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ITERATED CYCLIC HOMOLOGY
KATSUHIKO KURIBAYASHI AND MASAAKI YOKOTANI

Abstract

From the viewpoint of rational homotopy theory, we introduce an iterated cyclic
homology of connected commutative differential graded algebras over the rational
number field, which is regarded as a generalization of the ordinary cyclic homology.
Let T be the circle group and Z (T I'x ) denote the function space of continuous maps
from the /-dimensional torus T’ to an /-connected space X. It is also shown that the
iterated cyclic homology of the differential graded algebra of polynomial forms on X is
isomorphic to the rational cohomology algebra of the Borel space ET xr F# (T’,X ),
where the T-action on #(T', X) is induced by the diagonal action of T on the source
space T ’.

1. Introduction

Let T be the circle group and Z(T,X) the function space equipped with
the T-action induced from the multiplication on the source space T. The results
of Goodwillie [5] and of Burghelea and Fiedorowicz [2] assert that the cyclic
homology of the singular chain C,(QX;R) on the Moore loop space of a path-
connected space X can be identified with the homology of the Borel space
Er xr 7 (T,X) with coefficients in R, where R denotes a commutative ring with
unit. Jones [8] has proved that the (negative) cyclic homology of the singular
cochain C*(X; R) of a simply-connected space X is isomorphic to the cohomology
of Er x7 Z (T, X) with coeflicients in R as a module over H*(BT; R) = R[u]. In
the case where R is the rational number field @, the cyclic homology of C*(X; Q)
is isomorphic to that of the differential graded commutative algebra Ap.(X) of
rational polynomial forms on X. In [11], Vigué-Poirrier and Burghelea have
proved that a complex which computes the cyclic homology of Ap.(X) is quasi-
isomorphic to a Sullivan minimal model for E7 x7 # (T, X) if dim 7;(X) ® Q is
finite for any i. Thus the model allows us to calculate the cyclic homology of
a space explicitly [11, Theorem B]. Under such a background, it is natural
to generalize the cyclic homology of a differential graded commutative algebra
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(DGA) over Q requiring that the homology is isomorphic to the cohomology
H*(Er x1 7 (T',X); Q) when Ap.(X) for an appropriate /-connected space X
is chosen as the input DGA. Here the T-action on . (T',X) is defined by
(f-a)(t1,....t)) = flaty,...,at) for ae T, feZ(T',X) and (11,...,1)) e T'.

The purpose of this paper is to define such a generalized cyclic homology
and to investigate fundamental properties of the homology. We shall refer to the
homology as the iterated cyclic homology with iteration degree / and denote it by
HC (4,4).

In what follows, we assume that a DGA (A4,d) is unital and locally finite
in the sense that 4’ is of finite dimension for any i. A DGA is said to be
I-connected if A'=0 for i <0, A°=Q and H'(4,d) =0 for any 0 <i <.

Roughly speaking, the construction of the iterated cyclic homology of a DGA
is as follows: First, for any /-connected DGA (4,d), the iterated Hochschild
homology HH! }(A d) is defined using an appropriate complex (AW ,d). The
complex is indeed a minimal model for the function space Z (T’ X) if (4,d) is
I-connected and X is the spatial realization |(4,d)| of the DGA (4,d).

We next introduce a derivation f on AW with degree —1. By perturbing the
differential 6 on AW ® Q[u] with 8, we define the complex (AW & Qlu],d + up)
which gives the iterated cyclic homology HC, < (4,d). It will be readily seen that
acl }(A d) is equipped a Q[u]-algebra structure. Moreover we see that if / =1,
then HC! }(A d) 1s the ordinary cyclic homology of (4,d). We wish to em-
phasize that HC{ (4,d) does not necessarlly consist of elements with non-
negative degree and that HC (A d) is not a 1-dimensional vector space in
general (see Section 4).

The definition of the derivation f is quite algebraic. However, if the input
DGA (A4,d) is I-connected, then the derivation f is related to a model for the
T-action on Z (T',|(4,d)|). The relationship, which is described more precisely
in Proposition 5.5, is the key to completing the proof of the following theorem.

THEOREM 1.1. Suppose that X is an I-connected space with dim 7;(X) ®
O < o for any k. Then, as a Qlu]-algebra,

HC (App (X)) = H*(Er xr Z(T', X); Q).

Here the Qlul-algebra structure on H*(Ep xt Z(T', X); Q) is mduced from the
projection p of the Borel fibration 7 (T',X) — Ep xp 7 (T, X) 2 BT.

We prove Theorem 1.1 by induction on the iteration degree / modifying the
proof of [11, Theorem A] due to Vigué-Poirrier and Burghelea. So a new idea
does not appear in our proof. However we dare to repeat the augment of their
proof in order to state exactly the key proposition (Proposition 5.5). We also
expect that an idea inspired by the repeat may enable us to define more general
cyclic homology of a connected DGA (4,d), which is isomorphic to the Borel
cohomology of the form H*(Ey xyg (G, X); Q). Here G is a Lie group, H is a
subgroup of G,X =|(4,d)| and the action by H on % (G, X) is induced by the
product on G. Regrettably, such consideration is not made in this paper. We
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also mention that Proposition 5.5 is proved by applying the algebraic model for
the evaluation map m(ev) : #(T',X) x T' — X considered in [9].

We now direct our attention to an algebraic property of the iterated cyclic
homology. The result [11, Corollary 2] asserts that, for any 1-connected DGA
(4,d) with H(A4,d) # Q, the sequence consisting of dim HCi{l}(A,d) for i >0 is
bounded if and only if the cohomology algebra H*(A,d) can be generated by a
single class. As for the iterated cyclic homology with iteration degree greater
than 1, we have the following theorem.

THEOREM 1.2. For any integer | >2 and any [-connected DGA (A,d)
such that H*(A,d) # Q, the sequences consisting of dim HC{}(A d) and of
dim HH, U }(A d) for i >0 are unbounded as i — oo, respectively.

This paper is organized as follows. In Section 2, after defining explicitly the
iterated cyclic homology, we show that the homology can be regarded as a
functor from the category of DGA’s to the category of Q[u]-algebras. In Section
3, fundamental properties of the iterated cyclic homology are described. We
also introduce a natural transformation from HC!" to H C*{ﬁl}. By applying it,
we prove Theorem 1.2. Section 4 is devoted to computing the iterated cyclic
homology with iteration degree 2 of the polynomial algebra generated by a single
element. In Section 5, Theorem 1.1 is proved. We present in the last section
the proof of Proposition 5.5.

2. Definition of the iterated cyclic homology

The free algebra generated by a graded vector space V' will be denoted by
AV or Q[V]. Let (AV,d) be a free DGA and (B,dp) a DGA. Let B, denote
the differential graded coalgebra defined by B, = Hom(B 7, Q) for ¢ < 0 together
with the coproduct D and the differential dp, which are dual to the multiplication
of B and to the differential dp, respectively. Let I be the ideal of the free algebra
O[AV ® B,.] generated by 1® 1 —1 and all elements of the form

aa @ f - Z NPl @ f)a @ ),

where aj,a, € AV, € B, and D(f) =, ® B!. Observe that Q[AV ® B,] is a
DGA with the differential d :=d ® | + 1 ® d..

The result [1, Theorems 3.3] asserts that the differential d ® 1 + 1 ® dp.
respects the ideal, that is, (d ® 1 + 1®dp.)(I) = I. Moreover, the result [I,
Theorem 3.5] implies that the composition map

py OV ® B,] — Q[AV ® B, — QIAV ® B,]/I

is an isomorphism of graded algebras. Thus we can define a differential J on
OV ® B,] by py'dp,, where d is the differential on Q[AV ® B,]/I induced by d.
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We apply this construction to the case that B is the DGA A(f,...,14)
together with the trivial differential, where |¢;| = 1 for any i. In what follows, we
fix the DGA (Q[AV ® B.],0).

Let D1 be the (m — 1)-fold iterated coproduct on B, and the dual base of
Ty=t'"---t// (J={(e1,...,&)) shall be denoted by T, = (1;'---1"),. Observe
that if d(v) = vy - vy, then (2.1):

5(1‘7 ® (ITI T tlel)*) = Z(_l)g(‘,)']l Uy e TJl* K @ TJm*

J

J

where (—1)2@tm T Do)y oy T =gy o0, Ty, -+ Ty, in the graded
algebra AV ®B and D" D((t---1),) = ZJ(—I)E(‘UTJI* ® - Q®Ty.. We

define a derivation f: Q[V ® B.| — Q[V ® B.]| with degree —1 by

Blo® (it ---1f1),) = Y _(=DIFttap @ (),
k

PROPOSITION 2.1. 2 =0 and 5f + 6 = 0.

Proof. By a straightforward computation, we can check that the
first equality holds. As for the second one, it suffices to prove that
Op+po)(v® (¢ ---1"),) =0 when dv=uv;---v,. The formula (2.1) makes it
possible to verify the equality. O

The iterated Hochschild homology HH*{I}(/\V, d) and the iterated cyclic
homology HC*{]}(/\V, d) with iteration degree / for a free DGA (AV,d) are
defined as the homologies of the complexes

(€ (AV),0) = (QIV © BL.o) and  (61(xV),71) = (61 (V) @ Qlu, &+ up),

respectively, where |u| =2. Observe that (&1(AV),%;) has a DGA structure
over Q[u], which is induced by the multiplication on Q[u]. It is readily seen that
the iterated cyclic homology inherits the Q[u]-algebra structure. When the it-
eration degree / is clear from the context, frequently, the suffix is dropped in the
notation as %.(AV) for € (AV).

Remark 2.2. Let (AV,d) be a minimal model for an /-connected space X.
We can choose the DGA B = A(fy,. .., ;) with the trivial differential as a model
for the /-dimensional torus T'. Applying the construction in [1], we have a
minimal model of the form (Q[V ® B.],d) for the function space # (T', X). The
model is nothing but the complex (%.(AV),d;) which gives the iterated Hochschild
homology of (AV,d).
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We define maps on the iterated Hochschild and cyclic homologies, which are
induced from a DGA map between free DGA’s. Let ¢ : (AV,d) — (AW,d) be a
DGA map. Then we can define a DGA map

%(p): (QIV ® B.],0) — (Q[W ® B.],0)

by 6(p) = py!(p ® 1)p,, with the isomorphisms p; : Q[V ® B.] — Q[AV ® B.]/I
and py : Q[W ® B.] — QAW ® B.]/I mentioned above. The same argument
as in the proof of Proposition 2.1 works well to show that f(%(p) ® 1) =
(4(p) ® 1)p. Thus we have a DGA map

E(p) =%(p) @ 1:(Q[V ® B.] ® Qu],0 + uff) — (Q[W ® B.] ® Qlul, 0 + up).
Accordingly the DGA map ¢ gives a morphism of graded algebras
H(%(p)) : HHN(AV,d) — HHYY (AW, d)
and a morphism of Q[u]-algebras
H(&(p)): HCIY(AV,d) — HCIH (AW, d).

Let my : (AV,d) — (A4,d) and my : (AW,d) — (A,d) be minimal models
for a connected DGA (4,d). For any elements erC*{l}(/\V,d) and ye
HC*{I}(/\W,d), we write x ~y if H(&(ppy))(x) =y for some isomorphism
oyw + (AV,d) — (AW ,d) such that the diagram

(4,d)
N

(AV,d) (AW, d)

Pyw

is homotopy commutative. Observe that the isomorphism, which makes the
triangle homotopy commutative, is determined uniquely up to homotopy. It is
readily seen that ~ is an equivalence relation.

We now define the iterated cyclic homology aclh (A4,d) of a connected
DGA (4,d) with iteration degree / by

CCUVROE | (U
Myd3my:(NV,d)—(A,d)

Here .#,4 denotes the set consisting of all minimal models for (A4,d). It
follows that, for any element my : (AV,d) — (A4,d) in .#,4, the inclusion map
HCB AV, d) — . my HC" (AV,d) induces a bijection

Ny HCSV AV d) — HCI (4, d).
The QJu]-algebra structure on H c! (4,d) can be defined by forcing the bijection
N, becomes an isomorphism of Q[u]-algebras for the given minimal model

my : (AV,d) — (A,d). Take another minimal model my : (AW,d) — (A4,d).
Then we have a commutative diagram:
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!
HC (4, d)
'7my ﬂmw

HCY AV, d) HCU (AW, d).

H(&(pyw))

This implies that the Qu]-algebra structure on HC*{/}(A,d) is uniquely deter-
mined without depending on the choice of minimal models.

In order to show that the cyclic homology can be viewed as a functor, we
need a lemma.

LemMa 2.3. Let ¢y, 0, : (AV,d) = (AW,d) be DGA maps between free
DGA’s. If ¢, is homotopic to ¢, then H(%(p,)) = H(%(p,)) and H(&(p,)) =

H(&(p1))-

Proof. Fori=0,1, let ¢ : A(t,dt) — Q be a DGA map defined by ¢;(¢) = i.
Let H : AV — AW ® A(t,dt) be a homotopy from ¢, to ¢;, namely, a DGA map
satisfying (1 ® &;)H = ¢; for i =0,1. We consider the following diagram in the
category of DGA’s:

OV ® BT 2" QAW @ A1, d) @ BT

p[/I; lhw@&@ls*

OV ® B,] ON\W @ B.]/1

(W @ Q{1,d1}) ® B.]

oW ® B,

Pwe0{,dr}
— =

ik

in which & is a DGA map defined by py/(Lwr ® & ® 18.)pweor ay- Put
B =B,/0Q. Let J; be the ideal of A(z® 1) generated by the element
(t®1)(1—t®1). Since A(f® 1,dt® 1) is decomposed as Q{1,t® 1,dt® 1} @
J1 @ dJy, it follows that

(W @ Q{t,di}) ® B,]
=0WRB.]AANt®1,d®1)® Q[t ® B ®dt ® B}
=0WQR®B.]®(Q{,t®1,d®@1}®J, ®d/1) ®(QDJ>)
=0[W®B,)®0Q{1,t®1,dt® 1}
@OMWRB]RO{L,I®1,d®1} ® J>)
@ QW ®B]® (1 ®d))) ® QW ®B.]® (J ®d)y) ® )
=0W®B]®0{,!®1,d®1} @ 7.

Here J;, is the ideal of Q[t ® B} @ dt ® B/| generated by ¢t ® B and dr ® B/,
and # denotes the vector space (Q[W ® B.]® (J1 ®dJ)) ® (W ® B.] ®
ANt®1,dt®1)® J;). Thus we have

ENAW)=(E®1)(QW @B ®0{1,1®1,dt @ 1} ® Qu] @ 7 ® Olu)).
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Moreover a simple calculation enables us to deduce that Z;((J; ® dJ)) ®
Olul) c #®0OJu] and hence Z;(f® Ou]) = #® Qlu]. Since 1@t =
1'1®t:=(1®6t)(1®1)+ (1 ®1)(1 ® t;) modulo 7, it follows that | ® #;, =0
in QAW ® B,]/I. This fact implies that 1® » =0 in QAW ® B,]/I for any
be B and hence (® 1p)(t®b)=0 for be B and i=0,1. Thus we

see that the DGA map &(H) = (py'gp.ay ® Low)(H® 15, ® 1) (py ® low)

defines a linear map hyc : & (AV) — & (AW) of degree —1 such that, for any
xe &B(AY),

E(H)(x) = 6(p0)(x) + (6 (1) (x) = E (o) ()1 = (=1) e (x) dt + &(x),

where &£(x) is an appropriate element of # ® Q[u]. Since 2,6(H) = §(H)Z;, we
have Zihyc + huc2 = 6(p;) — &(p,).

The same argument works well to show that H(%(¢,)) = H(%(p,)) if ¢, is
homotopic to ¢;. O

We define a map between the iterated cyclic homologies induced from a
DGA map. Let ¢:(4,d4) — (B,dg) be a DGA map and let ¢, : (AV;,d;) —
(AW;,d!) be models for ¢ (i=1,2). Since there are isomorphisms of
DGA’s, gy v, : (AV1,d1) = (AV2,da) and @y, y, © (AW1,d]) = (AW2,d;) such that
P20y, v, ~ Pwyw, @1, it follows from Lemma 2.3 that H(&(py,p,))H(E(9))) =
H(&(9,))H (6 (py,1,)). Thisfactallows us to define amap HC(gp) : HC;U}(A,dA) —
HC! (B,dy) by HC(p)(x) = H(6(§)))(x) for xe HC (v, d).

In similar fashion, we can define the iterated Hochschild homology
HH*{I}(A,d) of a DGA (A4,d) with iteration degree / using minimal models for
(4,d). Moreover it follows that a DGA map ¢: (4,d4) — (B,dp) induces an
algebraic map HH(p) : HH" (4,d4) — HH" (B,dg).

Let 2%/ and %</ be the categories of connected DGA’s and the graded
algebras, respectively. Let Q[u]-%.«/ denote the category of graded Q|u]-algebras.

THEOREM 2.4. The iterated cyclic homology and the iterated Hochschild
homology define functors Hclh . 9% — Olu|-%</ and ol . 9% — G,
respectively.

Proof. The result follows from Lemma 2.3. O

One might regard that Theorem 2.4 follows from Theorem 1.1 by using the
realization of a given DGA. This is valid if the DGA is an /-connected. We
wish to stress that the 0-connectedness of DGA’s is only assumed in Theorem 2.4.

Remark 2.5. As mentioned in Introduction, for a connected DGA (4,d),
the iterated cyclic homology H C*{l} (4,d) has an element with negative degree in
general. If (4,d) is s-connected and / is a positive integer less than s+ 1, then
H C[{l} (4,d) = 0 for any nonzero integer i less than s+ 1 —/. Moreover we see



26 KATSUHIKO KURIBAYASHI AND MASAAKI YOKOTANI

that HCO{I} (4,d) contains Q as a direct summand. The iterated Hochschild
homology enjoys the same property.

3. A natural transformation from HC!" to HCjﬁl}

As is seen in the previous section, the iterated Hochschild and cyclic
homologies are regarded as functors from the category %</ to the category
%<o/. By restricting the functors to each dimension, we can get functors HH,-{Z}
and HCi{l} from 2%/ to the category of vector spaces over Q. In this section,
we define a natural transformation 7 : HCi{[ — HCI.{T} and prove Theorem 1.2
by utilizing the natural transformation.

We begin by introducing the Connes exact sequence for the iterated
Hochschild and cyclic homologies. Let (AV,d) be a connected free DGA.
With the notations in the previous section, we have a short exact sequence:

0— @B (aV) Z eB(ar) £ 8 (A1) —0

in which i and 7 are defined by i(}",. o wiu') = Yo owau'™ and (>, wiu') =
wy, respectively, where w; € fﬁ*{’ }(/\V). The short exact sequence gives rise to a
long exact sequence, which is called the Connes exact sequence,

e HCD (v d) £ HEY AV, d) Z HCO (A, d) E HCP AV, d) — -

We observe that B([w]) = [fw] for any cycle we €{}(aAV). Since the maps B,
7 and S are natural for DGA maps between free DGA’s, it follows that, in
the above long exact sequence, (AV,d) can be replaced by any connected
DGA (4,d). We also obtain natural transformations B: HH!" —>HC;U_}],
#:HC! — HH and §: HC!", - HC",

Let B; denote the exterior algebra A(fy,...,%). We define a derivation
7: Q[AV ® Bp] — O[AV ® Bi11.] of degree —1 by

t(a® (£ - t/el)*) _ (_1)\al+81+-~+8/a ® (1 ..t7/[1+1)*

for a® (1" ---1)"), € AV ® By..

LemMa 3.1. (i) (d®1)ot=—-10(d®1).
(i) =(I) = I, where I denotes the ideal defined in Section 2.

Proof. 1t is straightforward to check (i) and (ii). O

Lemma 3.1 allows us to obtain a derivation %(z) = p;'7p : (gi{/} (AV) —
%”l{ﬁl}(/\V) which satisfies the condition that %(t)d; = —d;41% (7). In par-
ticular, we have %(t)(v® (1f'---¢)"),) = (=1)lrertto, @ (i t)'t1), for
v® (17" -+ 1), € V® Bj.. Define a derivation &(7) : (p@l{]}(/\V) — é”‘l{f{l}(/\V) by
E(t) =%(r) ® 1. Tt is not hard to verify that f%(r) = —% (). Thus we see
that 2,.,16(r) = —&8(7)%;. From naturality of the maps %(r) and &(z), it
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follows that the maps induce natural transformations 7ty : HH*{I} — HH *{ﬁl}
and tyc: HCI — HC*{EI}. Thus we have the following theorem. The proof
is left to the reader.

THEOREM 3.2. The diagram

0 —— GIV) 2 sB(ar) —— B r) —— 0

J(ﬁ(‘[) J(ﬁ(r) Jré”(‘r)
0 —— (g*{/_tl}(/\V) <L éff:l}(/\V) <l— g*{_gl}</\V) — 0

is commutative and hence, as natural transformations, tycB = —Btyy, Tyt =
ﬁ,’THC and THcs = STHc.

The rest of this section is devoted to proving Theorem 1.2. We mention
here that an idea of the proof of [12, Theorem] due to Vigué-Poirrier and Sullivan
underlies our proof of the theorem. We first prove the following proposition,
which asserts that Theorem 1.2 holds for a special case.

PropPoSITION 3.3. Let | be an integer greater than or equal to 2 and let
(AV,d) be a minimal model for an I-connected DGA (A,d). Assume that (AV,d)
has a sub DGA (AZ,d) of the form (na,0) or (Aa,q),dq = a"™") and that there is
a DGA map p: (AV,d) — (AZ,d) such that p1 = id, where 1: (AZ,d) — (AV,d)
denotes the inclusion map. Then the sequence dim HC, 4 (A4,d) is unbounded as
i — o0.

Proof. By virtue of Theorem 3.2, we have a commutative diagram:

HHY (nz,d) 2 HHP ™Y (AZ,d)

*+1

HH (1) HH (1)

HHY (4,d) . HHFMY (A4, d)

s+l
B B

HCPN(4,d) 2 HCHY(4,4d)
. 7

HH (4,d) 2 HHYTY(4,d)

HH (p) HH (p)

HH (AZ,d) — HH Y (AZ,d)
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for any s</. Let u, denote the composite map HH(p)aBHH(i):
HHE\ (A Z,0) = HH (7 Z,d).

T" of HH'® (A Z,d)

LEMMA 3.4. There exists a graded subspace T = (—D ot

such that

n>1

limsup dim tgyy - -7 T") = o0.
m sup HH - THH Mo (T")
(s—1)-times
Thus Proposition 3.3 follows from Lemma 3.4. In fact the sequence
dim tgc---tgc BHH(1)(T")

————

(s—1)-times
is unbounded. O
Proof of Lemma 3.4. Let ©; and v denote the elements v ® (#;), in

%2 (AZ,d) for i = 1,2 and the element v ® (111,),, respectively. Then it follows
that

(€2 (nZ,d),0) = (A(a,ar,a,d),0)
when d =0. If d #0, then we see that
((gﬁf{Z}(sz d)vé) = (A(aadlvaZaéa%‘717‘?27‘?)75)7

_ - 1
where d(q) = a""!, 5(q) = (n+ 1)a"a+ Z(n;

and d(a) =6(a;)=46(a@ =0 for i=1,2. Now define a subspace T of
HH*{Z}(/\Z, d) as follows:

)a"—lalaz, 5(@) = (n+ Da'a;

Q{aflaé‘z}kmz] when |a| is odd and d =0,
T= Q{ak'ékz}kl,kzzl when |a| is even and d =0,
Q{ﬁ@f'ﬁz‘?gz}kl,kzzl when d # 0.

Since  p,(a"al) = (hal 'ae — kaa>a and  p,(ahd*) = kiah ' (a +

@)a*, it follows that T is the required subspace of HH*Z}(/\Z, 0) in the case
where d = 0.

Suppose that 4 #0. For a positive integer s </, let 4 be the ideal
of, 4" (nZ) generated by the elements a® 1, and a® ('~ t%}), - a®
(6 ---t37), with er+--+es1 <s+1 and & +---+e/  <s+1. Then it
follows that elements d(¢ ® (7" ---;/|),) are in the ideal .7 (see (2.1)) and hence
Im o is a vector subspace of .#. By definition we see that

(@13 Bay) = (—4' gy — a1q)' 35*)a+ (kagy' 'aay — khag!'agy ")g.
Therefore Ty -1 a1G"a,@*) has a term
HH HH,Uz( 191 2‘12)

(s—1)-times

(DY (-gf @g — agl ) a® (nt - 1:1),).
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We can conclude that elements tgy - --rHHyz(&lq‘{“&zqé‘z) (k1,ky = 1) are not in
the ideal .#; and are homologically independent. Thus we have Lemma 3.4.
O

Before proving Theorem 1.2, we fix terminology. Let (AW,d) be a DGA
and T" a basis of W. Let x be an element of W. We write dx=
> i Ailiyiy -+ U, Where v is in T, Z;€ @ and v vy, v, # 00 0, 0
i #j. Then we shall say that an element y of T is detected by x with the dif-
ferential d if y appears in some term of dx as a factor; that is, y = v; for some i;.

Proof of T heorem 1.2. We intend to prove the unboundedness of the
sequence of dim HC{ (4,d). The result concerning the iterated Hochschild
homology follows from the proof.

Let (AV,d) — (A,d) be a minimal model for a DGA (A4,d). Theorem 1.2
follows from Proposition 3.3 if there exists a non-trivial element y with odd
degree in V such that V' =0 for i < deg y. In fact, the element y is a cycle.
Therefore we see that the inclusion (Ay,0) — (AV,d) has a left inverse.

We choose a basis S = {X1,X2,...,Xn, VI, Xntly---%r, V2,...} of V so that
|xi| <+ < x| < |yi| < |Xug1] < -+, where |x;| is even and |y;| is odd. Observe
that d(x;) =0 for 1 <i <n. Suppose that there is no element with odd degree
in S or d(y;) =0. Then the result follows from Proposition 3.3.

In what follows, we put agy =a® (#1---#), for aeS. We assume that
n>2. Let us deal with the case where / is even. We choose an element
z:x{“, xé‘zl in &Y (AV,d), where k; is a posmve 1nteger for i=1,2. It is
readily seen that z is a &;-cycle and hence 7(z) = xl {z}xz n is a d;-cycle. Suppose
that there exists an element « in €V} (AV,d) = (AW},d;) such that () = 7(z).
Look at the element 6 = x;y in 7(z). Since the element ¢ can be detected by
some factor ¢ of a term of o with J;, it follows from the definition of §; that the
factor ¢ is of the form v ® (¢ - - - #), in which v € V" detects x; with d. We write
d(v) = x1(>_, us) + 7, where u, are elements in A} and the element y is not in the
ideal of AV generated by x;. Therefore the element ¢ = v ® (1 --- 1), detects
factors of u,, as well, in the term which contains #. This is a contradiction
because n(z) does not contain any elements of the form » ® 1 with b e AV. By
the same argument as above, we see that the element x,(; in 7(z) is not detected
by an element of AW, with §;. In consequence, the elements 7(x, {z}x;(fz})
(k1,ky = 1) are homologically independent in %!} (AW;,6;) and hence so are
x{‘{l}xé{{l} in & (AV,d).

We next consider the case where n >2 and / is odd. Choose an element
W= xﬁlfl}xé‘flil} which is a d;-cycle. We show that f(w) is not in Im 2;. To
this end, it suffices that

np(w) = klx{({ll_—ll}xl{l}xé?l—l} + kZXﬂJ—l}M{l}ngl_—ll}

is not in Im §;. Suppose that there exists an element y in €'Y (AV,d) = (AW}, )
such that J;(y) = nf(w). If the element x;;_;) in 7f(w) can be detected by some
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factor ¢ of a term of y with ¢;, then, by definition, the factor ¢ has the form
v® (- t-1), or v® (11 -+ - 1), for some ve V. This fact enables us to deduce
that if the element xy;_;; is detected with d;, then v or v' ® (#), is also detected
in the same term, as well. Here v’ denotes an element of ¥ which appears as a
factor of a term dv. This is a contradiction. By the same argument as above,
we see that the elements xiy, Xap-1y and xpqy in mf(z) are never detected with
J;. Hence it follows that the elements ﬁ(xf{, 1}x§{1 1}) (k1 = 1,ky = 1) are
homologically independent in &} (AV,d).

We prove Theorem 1.2 in the case where n =1 and there is at least one
element with odd degree. In such a case, if d(y;) # 0, then the result follows
from Proposition 3.3. This completes the proof. O

4. A computational example

In this section, we compute the iterated cyclic homology with iteration
degree 2 of the polynomial algebra Q[x] generated by a single element x.
By definition, we see that

HC (Q[x],0) = H(Q[x,X] ® A(X1,%2) ® Q[u],d + up),

where x=x® 1, X, =x®1,, L =x®h, and X =x® (111),. Since B(x) =
X1+ X, B(x1) = =X, B(x2) = X and B(X) = B(u) =0, the differential Z =6 + uf
is given by
D(x) = (X1 + Xu, 2(x1)=-xu, 2(x)=xu, 2(3)=%@u)=0.
Put o=X +Xx,. It is readily seen that the complex which computes
HC(Q[],0) is isomorphic to the complex AU = (Q]x, X ® A2, %) ® Q[u], Z')
as a DGA, where 2'(x) = oau, 9'(2) =0, 2'(%2) = Xu, 2'(x) =0, and 2'(u) = 0.
With the aid of the manner for computation of a cohomology, which is described
in [10, Section 7], we can execute the computation.
Define a weight w on the DGA AU by w(x) = 1 and w(x) = w(x) = w(X) =

w(u) = 0. Consider a filtration of the DGA defined by F; = {z € AU | w(z) > i}.
Then it follows that the differential 2’ and the product respect the filtration.
Thus the filtration gives rise to a spectral sequence converging to Hc (Q[x],0)
as an algebra. The Ej-term is given by

Ey = (Q[X] ® A(¥2) ® Qlu]) ® (Qx] ® A(w)),
do(x) = 0, do((x) = 0, do()(?z) ):cu do()%) = 0, d()(u) =0.

=

Therefore we see that
O[%, u]
(Xu)

as an algebra. It follows from the definition of the filtration that d;(x) = oau and
di(o) =di(X) =dy(u) =0. Thus we can get

E =

[x] ® A(e)
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A(ﬁOaﬂla - ) @ Q[V()»V]; . ] ® Q[u]
(BiBicrs Bivi = Bresios Bitts vive = Visirvos vitt) ’

where f, = ax* and y, = x'% (k,/=0,1,...). There is no element whose fil-
tration degree is increased by more than or equal to 2 by the differential. Thus
the spectral sequence collapses at the E>-term and hence E; =~ E,, as a bigraded
algebra. We have to solve the extension problems. A straightforward cal-
culation enables us to conclude that Z'(f,) =0 and 2'(y, + Ix''ax;) = 0. The
latter equality implies that the element j, :=y, + Ix'~'ax, of AU represents y,
in the E,-term. Moreover we see that, in AU, BB, =0, b7 — Biiio =0,

1
Pru = 9’<k—+1xk+l), Vi — Vo = 0 and ju = 2'(x'%;). Thus we have

E, =

) R ®Q[?07?17]®Q[“}

e (), 0) = Aol ) O Qv | BOU__
(BiBrrs Bivr = Brsa¥o, Bt 7i7p — Vi Vos itt)

where deg f;, = (k+1)degx—1, degy; = (I+1)degx—2 and degu =2

We see that HC*{Z}(Q[X],O) consists of elements with non-negative degree.
Observe that HCO{Z}(Q[x],O) ~ @ as long as deg x > 2.

Remark 4.1. By virtue of Theorem 1.1, we can obtain the explicit form of
the Borel cohomology H*(Er x7 .7 (T? BSU(2)); @). In fact the cohomology is

isomorphic to HC{Z}(Q[ ],0) as an H*(BT; Q) = Q[u|-algebra, where deg x = 4.

More computations of the iterated cyclic homologies will be made in [13].

5. A model for Er x7 7 (T' X)

With the same notations as in Section 2, we construct the extension

(Q[u), 0) = (EIH(AV) ® Q[u], 0+ uB) = (61 (AV), 21) — (61 (AV),6))
J

in which j(u) =u and 7(>°;o,wiu') =wo. We relate the extenswn with a to-
pological object in terms of rational homotopy theory. More precisely, we shall
establish the following theorem.

THEOREM 5.1.  Suppose X is an [-connected space with dim 7, (X) ® Q < o0
for any k. Let (A\V,d) = Apr(X) be a minimal model for X and 7 (T' X) - !
Er xr (T X) L BT the Borel fibration. Then there exists a commutative
diagram (5.1):

Apr(p Apr(i)

APL(BT) —> APL(ET Xr /(TI,X)) APL(J (TI,X))

(Qu],0) —— (M (w)2) — (@(aV).0)

J 4

3

such that n, my and m; are quasi-isomorphisms.
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As an immediate corollary, we have the following result which yields
Theorem 1.1.

COROLLARY 5.2.  Under the same hypotheses as in Theorem 5.1, there are an
isomorphism of Qlul-algebras

HCY (ApL(X)) = H*(Er x7 7 (T', X); Q)
and an isomorphism of algebras

HH" (Ap (X)) = H'(7(T', X); Q).

We argue by induction on the integer / in the diagram (5.1). In the case
/=1, The result follows from [11, Theorem A].

Assume that Theorem 5.1 holds for the case /=N —1. We put
(G AV),05) = (AW, ON). Let n: (Qlu,0) = Apr(BT) be a minimal model
for BT and ¢ : (AZ ® Q[u],d) — Apr(Er x1 F (T", X)) be a Sullivan model for
the map Apr(p)n. Then we have a commutative diagram:

Apr(BT) 22 g (Eg xr (TN, X)) 229 4,0 (7(TV, X))

P |

(Q.0) —  (\Z@®QUd) —  (rZ.d),

where the map § is obtained from ¢ by reducing the elements in the ideal of
AZ ® Q[u] generated by u. The result [4, Proposition 15.3] enables us to deduce
that the map § is a minimal model for % (T, X) (see also [7]). Choose the
minimal model cy : (AWy,dxn) — Apr (7 (TV, X)) for #(T" X) due to Brown

and Szczarba (see Remark 2.2). Observe that the quasi-isomorphism cy is
obtained by applying the lifting lemma to quasi-isomorphisms between DGA’s
(see [1], [9, Section 2]). Then there exists an isomorphism f : (AWy,dn) =
(AZ,d) such that §f ~cy. Using the isomorphism f® 1: AWy ® Qu] —
AZ ® O[u], we define a differential A on AWy @ Qu] by A= (f® 1) 'd(f @ 1).
Put my =¢q(f ® 1) and my = gf. We thus have a commutative diagram

Ap(BT) 220 4oy (Er x5 7(TV, X)) Apr(F(TV, X))

J- - ok

(Qu], 0) T (AWN ® Q[u],A)  —— (AW, 0n).

Ape(i)
—

Let ey 1 : (AWy_1,05) = Apr(Z(TV71, X)) be the minimal model due to
Brown and Szczarba. Let {v;} be a basis of the vector space V. Since Wy_;
and Wy have bases {v; ® (f{'---1y"}).} and {v;® (¢]'---1y'),}, respectively,
we can write Wy = Wy_1 ® (Wy_1 ® ty.). To simplify, put W = Wy_; and
W =Wy_1®ty.. For we W, let w denote the element Sy (w)— By_i(w).
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Since = (—1)"TEN Ny @ (a8 ey, i w=0; @ (¢ - 157)),, it fol-
lows that the correspondence w — # gives an isomorphism between W and W.

Let n: TV — TV~! be the natural projection on the first N — 1 factors.
Observe that # is a T-equivariant map. There exists a commutative diagram

Ap (TN 22 g (1)
Aty ... tv-1) T Aty ..., ty)

such that vertical arrows are quasi-isomorphisms and 7(t;) =1¢ for i < N — 1.
Moreover quasi-isomorphisms ¢; connecting Ap (Z (T, X)) with (AW},d;) men-
tioned above are natural with respect to Ap; () and 7 for /=N and N — L.
These facts enable us to obtain a homotopy commutative diagram:

#
Ape(F(TV, X)) 22 40, (7 (T X))

cN I ~ =~ I CN-1

(AW @ AW ,0x) — (AW, 0Nn-1),

where 4* : 7 (TV"!, X) — Z(T", X) is the map induced by n and k is a DGA
map defined by k(w) =w for we W and k(w) =0 for we W.
Consider the following commutative diagram:

(Qlul, 0) (AW ® Qul, Zx-1)

| o

(AW @ ATV @ O, A) — ™ Ap (ET x7 7(TV, X)) 22200,

L ApL(ET 7 Z(TV', X)),

By virtue of [4, Proposition 14.6], we have a lift ¢ of Ap, (1 x #*)my and a
diagram (5.2):

Apr(BT) ————— Ap (ET x7 F(TV"1, X)) —— Ap (F(TV 1, X))

\ Apu() [ s APLMV _
N-1

Ap(ET x7 F(TV, X)) ’ App(F(TV, X))

(Q1],0) —— | (AW @ O], Dy 1) — | (AW, O )

T g7

(AW @ AT ® Qlul, A) (AW @ AIT.0)
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in which Apy (1 x n%)my ~ my_1q, Apr(n?)imy ~ miy_1q and other squares are
commutative. Observe that a homotopy between Ap. (1 x #*)my and my_1q
gives rise to that between Ap;(y*)my and my_1gq. Since my_; and cy_;
are minimal models for Ap;(#(T"V"! X)), there is an isomorphisms g from
(AW ,0n-1) to itself such that cy_1g ~my_;. It is readily seen that k ~ gg
because My ~ cy. Let {w;} be a basis of W and let {i;} be the corresponding
basis of W. Since the linear part of k coincides with that of gg (see, for
example, [4, Proposition 12.8(ii)]), by induction on the degree of {w;} and {w;},
we see that

9q(wi +z;) =w; and gq(w; + y;) =0
for some decomposable elements z; and y; of AW. We write g(w;) = > u;w;
modulo decomposable elements. Accordingly there exists a decomposable ele-
ment x; such that gg(3 u;w; + x;) = g(w;). Define a map ¢ from (AW ® AW)
to itself by ¢(w;) = > p;w; + x; and ¢(w;) = w; + ;. Then it follows that ¢ is
an isomorphism of algebras satisfying gp(w;) = w; and go(w;) =0. By using ¢,
we can construct a commutative diagram in 2%/, (5.3):

(Q[u],0) ——— (AW @ AW ® Qu],A) —— (AW @ AW ,dy)

(Q[u],0) »—— (AW ® AW ® Q[u],A) —— (AW ® AW, 6),

where A= (p® 1) 'A(p® 1) and 6 = ¢~ 'dp.

The commutativity of the diagram (5.3) and of the bottom of the diagram
(5.2) implies that g(¢ ® 1)(w;) = w; and g(¢ ® 1)(w;) = 0 modulo the ideal (u) of
AW @ AW ® Qlu] generated by u. By induction on the degree of elements of
AW ® AW, we can define an isomorphism  of algebras from AW ® AW ® Olu]
to itself satisfying the condition that the induced map V: AW @ AW —
AW @ AW is the identity map and (1) = u, g(p ® 1)y (w;) = wi, q(p @ 1)y (w;) =
0. Thus we have a commutative diagram (5.4):

(Q[u],0) —— (AW @ AW ® Qu),A) —— (AW ® AW.5y)

b

(Q[u],0) —— (AW @ AW @ Qu],A) —— (AW @ AW, dy),

where A = (lp)*l&p. Observe that the lower sequence is also a model for the
fibration #(T",X) — ET x7 7 (T",X) — BT.

It remains to prove that there exists an isgmorphism of DGA’s between
(AW @ AW @ Qlu], Zy) and (AW & AW @ Q[u],A) whose restriction on Q[u] is
the identity map. We write

Az) = by (=) + 3 uiti(z)

i>1
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for ze AW ® AW. Put p = q(p ® 1)y. Since Dn_p = IZ)Z and p is the identity
map on W, it follows that, for we W,

OIn_1(W) +ufy_ (W) = Dy_1(w) = Dy_1p(w) = I:’Z(W)
= pon(w)+ > u'pO;(w).
i>1

The equality enables us to conclude that poy(w) =dy_1(w) for we W. By
definition of ¢, we see that (p~(/\W) = AW and hence oy = ¢~ 'onp is closed in

AW. This fact implies that dy(w) =dy(w). Observe that oy =dy_; on AW.
Putting 6;(w) = 01(w) — fy_,(w) and 0;(w) = 0;(w) for i > 2, we can write

Aw) = D1 (w) + 3 ulbi(w),
i>1

where we W. o
Define a map F from (AW @ AW ® Q[u]) to itself by F(u) =u, F(w)=w
for we W and F(w) =, u"'0;(w) for we W.

ProrosiTioN 5.3. If F is an isomorphism, then F fits in the following
commutative diagram of DGA'’s:

(AW @ AW ® Q[u],Z)

_—

(Q[u],0)

T

(AW @ AW ® Q[u], Zn).

14
~

Proof. Define D=F *IZF . Then it suffices to show that 2y = D. Since
Dn-1(w) € AW, it follows that

D(w) = F Y (Dn_1(w) + uF (W)
=Dyn_1(w) +uw
=on-1(w) +ufy_(w) +uw
=on(w) +ufy(w) = Dn(w).
The above fact yields that
0 = D*w = D(On(w) + ufy(w)) = Dnn(w) + uDfy (W)
= OnOn (W) + uPyon(w) + uDfy(w)
= uPnon(w) + uDBy(w).

Thus we have —pydon(w)= Dfy(w)=D(W+ fy_(w))=D(W)+ Dfy_;(w).
Since fy_ 1w e AW, it follows that
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D(w) = —Byon(w) — ZnBy_1(W)
= —Bnon(W) —ONBy_1 (W) —ufyBy_1 (W)
= —OnPn_1(w) = Byon(w) + uf (W — By (w))
= —ONBy_1(W) +OnBy (W) + uPy (W) — uBnBy(w)
(by using SOy +0nfy =0)
— On(By(w) = By (w)) + ufy ()
= 0On (W) + uPy (W) = D ().
Then we have the result. O

In order to complete the induction, we have to prove the following
proposition.

PrOPOSITION 5.4. The map F is an isomorphism of algebras.

Proof. Since AW ® AW ® Qlu] is locally finite, it suffices to show that F
is surjective. Let u: Z(TV,X)x T — #(T",X) be the T-action induced from
the diagonal T-action on the source TV and let p; : Z(TV,X) x T — Z(T", X)
be the projection in the first factor. We see that iu ~ ip;. From the diagrams
(5.2), (5.3) and (5.4), we can obtain a homotopy commutative diagram:

APL(i>

Apr(ET x7 F(TV, X)) Ap(F(TV, X))

:T :T”

(AW ® AW ® Qlu],A) —— (AW @ AW, 8y) ——s (AW @ ATV, Jy).
i 4

The diagram allows us to choose @i as a model for the inclusion i : # (T, X) —
Erxp Z(TV,X). Let i be a model for u associated with the models
ey (AW @ AW, 0x) — App(F(TV, X)) and ey ®@ 1 : (AW @ AW ,0y) ® (A1,0) —
Apr(Z(TV,X) x T). As in the proof of [11, Proposition 2.2], by using the
definition of homotopy given in [7, Chapter 5], we can conclude that

ﬂgo?(w) = p(w) + A(w) + (Apd,(w) +w' + B(w)) ® 1

for any element we W, where A(w) and B(w) are appropriate decomposable
elements in AW @ AW, w' e AW and /e 0.

To finish the proof, we need the following proposition. The proof is de-
ferred to the next section.

PRrROPOSITION 5.5.  With the above notation, j=1d — iy ®t.

Thus we have an equality (5.5):



ITERATED CYCLIC HOMOLOGY 37
0 Byo(w) = 20, (w) +w" + B'(w)

with w” = ¢~!(w') e AW and B'(w) = ¢~ 'B(w). Fix an integer k > 0. Consider
the basis {w;},_,., for W* mentioned above. Let {i;} be the corresponding
basis for W*~!; that is, w; = fy(w;) — By_;(wi;). By definition, we have

p(W;) =W+ y; and  p(w;) = > (uyw; + X))
with some decomposable elements y; and x; of AW. Thus it follows that
Bro(w) = B (D sy +x1) = S (Byr () + 1) + Bx)):
Therefore, by applying ¢~!, we see that
o~ Po(w;) = Z(N(/Wj +zi + di),

where d; is a decomposable element in AW ® AW and z; € AW. Using the
regular matrix 4 = (y;), we write

o~ Bp(w1) Wy z1 d
: =A| |+ ]
o~ Bo(ws) s Zs ds
The equality (5.5) yields that
wi Zlél(wl) 7 di
=4 : + [+
Wy 2501 (wy) z, d]

with elements z] € AW and decomposable elements di’ e AW ® AW. From this
fact, it follows by induction on the degree k of the vector space W that every w;
is in the image of F. We have Proposition 5.4. O

6. Proof of Proposition 5.5

Let X be an /-connected space with a minimal model (Q[V],d). Let
F(T',X)x T — Z(T',X) be the T-action on #(T' X) defined by

u(fa)(ar,...,a)) = flaar, ..., aar)
for feZ(T' X), aeT and (a a;) e T!. Let B be the minimal model for
T' of the form (A(fy,...,1),0). We denote by ¢ an /-tuple (ej,...,¢&), where ¢;

is 0 or 1, and write a, = tlf‘ -ti'. Choose {a;} as a basis of B. Then we have a
minimal model for # (T', X) of the form (Q[V ® B.],d). Moreover, it follows
from [9, Theorem 4.5] that the map @
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0[V] — 0V ® B.]® B,
which is defined by
i(x) =Y ()" (x ® a,) ® a

for x € Q[V], is a model for the evaluation map ev: Z(T', X) x T' — X, where

{a.} is the dual base to {a.} and a(n) = [(n; 1)], the greatest integer in
(n+1)

2

Proof of Proposition 5.5. Let ¢: T x T' — T' be the action on T' defined
by a(ai,...,a;) = (aay,...,aa;). Then we have a commutative diagram

FT X)x Tx T L 71!, x) % T!

J{lxq) Jrev

F(Tr',x)x1" —08 X.
ev
This means that the composition ev(l x ¢) is the adjunction map to u.
Therefore, in order to prove Proposition 5.5, it suffices to show that the following
diagram is commutative:

OV ®B) @A ®B— = (QV®B.]) ® B

(l(%&)k /

Q[V]

for some model ¢ for ¢ because # is a model for the evaluation map ev, where
g denotes the DGA map Id —f®¢t. Let A: T — T' be the diagonal map and
m:T'x T! = T' the multiplication. The action T x T' — T'! factors through
Ax1:TxT' — T'x T" and the map m. Therefore it follows that the map ¢
has a model ¢ defined by

(Z(gs) =1Q®a,+ Z<_1)81+"<+8k711® lf] .. l;k_l . [l”.
k

Hence we have

(1®p)ua(v) = Z(—l)“(““l)v ® a5 ® 1 ® as

0
+ Z(_l)“(\ﬂo‘l) Z(_l)(51+“'+(5k—1 (v ® a(5*) R® [(151 .. tzk*I .. l‘lé/.
0 k

On the other hand, it is readily seen that
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(9® Da(v) = ((ld = @ 1) @ )a(v)
— Z 1)y ® 4, ® 1@ a,

S S @ ). © 1 @
k

We compare the coefficients (—1)*14Dot=+01 gpq (—p)yladtact+atl yhen
a, =ttt = tf‘ ---t,(zkfl -~-t§5’. By applying the formula such that
o(n+m) = a(n) + a(m) + mn modulo 2, we see that

a(las|) + 61+ -+ + k-1
G014 ) et o

=afer+ o tat o+ tea) e+ e
=ofer 4+ +ea)tau(l)+1-(a+-+ea)te+ o+
=o(la|) +1+e+---+e

This finishes the proof. O
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