes the local character induced by c via the canonical map

K�p ! CK and Nmkp=Fp
denotes the norm map.

For a given family of integers ðnpÞp AMp
, there is either no idèle class

character c satisfying (1) and (2) of Theorem 3.1, or the set of all idèle characters
is a principal homogeneous space under the group of homomorphisms of the
ideal class group ClðKÞ of K into F�p . Therefore, if the class number of K is
prime to ðp� 1Þ, there is at most one c for each family ðnpÞp AMp

.

3.1. Imaginary quadratic fields of class number one
Let K ¼ Qð

ffiffiffiffi
m
p
Þ be a quadratic field, where m is a square-free integer. Let

zn denote a primitive n-th root of unity. Set

N ¼ jmj if m1 1 ðmod 4Þ;
4jmj if m1 2; 3 ðmod 4Þ:

�
We have KHQðzNÞ. For an odd prime p and integer a not divisible by p, we
let ða=pÞ denote the quadratic residue symbol. We give here a lemma which we
use later.

Lemma 3.2. Let p be an odd prime number. Let n denote the degree of the
extension Qðzp�NÞ=KðzpÞ. Suppose p divides neither n nor the class number of the
cyclotomic field Qðzp�NÞ. Then the class number of the field KðzpÞ is not divisible
by p.

Proof. If the class number of the field KðzpÞ is divisible by p, then there
exists an abelian extension H=KðzpÞ which is unramified everywhere of p-power
degree. Since p is prime to n, the abelian extension H �Qðzp�NÞ=Qðzp�NÞ is

unramified everywhere of p-power degree. By assumption, this is a contadiction.
r
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Assume that K is an imaginary quadratic field of class number one. As is
well known, there are nine imaginary quadratic fields of class number one.
These fields are

Qð
ffiffiffiffiffiffiffi
�1
p

Þ; Qð
ffiffiffiffiffiffiffi
�2
p

Þ; Qð
ffiffiffiffiffiffiffi
�3
p

Þ; Qð
ffiffiffiffiffiffiffi
�7
p

Þ; Qð
ffiffiffiffiffiffiffiffiffi
�11
p

Þ;
Qð

ffiffiffiffiffiffiffiffiffi
�19
p

Þ; Qð
ffiffiffiffiffiffiffiffiffi
�43
p

Þ; Qð
ffiffiffiffiffiffiffiffiffi
�67
p

Þ; Qð
ffiffiffiffiffiffiffiffiffiffiffi
�163
p

Þ:
We consider the finite flat group schemes over OK of prime order.

Proposition 3.3. Let p be an odd prime number such that p does not ramify
in K. Then the only group schemes of order p over OK are mp and Z=pZ.

Proof. In the case that ðm=pÞ ¼ �1, this is proved by Oort and Tate (see [8,
Corollary of Theorem 3]). In the case that ðm=pÞ ¼ 1, there are two primes p, p
in K over p. We introduce the usual notation. For any integral ideal a of K ,
we let UðaÞ be the subgroup of the idéle group A�K of K defined by

UðaÞ ¼ fs A A�K j sp A Up and sp 1 1 ðmod aOK;pÞ for all primes pg:

Let UðaÞ be the image of UðaÞ of the canonical map A�K ! CK and set

ClðK ; aÞ ¼ CK=UðaÞ:
Since the field K has no real places, there is an exact sequence

1! ðOK=aÞ�=img O�K ! ClðK ; aÞ ! ClðKÞ ! 0;

where img O�K denotes the image of O�K of the natural map O�K ! ðOK=aÞ�.
For the family ðnp; npÞ ¼ ð1; 0Þ, we assume that there is a continuous

homomorphism c : CK ! F�p satisfying the conditions (1) and (2) of Theorem
3.1. Then we have a surjective homomorphism c : ClðK ; pÞ ! F�p induced by
c. Since the class number of K is equal to 1, we have an isomorphism

ðOK=pÞ�=img O�K FClðK ; pÞ:
Since G1 A O�K , this is a contradiction. In a similar way, there is no idèle class
character c satisfying the conditions (1) and (2) of Theorem 3.1 for the family
ðnp; npÞ ¼ ð0; 1Þ. Therefore the OK -group schemes of order p are mp and Z=pZ.

r

An abelian variety over a number field k is said to have good reduction if it
has good reduction at every finite place of the ring of integers of k. We now
consider an abelian variety A over K with good reduction. Recently, Schoof
proved that for every conductor f A f1; 3; 4; 5; 7; 8; 9; 12g there do not exist non-
zero abelian varieties over Qðzf Þ with good reduction (see [9, Theorem 1.1]).
Assuming the Generalized Riemann Hypothesis (GRH), he proved the same
results when f ¼ 11 and 15 (see [9, Theorem 1.1]). Therefore there do not exist
non-zero abelian varieties over K ¼ Qð

ffiffiffiffi
m
p
Þ with good reduction everywhere for

m A f�1;�2;�3;�7;�11g under the GRH.
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Let K ¼ Qð
ffiffiffiffi
m
p
Þ be an imaginary quadratic field with class number one.

Let p be an odd prime number such that p does not ramify in K . We now
consider an abelian variety A over K with bad reduction only at the primes of K
over p. Let A be the Néron model of A over OK . Since A has bad reduction
only at the primes of K over p, note that A½ pn� is a finite flat group scheme over
OK ½1=p�. Let p be a prime of K over p. Note that any finite flat group scheme
over Kp of p-power order admits a prolongation over OK;p (see [5, Théorème
3.3.3]). Therefore there is a finite flat group scheme G over OK such that G is
isomorphic to A½ pn� over OK ½1=p�, using the equivalence of categories between
the category GrOK

of OK -group schemes and the category C of triples ðG1;G2; yÞ
where G1 is a finite flat ÔOK -group scheme, G2 is a finite flat OK ½1=p�-group scheme

and y : G1 n ÔOK ½1=p� ! G2 n ÔOK ½1=p� is an isomorphism of ÔOK ½1=p�-group
schemes. For the convention, we simply write A½ pn� for G.

Lemma 3.4. Let p be an odd prime number such that p does not ramify in K
and ðm=pÞ ¼ 1. Assume A has complex multiplication over K. Then the finite
flat group scheme A½ pn� admits a filtration

0 ¼ Gs HGs�1 H � � �HG1 HG0 ¼A½ pn�

by closed flat subgroup schemes such that successive subquotients Gi=Giþ1 have
order p.

Proof. Let G be a simple subgroup scheme of A½ pn�. Set L ¼ KðGðKÞÞ
and let Sp be the p-Sylow subgroup of GalðL=KÞ. Since A has complex
multiplication over K , it follows that the group GalðKðA½ pn�Þ=KÞ is abelian
(see [10, Corollar 2 of Theorem 5]).

Therefore the group GalðL=KÞ is abelian and hence the Sp-fixed points
GðKÞSp is a GalðL=KÞ-submodule of GðKÞ. Since

aGðKÞ1aGðKÞSp ðmod pÞ;

we see that GðKÞSp is non-trivial. Since G is simple, it follows that GðKÞ ¼
GðKÞSp . Let L 0 be the fixed field of Sp. Then GðKÞ is a GalðL 0=KÞ-module.
By assumption, there are two primes p, p of K over p. If v is a non-
archimedean place, set U

ðnÞ
v ¼ fx A Uv j vðx� 1Þb ng. Let N be the norm

subgroup of A�K defined by

N ¼ U ð1Þp �U
ð1Þ
p
�
Y

v0p;p

Uv

0@ 1A� K�;
where Uv ¼ C� for the archimedean places v and K� is the image of K� on the
diagonal. By class field theory, there is a surjection A�K=N! GalðL 0=KÞ. Let
VK be the image of the global units of K in

G ¼ Up=U
ð1Þ
p �Up=U

ð1Þ
p

:
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Then we have the exact sequence

0! G=VK ! A�K=N! A�K

, Y
v

Uv

 !
� K�

 !
! 0:

Here, the last quotient is isomorphic to the ideal class group of K , which is
trivial. Therefore the group GalðL 0=KÞ has exponent dividing p� 1. The
Fp½GalðL 0=KÞ�-module GðKÞ is therefore a product of 1-dimensional eigenspaces.
Since G is simple, there is only one such eigenspaces and G has order p. In a
similar way, the finite flat group scheme A½ pn� admits a filtration

0 ¼ Gs HGs�1 H � � �HG1 HG0 ¼A½ pn�

by closed flat subgroup schemes such that successive subquotients Gi=Giþ1 have
order p. r

Theorem 3.5. Let K ¼ Qð
ffiffiffiffi
m
p
Þ be an imaginary quadratic field with class

number one and let p be an odd prime number such that p does not ramify in K
and ðm=pÞ ¼ 1. Suppose that p does not divide the class number of KðzpÞ. Let A
be an abelian variety over K with bad reduction only at the primes of K over p.
Then A has no complex multiplication over K.

Proof. Assume A has complex multiplication over K . Since the class
number of K is equal to 1, any extension over OK of constant p-group schemes
by one another is constant. Considering the Cartier dual, any extension over OK

of diagonalizable p-group schemes by one another is diagonalizable. Note that
the only group schemes over OK of order p are mp and Z=pZ by Proposition 3.3.

By Lemma 3.4 and the proof of [9, Theorem 2.1], there is an exact sequence

0!M !A½ pn� ! C ! 0

with M diagonalizable and C constant. By the proof of [9, Theorem 2.1], we
have that dim A ¼ 0. r

Let K ¼ Qð
ffiffiffiffiffiffiffiffiffi
�19
p

Þ and set p ¼ 5. Since the class number of the cyclotomic
field Qðz95Þ is not divisible by p (see [13]), it follows that the class number of
KðzpÞ is not divisible by p by Lemma 3.2. As a corollary, we get the following.

Theorem 3.6. There do not exist non-zero abelian varieties over K ¼
Qð

ffiffiffiffiffiffiffiffiffi
�19
p

Þ with good reduction everywhere and complex multiplication over K.

3.2. Elliptic curves over certain number fields with good reduction
It is well known that there is no elliptic curves over Q with good reduction.

On the other hand, several examples of such curves over quadratic fields are
known. An elliptic curve defined over a number field k is called g-admissible if it
satisfies the conditions below:
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1. it has good reduction over k,
2. it has a k-rational point of order 2,
3. it admits a global minimal model.

If it satisfies only (1) and (2), then it is called admissible. In his paper [2],
Comalada showed that there exists an admissible elliptic curve over K ¼ Qð

ffiffiffiffi
m
p
Þ

ð0 < m < 100Þ if and only if

m ¼ 6; 7; 14; 22; 38; 41; 65; 77; 86:

Example. The elliptic curve E over K ¼ Qð
ffiffiffi
6
p
Þ with Weierstrass equation

y2 þ
ffiffiffi
6
p

xy� y ¼ x3 � ð2þ
ffiffiffi
6
p
Þx2

is g-admissible. This can be seen from the fact that the discriminant of E is equal
to the unit ð5þ 2

ffiffiffi
6
p
Þ3. The three points of order 2 of E have their x-coodinates

equal to x ¼ � 1

2
and

1þ
ffiffiffi
6
p

G ð
ffiffiffiffiffiffiffi
�2
p

þ
ffiffiffiffiffiffiffi
�3
p

Þi
2

respectively. Their y-coordinates

are given by y ¼ �
ffiffiffi
6
p

xþ 1

2
. The point with x ¼ � 1

2
is the only 2-rational point

that is rational over K . The curve E has exactly six points defined over K .

They are ð0; 0Þ and its multiples ð2þ
ffiffiffi
6
p

;�5� 2
ffiffiffi
6
p
Þ, � 1

2
;

1

2ð
ffiffiffi
6
p
� 2Þ

 !
,

ð2þ
ffiffiffi
6
p

; 0Þ, ð0; 1Þ and y.

Let K be a number field and let p be an odd prime number. Let E be an
elliptic curve over K with good reduction. We now consider the K-rational
points of order p in the elliptic curve E. Suppose there exists a K-rational point
P of order p in the elliptic curve E. Using the Weil pairing ep : E½ p� � E½ p� !
mp, we can define a map E½ p� ! mp by Q 7! epðP;QÞ. Since the point P is
rational over K , this map gives an exact sequence

0! Z=pZ! E½ p� ! mp ! 0:ð3Þ
of GalðK=KÞ-modules. Let E be the Néron model of the elliptic curve E over
OK . Since the elliptic curve E has good reduction over K , note that E½ p� is a
finite flat group scheme over OK .

Lemma 3.7. Suppose that the ramification index ep satisfies ep < p� 1 for all
primes p of K over p. Then the exact sequence (3) of GalðK=KÞ-modules induces
an exact sequence

0! Z=pZ! E½ p� ! mp ! 0

of finite flat group schemes over OK.

Proof. For any finite flat group schemes G over OK , there is a one-to-one
correspondence between closed flat subgroup schemes between G over OK and
GnOK

K over K . For any finite flat group schemes G over OK ;p of p-power
order, by the assumption, G is uniquely determined up to isomorphism by the
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isomorphism type of its generic fiber (see [12, Propositon 4.5.1]). Therefore a
constant group scheme Z=pZ is a subgroup scheme of E½ p� over OK . There
exists an exact sequence

0! Z=pZ! E½ p� ! G ! 0ð4Þ
of finite flat group schemes over OK . Since GnK is isomorphic to a diago-
nalizable group scheme mp by the exact sequence (3), G is isomorphic to a
diagonalizable group scheme mp over OK . This completes the proof. r

Combining the above result with Theorem 2.2, we get the following result:

Theorem 3.8. Let K be a number field having a real place and let p be a
prime number. Suppose that p does not divide the class number of KðzpÞ and the
ramification index ep satisfies ep < p� 1 for all primes p of K above p. Let E be
an elliptic curve over K with good reduction. Then E has no K-rational points of
order p.

Proof. Suppose there exists a K-rational point of order p in the elliptic
curve E. By Lemma 3.7, there exists an exact sequence

0! Z=pZ! E½ p� ! mp ! 0

of finite flat group schemes over OK . Set E ¼ E1. Since the above exact
sequence of finite flat group schemes over OK is split by Theorem 2.2, there
exists an elliptic curve E2 over K and a K-isogeny E1 ! E2 with kernel mp.

Then the image of the Galois submodule Z=pZ gives a point of order p in E2.
Continuing in this fashion, we obtain a sequence of K-isogenies

E1 ! E2 ! � � � ;
where each isogeny has kernel mp. Since all the Ei has good reduction over K ,
we see that Ei FEj for some i < j (see [4, Satz 6]). Composing our K-isogenies
gives a endomorphism f : Ei ! Ei defined over K . If Pi A EiðKÞ is the image
of P A EðKÞ, then by construction Pi B Ker f . Since deg f is a power of p, we
see that f is a non-scalar endomorphism. Therefore the elliptic curve Ei has
complex multiplication by some order O in an imaginary quadratic field K 0, and
we have an isomorphism (see [11, Ch. 2, Proposition 1.1])

½�� : OFEndðEiÞ
such that for any invariant di¤erential o A WEi

on Ei,

½a��o ¼ ao for all a A O:

Let a be the element of O such that ½a� ¼ f A EndKðEiÞ. Considering the action
of EndKðEiÞ on H0ðEi=K ;WEi

ÞFK, we have a A K VK 0 ¼ Q. This is a con-
tradiction. r

As a corollary, we get the following result:
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Corollary 3.9. Let K ¼ Qð
ffiffiffi
6
p
Þ or Qð

ffiffiffi
7
p
Þ. Let E be an elliptic curve over

K with good reduction. Then E has no K-rational points of order p for any prime
number pb 5.

Proof. Let E be the Néron model of E over OK . Since E has good
reduction at the prime of K over 2, the elliptic curve EðF2Þ has at most
3þ 2

ffiffiffi
2
p

< 7 points. Therefore E has no K-rational points of order p for any
prime number pb 7. Set p ¼ 5. We consider the case K ¼ Qð

ffiffiffi
6
p
Þ. Since the

class number of the cyclotomic field Qðz120Þ is not divisible by p (see [13]), the
class number of KðzpÞ is not divisible by p by Lemma 3.2. By Theorem 3.8,
the elliptic curve E has no K-rational points of order p. We now consider the
case K ¼ Qð

ffiffiffi
7
p
Þ. Since the class number of the cyclotomic field Qðz140Þ is not

divisible by p (see [13]), the class number of KðzpÞ is not divisible by p by
Lemma 3.2. This completes the proof by Theorem 3.8. r

The following table is all taken from [2] and [7]. In the table, all the
isomorphism classes of g-admissible elliptic curves having good reduction over the
three fields K ¼ Qð

ffiffiffiffi
m
p
Þ ðm ¼ 6; 7; 14Þ are listed. Each isomorphism class con-

tains a curve having a Weierstrass equation of the form

y2 ¼ x3 þ a2x
2 þ a4x;

on which the point ð0; 0Þ is of order 2. For each curve, the data given in the
table are Comalada’s code Ei, m, a2, a4, the j-invariant, and the torsion subgroup
T of the Mordell-Weil group. The coe‰cients a2, a4 and the j-invariant are
given by expressions containing the fundamental unit e of K and its conjugate e.

Table 1. Elliptic curves having good reduction over Qð
ffiffiffi
6
p
Þ, Qð

ffiffiffi
7
p
Þ, Qð

ffiffiffiffiffi
14
p
Þ

m a2 a4 j T

E1 6 �2ðe� 1Þ 4e ð20Þ3 Z=6Z

E3 6 �14ðe� 1Þ 4e 64ð4e4 þ 1Þ3=e4 Z=2Z

E5 6 14ðe� 1Þe 4e 64ð4e4 þ 1Þ3=e4 Z=6Z

E7 7 �ð1þ 2e2Þ 16e3 ð255Þ3 Z=2Z� Z=2Z

E9 7 2ð1þ 2e2Þ 1 ð256e2 þ eÞ3 Z=4Z

E11 7 �2ð1þ 2e2Þ 1 ð256e2 þ eÞ3 Z=2Z

E13 7 8e� 1 16e2 ð�15Þ3 Z=4Z

E14 7 �ð8e� 1Þ 16e2 ð�15Þ3 Z=4Z

E15 14 �3ðe� 1Þ=2 16e ð�15Þ3 Z=2Z

E17 14 3ðe� 1Þ �e ð255Þ3 Z=2Z
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