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A QUOTIENT GROUP OF THE GROUP OF SELF HOMOTOPY
EQUIVALENCES OF SO(4)

Hipeakr OsHIMA

Abstract

The author studies the quotient group &(SO(4))/&,(SO(4)), where £(SO(4)) is the
group of homotopy classes of self homotopy equivalences of the rotation group SO(4)
and &% (SO(4)) is the subgroup of it consisting of elements that induce the identity on
homotopy groups.

1. Introduction

For a space X with a base point, let &(X) denote the group of homotopy
classes of based self homotopy equivalences of X and let &x(X) be the normal
subgroup of &(X) consisting of elements that induce the identity on homotopy
groups. These groups have been studied by many people [5]. But the group
structures are still unknown except for a few special cases. In particular, while
&4 (SO(4)) is known [4], £(SO(4)) is unknown. The purpose of this paper is to
study the quotient group &(SO(4))/&4(SO(4)). The following basic theorem is
due to Sieradski [6] and Yamaguchi [7].

THEOREM 1.1, &(SO(4))/&4 (SO(4)) = Inv(M>(v/2)).

Here M(v/2) is the ring of 2 x 2-matrices

|: ar \/§a12:| (a“ c Z)
V2ay  ax ’

and Inv(M,(v/2)) is the group of invertible elements of M(v/2). Our main
results are stated as follows.

TuEOREM 1.2. Let A € Inv(M>(V2)).
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(1) The order of A is finite if and only if A=+E or tr(4) =0.

(2) If tr(4) =0, then the order of A is 3+ det(A).

(3) If A is of order 4, then A*> = —E.
Here E denotes the unit matrix, and tr,det : Inv(M,(v/2)) — Z denote the trace
and the determinant, respectively.

THEOREM 1.3.  The group Inv(M,y(v/2)) is not nilpotent and generated by
1 0 1 V2 1 0
A= B= =
T S A P

(11) C*=(AUB Y =E, (4B "Y' =(B'4), ca=4"'Cc, CB=B'C.

with relations:

COROLLARY 1.4. The order of any element of &(SO(4))/64(SO(4)) is 1, 2, 4
or 0.

In Section 2, for completeness, we prove Theorem 1.1 by our methods. We
prove Theorem 1.2 and Theorem 1.3 in Section 3 and Section 4, respectively.

2. A proof of Theorem 1.1

In this paper spaces are assumed to be based, maps and homotopies preserve
base points, and the base point of a topological group is the unit. The group
E(X xY)/6x(X x Y) with X, Y group-like spaces was studied by Sieradski [6],
and his method was applied to the case X =S* and ¥ = SO(3) by Yamaguchi
[7]. Recall that there is a homeomorphism SO(4) ~ S x SO(3), where SO(3) =
P3| the real projective space of dimension 3, and that it induces the isomorphisms
£(SO(4)) = &(S* x P?), €4(SO(4)) = &4(S* x P?) and &(SO(4))/64(SO(4)) =
&(S* x P /&4 (S* x P?). Hence Theorem 1.1 can be stated as follows.

TaeoREM 2.1 ([6, 7]). &(S* x P?)/64(S? x P?) = Inv(M,(V/2)).

We shall prove Theorem 2.1. For convenience we use the same notations
for a map and its homotopy class and we do not distinguish them. Given a
topological group G and a space X, let [X, G] denote the set of homotopy classes
of maps from X into G. It inherits a group structure from G; its multiplication
is denoted by +. In the special case X = G, we denote [X, G] by #(G), because
the notation [G, G] may be confused with the commutator subgroup of G. If
o:X — Y and f:Y — Z are maps (or homotopy classes of them), then their
composition is denoted by fooa. The following result is well known.

LemMa 2.2. For any maps o,f:Y —G and y:X — Y, we have
(@+p)oy=aoy+foy.
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We use the following notations as in [3]: P” the real projective space of
dimension n; ¢ : S* x P = S3AP? and ¢5 : P? — P3/P2 = S3 the quotient maps;
i:SVvPP 5 SPxP S = SPVvP? and i : PP — S? v P? the inclusion maps;
ik =ioil (k=1,2); p:S* — P? the canonical double covering map.

We have the following exact sequence of groups.

1 - [SSAPLS P L (3 x PP S S VP38 P — 1
We define a binary operation e of [S*vP3 S* x P3] as follows:
(2.1) vefp=i"(i"Na)oi" ' (B)) (x,8e[SPVP? S xP?)).

The operation e is well-defined. For, if & & €i* ' (x) and B, € i*~'(f), then
& = a4+ q*(a) for some a e[S AP S* x P and

i@ of)=d"of=(@+q' (@) of=aof+acqgof=0of=i"(aop),
since ¢ o f is null-homotopic.

LEmMMa 2.3. The triple ([S3 vP3 S% x P3|, +, ) is a unitary ring such that i
is the unit and i* : # (S x P?) — [S* vP* S* x P¥] is additive and multiplicative,
that is, i*(x+ y) =i*(x) +i*(y) and i*(xo y) =i*(x) e i*(y).

Proof. By definitions, i* is additive and multiplicative. Thus it suffices to
prove the following equalities:

(2.2) e =o=uoei

(2.3) (xof)oy=oe(fey),
(2.4) (atp)ey=aey+fey,
(2:5) xe(fty)=aeftaey,

where o, 5,y € [S3 vP3 8% x PY.
Since i*(1) =14, (2.2) is obvious. Hence i is the unit. We have (2.3) and
(2.4) from (2.1) and Lemma 2.2. To prove (2.5), consider the homomorphism

(2.6) ©:[5°vP3, s x PN 87y 8% 8% x P

— = m(SP x P @ m3(S? x PY)

which is defined by O(«) = if*(2) ® p*i5(«). Since @ is injective, it suffices for
(2.5) to prove the following two equalities:

i'(xe(B+y) =i (xef+aey),
priy(ae (f+7y) =piiy(xef+aey).

Let & f, 7 satisfy i*(&) =a, i*(f) =p, i*(j) =7. Then we have i*(f+7) =
f+y and
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ii'(xe (By) =do(B+p)oi=ac(foi+joir)=a(Boi+7oin)
= (Boir)+a(joi)
since &, : 73(S® x P?) — 73(S* x P?) is a homomorphism)

(
= (Gof+aof)oi =i (xef+aey)

and
piiy(ae(f+y)=do(f+P)ohbop=a.(foop+Foirop)
=G.(fobop)+a.(joiop)=pi(aeftasy).
Hence we obtain (2.5). This completes the proof of Lemma 2.3. O

By Lemma 2.3, the set of invertible elements
Inv:={ae[S*vP S x P |3 p e[S VP S} x Paef=i=fea}

becomes a group.

Lemma 2.4. (1) 64(S* x P?) =i*71(i) and (S x P?) = i*~!(Inv).
(2) 6(S* x P3)/64(S? x P?) = Inv.

Proof. (1). Let ® be the monomorphism in (2.6). If f e &, (S® x P3),
then O@*(f))=0@) so that *(f)=i Hence &4 (S®xP) ci*(i).
Conversely let g € i*~!(i). Since i, : 7, (S* v P?) — 7, (S* x P?) is surjective, the
equality i*(g) =i implies g e &4 (S* x P¥). Thus &4(S® x P?) =i*71(i).

Let fed&(S*xP?). Take ge&(S*xP3?) such that fog=1=gof.
Then i*(f)ei*(g) =i*(fog)=i=i*(go f)=1i"(g)ei*(f). Hence i*(f) e Inv
and so &(S* x P*) < i*~!(Inv).

Conversely let fei*!(Inv). Then there exists ge #(S’ x P?) such
that i*(f) ei*(g) =i=1i*(g) e i*(f). Hence i*(fog)=i*(l) =i*(go f), and so
fog—1and go f —1 belong to the image of ¢*. Since any element of the
image of ¢* induces the trivial homomorphism on homotopy groups, it follows
that fog and go f induce the identity homomorphism on homotopy groups
so that f is a homotopy equivalence, that is, f € &(S® x P*), and so i*~!(Inv)
&(S* x P?).  Therefore &(S* x P?) = i*~!(Inv).

(2). By (1) and Lemma 2.3, the assertion follows. O

We define fiy € #(S* x P*) and f, € [S*vP* S* x P] by

fii=iiopry, fu=hopopr, fa=ioqopry, fn=hopr, fj=/fuol
where pr; : S*x P — S and pr, : S* x P? — P? are the projections. Then, as
is easily shown, we have

S*VvPLS x P = P 2Z{fk’,}.

1<k,l<
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Given a 2 x 2-matrix (a;) with a; € Z, let

(2.7) (ag)’:{ \/‘;;21 */Z'Z}em(\fz).

LemMmAa 2.5, The function ¢:[S*vP? S® x P3| — My(V2) defined by
(X awfy) = (aw)' is an isomorphism of rings.

Proof. Obviously ¢ is an additive isomorphism. By direct calculation, we
have

) ) ek, n)fin =m ) ) elk,l,n)f., l=m
fklOfng{O( )i I and so fklzof,,ﬁn:{o( )1 o
where
olk, 1,n) = {2 (,m) =(1,2,1),(2,1,2)
H 1 otherwise.
ence

(Z aklf}!]) o <Z bmn ,1lm> - chnfklna
k1 k,n

m,n

where ¢, = >, arbie(k,l,n). The last equality implies (ckn)' = (akn)' (bin)’, that
is, (X anfy) o S biufy)) = o(X aufy)e(X bufy). Therefore ¢ is multipli-

cative. This completes the proof. O

Proof of Theorem 2.1. It follows from Lemma 2.4 and Lemma 2.5 that
the surjection ¢ oi* : #(S* x P3) — M>(v/2) induces a multiplicative surjection
&(S* x P?) — Inv(M,(v/2)) with &4(S® x P?) the kernel. Hence we obtain
Theorem 2.1. O

3. Proof of Theorem 1.2
We have Inv(M,(v/2)) =det '{1,—1} and we write
Inv, (M>(V2)) = det™' (1), Inv_(M>(v2)) = det™!(—1).

Then Inv,(M,(v/2)) is a subgroup of Inv(M;(v/2)) of index 2.
To prove Theorem 1.2 we need three lemmas. Given an integer J, we define
a sequence of integers f, = f,(0) (n>1) by

ﬁl :1’ ﬂ2:57 ﬂn+l :(sﬂn_ﬁn—l (I’ZZZ)

The following two lemmas are easily proved by the induction.

Lemma 3.1. If Aelnv, (My(V2)) and 6 = tr(A), then
An = _ﬁn—1E+ﬁnA (I’l = 2)
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LEmMA 3.2. We have

n—1 . n—1 .
_ IRV A Al AGY - il P o
B = S0 (T ) = S (] )

i=0 i=0
The third lemma we need is
LemMa 3.3. If 0 is even and f,, | = —1, then n is even and 6 = 0.

Proof. Suppose that & is even and f,, , = —1. Since B, , = (—1)""
(mod 6%) by Lemma 3.2, it follows that n is even. Set n=2m and define

2m—1 . 2m—2 .
L i—1 2m +1— 1 2i-2 j 2m + ] 2j

i—1 =0
Then 52g2m =fr,-1 +1=0. Thus it suffices to prove that ¢, #0. Since
g» =1, we assume m > 2. Note that

2m—2

9gom = (2m - 1)Wl+ Z (_1)
=1

J=

j@m—j=D)@m = j) - (m+ )

2
(2j +2)! o7

We prove that if 1 < j<2m—2 and J is a non-zero even integer, then

2m—j—-1)2m—j)---2m+))
2/ +2)!

Here v,(k) is the exponent of 2 in the integer k, that is, k = 2"/ such that
v(k) is a non-negative integer and / is an odd integer. If (3.1) holds, then
Gom = 27 (mod 2"20M+1) and so ga, #0. Now we prove (3.1). Let &(k)
denote the sum of all coefficients in the 2-adic expansion of the positive integer
k. As is well known, v,(k!) =k —e(k). We have

(3.1) @)= vz< 521‘) > vy(m) + 1.

2j+1
D(j) =2(2j+2) — (2 +2)+2m(0) + Y _vm@m—j—1+i)
i=0
2j+1
>6(2+2) =24 > va(2m—j—1+i)=¥()).
i=0

It suffices for (3.1) to prove
(3.2) () =vam)+1 if 1<j<2m-2.
If />0 and 2/ 42 <2m — 2, then
Y2i+1)=e(dl+4)—24+v,2m =21 =2)+ - +v,2m) + - - + v2(2m + 2])
>1 =24+ 14+n2m)=wn(m)+1
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W2 +2)=edl+6)—2+v22m =21 =2)+ -+ vn(2m)+ - +v2(2m + 2] + 2)
>2-24+v02m—21—-2)+v(2m)+v(2m+ 2]+ 2)
> va(m) +3 > w(m) + 1.

This proves (3.2) and completes the proof of Lemma 3.3. O

Proof of Theorem 1.2. Let A = (a;)' € Inv(M>(v2)) and write J = tr(A4),
where (a,;,)' is the matrix defined in (2.7). Since det(A4) = ajjaxn — 2apax = +1,
it follows that a;; and ay; are odd so that J is even.

(i) Suppose det(4) =1 and A4 # +E. We prove that the following con-
ditions are equivalent: (1) the order of A4 is 4; (2) the order of A is finite;
(3) 6 =0; (4) A>= —E. Note that the order of 4 is 3+ det(4) if (1) holds.
It is obvious that (1) and (4) imply (2) and (1), respectively. It follows from
Lemma 3.1 that (3) implies (4). By Lemma 3.1, for n > 2, the equality 4" = F
holds if and only if

“Pn-1 +ﬂna11 = —Pn-1 +ﬂna22 = 17 ﬂnalz = ﬂna21 =0.

Assume (2), that is, A" =F for n>2. Then f,=0 and f, , =—1 by the
assumption 4 # +E. Hence n is even by Lemma 3.2 so that n =0 (mod 4) and
0=0 by Lemma 3.3. Thus (3) holds.

(i) Suppose det(4) = —1. We prove that the following conditions are
equivalent: (1) the order of A4 is 2; (2) the order of A is finite; (3) J =0.
Note that the order of A4 is 3+ det(4) if (1) holds. It is obvious that (1)
implies (2). Assume (2), that is, 4" =E for n>2. Then (42)" = E with
A% e Inv, (M>(\/2)). Hence 4> =+E or tr(4%) =0 by (i). Since

C[1+ans V2ans
\/§a215 1 4+ axo ’

it follows that tr(4?)=2+0%>2 so that 4> =+E. Then the assumption
det(4) = —1 and (3.3) imply that § = 0 and 4% = E, that is, (1) and (3) follows.
This completes the proof of Theorem 1.2. O

(3.3) A?

For a group G, let Tor G denote the subset of G consisting of elements with
finite order.

COROLLARY 3.4. (1) Tor Inv(M»(v/2)) is not a subgroup of Inv(M,(v/2)).
(2) Tor &(S* x P?) is not a subgroup of &(S* x P3).
Proof. Let

el t) oefp ]
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Then P> = Q*>=E and so P,Q e Tor Inv(M,(/2)), while their product

1 V2
5

has an infinite order by Theorem 1.2. This implies (1). Since &4 (S x P?) <
Tor &£(S* x P?) by [4], Tor &(S* x P*) is mapped onto Tor Inv(M(v/2)) under
the epimorphism that induces the isomorphism of Theorem 2.1. This implies (2).

]

ro-|

4. Proof of Theorem 1.3

Let A4, B, C be the matrices defined in Theorem 1.3. For each ne Z, we
have

(4.1) A”:L}zn ﬂ B”:[(l) Vf”]

The following lemma is a part of Theorem 1.3.

LemMma 4.1. The group Inv, (My(v/2)) is not nilpotent and generated by A
and B with relations:

(AB Y =E, (4B ") =(B'4)%

Proof. Direct calculation implies that Inv(M,(v/2)) and Inv,(M(v/2))
have the same center Z,{—FE} and that the following equalities hold

(4.2) (4B = (47'B)* = (B"'4)* = (BA™")* = —E.
Hence (AB1)* = E. Define C, € Inv,(M(v2)) inductively by
C,=4BA"'B', C,=C,\BC,'\B™' (n>2).

By the induction on n, we can easily prove that the (2,1)-component of C, is
—/22%"-! and so C, # E for all n>1. Hence Inv,(M,(+/2)) is not nilpotent.

In the rest of the proof we prove that InV+(M2(\/§)) is generated by 4 and
B. That is, we will show that if X = (x;)" € Inv, (M2(v2)), then X e <4, B),
where (x;)" is the notation of (2.7), and {4, B) is the subgroup generated by A
and B. By the definition, we have

(4.3) X11X22 — 2x12x21 =1.

Hence xj; is odd and so x;; #0. By (4.2), X €<{4,B) if and only if —X =
X(—E)e<4,B). So we can assume x;; > 0 without loss of generality. By the
induction on / > 1, we prove that if X = (x;)" € Inv, (M»(v/2)) with x1; = 2/ — 1,
then

(4.4) X € {4, B>.
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If / =1, then x;; =1 and, by (4.1) and (4.3), we have X = 4" B*2 and so (4.4)
holds in this case. Assume that (4.4) is true if 1 < x;; <2/ —1with/ > 1. Sup-
pose x;3 =2+ 1. By (4.3), x;; and x;; are prime each other and so we can
write xp; = kxy; 4+ with 1 <i < x;;. We have X = A¥BD, where

_ X1 — 2i \/Z{(Zk—‘r 1))612 — X22}
V2i —2kx1p + X2 .

Note that x;; — 2i is odd and |x;; — 2i] < x;; — 2. By the inductive hypothesis,
D or D(—E) is an element of {4, B) according to whether x;; — 2i is positive or
negative. Hence, anyway, D € {A4,B) and so X € {A4,B). This completes the
induction. O

D

By the algorithm in the above proof, we have

PROPOSITION 4.2. Let X = (x;)" € Inv (M2(V2)).  Then |x11| = 2n — 1 with
n>1 and

(4.5) X = (A4 B)(A%B) - - (4% B)(4* B*)(—E)".
for some integers ki, ..., ky, k, ¢ such that 1 <m <n, ¢ =0,1, and that if m > 2,
then k,, # 0.

The decomposition (4.5) is unique for n < 2, while it is not unique for n > 3
because (4.2) implies

{ 2n—1 V2
n—1)v2 1

Proof of Theorem 1.3. By Lemma 4.1, Inv(M,(v/2)) is not nilpotent.
Since the map

} = BA" ! = BA"*BA"'B(-E).

Inv, (M>(V2)) — Inv_(M>(V2)), X — CX

is a bijection, it follows from Lemma 4.1 that Inv(M,(V/2)) is generated by 4, B
and C. Direct calculation implies the following equalities:

C*=E, CcA4=4"'c, cB=B'C.

This and Lemma 4.1 complete the proof of Theorem 1.3. O
PrROBLEM 4.3. Are (1.1) the defining relations of Inv(M,(\/2))?

While &4 (S* x P?) is nilpotent by [1] (or [4]), Theorem 2.1 and Theorem 1.3
imply

COROLLARY 4.4. The group &(S* x P*) is not nilpotent.



THE GROUP OF SELF HOMOTOPY EQUIVALENCES OF SO(4) 91

REFERENCES

E. DrROR AND A. ZABRODSKY, Unipotency and nilpotency in homotopy equivalences, Topol-
ogy 18 (1979), 187-197.

A. Kono anp H. Osuima, Commutativity of the group of self homotopy classes of Lie
groups, Bull. London Math. Soc. 36 (2004), 37-52.

H. OsuiMa, The group of self homotopy classes of SO(4), J. Pure Appl. Algebra 185 (2003),
193-205.

H. OsuiMa, A group of self homotopy equivalences of SO(4), Quart. J. Math. Oxford 56
(2005), 95-100.

J. W. RUTTER, Spaces of homotopy self-equivalences, a survey, Lecture notes in math. 1662,
Springer-Verlag, Berlin, 1997.

A. J. SiErRADSKI, Twisted self homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.

K. YamacucHi, Self-homotopy equivalences of SO(4), Hiroshima Math. J. 30 (2000),
129-136.

Hideaki Oshima

IBARAKI UNIVERSITY

Mito, IBARAKI 310-8512

JAPAN

E-mail: ooshima@mzx.ibaraki.ac.jp



