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HYPERPLANE SECTION PRINCIPLE OF LEFSCHETZ
ON CONIC-BUNDLE AND BLOWING-DOWN

EncHr SATO

1. Introduction

We work over the complex number field.

(#) Let N; be an n(> 3)-dimensional projective variety which is a locally
complete intersection and 4 a smooth ample Cartier divisor. Moreover let 4 be
a blowing-up of a smooth projective variety B along a smooth subvariety C.

Under the condition (#) we consider the following

ProBLEM 1.0. Under which condition there exists an n-dimensional com-
plete Moishezon space N, containing B as a divisor where N, is a locally
complete intersection, N the blowing-up of N, along the subvariety C and where
A a strict transform of B on N;.

Let r = dim B—dim C > 1 and E in A4 the exceptional locus via the blowing-
up of B along the subvariety C. It is already known that there exists N, in
Problem 1.0 under each condition:

1) (Fu80) r>2 and N; is smooth.

2) (Fa84, Fa86) r=2, N; is a smooth 4-fold with x(N;) >0 and

E#P'x P

Thus we can pose a

CoNJECTURE 1.1.  Let us maintain the notations and the condition (#) as
above.  Assume k(N1) >0 and n > 5. Then there exists N, in Problem 1.0 and
n=dim N, <5, if E is not isomorphic to P"> x P!, When E is isomorphic to
P73 x P!, there is a birational morphism g : Ny — N3 whose exceptional locus D
is contracted to P' via g.

In this paper we show

THEOREM 1.2.  Under the condition (#) we assume that r =2 and k(Ny) > 0.

Then the conclusion of above conjecture 1.1 holds if n =5 and E is not isomorphic
to P x Pl

See an example in Remark 4.4 for Thereom 1.2.

Received February 27, 2006; revised February 26, 2008.

307



308 EIICHI SATO

Remark 1.3. (1) We need a condition: x(N;) > 0. If otherwise we have a
counterexample: In fact for a smooth (n— 1)-fold B(n > 3), we have only to
consider a P'-bundle N; over B in the Zariski topology and a smooth ample
Cartier divisor 4 in N, which yields a tautological line bundle. (see introduction
[Fa86])

(2) As a matter of fact even if we replace x(N;) > 0 by the condition: a fiber
P! in the exceptional locus E via the blowing-up % : 4 — B does not deform to
fill up N;, we have the conclusion of Theorem 1.2.

In order to show Theorem 1.2, we take the locus D which is shown to be a
divisor in Ny where DN A4 = E. Next we show that D has a P>-bundle structure
over C which is the extension of P!-bundle £ — C and finally that D in N,
collapses to C in N,. Thus we pose more general problem on the extension of a
morphism.

In the following, setting r =2, we change the notation by the following
way: D to M, Eto A, C to S, and n—1 to n.

PrOBLEM 1.4. Let M be a projective n(> 4)-fold which is a locally complete
intersection, 4 a smooth ample Cartier divisor and 7 : A — S a conic bundle over
a smooth projective (n —2)-fold S. (see below as for the definition of conic
bundle) Assume that p(A4) =p(S)+1 and that A is not isomorphic to
P2 x P!. Then 7 is extended to a morphism ¢ : M — S. Particularly assume
that 7: 4 — S is a P!'-bundle over a smooth projective (n — 2)-fold S. Then the
morphism ¢ : M — S is a P>-bundle with Om(A)|j1(5) = Opr2(1) and dim § < 2.

DerFmiTioN 1.4.1. A non-singular projective variety X is called a quadric
bundle over a smooth projective variety Y if there exists a surjective morphism
J X — Y such that every fiber X, is isomorphic to a possibly singular hyper-
quadric of the same dimension m. When m = 1, it is called a conic bundle. See
Proposition 3.4 due to Mori and Mukai [MoMu85] and Proposition 3.5 in [Mi83]
about the property of conic bundles with p(X) =p(Y)+ 1.

(1.4.2) Remark in case of dim X =2 that a conic bundle f: X — Y with
p(X)=p(Y)+1 is a geomerically ruled surface over Y and therefore Problem
1.4 for n = 3 holds due to Badescu [Ba80] (see Theorem 5.5.3 [BS95] also). The
latter part in Problem 1.4 is called Sommese’s conjecture.

In the section 2 and 3 we show

THEOREM 1.5. Let M be a projective 4-fold which is a locally complete
intersection, A a smooth ample Cartier divisor and n: A — S a conic bundle over a
smooth projective surface S. Assume that (S) >0 and p(A) = p(S)+ 1. Then
7 is extended to a morphism ¢ : M — S which is one of the following:

i) P2-bundle over S with (0y(A N1 = Op2(1) (Case 3 (b.2)).

ii) P2-bundle over S with Oy (A )|¢ ) = Op2(2) (Case 4 (b.2)).

iii) Quadric-bundle over S (Case 4 (b. 2)), namely which is contained in a
P3-bundle g:V — S over S with Oy(M Ng15) = Op3(2).
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Thus combining Main theorem in [FaSaSo87] and [SaSp86], we get

CoROLLARY 1.6 (Sommese’s conjecture in case of n=4). Let M be a
projective 4-fold which is a locally complete intersection, A an ample Cartier divisor
and ©:A— S a P'-bundle over a smooth projective surface S. If A is not
isomorphic to P* x P', then n is extended to a morphism ¢ : M — S which is a
P2-bundle with Om(A)] 415 = Opa(1).

Remark 1.7. 1) In [SaZh00] Corollary 1.6 is shown under the assumption
of smoothness of M. Thus in this paper the investigations in the singular case
are made carefully.

2) Under the assumption: H(S,Ks) # 0 Sommese conjecture holds. It
is obtained by modifying some part in the proof in Theorem III (4.29) [Sa87]
slightly. Thus under the same one Theorem 1.2 holds if dim N > 5.

Remark 1.8. For a variety B N;(B) denotes £Z{l-cycle of B/numerical
equivalence} @ R. Assume dim M >4. Then an embedding i: 4 — M in-
duces an isomorphism i, : Nj(4) = Ni(M). Thus Theorem 1.5 and Corollary
1.6 say that an extremal ray R in N;(A) induced by 7 goes to the one i.(R) in
Ni(M) induced by ¢.

This paper is organized as follows. In section 2 and section 3 we study
basic facts and show Proposition 2.1. Using this Proposition we prove Theorem
1.2 and Theorem 1.5 in section 4.

Acknowledgements. The author would like to thank the referee for pointing
out several mistakes and errors and particularly for giving him an essential
suggestion in order to improve the incompleteness of the proof of Proposition 3.2.

2. Preliminary

In this section we state Proposition 2.1 which is necessary to get Theorem
1.5. We give the setup for the proof, divide the proof into cases (from case 1) to
4)) and state the proof in Case 1), 2) and 3). The main case Case 4) will be dealt
in the next section.

The method of the proof is basically the same as the one in [SaZh00]. Es-
pecially we need to check three cases: (b2) in Case 3, (al), (b2) and (b3) in Case 4
[SaZh00] carefully.

Hereafter we assume that

(2.0) the Kodaira dimension of a smooth projective surface S is non-
negative.

We begin with a well-known fact related with the above assumption (2.0)
which is used hereafter.

(Kod) Let f: T — S be a morphism from a projective ruled surface T to a
smooth projective surface S. Then if the morphism f is surjective, then S is
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ruled. Equivalently if the Kodaira dimension of S is non-negative, then the
image f(7T) is a point or a curve.

ProOPOSITION 2.1. Let M be a projective 4-fold which is a locally complete
intersection, A a smooth ample Cartier divisor and = : A — S a conic bundle over
a smooth surface S. Assume k(S) >0 and p(A) = p(S)+ 1. Then we have the
following two possibilities:

1) m: A— S is extended to a morphism ¢: M — S which is one of the
following:

i) P2-bundle over S with Om(A)| 415 = Op2(1) (Case 3 (b.2)).

ii) P2-bundle over S with Om(A)|j15) = Op2(2) (Case 4 (b.2)).

iii) Quadric-bundle over S (Case 4 (b.2)).

2) There is a birational morphism f : M — W onto a projective variety W
where W is a locally complete intersection and M is the blowing-up of W along a
smooth subvariety F contained in the smooth part of W.

Moreover f(A) has the following properties:

1. f(A) is a smooth ample Cartier divisor contained in the smooth part of W
and f|,: A — f(A) is the blowing-up of f(A) along the subvariety F(c f(A)).

2. f(A) has a conic-bundle structure 7' : f(A) — S’ over a smooth projective
surface S'.

3. There is a birational morphism f':S — S’ with the commutativity
(fl)7" ==nf'. Here the Picard number p(S) of S is equal to p(S')+ 1
(Case 4 (a.l))

Remark 2.1.1. 1) The case 2) in Proposition 2.1 does not occur, which is
shown in the proof in Theorem 1.5.

2) In 1) of Proposition 2.1 the conic bundle 7 : 4 — S of the subcase i) turns
out to be P!-bundle in the Zariski topology and the one of ii) with singular fibers.

We first consider a sufficient condition for a variety to have rational
singularities.

Remark 2.2. (1) Grothendieck [Gro68] showed the following:

Let (R,m) be a regular local ring, p a prime ideal of R and 4 = R/p. As-
sume that p is generated by R-sequence. If 4, is UFD for each prime ideal ¢ in
Spec A with htq <3, then A is UFD. This says that

(2) Let X be an n(> 4)-dimensional variety which is a locally complete
intersection with at most isolated singularities. Then X is locally-factorial. In
particular M in Problem 1.4 is locally-factorial. In fact since 4 is a smooth
ample Cartier divisor in M, M has at most isolated singularities.

From now on we state a property which makes it possible to use the
contraction theorem by extremal ray.

ProposITION 2.3. Let X be a locally-factorial and Gorenstein projective
variety and Y an irreducible divisor of X. Assume that there is a surjective
morphism b :Y — Z to projective variety Z so that a general fiber | of b is
P'. Moreover assume (Y.I)y >0. Then H’(X,Ky) = 0.
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Proof. From the first assumption we see that (Ky./), = —2 for a smooth
general fiber / of b. Assume H°(X,Ky) #0. If Ky is not isomorphic to Oy,
we have an effective divisor D with Ox(D) = Ky. For such a general fiber / of »
we have (/.D) < -2 by (Kx + Y.[)y = (Ky.l)y = —2. Thus noting X is locally-
factorial, we can take an irreducible component D’ of D with (/.D’) < —1 which
implies / = D’. Hence D’ contains a smooth general fiber / of b and therefore D’
coincides Y, contradicting the assumption (Y./), > 0. When Ky = Oy, we get
(Kx+Y.0)y =(Y.I)y = -2, a contradiction. g.e.d.

COROLLARY 2.4. Let M be a projective n(>4)-fold which is a locally
complete intersection, A an ample Cartier divisor. Assume that A is smooth
and that there is a surjective morphism ©: A — S to a projective (n—2)-fold S
where a general fiber 1 of m is P'. Then M has at most isolated rational
Gorenstein singularities.

Proof. Since A is a smooth ample divisor in M, M has at most isolated
singularities which is Gorenstein by Remark 2.2 (2). On the other hand when
M has irrational singular points Irr(M) which is finite, it is shown that
h°(Kar) + h°(Ky) = h°(Ky + A) > #(Irr M) by virtue of Corollary 0.2.2 [So86]
and by the following exact sequence: 0 — Ky — Ky +4 — K4 — 0. From
the structure of 4 we see (/.K4) = —2 where / is a fiber of n. Thus we get
h°(K4) = 0. Moreover we have H°(M, K,/) = 0 by Proposition 2.3 which yields
that M has no irrational singular points. Thus we complete the proof. q.e.d.

From now on we begin with the proof of Proposition 2.1.

Since A4 is a conic bundle over S, K4 is not nef and therefore K;; + A4 is not
nef. Let us set L = 0p(A) and K = Kj,. Since M has rational Gorenstein
singularities by Corollary 2.4, we apply our (M, L) to [Fu87]. Since L is ample,
there is a positive integer j with 2 < j < 5 so that K+ jL isnefand K + (j — 1)L
is not nef. Thus we study the following four cases separately:

Case k) K+ (6 — k)L is nef and K + (5 — k)L is not nef where k runs over
1, 2, 3, 4.

First we begin with

(2.6) Case 1 and Case 2

The arguments of case 1 and case 2 stated in [SaZh00] work well in these
cases. In fact we infer that S is ruled, a contradiction to the assumption
1(S) = 0. As a consequence these two cases do not happen.

Next we study

(2.7) Case 3 (K + 3L is nef and K + 2L is not nef)

We begin with a reformed version of Theorem 3’ [Fu87] under the weaker
following assumption. The proof is given with few changes of Fujita’s argument.

ProposITION 2.8.  Let U be an n(> 3)-dimensional projective normal variety
with only rational Gorenstein isolated singularities. Let L be an ample line bundle
on U. Assume that Ky + (n— 1)L is nef and that Ky + (n—2)L is not nef.
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Moreover assume that U is a locally complete intersection. If Picard number of
U, p(U) =2, then we have

(a) There is a birational morphism [ : U — W and the exceptional locus E is
P"! with (E,Lg) = (P"', 0(1)).

(b) There is a surjective morphism f: U — W to a smooth projective variety
W. Let F be a general fiber of f.

(b.1) dim W =1 and (F,Lr) is ((n— 1)-dimensional hyperquadric, 0(1)).

(b.2) dim W =2, f makes (U,L) a scroll over a smooth surface W and
(F,Lp) = (P"72,0(1)).

Proof. First since n >4 and p(U) =2, (b.l1) follows immediately from
[Fu87, Theorem 3 bl]. Next remark that every Weil divisor in U is Cartier by
Remark 2.2 (2). As for (a), taking general (n —2) hyperplane sections Hj, ...,
H, , in U, we see that H;N,..., N H, ; is a smooth surface, noting that U has
at most isolated singularities. Since the exceptional locus E of U is Cartier, the
proof of the case (a) in [Fu87] works well.

(b.2) follows from the following (2.9). Fujita actually showed (2.9) in (2.12)
[Fu87], although he assumed U is smooth.

(2.9) Let f: U — S be a surjective morphism between normal projective
varieties U, S and L an ample line bundle on U. Suppose that U is a locally
complete intersection and that dim U — dim S > dim Sing U. Moreover assume
that dim Z = r for every fiber Z of f and that (F,Lp) = (P",0(1)) for every
general fiber F of f. Then S is smooth and f makes (U, L) a scroll over S.

As for (2.9) see Proposition 3.2.1 in [BS95]. g.e.d.

To finish the case 3) we return to the observation of case 3 in (2.7). Applying
two subcases (a), (b.1) of Proposition 2.8, we infer that S is ruled (Kod in (2.0)),
contradicting the assumption of non-negative x(S) as shown in [SaZha00]. Thus
(a), (b.1) do not occur and only the subcase (b.2) does. In this case AN f~!(w)
is P! for a general point w in W. First by x(S) >0, z(AN f~'(w)) is one
point. Let h= (n,f|A4): A — Sx W. Since p(4) > p(h(A4)), we get p(S) =
p(h(A)) = p(W). Hence an induced morphism /(A4) — S is a finite birational
morphism and therefore an isomorphism. Similarly an induced morphism
h(A) — W is an isomorphism, which is a case 1) i) of Proposition 2.1.

3. Proof of Proposition 2.1 in Case 4)

In this section we investigate Case 4 to complete the proof of Proposition
2.1.

First we begin with

(3.1) Case 4. (K +2L is nef and K+ L is not nef)

First we begin with

ProPOSITION 3.2.  Let U be an n(> 3)-dimensional projective normal variety
with only rational Gorenstein isolated singularities and L an ample line bundle on
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U. Assume that Ky + (n —2)L is nef and Ky + (n— 3)L is not nef. Moreover
assume that |L| contains a smooth divisor A. Then if f: U — W is a birational
elememtary contraction induced by a curve R with (RKy+ (n—3)L) <O, it is
divisorial.

Proof. Let X ={we W|dim f~}(w) >0} and E = f"!(X). Then by
virtue of (2.5) in [Fu87], dim f~'(w)>n—-2>2(we W) and therefore
dim(f~'(w)N4) > 1. Thus we can take an irreducible rational curve C on
A so that (K4 + (n —4)A4|,.C) = (Ky+ (n—3)A.C) < 0. Note K4+ (n—3)A4|,
is nef on 4. Hence letting g: 4 — A’ be an elementary contraction induced by
the curve C on A and noting 4 is smooth, we infer that g is a birational
contraction and that the exceptional locus E(g) of g is a divisor in 4 namely,
dim E(g) = n — 2, by virtue of Theorem (0.4) Ionescu [I086]. Thus we see that
E(g) < E and that E(g) is contained in the smooth locus of U. Now if f would
be small, E(g) would be an irreducible component of E. Therefore since the
irreducible component E(g) is contained in the smooth locus of U, the argument
in Theorem (1.1) due to Wisniewski [Wi91] works and the following inequality of
the conclusion holds:

dim F 4 dim(locus of R) >dim X +/(R)— 1. (Here F is an ireducible of a
non-trivial fiber f.) The curve C above applies to R. However this contradicts
the assumption (R.Ky + (n—3)L) < 0. Thus we complete the proof.  q.e.d.

Thus by virtue of Proposition 3.2 and Remark 2.2 (2) we have the conse-
quence of theorem 4 [Fu87] under the weaker condition as the one. Note that
the case of small contraction does not occur.

ProposITION 3.3.  Let U be an n(> 3)-dimensional projective normal variety
with only rational Gorenstein isolated singularities and L an ample line bundle on
U. Assume that |L| contains a smooth divisor A and that U is a locally complete
intersection. If K+ (n—2)L is nef and K + (n — 3)L is not nef, then we have the
following cases under the condition p(U) > 1:

(a) There is a birational morphism [ :U — W onto a normal projective
variety W with p(W)=p(U)—1. Let X ={xe W|dim f~'(x) >0}. Then
E = f~Y(X) is an irreducible divisor and we have two cases:

(a.1) dim X = 1 and for any smooth point x in X (E,, L) = (P" 2 0(1))
where E is the fiber of f:E — X over x and Ly=L|y. In this case the
restriction Oy(E) to E, is O(—1). '

(a.234) X is a point. (E,L|;) is (P*,0(2)) or (P"',0(1)) or (Q,0p(1)).
Here Q denotes a hyperquadric.

(b) There is a surjecive morphism [ : U — W onto a normal projective variety
W and dim W < 4. Let F be a general fiber of f.

(b.1) dim W =1 and (F,Lp)= P> 0(j) with j=23, (P*0(2)),
(Q(= PY),00(2)) or (del Pezzo mamfold o(1)).

(b.2) d1m W =2 and (F,Lp) = (P? 0(2) or (Q(=P"™),0n(1)).
(b.3) dim W =3 and (F,Lyr) = (P” 3. 0(1)).
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Before studying the case 4, we state two facts on conic bundle.

ProPOSITION 3.4 (Proposition 4.8 in [MoMu85]). Let f: X — Y be a conic
bundle from a projective smooth 3-fold X to a smooth projective surface Y. Then
the following conditions are equivalent to each other.

(1) A general fiber X, of f is an extremal rational curve.

(2) p(X) =p(Y)+1

(3) For every irreducible curve C on Y, f~Y(C) is irreducible.

ProposiTION 3.5 (Lemma 4.7 in [Mi83]). Let f: X — Y be a conic bundle
from a projective smooth 3-fold X to a smooth projective surface Y with p(X) =
p(Y)+ 1. Then the following conditions are equivalemt to each other.

(1) f: X — Y is not a standard conic bundle,

Here a conic bundle f:X — Y is said to be standard if Pic X =
f*Pic Y ® ZKy.

() f:X — Y is a Pl-bundle in the Zariski topology.

Remark 3.5.1. We denote A, as a closed set {seS|n !(s) is singular}
(possibly empty) and remark that A, has only normal crossing as singularities
where A, is of l-dimension with dimSing A, <0 and that z~'(s) is a smooth
conic, a reducible conic or a double line according as s¢ A, seA, or,
s € Sing A, by [Be77].

Hereafter till the end of this section a conic bundle n: 4 — S means the
one from a projective smooth 3-fold 4 to a smooth projective surface S with
p(4) =p(S) + 1.

Next we state a property about a birational contraction of a conic bundle
which is necessary to study subcases (a.1) and (b.3).

PROPOSITION 3.6. Let n: A — S be a conic bundle (3.5.1) and g: 4 — A’
an elementary contraction by an extremal rational curve R. Assume that g is
birational and the Kodaira dimension of S is non-negative. Then the exceptional
divisor E via g is isomorphic to P' x P! where two morphisms g|; : E — g(E),
n|lp : E — n(E) correspond to one of two projections: P! x P! — P! respectively
and there is an open set U containing n(E) in S where n: A — S is P'-bundle over
U, namely A,NU =0. Moreover there is a birational morphism g':S — S’
which is blowing down n(E) of S to a smooth surface S' where n' : A — S’ is a
conic bundle over S’ wuth the commutativity g'n = 7'g.

Proof. Mori Theory says that the exceptional locus E is one of P!-bundle
over a smooth curve C, P2, P! x P! and an irreducible singular quadric surface
where E in only the first case goes to a curve C via g. Hence from Kod in (2.0)
n(E) is an irreducible curve by non-negative Kodaira dimension of S, n~!(n(E))
is irreducible by virtue of (3) in Proposition 3.4 and therefore n~!(n(E)) = E.
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Particularly the third case that g(P1 X Pl) is a point is ruled out in view of the
property of g and #. Consequently we have only to study the first case. Thus
glp is a P'-bundle over g(E) =~ P' and =(E) is a rational curve. Noting that
every fiber of 7 is connected, we see that E is isomorphic to P! x P! where the
first projection is g|, and where z|; is the composite of the second projection and
the normalization /i : P! — n(E). Particularly a general fiber of x|, : E — n(E)
is a smooth rational curve. Hence each fiber of z|, is a smooth rational curve or
a double line. Thus we conclude that if 7(E) intersects with A, then n(E)NA,
is contained in the singular part of A,. Now we have a

Sublemma: 7(E) does not intersects with A,. Therefore n(E) is smooth
and 7: A4 — S is P'-bundle over an open set around 7' (E).

In fact if otherwise, we take a point s in n(E)NA, and let / be the
reduced part (= P') of 77 !(s). For subvarieties / c E = A we have an exact
sequence:

0— Nyg— Nyg— Ngjagp — 0.

Since / is a fiber of the second projection of P! x P!, N is a trivial line
bundle on P'. Moreover Ng 4 is trivial since (E.J) =0 by n~'(n(E)) = E.
Thus we infer that Ny = 0 ® . On the other hand we have a

Claim. For a smooth conic bundle / : B — T over a smooth surface 7 let /
be a reduced part of non-reduced fiber. Then det N;/p = —1.

In fact for a smooth fiber C of the conic bundle we have (K3.C) = —2.
Since C is numerically equivalent to 2/. Thus we get (Kp./) = —1 and conse-
quently det Nyjp=—1. We get a claim.

Thus we have a contradiction and that n(E)NA, is empty. Thus we get
sublemma.

Noting (Og(E).I) = —1 for a fiber / of a P'-bundle g| : E — g(E), we get
n(E)2 = —1, which yields the remainder. Thus we complete the proof. q.e.d.

(3.7) Let us return the proof of Proposition 2.1 and first show that the
subcase (a.234) does not occur.

(3.7.1) Subcase (a.234) in case 4)

Let E be the exceptional locus of f* with a point P:= f(E). Then ENA is
one of P2, a singular quadric surface and P! x P!. By «x(S) >0 and Kod we
infer that the first two cases are ruled out and n(EN A) is a curve. Moreover we
get 71 (n(ENA)) = EN A by (3) in Proposition 3.4. Since f collapses a fiber of
7 to the point P, we see dim f(A) < 3, which contradicts to the ampleness of 4
(see (al) in p. 317 [SaZa00]). Thus this subcase does not occur.

Subcase (a.l) in case 4).

(1) Let f: M — W be a birational morphism induced by an extremal
rational curve C in A4 where (K+2A4,C) =0, and f(C) is a point. Let X =
{xe W|dim f~'(x) >0} and E = f~!(X) an irreducible divisor. Thus since
Ky +2A4|, is nef and not ample, we see that the morphism f|,: 4 — f(A4)
factors h: A — A’ =h(A) and h’': A" — f(A) where h is a contraction by an
extremal rational curve in 4. On the other hand since f is birational and 4 is
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ample, / is birational and the exceptional locus Exc(/) via h is contained in
ANE.

We show

(2) Exc(h) = ANE and h can be identified as the morphism g in Proposition
3.6.

For a point x in X let us set E, := f~!(x) and /, :== E,NA. Then recalling
that E is irreducible and dim E, = 2, we infer by the same argument as in (a.234)
that for each point x in X E, is not contained in 4, dim /., =1 and f(ANE)isa
curve X, since E, is P> for each smooth point x in X and therefore each
component of E, is a ruled surface for each point x in X [Ma68]. Noting that
ANE = Uxexlx and that /. ~ P! for each point x of an open set X, in X, we
see that AN E is irreducible. In fact if othewise, we could find an irreducible
component D of AN E which is contained in Uxe y_x, [x and get dmD=1 It
is absurd. Hence since Exc(/) is in 4 N E these two coincide. Thus we get (2).

(3) By Proposition 3.6, we see 4NE=~P!xP!. Since M is a locally
complete intersection, £ is Cohen-Macauley. Hence E is normal. Thus letting
p: X' =~P! — X be the normalization of X, we have a morphism f':E — X’
induced by f|, : E — f(E) with f|, =pf’. Then f’ is P>-bundle over X’ and
the restriction of two morphisms 7, f' to ANE corresponds to two canonical
projections of P! x P! respectively. Thus Sing M NE is empty and Oy (E)| F=
Op2(—1) with a fiber F of f':E — X'. Note that both Sing MNA and
nY(A;)NE are empty.

Thus we get

(4) M can be blown down along the direction f”: E — X’ to an algebraic
space N [Na7l][Ar70]. Set the morphism as f: M — N. Then f|, can be
identified as /1: 4 — h(A) by Proposition 3.6. f(A) is ample in N and N is
a projective variety by Step 5 [SaZh00]. Moreover it is a locally complete
intersection, B = Reg N and B is a conic bundle over a smooth surface S’ where
S’ is a blowing-down of S along an exceptional curve n(4NE).

(5) f: M — W can be identified as f: M — N. Hence since p: X' =~ P!
— X is an isomorphism, f|z:E — X is P’-bundle over P!,

In fact we have p(M)=p(N)+1 and p(M) =p(W)+ 1. Define a mor-
phism &= (¢, f): M — W x N and set the image of h as M. Since p(M) >
p(M)+ 1 and therefore p(M) = p(W) = p(N), two natural projections M — W
and M — N are isomophisms by Zariski Main Theorem. Thus we get (5).

We finish the subcase (a.l).

We consider subcase (b).

Subcase (b.1). This case does not occur by the proof in [SaZh00].

Subcase (b.2). We show that the case occurs that only #: 4 — S has a
standard conic bundle structure. First z(ANF) is a point. If otherwise, S
is ruled, a contradicton since 7(4NF) is a rational curve. Thus the morphism
fly:4— W factors A4 5854 w where j: S — W is a surjective morphism.
Note that a general fiber ANF of f|,: A — W is irreducible, since ANF is an
ample divisor in F. Consequently we see that the morphism ; is birational.
Moreover by p(M)=p(W)+1 and p(4) =p(S)+1, we get p(S)=p(W).
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Hence j is an isomorphism. Since A4 is ample in M, f: M — S is of equi-
dimension and therefore flat.

First consider the case that for a general fiber F of f, (F,Lr) = (Q(c P%),
0p(1)). Then we see easily that M is a quadric-bundle over S.

In case of F =~ P? taking a line bundle L' = —K); — A on M, we see that
L'|; = 0p:(1). Note that L’ is relatively ample with respect to f. Hence M is
P2-bundle over S by (2.9). Consequently the case does not happen that 4 — S
is a P'-bundle over S, as stated in [SaZh00], [Ba80] and (1.4.2) but the one does
that #: 4 — S is a standard conic bundle over S with “singular fibers”.

Next to get Corollary 1.6 shown after, we state

Remark 3.7.1.1. Under the conditions and assumptions in Theorem 1.5,
we assume, moreover, that a conic bundle 7: 4 — S is a P'-bundle over a
smooth projective surface S as in Corollary 1.6. Then the subcase (b.2) does not
occur.

It is proved just before that the case does not occur that M — S is a P>-
bundle over S. Hence let F be a fiber of the quadric bundle /' : M — S. Since
ANF is a smooth conic in F by assumption, F is a smooth quadric surface or a
possibly singular quadric surface with one vertex. Thus we remark that each line
/ on F is not contained in 4 where /N A is scheme-theoretically one point. Now
take a line / on a smooth quadric surface F and consider the Hilbert scheme R’
of / in M. Then we have the following exact sequence:

0 — Nyr— Nyy — Nepul; — 0

Since  Nj/y = @](?13, and therefore H'(, Nym) =0, we can take a 3-
dimensional irreducible component R of R’ containing the line /. Let Q be the
universal scheme of R and p: Q — M, ¢q: Q — R two canonical morphisms.
Note that the degree of p is 2. From (/.4) = 1 the Cartier divisor p~!(A4) yields
a section of ¢: Q — R and Q is a proj of rank-2 vector bundle £ on 3-fold R

with the following exact sequence on R:
0—-0—E—G—D0.

Here G is a line bundle on R where P(G) corresponds to a section p~!(A4)
in Q= P(E). Now Sing(M/S), denotes a closed set {m e M| fY(f(m)) is a
singular quadric surface with the vertex m}. Then we have

Claim: Sing(M/S), consists of at most finite subset in M.

In fact A is off Sing(M /S); since A4 is a smooth ample Cartier divisor.

Now take a very ample smooth curve C in S where C does not intersect with
f(Sing(M/S),). Let us set Mc = f~'(C). Moreover let pc:p~'(Mc) — Mc
be a canonical morphism between 3-folds obtained by taking the base change of
p:0Q— M over Mc. Hence pc: p~'(Mc) — Mc is a double covering. Since
A is an ample divisor in M, so is pc'(ANMc¢) in p~'(M¢). Here remark there
is a surface Rc in R with p~'(M¢) = ¢ '(R¢) from the constraction of Q, R.
Consequently both E|p and G| are ample vector bundles over a surface Rc.
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If necessary, taking the base change of above exact sequence by the normalzation
h:R;— Rc of Rc, we see that the above sequence splits over R by the
vanishing theorem H'(R¢, —G]| re) = 0 due to Mumford [Mu67]. This contra-
dicts to the ampleness of Elg .

Subcase (b.3). We show this case does not occur.

First f|,: A — W is a birational morphism. Since p(M) = p(W)+1, f|,
is not finite. Take a curve C in 4 with a point f(C). By assumption we see
(Ky+A.C) <0 and therefore (K4.C) <0. Hence we can find an extremal
rational curve C; in 4 such that f(Cy) is a point. By p(4) = p(W) + 1 we infer
that f|,: A — W is an elementary contraction induced by a smooth rational
curve C; on A. Moreover we see by Proposition 3.6 that 7z~ !(n(C;)) = P! x P!
and that W is a smooth 3-fold. Here note that the morphism f|,: 4 — W
corresponds to the one g: 4 — A’ in Proposition 3.6. Let Exc(f|4) be the
image of the exceptional locus {we W |dim(f],) " '(w)=1} of f|,:4— W.
Then it coincides with f(z~'(z(C;)))(=P!) in W. Moreover since A4 is ample
in M, dim f~'(w) =1 for each point w in W — Exc(f|4). Now remark that
f~'(w) is a smooth rational curve for a general point w in W — Exc(f|A).
f:M — W is P'-bundle over a smooth open subscheme W — Exc(f|4) in W
since f is flat over there. Hence we can take a smooth curve C, in S which
does not intersect with the exceptional curve n(C;) on S via the blowing-
down ¢’ :S—S'. Then f~'(f(n'(C))) — f(n~'(C,)) is a P'-bundle over
f(7(Cy))(= F =« W) with a section f~'(F)NA. In case of P!'-bundle there
are a rank-2 vector bundle £ and a quotient line bundle G over F enjoying
an exact sequence on F: 0— (0 —E— G—0 with f~!'(F)=~P(E) and
fY(F)NA4=P(G). Since 4 is an ample divisor, £ and G are ample vector
bundles. On the other hand the exact sequence splits from H'!'(F,—G) =0 by
Kodaira vanishing Theorem, a contradiction to the ampleness of E. Thus the
case (b.3) does not happen. q.e.d.

Thus we have finished the proof of Proposition 2.1.

4. Proof of Theorem 1.2 and Theorem 1.5

(4.1) Proof of Thereom 1.5.

We use induction on p(S). When p(S)=1, (M,A4) is in case 1) of
Proposition 2.1. Next assume p(S) > 1.

Hereafter we assume that (M, A) is in case 2) of Proposition 2.1 and study
(W, f(A4)). Since p(S) =p(S’) +1, by induction assumption we have a mor-
phism /4’ : W — S’ in one of the case 1). By the argument below we will get a
contradiction and show that case 2) of Proposition 2.1 does not occur. Conse-
quently we complete the proof of Theorem 1.5.

Let s) := '(F) be a point in S” and Wy = h'"!(s}) a fiber in W. Note that
in case i) and case ii) W, is isomorphic to P? and in case iii) it a quadric surface
with at most one singularity. Similarly F is a line in W} in case i) and a smooth
conic in the other cases.
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Thus in each case take a line C'(# F) in the fiber W, where in case ii)
C'NF consists of two points. Moreover let us take an irreducible and re-
duced curve C in M with f(C) = C’. Then the intersection number (C.E) in
M is 1, 2 and 1 in each case respectively. On the other hand we have an
equality (C".F)y, = (C".4") = (C.f*A") = (C.A+ E) = (C.A)+ (C.E). But the
direct calculation yields the inequality since (C.A4) is positive by the ample-
ness of A4, a contradiction. Consequently the case 2) of Proposition 2.1 does not
occur.

Thus we finish the proof of Theorem 1.5. q.e.d.

(4.2) Proof of Corollary 1.6.

First let us consider the case of x(S)>0. Then from Remark 3.7.1.1
only the case i) happens and two cases ii) and iii) in Theorem 1.5 are ruled
out.

Next let us consider the case of x(S) = —oco. In [FaSaSo87] it is shown in
Thoerem 2.0 when S = P? and in Theorem when there is a surjective holomor-

phic map from S to a curve except the special case. The remainder is proved in
[SaSp86|. g.e.d.

(4.3) Proof of Theorem 1.2

Let ¢ : A — B be the blow-up of B along C and E the exceptional locus via
the blow-up. Then E is a P!-bundle over C and let E, be a fiber P! of a point
ce C via the ¢: 4 — B. Then we have the following exact sequence:

0— Ngg— Ngja— Nejgye, — 0
Since Ng, jp = @l(?]z and Ng g, = Opi1(—1), we have
NMA;Q¥@@W&U.
Moreover by the assumption x(N;) > 0 and the following exact sequence:
0— Ngju— Ngyn, — Naywje. — 0
we get the following with b = E..A(> 0)
N n, = Opi(ar) @ Opi(a2) @ Opi(a3) @ Opi(—1),

with a1 > a, > a3 > 0 and Za; = b.

Thus the deformation of E, in N; provides us with an irreducible divisor D
in Ni. We get the following property:

1. DNA=E,
(for the proof see the proof of (1.2) Theorem [So81] for example)

2. A is an ample divisor in Ni, so is £ in D. Therefore D has at most
isolated singularities.

By virtue of Corollary 1.6 D is a P>-bundle over a smooth surface C and
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E is a tautological line bundle. Thus we get 1 = (E..E), = (E.A4)y, =b and
therefore (D.E.) = —1. Thus Theorem 1.2 follows. q.e.d.

Remark 4.4. We state an example on Theorem 1.2.

Let N; be a hypersurface of degree d + 1 defined by F = XoX{ + X1 X +
X X¢ + XdJrl =0 and V; the one of degree e+ 1 by G= XoXf +X1X€
X X3 +X6X‘ +X€+l =0 in P® with d,e>0. Let C be a plane in P® defined
by X() X1 X2 X6 =0.

We have the following properties:

1) N, V1 and N3N Vy are smooth around C.

2) A hypersurface of degree b defined by (X3 + X0)” — (X3 — Xo)" +
X+ X)" = (X4 = X))’ + (X5 + X5)" — (X5 — X2)" + (X6)" = 0 is a smooth va-
riety containing the C.

Let us take N, as a hypersurface of degree d + 1 defined by XyA4g + X14; +
X>A4; + X¢A3 =0 where 4; (0 <i < 3) are homegenous polynomials of degree d
with generic coefficients and V" as the one of degree ¢ + 1 similarly. Noting that
the property of smoothness is an open condition in the set of subschemes
containing the C, we see easily that N», ¥ and N> NV are smooth varieties in P°
containing C.

Let f: P — P® be the blowing-up of P® with the center of C. Moreover let
us set N; the proper transform of N, and A of B:= N, NV respectively. We see
that P has a P*-bundle structure: §:P — P3. Letting D be the exceptional
divisor of P via f , we see that D is isomorphic to P? x P* and f]; 5 is the first
projection and §|; the second one. Let us set two morphisms f := f|y : Nj —
Ny and g == gly, : Ny — P3. Then f is a birational morphism whose exceptional
locus D(:= DﬂNl) has a P2-bundle structure over C = f(D) = P2 A fiber of
the morphism ¢ is a surface of degree d. Let C; be a line in a fiber of f], and
C, a curve in a fiber of g. Thus we get

PrOPOSITION 4.5. 1) NE(N;) = R.oCi + RogCy

) fly : A — B is a birational morphism whose exceptional locus E(:= DN A)
is a P-bundle structure over C.

3) (A.C)y, =1 and (A.Cy)y, = (deg Cy)e.  Here the degree (= deg Cy) of
C, denotes the one in a fiber (=P3) of §.

Thus if e > 0, A is a smooth, ample divisor in Ni. Consequently these yield a
desired example.

Note f*B= A+ D in N, and each fiber of § is embedded in P® via f as a
linear space. Thus deg C; is equal to the degree of f(C,) in P®.  We show only
the latter part of 3). In N, take a curve C; in a fiber of g, not contained in
D. Then f(C,) is a space curve in P® not contained in the plane C. Thus we
get (D.Cy)y, =deg C; and (B. f(Cz))N2 (On,(e+ 1), f(C2)) = (e+1) deg Co.
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