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JACOBI FIELDS OF THE TANAKA-WEBSTER CONNECTION ON
SASAKIAN MANIFOLDS
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Abstract

We build a variational theory of geodesics of the Tanaka-Webster connection V
on a strictly pseudoconvex CR manifold M. Given a contact form 6 on M such that
(M, 0) has nonpositive pseudohermitian sectional curvature (ky(o) <0) we show that
(M,0) has no horizontally conjugate points. Moreover, if (M,0) is a Sasakian
manifold such that ky(¢) > ko >0 then we show that the distance between any two
consecutive conjugate points on a lengthy geodesic of V is at most n/(2vko). We
obtain the first and second variation formulae for the Riemannian length of a curve in
M and show that in general geodesics of V admitting horizontally conjugate points do
not realize the Riemannian distance.

1. Introduction

Sasakian manifolds possess a rich geometric structure (cf. [5], p. 73-80)
and are perhaps the closest odd dimensional analog of Kédhlerian manifolds. In
particular the concept of holomorphic sectional curvature admits a Sasakian
counterpart, the so called g-sectional curvature H(X) (cf. [5], p. 94) and it is a
natural problem (as well as in Kéhlerian geometry, cf. e.g. [17], p. 171, and p.
368-373) to investigate how restrictions on H(X) influence upon the topology
of the manifold. An array of findings in this direction are described in [5], p.
77-80. For instance, by a result of M. Harada, [11], for any compact regular
Sasakian manifold M satisfying the inequality # > k* the fundamental group
m (M) is cyclic. Here h=inf{H(X): X e T.(M), || X||=1,x € M} and it is also
assumed that the least upper bound of the sectional curvature of M is 1/k>.
Moreover, if additionally M has minimal diameter = then M is isometric to the
standard sphere S>*! cf. [12], p. 200.

In the present paper we embrace a different point of view, that of pseudo-
hermitian geometry (cf. [27]). To describe it we need to introduce a few basic
objects (cf. [5], p. 19-28). Let M be a (2n + 1)-dimensional C* manifold and
(p,¢,m,9) a contact metric structure i.e. ¢ is an endomorphism of the tangent
bundle, ¢ is a tangent vector field, # is a differential 1-form, and ¢ is a Rie-
mannian metric on M such that
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TANAKA-WEBSTER CONNECTION ON SASAKIAN MANIFOLDS 407

P =-1+nQ¢& ¢&)=0, n@) =1,
g(pX,0Y) =g(X,Y) —n(X)n(Y), X,YeT(M),

and Q =dn (the contact condition) where Q(X,Y)=g(X,9Y). Any contact
Riemannian manifold (M, (¢,&,7,¢9)) admits a natural almost CR structure

Tio(M)={X —iJX : X eKer(n)}

(i=+/—1) ie. it satisfies (2) below. By a result of S. Ianus, [14], if (¢,&,7) is
normal (ie. [p,¢] +2(dn) ® £ =0) then T (M) is integrable, i.e. it obeys to (3)
in Section 2. Cf. [5], p. 57-61, for the geometric interpretation of normality,
as related to the classical embeddability theorem for real analytic CR structures
(cf. [1]). Integrability of T ¢(M) is required in the construction of the Tanaka-
Webster connection of (M,7), cf. [25], [27] and definitions in Section 2 (although
many results in pseudohermitian geometry are known to carry over to arbitrary
contact Riemannian manifolds, cf. [26] and more recently [2], [6]). A manifold
carrying a contact metric structure (¢, &,7,g) whose underlying contact structure
(p,&,n) is normal is a Sasakian manifold (and ¢ is a Sasakian metric). The
main tool in the Riemannian approach to the study of Sasakian geometry is the
availability of a variational theory of geodesics of the Levi-Civita connection of
(M, g) (cf. e.g. [12], 194-197). In this paper we start the elaboration of a similar
theory regarding the geodesics of the Tanaka-Webster connection V of (M,#)
and give a few applications (cf. Theorems 6—7 and 13 below). Our motivation
is twofold. First, we aim to study the topology of Sasakian manifolds under
restrictions on the curvature of V and conjecture that Carnot-Carathéodory
complete Sasakian manifolds whose pseudohermitian Ricci tensor p satisfies
p(X,X) = (2n — 1)ko|| X||* for some ko >0 and any X e Ker(y) must be com-
pact. Second, the relationship between the sub-Riemannian geodesics of the sub-
Riemannain manifold (M,Ker(7),g) and the geodesics of V (emphasized by our
Corollary 1) together with R. S. Strichartz’s arguments (cf. [23], p. 245 and
261-262) clearly indicates that a variational theory of geodesics of V is the key
requirement in bringing results such as those in [24] or [22] into the realm of
subelliptic theory. In [3] one obtains a pseudohermitian version of the Bochner
formula (cf. e.g. [4], p. 131) implying a lower bound on the first nonzero
eigenvalue 1; of the sublaplacian A, of a compact Sasakian manifold

(1) —J1 > 2nk/(2n — 1)

(a CR analog to the Lichnerowicz theorem, [19]). It is likely that a theory of
geodesics of V may be employed to show that equality in (1) implies that M is
CR isomorphic to a sphere S"*! (the CR analog to Obata’s result, [22]).
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2. Sub-Riemannian geometry on CR manifolds

Let M be an orientable (21 + 1)-dimensional C* manifold. A CR structure
on M is a complex distribution 7; (M) < T(M) ® C, of complex rank n, such
that

2) Ty,0(M)NTo,1 (M) = (0)
and
(3) Z, W e Tl,o(M) = [Z, W} € Tl,()(M)

(the formal integrability property). Here Ty (M) = T o(M) (overbars denote
complex conjugates). The integer n is the CR dimension. The pair (M, T o(M))
is a CR manifold (of hypersurface type). Let H(M) = Re{T10(M)® To.1(M)}
be the Levi distribution. Tt carries the complex structure J: H(M) — H(M)
given by J(Z+Z)=i(Z—-Z) (i=+—1). Let H(M)* < T*(M) the conormal
bundle, ie. H(M) ={we T (M):Ker(w) 2 H(M)}, xeM. A pseudo-
hermitian structure on M is a globally defined nowhere zero cross-section 6 in
H(M )L. Pseudohermitian structures exist as the orientability assumption implies
that H(M)" ~ M xR (a diffeomorphism) i.e. H(M)™" is a trivial line bundle.
For a review of the main notions of CR and pseudohermitian geometry one may
see [8].

Let (M,T10(M)) be a CR manifold, of CR dimension n. Let 6 be a
pseudohermitian structure on M. The Levi form is

Lo(Z, W) = —i(d0)(Z, W), Z,W e Ty.o(M).

M is nondegnerate if Ly is nondegenerate for some 0. Two pseudohermitian
structures 0 and 0 are related by

(4) 0=r0

for some C* function f: M — R\{0}. Since L; = fLy nondegeneracy of M
is a CR invariant notion, i.e. it is invariant under a transformation (4) of the
pseudohermitian structure. The whole setting bears an obvious analogy to con-
formal geometry (a fact already exploited by many authors, cf. e.g. [10], [25]-
[27]). If M is nondegenerate then any pseudohermitian structure 6 on M is
actually a contact form, i.e. O A (d0)" is a volume form on M. By a fundamental
result of N. Tanaka and S. Webster (cf. op. cit.) on any nondegenerate CR
manifold on which a contact form ¢ has been fixed there is a canonical linear
connection V (the Tanaka-Webster connection of (M,0)) compatible to the Levi
distribution and its complex structure, as well as to the Levi form. Precisely, let
T be the globally defined nowhere zero tangent vector field on M, transverse to
H(M), uniquely determined by 6(T) =1 and T |df =0 (the characteristic di-
rection of df). Let

Gy(X,Y) = (dO)(X,JY), X,YeH(M),

(the real Levi form) and consider the semi-Riemannian metric gy on M given by
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gg(X, Y)ZG()()(7 Y), gg(X, T)ZO, gg(T7T)=1,

for any X,Y € H(M) (the Webster metric of (M,0)). Let us extend J to an
endomorphism of the tangent bundle by setting J7 = 0. Then there is a unique
linear connection V on M such that i) H(M) is parallel with respect to V, ii)
Vgg =0, VJ =0, and iii) the torsion Ty of V is pure, i.e.

(5) TV(Z7 W) = TV(Z7 W) = Oa TV(Za W) = 21L0(Za W)Tv
for any Z, W e T o(M), and
(6) toJ+Jotr=0,

where 7(X) = Ty(T,X) for any X € T(M) (the pseudohermitian torsion of V).
The Tanaka-Webster connection is a pseudohermitian analog to both the Levi-
Civita connection in Riemannian geometry and the Chern connection in Her-
mitian geometry.

A CR manifold M is strictly pseudoconvex if Ly is positive definite for some
0. If this is the case then the Webster metric gy is a Riemannian metric on M
and if we set p=J, {=—-T, n=—0 and g =gy then (p,&,n,9) is a contact
metric structure on M. Also (¢, &,7,¢g) is normal if and only if = 0. If this is
the case gy is a Sasakian metric and (M,0) is a Sasakian manifold.

We proceed by recalling a few concepts from sub-Riemannian geometry
(cf. e.g. R. S. Strichartz, [23]) on a strictly pseudoconvex CR manifold. Let
(M, T 0(M)) be a strictly pseudoconvex CR manifold, of CR dimension n. Let
0 be a contact form on M such that the Levi form Gy is positive definite. The
Levi distribution H(M) is bracket generating i.e. the vector fields which are
sections of H(M) together with all brackets span 7T,(M) at each point x € M,
merely as a consequence of the nondegeneracy of the given CR structure.
Indeed, let V be the Tanaka-Webster connection of (M, 6) and let {7, : 1 <o <n}
be a local frame of Tj (M), defined on the open set U = M. By the purity
property (5)

(7) F;;)-)T; — F/)—)/%Ty — [T77 T/)‘,] = Zlgatﬂ_T’
where Iz are the coefficients of V with respect to {7}
Vi, Te = TieTy

and 9oj = Ly(T,, T ﬁ). Our conventions as to the range of indices are 4, B, C, ...
e{0,1,...,n,1,...,a} and o,B,7,...€{l,...,n} (where To=T). Note that
{T,,T5 T} is a local frame of T(M)® C on U. If T, =X, —iJX, are the real
and imaginary parts of T, then (7) shows that {X,,JX,} together with their
brackets span the whole of T,(M), for any xe U. Actually more has been
proved. Given xe M and ve H(M) \{0} there is an open neighborhood
U < M of x and a local frame {7} of 710(M) on U such that T(x) = v — iJ,v,
hence v is a 2-step bracket generator so that H(M) satisfies the strong bracket
generating hypothesis (cf. the terminology in [23], p. 224).

Let xe M and g(x): T} (M) — H(M), determined by
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Gox(0,9(x)€) = &(v), ve H(M),, ce TH(M).

Note that the kernel of g is precisely the conormal bundle H(M)". In other
words Gy is a sub-Riemannian metric on H(M) and g its alternative description
(cf. also (2.1) in [23], p. 225). If 6 = e"0 is another contact form such that G is
positive definite (u e C*(M)) then § = e “g. Clearly if the Levi form Ly is only
nondegenerate then (M,H(M),Gy) is a sub-Lorentzian manifold, cf. the termi-
nology in [23], p. 224.

Let y: I — M be a piecewise C! curve (where I = R is an interval). Then y
is a lengthy curve if j(t) € H(M),, for every t € I such that j(7) is defined. For
instance, any geodesic of V (ie. any C! curve yp(7) such that V;y = 0) of initial
data (x,v), ve H(M),, is lengthy (as a consequence of Vgy =0 and VT =0). A
piecewise C! curve ¢: 1 — T*(M) is a cotangent lift of y if &(t) € Ty, (M) and
g(y(0))E(t) = y(¢) for every t (where defined). Clearly cotangent lifts of a given
lengthy curve y exist (cf. also Proposition 1 below). Also, cotangent lifts of y are
uniquely determined modulo sections of the conormal bundle H(M )L along y.
That is, if # : I — T*(M) is another cotangent lift of y then #(7) — &(¢) € H(M);,L(,)
for every t. The length of a lengthy curve y: I — M is given by

LG) = | {ElaG0)E0)y " d

The definition doesn’t depend upon the choice of cotangent lift & of y. The
Carnot-Carathéodory distance p(x,y) among x,ye€ M is the infimum of the
lengths of all lengthy curves joining x and y. That p is indeed a distance function
on M follows from a theorem of W. L. Chow, [7], according to which any two
points x, y € M may be joined by a lengthy curve (provided that M is connected).

Let gy be the Webster metric of (M,0). Then gy is a contraction of the
sub-Riemannian metric Gy (Gy is an expansion of gy), cf. [23], p. 230. Let d be
the distance function corresponding to the Webster metric. The length L(y) of a
lengthy curve y is precisely its length with respect to gy hence

(8) d(x,y) <p(x,y), x,yeM.

While p and d are known to be inequivalent distance functions, they do determine
the same topology. For further details on Carnot-Carathéodory metrics see J.
Mitchell, [21].

Let (U,x',...,x?"*!) be a system of local coordinates on M and let us set
Gj = 90(0;,0;) (where &; is short for 9/dx’) and [G¥] = [G;]™'. Using

Gy(X,g dx') = (dx")(X), X eH(M),
for X = 0 — 0, T (where 0; = 0(0;)) leads to
©) 9" (G — 016k) = 0 — O T'

where g dx' = ¢g¥d; and T = T'd;. On the other hand ¢70; = 0(g dx') = 0 so that
(9) yields

(10) g7 =GV —T'T/.
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As an application we introduce a canonical cotangent lift of a given lengthy curve
on M.

ProPOSITION 1. Let y: I — M be a lengthy curve and let &: 1 — T*(M) be
given by S(0)Tyy =1 and ()X = go(p, X), for any X e H(M),,. Then ¢ is a
cotangent lift of .

Proof. Let x'(f) be the components of y with respect to the chosen local
coordinate system. By the very definition of &

dx!
(11) fj:G,‘j—dt +()j.
Hence
i p dx* i dxk
g& =¢&9"0i = g"(GJ’kW-F 9/)51‘ =9"Gj— - 0i

iy L. dx* . . dx*
— (G TG, 5 — (5 _ Tig 5.
(67— T'TI) Gy 0y = (0} — T'00) 0,

=7(0) = 0())T = (1)

We recall (cf. [23], p. 233) that a sub-Riemannian geodesic is a C? curve y(t) in M
satisfying the Hamilton-Jacobi equations associated to the Hamiltonian function
H(x,&) =1g¥(x)&¢; that is

(12) B g,
(13) a0,

for some cotangent lift &(¢) € T*(M) of yp(z). Our purpose is to show that

THEOREM 1. Let M be a strictly pseudoconvex CR manifold and 0 a contact
form on M such that Gy is positive definite. A C* curve y(t) € M, |t| < e, is a sub-
Riemannian geodesic of (M,H(M),Gy) if and only if y(t) is a solution to
(14) Vip = =2b(1)Tj, b'(1) = A(3,7), |t <e,
with 7(0) € H(M),q,, for some C? function b:(—¢e) — R Here A(X,Y) =
go(tX, Y) is the pseudohermitian torsion of (M,0).

According to the terminology in [23], p. 237, the canonical cotangent lift
E(f) of a given lengthy curve y(¢) is the one determined by the orthogonality
requirement

(15) V(T (&,v) =0,
for any veH(M)yl(t) and any [f| < &, where
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e 1 dg”

(&) =k 45206,
. .. .. 1 4agik ag] ag]
! _ l—‘l]k ) ryk _ lj ’ (k _ i
(é; U) é]vlm 2 (g Ox? + g Ox’! g ax/

Let p(¢) be a lengthy curve and &)(f) the cotangent lift of y(¢f) furnished by
Proposition 1. Then any other cotangent lift &(7) is given by

(16) <) = Co(0) +a(0)0y, 1] <e,

for some a : (—¢,&) — R. We shall need the following result (a replica of Lemma
4.4 in [23], p. 237)

LemMa 1. The unique cotangent lift £(t) of y(t) satisfying the orthogonality
condition (15) is given by (16) where

1., .- R
a(t) = =330 2go(Vs3.J7) = 1, | <.

Proof. By (11) and (16)

) 00, dx’
V(&) = Viléo) + ' (00 +alt) 3.7 -
1 og¥
5 2o lal)(E00,+ &00) + a(1)°0,0)
(where & = ¢ dx’) and using
ag"
S 700 =0
we obtain
(17) Vi(&) = Vi(&) + a'()0; + 2a(t)(d0)(7, 0:).

Note that T/(&,v) = T'(&),v) and T =0, for any veH(M)yL(,). Let us
contract (17) with T’(&,v) and use (15) and T’(&,v)0; =0. This ought to
determine «(¢). Indeed

(18) V}(é())r[(émv) +2a(t)(d0)(yvr(é(]av)) = 07
where T'(&,v) = T''(¢,0)d;.  On the other hand, a calculation based on (10)—(11)
shows that

¢ | dxt dx/

dle
— — | +2(dO)(y,0
7 7l> ( )(yv k)a

V(&) = Gir (dter i
4

oxJ  oxi oxk

= G™Mij k|, ij, k| = (aG”‘ 4+ %Gk _ @>
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hence
(19) Vi(&o) = Gy(Dy7) +2(d0) (3,0,
where D is the Levi-Civita connection of (M,gy). Then (18)—(19) yield

9o(Dy3, T'(&o,v)) + 2(a(r) + 1)(d0) (7, T'(&o, v)) = 0,
for any veH(M)y(t). Yet H(M)" is the span of @ hence

go(I'(&, 0), Dy + 2(a(t) + 1)Jp) =0
and
(&, 0) = —G"(d0)(7, ),
(because of T | dO =0) yields
(20) 2(a(t) + D[P0 + go(Ds3,T5) = 0.

Lemma 1 is proved. At this point we may prove Theorem 1. Let y(7) € M be
a sub-Riemannian geodesic of (M,H(M),Gy). Then there is a cotangent lift
E(t) e T*(M) of y(¢) (given by (16) for some a: (—¢,¢) — R) such that V(&) =0
(where V(&) = Vi(&)d;). In particular the orthogonality condition (15) is iden-
tically satisfied, hence a(¢) is determined according to Lemma 1. Using (17) and
(19) the sub-Riemannian geodesics equations are

Gy(Dy7)’ +a'(1)0; + 2(a(t) + 1)(d0)(7,0) = 0
or
(21) Dy +a'(t)T 4 2(a(t) + 1)Jy = 0.

We recall (cf. e.g. [10]) that D=V — (d0+A)® T on H(M)® H(M) hence
(by the uniqueness of the direct sum decomposition 7' (M) = H(M) @ RT) the
equations (21) become

Vip+2(a(t) + 1)y =0, a'(1) = A(},7),

(and we set b =a+1). Theorem 1 is proved.

COROLLARY 1. Let M be a strictly pseudoconvex CR manifold and 0 a
contact form on M with vanishing pseudohermitian torsion (t =0). Then any
lengthy geodesic of the Tanaka-Webster connection V of (M, 0) is a sub-Riemannian
geodesic of (M,H(M), Gy). Viceversa, if every lengthy geodesic y(t) of V is a sub-
Riemannian geodesic then © = 0.

Indeed, if V;7 =0 then the equations (14) (with b = 0) are identically satisfied.

PROPOSITION 2. Let y(t) € M be a sub-Riemannian geodesic and s = ¢(t) a
C? diffeomorphism. If y(t) = 7(4(t)) then (s) is a sub-Riemannian geodesic if and
only if ¢ is affine, i.e. $(t) =oat+ f, for some a,f R In partzcular every sub-
Riemannian geodesic may be reparametrized by arc length ¢ fo |9(u)| du.
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Proof. Set k= |7'/(0)\2 > 0. By taking the inner product of the first
equation in (14) by j(¢) it follows that d|j(r)|*/dr = 0, hence |7(1)|* =k, |1 < e.
Throughout the proof an overbar indicates the similar quantities associated to
7(s). In particular k = ¢'(0) k. Locally

d>xt L dxd dx® cdx/
2 LA of iR, YOI ) £ kil
(22) R e CRR T
On the other hand, using (20) and
d*xt _dxldx* , dPxT L (d*X' . dx dxF
_— A, _— t L
ar T =0 g ¢()<d2 s d)
we obtain

kla+1)=k(@a+1)¢'(1)°.
Then (22) may be written

k()92 1 2@+ V) (0 g (107 — 0L =

ds ds 0

hence ¢”(¢) =0. Proposition 2 is proved.

Let S' — C(M) 5 M be the canonical circle bundle over M (cf. e.g. [8],
p. 104). Let X be the tangent to the S'-action. Next, let us consider the 1-form
o on C(M) given by

1 . 4 b R
Uw{errn (za)“ zgﬁdg“/}4(n+l)9>}’
where r is a local fibre coordinate on C(M) (so that locally ¥ =0/0r) and
R=g”R ; is the pseudohermitian scalar curvature of (M,0). Then ¢ is a
connection 1-form in S' — C(M) — M. Given a tangent vector v € Ty(M) and
a point z € 77'(x) we denote by v' its horizontal lift with respect to o, i.e. the
unique tangent vector v' € Ker(g.) such that (d.n)v! =v. The Fefferman metric
of (M,0) is the Lorentz metric on C(M) given by

Fy=n"Gy+2(n"0) O o,

where Gy = Gy on H(M)® H(M) and Gy(X,T) =0, for any X € T(M). Also
© is the symmetric tensor product. We close this section by demonstrating
the following geometric interpretation of sub-Riemannian geodesics (of a strictly
pseudoconvex CR manifold).

THEOREM 2. Let M be a strictly pseudoconvex CR manifold, 0 a contact form
on M such that Gy is positive definite, and Fy the Fefferman metric of (M,0). For
any geodesic z: (—e,&) — C(M) of Fy if the projection y(t) = n(z(t)) is lengthy
then y : (—ee) — M is a sub-Riemannian geodesic of (M,H(M),Gy). Viceversa,
let y(t) € M be a sub-Riemannian geodesic. Then any solution z(t) € C(M) to the
ODE
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(23) H0) = 90 + (1 +2)/2)b(1) <),
where b(t) = a(t) + 1 is given by (20), is a geodesic of Fy.
Here j(1)! € Ker(o.(;)) and (dz(,>7z)j/(t)T = y(¢). To prove Theorem 2 we shall need
the following
LemMma 2. For any X,Y € H(M)
VEM YT = (VxY)! = (d0)(X, Y)T! = (A(X, Y) + (do)(X', Y1))Z,
VEMITE = (2x + ¢X)T,
Vi = (VrxX 4 gX) 4 2(do)(XT, TE,
VC(M)EA: _ VC(M)XT ( )
Vs ( )TT VT VC( )2 _
v = VTfM)i =0,

where ¢ : H(M) — H(M) is given by Gp(¢X,Y) = (d )(XT, YN, and Ve H(M)
is given by Go(V,Y)=2(do)(T', Y"). Also ¥ = ((n+2)/2)%.

o .

)

This relates the Levi-Civita connection V<) of F, to the Tanaka-Webster con-
nection of (M,0). Cf. [9] for a proof of Lemma 2.

Proof of Theorem 2. Let z(t) e C(M) be a geodesic of VEM) and y(1) =
n(z(7)). Assume that j(¢) € H(M),,. Note that z(¢) — p(¢ Ve Ker(d.(,m) hence
z(z) is given by (23), for some b: (—¢¢) — R. Then (by Lemma 2)

0=V z = VM4 b (03 + 2b(1) ()

= (Vi) + [b'(6) = A PIE + 26(0)(T)!

hence (by T(C(M)) = Ker(a) @ RX) y(r) satisfies the equations (14), i.e. y(¢) is a
sub-Riemannian geodesic. The converse is obvious.

3. Jacobi fields on CR manifolds

Let M be a strictly pseudoconvex CR manifold endowed with a contact form
0 such that Gy is positive definite. Let V be the Tanaka-Webster connection of
(M,0). Let y(t) e M be a geodesic of V, parametrized by arc length. A Jacobi
field along y is vector field X on M satisfying to the second order ODE

(24) V2X +V;Ty(X,9) + R(X,$)j = 0.

Let J, be the real linear space of all Jacobi fields of (M,V). Then J, is (4n + 2)-
dimensional (cf. Prop. 1.1 in [17], Vol. I, p. 63). We denote by j the vector field
along y defined by y,, = #j(¢) for every value of the parameter 7. Note that
7,9€J,. We establish
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THEOREM 3. Every Jacobi field X along a lengthy geodesic y of V can be
uniquely decomposed in the following form

(25) X=ay+bj+7Y
where a,beR and Y is a Jacobi field along y such that

t

(26) DY Dy = = | 000,040, 7) s

In particular, if 1) X, € H(M),, for every t, or ii) (M,0) is a Sasakian manifold
(ie. ©=0), then Y is perpendicular to 7.

We need the following

LemMMA 3. For any Jacobi field X € J,

d . .
i {g0(X,7)} + 0(X), ) A(7,7),(,) = const.

Proof. Let us take the inner product of the Jacobi equation (24) by 7 and
use the skew symmetry of go(R(X,Y)Z, W) in the arguments (Z, W) (a con-
sequence of Vgy =0) so that to get

d? . d o
On the other hand, let us set Xy =X — 0(X)T (so that Xy € H(M)). Then

9o(Tv(X,7),7) = =2Q(Xu, 9)go(T,7) + 0(X)go(z(7),7)
or (as y is lengthy)
9o(Tv(X,9),7) = O(X)A(},7).
Lemma 3 is proved. Throughout the section we adopt the notation X' = V;X
and X" =V;X.
Proof of Theorem 3. We set by definition

a= gB(Xv j’)y(())a b = gg(X/7 j))y(o) + O(X)y(O)A(y7 ?)y(o)a
and Y =X —ay—bjy. Clearly Y eJ,. Then, by Lemma 3

@ {aY. 9} + 00N AG ) =

for some o € R. Next we integrate from 0 to ¢

t

9o(Y 7)) — 90(Y, 9),0) + Jo 0CY ), A, 7)) ds = at

and substitute Y from (25) (and use j,7 € H(M)). Differentiating the resulting
relation with respect to ¢ at + =0 gives o« = 0. Hence
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t

D7)+ | 000,45, ds =0,

The existence statement in Theorem 3 is proved. We need the following ter-
minology. Given X € J, a Jacobi field Y e J, satisfying (26) is said to be slant at
(1) relative to X. Also Y is slant if it is slant at any point of y. To check the
uniqueness statement let X = a’y + b’p + Z be another decomposition of X, where
a',b' eR and Z e J, is slant (relative to X). Then

(a+Db0)j(t) + Yyu) = (a' +b'0)p(1) + Zyy

and taking the inner product with j(¢) yields a+ bt =a’ + b't, ie. a=d’, b=b'
and Y, = Z,- Q.e.d.

/

COROLLARY 2. Suppose a Jacobi field X €J, is slant at y(r) and at
y(s) relative to itself, for some r+#s. Then X is slant. In particular, if i)
Xy € H(M),, for every t, or i) (M,0) is a Sasakian manifold, and X is
perpendicular to y at two points, it is perpendicular to y at every point of y.

Proof. By Theorem 3 we may decompose X = ay+ by + Y, where Y € J, is
slant (relative to X). Taking the inner product of X, = (a + br)y(r) + Y, with
7(r) gives a+br=0. Similarly ¢+ bs=0 hence (as r#s) a=5b=0, so that
X=Y. Q.e.d.

4. CR manifolds without conjugate points

Two points x and y on a lengthy geodesic y(¢) are horizontally conjugate
if there is a Jacobi field X € J, such that X, € H(M),, for every 7 and X, =
X, =0. As Ty is pure, the Jacobi equation (24) may also be written

(27) X" =2Q(X",9)T + 0(X")t(p) + 0(X)(Vy7)y + R(X,p)7 = 0.
Given X €J, one has (by (27))
X', X)) = go(X", X) + gu(X', X')
= X' +20(X)Q(X, 7) — 0(X")A(5, X)
= 0(X)go(Vyt3, X) — go(R(X, )7, X).
On the other hand (again by Vgy = 0)
O(X")A(5, X) + 0(X)go(Vy77, X)

= 00X)AG, X) +00X) © {40, X)) — 0(X) A7, X)

= %{Q(X)A()), X)} = 0(X)A(p, X")
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hence
08) Y X) 400 AG. X))

= [X'|* = go(R(X,7)7, X) + 0(X)[A(5, X') + 2Q(X",9)].

S. Webster (cf. [27]) has introduced a notion of pseudohermitian sectional cur-
vature by setting

1 _
(29) k(}(O’) :ZGU(Xa X) 2g(],x(Rx(XaJXX)JxXa X)a
for any holomorphic 2-plane ¢ (i.e. a 2-plane ¢ « H(M), such that J.(o) = o),
where {X,J,X} is a basis of g. The coefficient 1/4 makes the sphere

1: 81 < €™ (endowed with the contact form 6y =* B(E - (’))z|2]) have

constant curvature +1. Clearly, this is a pseudohermitian analog to the notion
of holomorphic sectional curvature in Hermitian geometry. On the other hand,
for any 2-plane ¢ = T,(M) one may set

Ko(0) = 390 (Ru(X, Y)Y, X)

where {X,Y} is a gp -orthonormal basis of ¢. Cf. [17], Vol. I, p. 200, the
definition of k(o) doesn’t depend upon the choice of orthonormal basis in o
because the curvature R(X, Y, Z, W) = go(R(Z, W)Y, X) of the Tanaka-Webster
connection is skew symmetric in both pairs (X, Y) and (Z, W). We refer to ky as
the pseudohermitian sectional curvature of (M, 0). A posteriori the restriction (29)
of ky to holomorphic 2-planes is referred to as the holomorphic pseudohermitian
sectional curvature of (M,0). As an application of (28) we may establish

THEOREM 4. If (M,0) has nonpositive pseudohermitian sectional curvature
then (M,0) has no horizontally conjugate points.

We need

LemMA 4. For every Jacobi field X € J,

d .
7 {0(X)} —2Q(X,9),, = ¢ = const.

To prove Lemma 4 one merely takes the inner product of (27) by T.

Proof of Theorem 4. The proof is by contradiction. If there is a lengthy
geodesic y(¢) € M (parametrized by arc length) and a Jacobi field X € J, such that
Xy = Xy = 0 for two values a and b of the parameter then we may integrate

in (28) so that to obtain
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b
(30) J {1X']” = go(R(X,3)3, X) + O(X)[A(7, X') +2Q(X",7)]} di = 0.

a

On the other hand
/. d .
OX)QX",7) = 0(X) - {Q(X, 7)}

— %{O(X)Q(X, 7} —QX,9)0(X").

Then (by Lemma 4)

2Jb0(X)Q(X’,5)) dt = -2 Jb

a a

QX 5) S {0(x)) di

_ e Jb dit (0(X)) di — r 0(X")? dt = — Jb ox")? dr

hence (30) becomes
b
J (X' = go(R(X,5)7, X) + 0(X)A(j, X') — 0(X")*} dr = 0.

Finally, if X € H(M) then X'e H(M) and then (under the assumptions of
Theorem 4) X' =0, a contradiction.

5. Jacobi fields on CR manifolds of constant pseudohermitian sectional
curvature

As well known (cf. Example 2.1 in [17], Vol. I, p. 71) one may determine
a basis of J, for any elliptic space form (a Riemannian manifold of positive
constant sectional curvature). Similarly, we shall prove

PropoOSITION 3. Let M be a strictly pseudoconvex CR manifold of CR
dimension n, 0 a contact form with Gy positive definite and constant pseudohermitian
sectional curvature. Let y(t) € M be a lengthy geodesic of the Tanaka-Webster
connection V of (M, 0), parametrized by arc length. For each v € T, (M) we let
E(v) be the space of all vector fields X along y defined by X, = (at+ b)Yy,
where a,beR, V;Y =0, Y,o =v. Assume that (M,0) has parallel pseudo-
hermitian torsion, i.e. Vt=0. Then T € J,. Let {vi,...,voy2} = H(M),, such
that {7(0), J,0)7(0),v1, ..., van-2} is a Gy y0)-orthonormal basis of H(M), . Then

E(0) @ E(0) @ -+ @ E(va2) S # :=J,NT* (7 H(M))
if and only if
A,0)(7(0),7(0)) =0, Ay (v;,7(0)) =0, 1<i<2n-2,

where y~"VH (M) is the pullback of H(M) by y. If additionally (M, 0) has vanishing
pseudohermitian torsion (i.e. (M,0) is Tanaka-Webster flat) then E(T,q) < J,.
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The proof of Proposition 3 requires the explicit form of the curvature tensor of
the Tanaka-Webster connection of (M, ) when ky = const. This is provided by

THEOREM 5. Let M be a strictly pseudoconvex CR manifold and 0 a contact
Jorm on M such that Gy is positive definite and ky(o) = ¢, for some ¢ € R and any
2-plane 6 = Ty(M), xe M. Then ¢ =0 and the curvature of the Tanaka-Webster
connection of (M,0) is given by

(31) R(X,Y)Z=Q(Z, Y)t(X) - Q(Z,X)«(Y)+ A(Z, Y)IX — A(Z,X)JY,

for any X, Y, Ze T(M). In particular, if (M,0) has constant pseudohermitian
sectional curvature and CR dimension n > 2 then the Tanaka-Webster connection
of (M, 0) is flat if and only if (M, 0) has vanishing pseudohermitian torsion (t = 0).

The proof of Theorem 5 is given in Appendix A. By Theorem 5 there are no
“pseudohermitian space forms™ except for those of zero pseudohermitian sectional
curvature and these aren’t in general flat. Cf. [10] the term pseudohermitian space
form is reserved for manifolds of constant holomorphic pseudohermitian sectional
curvature (and then examples with arbitrary ¢ € R abound, cf. [10], Chapter 1).
Proof of Proposition 3. By (31)

R(X,7)y = QX,7)7(7) + A(7,9)JX — A(X,7)J7
hence the Jacobi equation (27) becomes
(32) X" =20(X",9)T + 0(X")2(5) + 0(X) (V;7)7

+Q(X,9)t(p) + A(7,9)JX — A(X,7)Jp = 0.

We look for solutions to (32) of the form X, = f(#)T,,. The relevant equa-
tion is

SUOT + 7102 (7) + £ () (Vy7)7 = 0
(by VI'=0) or f"(r) =0 and f'(t)z(y) + f(1)(V;7)p = 0. Therefore, if V=0

then T e J, while if 7 =0 then T, Te J,, where T,y = tT, . Next, we look for
solutions to (32) of the form X, = f(t)Y,, where Y is a vector field along
7 such that V;Y =0, Y, =:ve H(M);,m), [v] =1, and gg,0) (v, J0)7(0)) = 0.
Substitution into (32) gives

I"OY + fOAG, 7)Y — AY,§)J7] =0

or (by taking the inner product with Y) f"(z) =0, i.e. f(¢) =at+b, a,beR.
Therefore (with the notations in Proposition 3) E(v;) = J,NT'* (y~'H(M)) if and
only if A,)(7(0),7(0)) =0 and 4,()(v;,7(0)) =0. Also, to start with, E(j(0))
(the space spanned by 7 and 7) consists of Jacobi fields lying in H(M). As
{90, Ly 9(8), Y1 y0)5 -+ s Youoa y(»} i an orthonormal basis of H(M)7<,) (where
Y; is the unique solution to (V; Y)},(t) =0, Y,y =) it follows that the sum
E(y(0)) + E(v1) + - -+ + E(vay—2) 1s direct. Q.e.d.
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Let (M,(p,&,n,9)) be a contact Riemannian manifold. Let X € T\(M)
be a unit tangent vector orthogonal to & and o = T (M) the 2-plane spanned
by {X,pX} (a ¢@-holomorphic plane). We recall (cf. e.g. [5], p. 94) that the
@-sectional curvature is the restriction of the sectional curvature k of (M,g) to
the p-holomorphic planes. Let us set H(X) = k(o). A Sasakian manifold of
constant ¢-sectional curvature H(X)=c¢, ceR, is a Sasakian space form.
Compact Sasakian space forms have been classified in [16]. By a result in [5],
p. 97, the Riemannian curvature R” of a Sasakian space form M (of ¢-sectional
curvature ¢) is given by

(33) RO(X,v)z =<3

{9(Y,2)X —y(X,Z)Y}

+ @Y —n(1)x]
+ 9 Z20(Y) — oY, (X))
L QZ,Y)pX — Q(Z,X)pY +2Q(X, Y)pZ)

forany X,Y,Ze T(M). Given a strictly pseudoconvex CR manifold M and a
contact form 6 we recall (cf. e.g. (1.59) in [10]) that

(34) D=V+Q-A)R@T+t®0+200J.
A calculation based on (34) leads to
RP(X,Y)Z=R(X,Y)Z+ (LX ALY)Z - 2Q(X, Y)JZ
— 9i(S(X, Y),2)T + 0(Z)S(X, Y)
—299((ONO)X,Y), Z)T +20(Z)(OANO)(X,Y)

for any X, Y,Z e T(M), relating the Riemannian curvature R? of (M, g,) to the
curvature R of the Tanaka-Webster connection. Here

L=t+J, O0=1*+21—-1,

and (XAY)Z=gy(X,2)Y —go(Y,Z)X. Also S(X,Y)=(Vx1)Y — (Vy1)X.
Let us assume that (M, 0) is a Sasakian manifold (r = 0) whose Tanaka-Webster
connection is flat (R =0). Then S=0, L=J and O = —1I hence

RP(X,Y)Z = (JX AJY)Z —2Q(X, Y)JZ
+290((OAD(X,Y), Z)T = 20(Z)(O A T)(X, Y)

and a comparison to (33) shows that

ProproSITION 4. Let (M,0) be a Sasakian manifold. Then its Tanaka-
Webster connection is flat if and only if (M,(J,—T,—0,gp)) is a Sasakian space
form of ¢-sectional curvature ¢ = —3.

By Lemma 8 below the dimension of ., is at most 4n. On a Sasakian space
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form we may determine 4n — 1 independent vectors in . Indeed, by combining
Propositions 3 and 4 we obtain

COROLLARY 3. Let (M,0) be a Sasakian space form of ¢-sectional cur-
vature ¢ = =3 and y(t) € M a lengthy geodesic of the Tanaka-Webster connection
V., parametrized by arc length. Let {v,... ,vou2} = H(M),, such that {3(0),
Jy7(0),v1,. .., 0202} is a Gy y-orthonormal basis of H(M)y(()). Let X; be the
vector field along y determined by

Vi Xi =0,  Xi((0)) = v,

Jor 1 <i<2n—2. Then & = (5,9, J9, X0, X; : 1 <i <2n—2} is a free system in
H, while S U{T,T} is free in J,. Here if Y is a vector field along y(t) we set
Y, = tY,u for every t.

6. Conjugate points on Sasakian manifolds

Let (M,0) be a Sasakian manifold and y: [a,b] — M a geodesic of the
Tanaka-Webster connection V, parametrized by arc length. Given a piecewise
differentiable vector field X along y we set

b
1200 = [ {0V, 9,) = go(ROE 97 X))
where R is the curvature of V. We shall prove the following

PROPOSITION 5. Let (M, 0) be a Sasakian manifold and y(t)e M, a < t < b,
a lengthy geodesic of V, parametrized by arc length, such that y(a) has no conjugate
point along y.  Let Y € A, be a horizontal Jacobi field along y such that Y, =0
and Y is perpendicular to y. Let X be a piecewise differentiable vector field along
y such that X, =0 and X is perpendicular to y. If X,p) = Y, then

(35) I;(X) = 1)(Y)
and the equality holds if and only if X =Y.

Proof. Let J, , be the space of all Jacobi fields Z e J, such that Z,,, = 0.
By Prop. 1.1 in [17], Vol. II, p. 63, J,, has dimension 2n + 1. Moreover, let

J, a1 be the space of all Z € J, , such that gy(Z, j))y(z) =0, for every t. Then by
Theorem 3 it follows that J, , | has dimension 2n. We shall need the following

LemMMA 5. For every Sasakian manifold (M, 60) the characteristic direction T
of (M, 0) is a Jacobi field along any geodesic y : [a,b] — M of V. Also, if T, is
the vector field along y given by T, ) = (t —a)Tyy, a <t <b, and y is lengthy
then Ty€J, a1 and T, #0, a<t<b.

Proof. Let ¢, be the Jacobi operator. Then
ST =T"=20(T",%)T + R(T, )y = R(T, )y
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as T'=V;T =0. On the other hand, on any nondegenerate CR manifold with
S=0(@e SX,Y)=(Vx1)Y — (Vy1)X =0, for any X, Y € T(M)) the curvature
of the Tanaka-Webster connection satisfies
(36) R(T, X)X =0, XeT(M),
hence 7, T =0. As R(T,T)=0 and R(X,Y)T =0 it suffices to check (36) for
XeH(M), ie. locally X =Z*T,+ Z*Tz. Then

R(T, X)X = {Ry",,Z2*Z" + Ry, Z’Z"YT, + Ry | Z*ZV + Ry 777} T,
and (by (1.85)—(1.86) in [10], section 1.4)

2 7 y i g
Ry, =9 g“ﬁsgz’ Ryz = 939" Spz
To complete the proof of Lemma 5 let u(t) =¢—a. Then (by 7 |Q =0 and
(36))

I, Ty =u"T = 2u'"Q(T, )T +uR(T,7)7 = 0.
LemMA 6. Let (M,0) be a Sasakian manifold and y(t) € M a geodesic of V.
If XelJ, then Xy = X — 0(X)T satisfies the second order ODE
(37) Vi Xy + R(Xy,7)7 = 0.

Proof.
0=7,X =V; Xy +0X")T —2Q(V; Xy, 7)T + R(Xn,7)j

hence (by the uniqueness of the direct sum decomposition 7(M) = H(M) ® RT)
Xy satisfies (37).

Let us go back to the proof of Proposition 5. Let us complete 7, to a linear
basis {7y, Ya,..., You} of J,, 1 and set Y; = T, for simplicity. Then Y =a'Y;
for some a’' e R, 1 <i<2n. Let us observe that for each a < t < b the tangent
vectors

N
{Tac/(t)’ Yzl.iy(z)a EER) Yz’Z.m} < [Rj(2)]
are linearly independent, where YjH =Y, -0(Y)T

2n 2n j 2n
O H o .
0= 0ol + Z oY = {“ - Z 0(Y}), 0 } Toy + Z o Y50
Jj=2 J= j

>N
IA
~
IA
.
=
—
=)
o
o
(¢}
o

implies o/ =0, and then o =0, because {Y; ) : 1 <i<2n} are linearly inde-
pendent, for any a <t <b. At their turn, the vectors Y;,, are independent
because y(«) has no conjugate point along p. The proof is by contradiction.
Assume that

(38) Al iy(10) = 05

for some a <ty <bh and some A= (A',...,2%") e R*\{0}. Let us set Z=
A'YielJ,. Then
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}. # O:> ZO 7507
Zy€Jya= Zoya) =0, (38) = Zy,) =0,

hence y(a) and (1)) are conjugate along 7, a contradiction. Yet [Ry(7)]" has
dimension 2n hence

2n
Xy = F(O) Tuyiy + D OV,
=2

for some piecewise differentiable functions f(¢), f/(¢). We set f!' = f, Z, =T,
and Z; = YjH , 2<j<2n, for simplicity. Then

fl

(39) B 7 I R N

Also (by (36) and Lemma 6)
_QH(R(Xv y)?? X) = _flgﬁ(R(Zh 7})77 X)
2n ) 2n )
==Y [19(R(Z;,7)3, X) = f190(Z], X
=2 =2
or (as T) =0)
(40) _gb’(R(Xv y)ya X) = gf)(fiZ[”iijj)'
Finally, note that

(41) (éftl Zi.1'Z ) 12+ 90 2Zi 2]

gz rz) - (f 2.0 7 )
Summing up (by (39)-(41))
42) X' = go(R(X,7)7, X)

i i 2
o707 (125 2) vl 27+ (G2

LemMmA 7. Let (M,0) be a Sasakian manifold and y(t) € M a geodesic of V.
If X and Y are solutions to V§Z+R(Z, 7)p =0 then

(@) X, V")~ (X', V)} =0,

In particular, if X, =0 and Y,, =0 at some point y(a) of y then
gg(X, Y’) — gg(X/, Y) =0.



TANAKA-WEBSTER CONNECTION ON SASAKIAN MANIFOLDS 425

Proof.  As 1 =0 the 4-tensor R(X, Y, Z, W) possesses the symmetry property

R(X,Y,Z,W)=R(Z,W,X,Y) (cf. (92) in Appendix A) one may subtract the
identities

L 90X, ¥') = go(X', Y') — gu(X, R(Y.9)9),

d .
S (X', Y) = go(X', ¥') = go(R(X, 5)7, Y)
so that to obtain (43). Q.ed.

By Lemma 6 the fields Z;, 2 < j < 2n satisfy V%Z, + R(Z;,7)y=0. Then we
may apply Lemma 7 to conclude that

dfi dfi
(% 2.02) - a 128 2)) - Utz 2 - iz} 20y = 0
so that (42) becomes
o d i
X7 = g0(R(X5)7. X) = — go(f'Zi, [ Z]) +

and integration gives

df'
dt

Zi

b dfl

(44) 12(X) = 90120, 7)) +J V7] a

dt

We wish to apply (44) to the Vector field X = Y. If this is the case the functions
fare f1(1)=a' + (1/(z—a))zj a’0(y; 7y =0 (because of Y, e H(M),,)
and f/ =a’ (so that df’/dt = 0) for 2<j< 2n. Then (by (44))

s) —go<§:a2,,2a12> |
7(b)

As X, = Y, it follows that fYb) =0 and f/(b) =a’, 2 < j <2n, so that by
subtracting (44) and (45) we get

b dfz
oo -1 = [

and (35) is proved. The equality I”(X) = 1°(Y) yields df'/dt =0, i.e. f1(1) =
fUb) =0 and f/(t) = f/(b) = a’/, 2 < j <2n, hence

dt>0

Z

2n 2n
. .
Xy =D a Yy = a (Y50 = 00Y)), T}
= =

= Za [R0) + Z— a)a T, y) = 4ad Y, () = Yy(t)- Qed

Setting ¥ = 0 in Proposition 5 leads to
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CorROLLARY 4. Let (M,0) be a Sasakian manifold and vy :|a,b) — M a
lengthy geodesic of the Tanaka-Webster connection, parametrized by arc length and
such that y(a) has no conjugate point along y. If X is a piecewise differentiable

vector field along y such that X, = X, =0 and X is perpendicular to y then
I[f’(X) > 0 and equality holds if and only if X =0.

Corollary 4 admits the following application

THEOREM 6. Let (M,0) be a Sasakian manifold and V its Tanaka-Webster
connection. Assume that the pseudohermitian sectional curvature satisfies ky(o) >
ko > 0, for any 2-plane 0 = T(M), x € M.  Then for any lengthy geodesic y(t) € M
of V, parametrized by arc length, the distance between two consecutive conjugate
points of y is less equal than n/(2v/k).

Proof. Let y:la,c] — M be a geodesic of V, parametrized by arc length,
such that y(c) is the first conjugate point of y(a) along y. Let b € (a,¢) and let Y
be a unit vector field along y such that (V; Y)y(,) =0 and Y is perpendicular to j.
Let f(¢) be a nonzero smooth function such that f(a) = f(b) =0. Then we
may apply Corollary 4 to the vector field X = fY so that

b
osﬁuv:jU%Nu¥—fm%umxme»m

b b
ZJUWV—#m%mnwsjUWV—%Mmﬁw

where o = T,()(M) is the 2-plane spanned by {Y,,7(¢)}. Finally, we may
choose f(t) =sin[n(t—a)/(b—a)] and use [;cos®xdx= [ sin®xdx=r/2.
We get b —a < zn/\/4ky and let b — c. Q.e.d.

We may establish the following more general version of Theorem 6

THEOREM 7. Let (M, 0) be a Sasakian manifold of CR dimension n such that
the Ricci tensor p of the Tanaka-Webster connection V satisfies

p(X5X)Z(2n71)kogﬂ(X7X)7 XEH(M)a

for some constant ko > 0. Then for any geodesic y of V, parametrized by arc
length, the distance between any two consecutive conjugate points of y is less than

n/vko.

Remark. The assumption on p in Theorem 7 involves but the pseudo-
hermitian Ricci curvature. Indeed (cf. (1.98) in [10], section 1.4)
1

RiC(Tx, Tﬁ’) = qxﬁ — ERO([?,

R“[g = i(l’l - I)A“ﬁ, R()[g = S;}ﬁ, Rao = ROO = 0;
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hence (by t=0) p(X,X)=2R;Z°ZF, for any X =Z°T,+Z"T;e H(M).
Here Ric is the Ricci tensor of the Riemannian manifold (M, gg) (whose symmetry
yields Ra/; = Rﬁ—a). Note that S =0 alone implies 7 | p =0. Also, if (M,gy) is
Ricci flat then (M,6) is pseudo-Einstein (of pseudohermitian scalar curvature
R =2), in the sense of [18].

Proof of Theorem 7. Let y(t) e M as in the proof of Theorem 6. Let
{Y1,..., Y2u_1} be parallel (ie. (V;Y;),, = 0) vector fields such that Y; e H(M)
and {y(?), Y1y, -5 Yau—1,(5} 18 an orthonormal basis of H(M)y, for every ¢.
Let f(¢) be a nonzero smooth function such that f(a) =f(b) =0 and let us set
X; = fY;. Then (by Corollary 4)

2n—1 2n—1 pb
0< > IX(x) =Y j (02X = £ g0(R(Yi,7)7, Vo)) dt
i=1 a

i=1

b
_ J (2n = 1)f'(07 = £()7p(5,9)} dt

b
< Qi) [ /07~ kof (0%} a
and the proof may be completed as that of Theorem 6.

Remark. The assumption in Theorem 7 is weaker than that in Theorem 6.
Indeed, let X e H(M), X #0, and V =|V|"'V. Let {X;:1<,<2n} be a
local orthonormal frame of H(M) and ¢; — T(M) the 2-plane spanned by
(Y5, Xi}, where Y= X; —go(V,X;)V. Then ky(o)) =5g0(R(V;, V)V, V)
where V; = |Yj|71 Y; and kg(gj) > ko/4 yields

X

2n
PX,X), =4X2> ko(a)| Vi3 = (2n — Dko| X .

J=1

As another application of Proposition 5 we establish

THEOREM 8. Let (M,0) be a Sasakian manifold, of CR dimension n. Let
y:la,b] = M be a lengthy geodesic of the Tanaka-Webster connection V, par-
ametrized by arch length. Assume that 1) there is c € (a,b) such that the points
v(a) and y(c) are horizontally conjugate along y and ii) for any 0 > 0 such that
[c—0,c+6] = (a,b) one has dimg A, = 4n, where ys is the restriction of y to
[c—0,c+0]. Then there is a piecewise differentiable horizontal vector field X
along y such that 1) X is perpendicular to y and Jy, 2) X, = X, =0, and 3)
I’'(X) <o.

In general, we have
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Lemma 8. Let (M,0) be a Sasakian manifold of CR dimension n and
y(t) € M a lengthy geodesic of V, parametrized by arch length. Then

2n+1 < dimg #;, < 4n.

Hence the hypothesis in Theorem 8 is that 2, has maximal dimension. We
shall prove Lemma § later on. As to the converse of Theorem §, Corollary 4
guarantees only that the existence of a piecewise differentiable vector field X as
above implies that there is some point y(c) conjugate to y(a) along 7.

Proof of Theorem 8. Let a < ¢ < b such that y(a) and y(c) are horizontally
conjugate and let Y € #, such that Y, = Y,) =0. By Corollary 2 (as (M, 0)
is Sasakian) Y is perpendicular to y. Let (U,x') be a normal (with respect to V)
coordinate neighborhood with origin at y(c¢). By Theorem 8.7 in [17], Vol. I, p.
149, there is R > 0 such that for any 0 < r < R the open set

is convex! and each point of U(y(c);r) has a normal coordinate neighborhood
containing U(y(c);r). By continuity there is J > 0 such that y(¢) € U(y(c);r)
for any ¢ —d<t<c+0J. Let ys denote the restriction of y to the interval
[c—0d,c+0]. We need the following

LEMMA 9. The points y(c +0) are not conjugate along y;.

The proof is by contradiction. If y(c +0) is conjugate to y(c —J) along ys
then (by Theorem 1.4 in [17], Vol. II, p. 67) there is v e T,_5 (M) such that
€XPy(c—s) U= y(c+0J) and the linear map

dy exXPy(c) + To(Tye-5)(M)) = Ty(es0)(M)

is singular, i.e. Ker(d, exp,._s) #0. Yet y(c —0J) € U(y(c);r) hence there is a
normal (relative to V) coordinate neighborhood V' with origin at y(c¢ —J) such
that V' =2 U(y(c);r). In partlcular eXp,(c_s) : ¥ — M is a diffeomorphism on its
image, so that d, exp,._;) is a linear 1somorphlsm a contradiction. Lemma 9 is
proved.

Let us go back to the proof of Theorem 8. The linear map

DT, — Tyes)(M) ® Tyer)(M), Z = (Zye—6)s Zy(c+0))s

is a monomorphism. Indeed Ker(®) = 0, otherwise y(c¢ + J) would be conjugate
(in contradiction with Lemma 9). Both spaces are (4n + 2)-dimensional so that
® is an epimorphism, as well. By hypothesis 2, is 4n-dimensional hence ®
descends to an isomorphism

%) H( ) C—BH( )((7+§)'

! That is any two points of U(y(c);r) may be joined by a geodesic of V lying in U(y(c);r).
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Let then Z e #,, be a horizontal Jacobi field such that
Zie=0) = Yooy Zotess) =0-
We set
Y on y|[a,c‘7¢)‘]’
X =<{Z onyy,
0 ony|isp-

By the very definition X is horizontal, i.e. X, € H(M )7(,) for every t. Moreover
(by £,Y =0 and 0(Y)=0)

1Y) = j“{wf — g(R(Y. )3, )} dr

_ J (V3 Y1? + go(V2Y, Y)} dr

= ge(Vy Y’ Y)y(c) - gf)(Vy Y’ Y)y(a) =0
ie. I¢°(Y) = —I¢ 4(Y). Hence
LX) = L7°(Y) + 125(Z) = —1E5(Y) + 159(2).

a

Finally, let us consider the vector field along y;

W — Y on y| [e—0d,c]»
07 on yl [e,c+0).

Note that W5 =0, Wy_s) = Z,(—s5 and W is perpendicular to y. Thus we
may apply Proposmon 5 to W and to Ze #, to conclude that I (Y)=
I9(W) > 1¢79(Z).  Consequently IP(X) < 0. Let us show that X is orthogonal

to Jy. By Lemma 4 (as Y eJ,)
0(Y"), ) = 2Q(Y, 7)) = comst. = O(Y") ) = 2Q(Y,7)

hence (as Y, =0 and Y, e H(M),, = Y], € HM),,)

7(0)
2Q(Y77>);,(,> = H(Y/)y(t) - H(Y/)y(a) =0

forany a <t <c¢—9. Similarly (as Z,..s = 0 and Z is horizontal) Q(Z,7),, =
0 forany c—d <t <c+J. Therefore Q(X, y) =0 for every . Theorem 8 is
proved.

It remains that we prove Lemma 8. Let y(¢f) e M, |t] <& be a lengthy
geodesic of V. Let X € #, and {Y;:1 < j <4n+2} a linear basis in J,. Then
X =Y =Y+ c0(Y, ) (where Y =Y; — 0(Y;)T) for some ¢/ eR. As
X(>eH(M) ( one has 1) oY, )(>—0 on one hand and i) ¢/f*(y(1)) =
fep(t)), 1 <a<2n, on the other, where X = f9X,, YH e and {X,:
I<a<2n}isa local frame of H (M ). One may think of (i)—(ii) as a linear
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system in the unknowns ¢/. Let r(z) be its rank. Then dimg #, =4n+2—
r(t) =2n+1. To prove the remaining inequality in Lemma 8 it suffices to
observe that s, is contained in the space of all solutions to X" + R(X,y)y =0
obeying X)) € H(M),, and X},’(O) € H(M), ), which is 4n-dimensional.

7. The first variation of the length integral

Let M be a strictly pseudoconvex CR manifold and y,ze M. Let I' be
the set of all piecewise differentiable curves y:[a,b] — M parametrized pro-
portionally to arc length, such that y(a) =y and y(b) =z. As usual, for each
yeTI we let T,(I') be the space of all piecewise differentiable vector fields along
y such that X, =X.=0. Given X € T,(I") let y*:[a,b] - M, |s| <e, be a
family of curves such that i) y*eT, |s| <e, ii) y° =y, iii) there is a partition
a=ty<t <--- <t =>bsuch that the map (¢,s) — p*(¢) is differentiable on each
rectangle [t;,7;41] x (—¢&¢), 0 <j<k—1, and iv) for each fixed 7€ [a,b] the
tangent vector to

or:(=ge) = M, a(s)=7(1), |s|<e,

at the point y() is X,,. We set as usual

(L)X = 516

Here L(y*) is the Riemannian length of y* with respect to the Webster metric gy
(so that y* need not be lengthy to start with). One scope of this section is to
establish the following

THEOREM 9. Let y*:[a,b] = M, |s| <&, be a l-parameter family of curves
such that (1,s) — y*(t) is differentiable on [a,b] x (—e&,&) and each y* is para-
metrized proportionally to arc length. Let us set y =y°. Then

) L0 = X~ 90X

b
- J [90(X, V) = go(Tw (X, 9), P), ) d’}

a

where X,y = 6:(0), a <t <b, and r = |j(t)| is the common length of all tangent
vectors along 7.

This will be shortly seen to imply

THeOREM 10. Let yel and X eT,I). Let a=cy<c <---<cp<
chr1 = b be a partition such that y is differentiable on each [c;,ci11], 0 < j < h.
Then
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h
(47) (d,L)X = % {Z 90,5(c)(X(e) 7(c) = 7))
=

a

b
- J [gH(Xa Vyy) - gH(TV(Xv y)a y)]y(t) dt}
where j)(c;—’) = lim,_ .+ p(?).
Consequently, we shall prove

COROLLARY 5. A lengthy curve y el is a geodesic of the Tanaka-Webster
connection if and only if

1 -
(49) L)X = | 000,40 3)
SJor all X e T,(I'). In particular, if (M,0) is a Sasakian manifold then lengthy
geodesics belonging to T are the critical points of L on T.

The remainder of this section is devoted to the proofs of the results above.
We adopt the principal bundle approach in [17], Vol. II, p. 80-83. The proof is
a verbatim transcription of the arguments there, except for the presence of torsion
terms.

Let n: O(M,gp) — M be the O(2n+ 1)-bundle of gy-orthonormal frames
tangent to M. Let Q = [a,b] x (—¢,¢). Let f: Q — O(M,gy) be a parametrized
surface in O(M,gy) such that i) =(f(z,5)) = y*(¢), (t,5) € Q, and ii) fO: [a,b] —
O(M,gp), f°(t) = f(1,0), a < t < b, is a horizontal curve. Precisely, the Tanaka-
Webster connection V of (M,6¢) induces an infinitesimal connection in the
principal bundle GL(2n + 1,R) — L(M) — M (of all linear frames tangent to M)
descending (because of Vgy = 0) to a connection H in O(2n+ 1) — O(M, gy) —
M. The requirement is that (df°/dr)(r) € Hyo(py, a <t <b.

Let S,Te Z(Q) be given by S=0/0s and T=0/0r. Let

e (T*(0(M,g9) @R™),  © =Dy,
wel*(T*(0O(M,g9)) ®0(2n+1)), Q= Do,

be respectively the canonical 1-form, the torsion 2-form, the connection 1-form,
and the curvature 2-form of H on O(M,gy). We denote by

W= O = [0, o' = f'o, Q' =['Q,
the pullback of these forms to the rectangle Q. We claim that
(49) [S,T] =0,

(50) o’ (T);0 =0, a<t<b

Indeed (49) is obvious. To check (50) one needs to be a bit pedantic and
introduce the injections
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o [a,b] = O, p,:(—¢¢€) — O,
(1) = B,(s) = (t,5), a<t<b,|s|<e
so that = foa’ Then
df 0 d .
Hyoy 3 —- (1) = (d,0)./ ) (dor° )dt = (d(1,0./)T (1,05
" (T) (.0 = wf(u())((d(t,O)f)T(t,O)) =0.

Next, we claim that

(51) S(u*(1) = T(*(S)) + @*(T) - £(S) — w*(S) - u*(T) + 207(S,T),
(52)  S(@*(T)) = T(0"(S)) + @*(T)w"(S) = @ (S)o"(T) +2Q7(S, T).
The identities (51)—(52) follow from Prop. 3.11 in [17], Vol. I, p. 36, our identity

(49), and the first and second structure equations for a linear connection (cf. e.g.
Theor. 2.4 in [17], Vol. I, p. 120). Let us consider the C* function F: Q —
[0,+c0) given by

F(la S) = <:u*(T)<[,A§')Dﬂ*(T)([v‘y)>l/27 (la S) € Q
Here (&) is the Euclidean scalar product of & 7 e R**!. Note that

(T (15 = (0,5 (i1, /)T (e,5)

_ _ L d
= f(ta S) 1(df(l,s)n)(d(t,s)f)T(t,s) = f(tv S) ldt(n Ofo as)%

ie.
(53) 7 (), g = f(6,8)'9°(0).

Yet f(t, 5) € O(M,gy), ie. f(t,s) is a linear isometry of (R*'*! (,%) onto
(Ty(n(M), 40,59, so that

F(t,5) = go.p(0(7°(0), 7 ()2
and then

b
L(y*) = J F(t,5)dt.

As y* is parametrized proportionally to arc length F(¢,s) doesn’t depend on ¢.
In particular

(54) F(1,0) =
We claim that
(59) S(F) = L{CT((9))4° (1)) + 2¢0°(8,T), 4*(T)))

at all points (£,0) € Q. Indeed, by (51)
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2FS(F) = S(F?) = S({u*(T), 1 (T))) = 2{S(1*(T)), u*(T))
= 2{T(u"(8)), " (T)) + 2™ (T) - u*(S), u*(T)>
= 2" (S) - p*(T), 1" (T)) + 4O (S, T), " (T)).

On the other hand w is o(2n + 1)-valued (where o(2n+1) is the Lie algebra of
O(2n+1)), ie. @*(S) : R¥™ ! R is skew symmetric, hence the last-but-
one term vanishes. Therefore (55) follows from (50) and (54). We may compute
now the first variation of the length integral

d b
GO0 = | S(E) g dr (by (59)

a

1 b
[ (T 8.1 (0100 + 2007 8.1 (1))
On the other hand

ﬂ*(s)( 0) = Hyo; ((d<zof)s(r,o))

= 0,0 do(ro S o B) =0 o)

ie.
(56) 1 (S) 0 = fo(f)ile(t)'
Note that given ue C*(Q) one has T(u), o = = (uoa®)'(r). Then

T(ﬂ*(T))(zﬁo) —11m {ﬂ (T )t+h,0) _ﬂ*(T)(t,O)} (by (53))

= lim LB+ ) = S0 0).
Yet, as f© is an horizontal curve

SO+ )9+ h) = (07 (e + b,

where /™ : Ty, (M) — T, (M) is the parallel displacement operator along y
from y(t+h) to p(r). Hence

T (D) = 0 (fim (557504 ) = 03 )
ie.
(57) T(w(T))(0) = fo(f)_l(vi))")y(z)-
To compute the torsion term we recall (cf. [17], Vol. I, p. 132)
Ty (X,Y) =20(0,(X", Y")),
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for any X,Y € T (M), where v is a linear frame at x and X*, Y* € T,(L(M))
project respectively on X, Y. Note that (d(,0)/)S(,0) and (d(,0) /)T 0) project
on X, and j(z), respectively. Then

(58) 207(8, )0 = /(1) Ty (X, 7))

Finally (by (53) and (56)—(58))

b
L= [ (T )1 m)

— G (9),T( (1)) + 240" (8,T) 4 (T}
= L ) () ) — a8 4 (1))

1 . o
- ;J {90(X, V59) — go(Tv (X, 9),9)}, ) dt
and (46) is proved.

Proof of Theorem 10. Let ¢; = t(j) < t( D<o < tﬁ() = ¢j;1 be a partition of
[¢j, ¢j1] such that X is dlfferentlable along the restriction of 7 at each [/ lffl]
O <i<k;—1. Moreover, let {y°} _, be a family of curves y*el such that
y0 =y, the map (¢,5) — p*(¢) is differentiable on [c;,cj+1] X (—¢,¢) for every
0<j<h, and X, = (do,/ds)(0) for every ¢ (with a,(s) =7°(7)). Let y;} (re-
spectively y3) be the restriction of y* (respectively of y7) to [cj, cj41] (respectively to

(19, l,(fr)l]) We may apply Theorem 9 (to the interval [/\/) t,(i)l] rather than [a, b])
so that to get

(J)

lr+l

d. . 1 . . .
LU 0 =+ {QH(X, Pty = 90X 7)) = J F(X,7) dl}

where F(X,7) is short for go(X, V7)) — go(Tv(X,7),7),- Let us take the sum
over 0 <i<k;—1. The lengths L(y;) ad up to L(y;). Taking into account
that at the points y(c;) only the lateral limits of y are actually defined, we obtain

d s 1 .
s {L(Vj oo = - {g(?, 7(¢+1) (Xy<cm>7 V(CHI))

(J)
L

Cj+l
- g(?,y(c/-)(Xy(c,)v y(C/Jr)) - J F(Xa y) dt}
G
and taking the sum over 0 < j </ leads to (47) (as X, =0 and X,,,,)=0).

Q.e.d.

(ent1)

Proof of Corollary 5. Let y(t) € M be a lengthy curve such that ye . If y
is a geodesic of V then V;p =0 implies (by Theorem 9)

1"
(dyL)X:;J go(Tv(X,7), 7 )y(l) dr
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for any X € T,,(I') and then
TV<Xay) _ZQ(XHa )T+9( ) ()a gg(T,j/) :Oa

yield (48). Viceversa, let y € I be a lengthy curve such that (48) holds. There is
a partition a =co < ¢; < --- < ¢p41 = b such that y is differentiable in [c;, ¢j11],
0<j<h. Letf bea continuous function defined along y such that f(y(c;)) =0
for 1 < j<hand f(p(z)) > 0 elsewhere. We may apply (47) in Theorem 10 to
the vector field X = fV;p so that to get

(59) wz»Y——ljfﬂvm g Te(V5.5).9)} dr

As y is lengthy and H(M) is parallel with respect to V one has V;j € H(M) hence
(by (48)) (4,L)(fV57) =0 and

90(Te(V53.7). ) = ~29(V55.7)0(T.5) = 0

so that (by (59)) it must be V;7 = 0 whenever V;y makes sense, i.e. y is a broken
geodesic of V. It remains that we prove differentiability of y at the points

¢, 1 <j<h. Let je{l,...,h} be a fixed index and let us consider a vector
field X; e T,(I') such that X, o) = () —7(¢f) and X; ck =0 for any ke

{1,...h}\{j}. Then (by (47)—(48)) one has [j(c;) — y(c; )? =0. Q.ed.

Remark. The following alternative proof of Theorem 9 is also available.
Since (M, gy) is a Riemannian manifold and L(y*) is the Riemannian length of y*
we have (cf. Theorem 5.1 in [17], Vol. II, p. 80)

d s 1 b .
(60) LG g = 00X, D)y — (Y.} = | 00X, Di

where D is the Levi-Civita connection of (M,gy). On the other hand (cf. e.g
[10], section 1.3) D is related to the Tanaka-Webster connection of (M,0) b
D=V+(Q-A4)®T+1t®0+20OJ hence

90(X, D;p) = go(X, V) — 0(X)A(5,7) + 0(7)A(X, ) + 20(7)Q(X, 7)
= g0(X,V;7) — 9o(Tv(X,7),7)
so that (60) yields (46). Q.ed.

8. The second variation of the length integral

We introduce the Hessian I of L at a geodesic y e I' as follows. Given
X eT,(I') let us consider a l-parameter family of curves {y'}, as in the
definition of (d,L)X. Let I(X,X) be given by

|<e

130 = S {160
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and define I(X,Y) by polarization. By analogy to Riemannian geometry (cf.
e.g. [17], Vol. II, p. 81) I(X,Y) is referred to as the index form. The scope of
this section is to establish

THEOREM 11. Let (M,0) be a Sasakian manifold. If yeT is a lengthy
geodesic of the Tanaka-Webster connection V of (M,0) and X,Y € T,(I)
then

(61) I(X,¥)= %Lb{go(w%Wﬂ — go(ROXE )7, 1)
= 20X, 7)0(V; Y) = 2[0(V;X ) = 2Q(X 7)Y, 7)} d
where Xt =X — (1/r)go(X. )7
We shall need the following reformulation of Theorem 11

THEOREM 12. Let (M,0), y and X, Y be as in Theorem 11. Then

b
(62) 106 ¥) == | (oA ¥4+ 20007,0°) 200X 0T ) d

L 1N+ 1
+- 290; (VX)) = (VX)) Vi)

where J,X = V%X =2Q(X",9)T + R(X, )y is the Jacobi operator and a =ty <
<. <ty <tp =Db is a partition of [a b} such that X is differentiable in each
interval [t;,ti11], 0 < j < h, and (V; Xi) = llmt_,t (V53X )0

This will be seen to imply

COROLLARY 6. Let (M,0) be a Sasakian manifold, y e T a lengthy geodesic
of the Tanaka-Webster connection of (M, 0), and X € T,(T). Then X~ is a Jacobi
field if and only if there is a(X) e R such that

(63) LL000) 0 7} 0) — 20X+ 3), 4, = (X)

for any a <t<b, and

b
(64) I(X,Y) = —(2/na(X )j QY*,5),, dr,

a

SJor any Y e T,(T').

Proof of Theorem 11. We adopt the notations and conventions in the proof
of Theorem 9. As a byproduct of the proof of (55) we have the identity



TANAKA-WEBSTER CONNECTION ON SASAKIAN MANIFOLDS 437

(65)  3S(F) = T (), (1))

+ @ (T) - 17 (S),1*(T)> + 2{@7(S,T), u*(T)).
Applying S we get

DS (F?) = (ST(*(8) 4 (T)> + CT(u (), S(u’ (1))
)

+<S(@™(T)) - 17(S), (1)) + <™ (T) - S(1*(8)), 1*(T))
+ <™ (T) - 1*(S),S(1*(T))> + 2¢S(07(S, T)), u*(T))
+2¢07(S,T), S(1(T)))-

When calculated at points of the form (z,0) € Q the 4™ and 5™ terms vanish (by
(50)). We proceed by calculating the remaining terms (at (#,0)). By (49)

¥ term = (ST(1"(8)), u™(T)) = <TS(u*(8)), u™(T))
=TKS(u"(8)), #*(T))) = <S(1(8)), T(1(T)))-
Yet ye ' is a geodesic hence (by (57)) T(x*(T))( 4 =0. Hence
1% term = T(<S(17()), £ (1)) 109
Next (by (51))
27 term = (T(u*(S)),S(u" (1) = <T("(S)), T(w’(S))>
+<T(*(8)), 0™(T) - 17 (S)) = {T(u"(8)), ™ (S) - u*(T)
+2{T(17(8)), 0°(S, T)).

Again terms are evaluated at (£,0) hence w*(T) =0 (by (50)). On the other
hand w*(S) is o(2n + 1)-valued hence

), T(1(S))> + <™ (S) - T(1*(S)), 1™ (T)>
(S)),07°(S,T)>
at each (£,0) e Q. Next (by (52))

3" term = (S(w*(T)) - 1" (S), 4 (T)) = <T(@*(S)) - 1" (S), 1" (T)>

+ (@ (T (8) - 1 (8), 1 (1)) — <o (T)eo* (8) - (), 1" (T)
+24Q(S,T) - 1 (S), ' (T))

2™ term = (T(u

‘(S
+2(T(u

or (by (50))
31 term = CT(@(S)) - 1(S), 4" (1) + 2¢Q°(S,T) - 1*(S), " (T)>
at each (£,0) € Q. Finally (by (51))
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7% term = 2¢O*(S, T),S(x*(T))>
=2¢0°(S,T), T(1(S))) + 20" (S, T), ™ (T) - u*(S)>
— 2€O7(S,T),w"(S) - u*(T)) + 40" (S, T)|?
or (by (50) and the fact that w*(S) is skew)
7 term = 2¢O (S, T), T(1*(S))> + 2(e* (S) - ©°(S,T), & (T)) + 4O*(S, T)

at each (#,0) € Q. Summing up the various expressions and noting that (again
by (57))

T({S(u*(S)), 1™ (T))) + <™ (S) - T(1"(8)), 1" (T) + (T("(8S)) - u*(S), ™ (T)>
Jz JZ

= T(S((8)) +0'(S) -4 (S) 4" (T))

we obtain

(66) %Sz(Fz) IT(u*(S))1> +2¢Q*(S,T) - 1 (S), 1" (T)
T({S(1*(S)) + ™ (S) - 1 (S), u*(T)))

+4¢@%(S,T), T(1"(S))> +2¢S(O7(S, T)), u*(T))
+2(w(S) - ©7(S,T),1"(T)) + 4©*(S,T)|”

at each (1,0) € Q. Since FS?(F)=1S?(F?) —S(F)> we get (by (55) and (66))

(67) rS*(F) = [T(u*(S))]* + 2¢Q*(S, T) - u*(S), 1 (T))
+TES(1*(S)) + @ (S) - 1" (S), 17 (T))
+4¢O"(S,T), T(1"(S))) +2¢S(O(S, T)), 1" (T)>
+2{w*(S) - ©°(S,T), 1 (T)) +4]0°(S,T)?
TG () (1)) + 4¢0° (8.T), (1))

+ 4T (1*(S)), w*(T))<O(S, T), u*(T) >}
at any (2,0) € Q. Moreover (by (56))
T(1"(S)) (0 = {u (S) 02’} (1)

= }zli% h{ﬂ (S )H—h ,0) T *(S)(LO)}

= lim {f (t+ 1) Xy — £ Xy}

(as fO:[a,b] — O(M,gy) is a horizontal curve)
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0 1 _t+h 0/ n—1
= lim {f (1) 7, le(t+h) - f7(1) Xy(t)}

=/ (;113% %{Tf”’X;mm - Xym})
that is
(68) T(1"(S)) 0y = L2(0) " (V3X),0)
Consequently (by (53) and (68))

() T S) +40°(S.1), T((S))
TG (), (1)) + 4¢0° (8,T), (1))
FACT((S) ()40 (8.T), 4 (T)))
= VX[ + 200(To(X. ), Vi) ~ 5 {ga(V;X. )

+90(Tv(X,9),7)" + 290(V5X,9)g0(Tw (X, 9),9)}

= |VaX 1?4+ 290(To (X, 5), V3.X)

- r—z{ge(Tv(Xl» 7).7) + 200(V35X 9)go(Tw (X, 9),7)}
and (by (53) and (56))
(70) the curvature term = 2{Q*(S,T) - #*(S), «*(T))

= go(R(X,7)X, j))y([) = —go(R(X*,7)p, X ).

On the other hand 7n(f(a,s)) = y and n(f(b,s)) = z imply that (d(, ) f)S(,s and
(d(p,5)f)Ss,s) are vertical hence
(71) /"*(S)(a,x) =0, ﬂ*(s)(b,s) =0.

Next, we wish to compute S(u*(S))(, . To do so we need to further specialize
the choice of f(t,s). Precisely, let ven~'(y(a)) be a fixed orthonormal frame
and let

(72) f(t,s)=al(s), a<t<b,|s<e

where o] : (—¢,¢) — O(M,gp) is the unique horizontal lift of o, : (—¢ &) — M
issuing at o,(0) = y'(¢). Also y':[a,b] — O(M,gy) is the horizontal lift of
7 |a,b] — M determined by y'(a) = v. Therefore f° =y is a horizontal curve,
as required by the previous part of the proof. In addition (72) possesses the
property that for each ¢ the curve s+— f(¢,5) is horizontal, as well. Then
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* d *
S("(8)) 0y = 5, {1 (8) 0 B }(0)
.1 . 1.
= lim —{/(t,8) '6,(s) = /(2,0)"'6:(0)}
(as fi:(—e,6) — O(M,gp), fi(s) = f(t,5), |s] <e, is horizontal)

where ©°: T, (M) — Ty, (M) is the parallel displacement along o, from g,(s)
to a,(0), ie.

(73) S(*(8)) 0y = S (1,0) " (Ve,61) -

By (73), 64(s) =0 and 65(s) =0 (as o,(s) = y*(a) = y = const. and op(s) =
y%(b) = z = const.) it follows that

(74) S(t"(8) @00 =0, S(t*(S))(p.0) = 0
Using (71) and (74) we may conclude that

b
(75) JTKﬂﬁ@»+W@%M@MNﬂ»wMZ

= (S(u*(8)) + 0*(S) - 1 (S), 1
— S (S) + o (S) - u*(S

z =
—
1:*%
N ~—
-\
~—
=l
XS
s =
=2
\
o

Similarly

) A S x
25(0°(S, T))([,O) =2 lim —{© (S7T)(t,s) -0 (SaT)(z,O)}

s—0 §

= tim  {/(1,9) To(61(5),3°(0) — £(4,0) Ty(61(0),7°(0)))

= 1007 (tim Vo = Vo))
where V is the vector field defined at each a(t,s) = g,(s) by
Vat,s) = Tv,a(1,5(0:(5),7°(1)), a<t<b,|s| <e.
Let us assume from now on that 7 =0, i.e. (M,0) is Sasakian. Then
Vatt,s) = =201, (0:(5), 7 (2)) Tus,s)
and VT =0 yields
T Va(r,) = =2(1,5)(0:(5), 7 (1)) Ty(0)-



TANAKA-WEBSTER CONNECTION ON SASAKIAN MANIFOLDS 441

Finally
(76) 2¢S(©7(S,T)), " (T)>(1,0)

.1 , . )
= lvlf(l) E{g(ia(t,s)(fj Vatt,5), 7(8)) = 96,a(1,0)(Va(r,0), 7(2)) } = 0,

as (1) e H(M),,. It remains that we compute the term 2{w*(S)-©"(S,T),
w(T)>. As f(t,5) is a linear frame at a(t,s)

f(t,5) = (alt,s), {Xiaps : 1 <1< 2n41}),

where X; € T, (M). Let (U,x") be a local coordinate system on M and let us
set X; = X/d/ox/. Let (IT"'(U), X', g!) be the naturally induced local coordinates
on L(M), where IT: L(M) — M is the projection. Then g/(f(t,s)) = X/(a(t,s)).
As w is the connection 1-form of a linear connection

co:cu:/®E»"

where o/ are scalar 1-forms on L(M) and {E’ :1<i,j<2n+ 1} is the basis of

the Lie algebra gl(2n + 1) given by E/ = [, (5 ]1<k s<omir- Let {er, ... ex 1} be
the canonical linear basis of R*'.’ Then
dx! 0 dxt .
(T, o = £(2,0)" (¢ L)'= == Y/e
Dy = 1160750 = Goreor 5| =Gl

. Al

where [Y/] = [X/]"". Therefore
* * dxk i x

w (S)(t,O) U (T)(f,o> = ar Yi(. wi)(s)(t,O)ej

(because of E}ek =Jie;). On the other hand (by Prop. 1.1 in [18], Vol. I, p. 64)
@*(S)(,0) = A where the left invariant vector field 4 € gl(2n+ 1) is given by

(77) A (.0) = (d(1,0)/)S (.00 — £5(1,0)6:(0)

and 7, : Ty (M) — H, is the inverse of d,I1: H, — Ty (M), ue L(M) (the
horizontal lift operator with respect to H). Here A* is the fundamental vector

field associated to 4, i.e.
Ag, o) = (deLy(,0)) Ae

where L, : GL(2n+1) — L(M), ue L(M), is given by L,(g) =ug for any g e
GL(2n+1), and ee GL(2n+ 1) is the unit matrix. If 4 =A/E] then 4] =
(f* 1)(S ) (o) Let (9;) be the natural coordinates on GL(2n + 1) so that Ly o)
is locally given by ' _
L'(g) =%, Lilg) = X9,
and then (d,Ly(,0))(3/0g)), = X[(0/0gf )10 Next (cf. [18], Vol. I, p. 143)
0 ; 0
/W 0 — (ijon)q?a

(where 9; = d/0x") and (77) lead to

/’
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0

Af X —
997 \r(1.0)

. . 0
= (di1,0)./)S(,0) — X"(V(’)){aj — (Lo H)(J?F}
9rJ 1(1,0)
r (by applying this identity to the coordinate functions g.)

(78) AEXE = Sy0(gbo f) + X GO)TLG)XE.
If ];[ = gjfof then
Senlf) = L5030 = L 1.0

Therefore (by (78))
1) 4t = YL 00+ GO 60X |

So far we got (by (79))

5
0x" |

k gl
0" 8) oy 1 (Do = ¥ G {0,004 XG0 X | £ 1,0)”

Let us observe that

of! X! k 0X/
2 (1,0) = T ) % 1,0) = S ) X0
hence '
of!

oy (1:0) + XA GUNTL ()X, = (VX))

and we may conclude that

. § dx k 3
(80) w (S)(m) “H (T)( 0 = ij dt £(2,0) 1(VXXj)y(r) =0.

Indeed

(Ve Xi), ) = (Vo Xi) 5,0 = lim = {fX, o) — Xio0)}

= hm {‘L’Sf([ s)e; — f(1,0)e;} =0
because f; is horizontal (yielding z°f(z,s) = f(¢,0)). By (69)—(70), (75)—(76) and
(80) the identity (67) may be written
d2 s 1 b 12 Loy €
2 L0 o = 2 [ VX7 = go(R(X T, 9)7, X7)
+290(Ty(X*,9), Vi X) + [Ty (X, 5)

— Elan(To(X )9 + 209X, Dl o307 |
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by To(X"9) = 20X )T and 0(3) =)
b
(81) 100600 = [ (9 = ao(ROE 95 x4

FAQ(XE,5)% — 4Q(X,7)0(V;X)} dt.
Finally, by polarization I(X,Y) =1{I(X+Y,X+Y)—I(X,X)—I(Y,Y)} the
identity (81) leads to (61).

Proof of Theorem 12. As Vgy=0

lj+1
J {go(V; X1,V Y ) = 2Q(X+,9)0(V; Y )} dt

7

_ Jl’ { %[gg(VyXl, Y4 — 20X, 5)0(YY)]

—go(V2X+ =20V, X5 )T, Y1) b dt
bi Y

= go, y l;+l ((V X )V<[j+l)7 YJ([]+1)) g@ Y t] ((V Xl) (%) YJ‘ ))
- ZQ(XLa ).))y(th)H( YL)y(tHl) + 2Q(Xl’ y)y<t/)0< YL)"/'(’J)

fjt1
—J {g0(V;X " = 2Q(VyX -, 5)T, Y1)} d

4

and (61) implies (62). Q.e.d.

Proof of Corollary 6. If X* e J, then X is differentiable in [a,b] hence the
last term in (62) vanishes. Also # X' =0 and (62) yield

b
I(X,Y)= —%J {0(V; X5) = 2Q(X+,9) (Y, 9) dt

which implies (by Lemma 4) both (63)-(64). Viceversa, let us assume that
(63) holds for some o(X)eR. Let f be a smooth function on M such that
f(y(t)) =0 forany 0 < j </ and f(y(z)) > O for any ¢ € [a,b]\{t0, t1,...,t;} and
let us consider the vector field ¥ = f7,X*-. As # X' is orthogonal to j the
identity (64) implies

b
| rownzxpa—o

a

hence 7, X* =0 in each interval [1j,#;.1]. To prove that X* e J, it suffices (by
Prop. 1.1 in [17], Vol. II, p. 63) to check that X+ is of class C! at each t;. To
this end, for each fixed j we consider a vector field Y along y such that
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1\- 1+ .
Y0 = {(V?X D) = (ViX ), for =y
0, fort=1t;, k #j.
Then (by (64)) [(V3X 1)y, — (ViX 1)) [P =0.  Qed.

/

Remark. Let y(tf) e M be a lengthy C' curve. Then D;j = Vij — Ay, )T
hence on a Sasakian manifold y is a geodesic of V if and only if y is a geodesic
of the Riemannian manifold (M,gy). This observation leads to the following
alternative proof of Theorem 11. Let yeI and X,Y € T,(I') be as in Theorem
11. By Theorem 5.4 in [17], Vol. II, p. 81, we have

© 1007 = a0 D) R 95 vy a
Now on one hand
(83) D; X+t =V, X'+ Q) XH)T +0(XH)Jy
and on the other the identity
RP(X,Y)Z = R(X,Y)Z+ (JX AJY)Z = 2Q(X, Y)JZ
+299((OAND) (X, Y),Z)T =200Z2)(O0AD)(X,Y), X,Y,ZeZ(M),
yields
(84) RP(X*,9)5 = R(X*,9)p — 3Q(X+,5)J7 + r*0(X H)T.
Let us substitute from (83)—(84) into (82) and use the identity
O(X D)V Y, 9) + 0(Y )QVX ™, 9) + Q5 X H)0(V3Y ) +Q(5, YH)0(V5X )

_ %{e(xi)g(yi,y') +0(YH)QX,5)}

= 2{Q(X,7)0(V; Y ) + QY+, 7)0(V;X )}
(together with X, = X,;) = 0) so that to derive (61). Q.e.d.

As an application of Theorems 8 and 11 we shall establish

THEOREM 13. Let (M,0) be a Sasakian manifold of CR dimension n and
V its Tanaka-Webster connection. Let y:la,b] — M be a lengthy geodesic of
V, parametrized by arc length. If there is ¢ € (a,b) such that the point y(c) is
horizontally conjugate to y(a) and for any 6 > 0 with [c — d, ¢ + J] = (a,b) the space
Ay, has maximal dimension 4n (where y; is the geodesic y:[c—6,c+6] — M)
then y is not a minimizing geodesic joining y(a) and y(b), that is the length of y is
greater than the Riemannian distance (associated to (M, gy)) between y(a) and y(b).

Proof. Let y:|a,b] — M be a geodesic of the Tanaka-Webster connection
of the Sasakian manifold (M,#), obeying to the assumptions in Theorem 13.
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Then (by Theorem 8) there is a piecewise differentiable vector field X along y
such that 1) X is orthogonal to j and Jp, 2) X, = X, =0, and 3) I?(X) < 0.
Let {y°}, <, be a 1-parameter family of curves as in the definition of (d,L)X and
I(X,X). By Corollary 5 (as y is a geodesic of V) one has

G LG 0 =0,

On the other hand (by Theorem 11 and Xt = X)
b
I(X,X) = I'(X) + 4] QX H){QX.5) - 0(X")} dr

a

hence (as X is orthogonal to Jy)

d2 A D
E{L(V‘ )}omo = I (X) <0
so that there is 0 < < ¢ such that L(y*) < L(y) for any |s| <.

Remark. 1f there is a 1-parameter variation of y (inducing X) by lengthy
curves then L(y) is greater than the Carnot-Carathédory distance between y(a)
and y(b).

9. Final comments and open problems

Manifest in R. Strichartz’s paper (cf. [23]) is the absence of covariant deriv-
atives and curvature. Motivated by our Theorem 1 we started developing a
theory of geodesics of the Tanaka-Webster connection V on a Sasakian manifold
M, with the hope that although lengthy geodesics of V form (according to
Corollary 1) a smaller family than that of sub-Riemannian geodesics, the former
may suffice for establishing an analog to Theorem 7.1 in [23], under the as-
sumption that V is complete (as a linear connection on M). The advantage of
working within the theory of linear connections is already quite obvious (e.g. any
C' geodesic of V is automatically of class C*, as an integral curve of some C*
basic vector field, while sub-Riemannian geodesics are assumed to be of class C2,
cf. [23], p. 233, and no further regularity is to be expected a priori) and doesn’t
contradict R. Strichartz’s observation that sub-Riemannian manifolds, and in
particular strictly pseudoconvex CR manifolds endowed with a contact form 6,
exhibit no approximate Euclidean behavior (cf. [23], p. 223). Indeed, while
Riemannian curvature measures the higher order deviation of the given Rie-
mannian manifold from the Euclidean model, the curvature of the Tanaka-
Webster connection describes the pseudoconvexity properties of the given CR
manifold, as understood in several complex variables analysis. The role as a
possible model space played by the fangent cone of the metric space (M,p) at a
point x € M (such as produced by J. Mitchell’s Theorem 1 in [21], p. 36) is
unclear.
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Another advantage of our approach stems from the fact that the exponential
map on M thought of as a sub-Riemannian manifold is never a diffeomorphism
at the origin (because all sub-Riemannian geodesics issuing at x € M must
have tangent vectors in H(M),) in contrast with the ordinary exponential map
associated to the Tanaka-Webster connection V. In particular cut points (as
introduced in [23], p. 260) do not possess the properties enjoyed by conjugate
points in Riemannian geometry because (by Theorem 11.3 in [23], p. 260) given
X € M cut points occur arbitrary close to x. On the contrary (by Theorem 1.4 in
[17], Vol. 11, p. 67) given x € M one may speak about the first point conjugate to
x along a geodesic of V emanating from Xx, therefore the concept of conjugate
locus C(x) may be defined in the usual way (cf. e.g. [20], p. 117). The systematic
study of the properties of C(x) on a strictly pseudoconvex CR manifold is an
open problem.

Yet another concept of exponential map was introduced by D. Jerison &
J. M. Lee, [15] (associated to parabolic geodesics i.e. solutions () to (V7)) =
2¢T,(; for some c e R). A comparison between the three exponential formalisms
(in [23], [15], and the present paper) hasn’t been done as yet. We conjecture that
given a 2-plane o = T(M) its pseudohermitian sectional curvature ky(c) mea-
sures the difference between the length of a circle in ¢ (with respect to gy ) and
the length of its image by exp, (the exponential mapping at x associated to V).
Also a useful relationship among exp, and the exponential mapping associated to
the Fefferman metric Fy on C(M) should exist (and then an understanding of the
singular points of the latter, cf. e.g. M. A. Javaloyes & P. Piccione, [14], should
shed light on the properties of singular points of the former).

Finally, the analogy between Theorem 7.3 in [23], p. 245 (producing ‘“‘ap-
proximations to unity”” on Carnot-Carathéodory complete sub-Riemannian mani-
folds) and Lemma 2.2 in [24], p. 50 (itself a corrected version of a result by S.-T.
Yau, [28]) indicates that Theorem 7.3 is the proper ingredient for proving that
the sublaplacian A, is essentially self-adjoint on C;°(M) and the corresponding
heat operator is given by a positive C* kernel. These matters are relegated to a
further paper.

Appendix A. Contact forms of constant pseudohermitian sectional curvature

The scope of this section is to give a proof of Theorem 5. Let (M,0) be a
nondegenerate CR manifold and 6 a contact form on M. Let V be the Tanaka-
Webster connection of (M,6). We recall the first Bianchi identity

(85) Z R(X,Y)Z = Z{TV(TV(Xv Y),Z)+ (VxTy)(Y,Z)}
o7 bo74

for any X, Y,Z e T(M), where > _ ., denotes the cyclic sum over X, ¥, Z. Let
X,Y,Ze H(M) and note that

Ty(Tv(X, Y),Z) = -2Q(X, Y)1(2Z),
(VaTy)(Y,Z) = —2(VxQ)(Y, Z)T = 0.
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Indeed Vgyp =0 and VJ =0 yield VQ =0. Thus (85) leads to
(86) D> RX,Y)Z=-2) QX,Y)i(2),
Xvz Xvz

forany X,Y,Z e H(M). Let us define a (1,2)-tensor field S by setting S(X, Y)
= (Vx1)Y — (Vy71)X. Next, we set X, Y e H(M) and Z=T in (85) and ob-
serve that

Ty(Tv(X,Y), T) + Tv(Tv(Y,T), X) + Tv(Tv(T, X), Y)
=—Ty(7(Y),X)+ Ty(z(X),Y) = (as 7 is H(M) — valued)
=2{Q=(Y),X) —Q((X), Y)}T =2g¢((zJ + J7)X, YT =0,

(by the purity axiom) and
(VxTv)(Y,T) + (VyTy)(T, X) + (VrTy)(X, Y)
= —(Vx1)Y + (Vy0)X — 2(V7Q)(X, V)T = —S(X, Y).
Finally (85) becomes

(87) RX,T)Y+R(T, )X =S(X,7Y),
for any X,Y e H(M). The 4-tensor R enjoys the properties
(88) R(X,Y,Z,W)=—R(Y,X,Z, W),
(89) RX,Y,Z,W)=—-R(X,Y,W, 2Z),

for any X,Y,Z, W e T(M). Indeed (88) follows from Vgy =0 while (89) is
obvious. We may use the reformulation (86)—(87) of the first Bianchi identity
to compute >y, R(X,Y,Z, W) for arbitrary vector fields. For any X € T(M)
we set Xy =X —0(X)T (so that Xy € H(M)). Then

S RX,Y,Z,W)=> gy(R(Z,W)Yy,X)
YZW YZw

X [R( WH, T)ZH + R(T, ZH) WH],X)

hence

YZW YZW
for any X,Y,Z, W e T(M). Next, we set

K(X,Y,Z,W)=> R(X,Y,Z,W)
YZW
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and compute (by (88)—(89))
KX, Y, Z,W)-K(Y,ZW,X)-K(ZW,X,Y)+ K(W,X,Y,Z)
=2R(X,Y,Z,W)—-2R(Z,W,X,Y)
hence (by (90))
2R(X,Y,Z,W)—-2R(Z,W,X,Y)

==Y {2Q(Y,2)A(X, W) + 0(Y)go(X, S(Zu, Wr))}

+ > {2Q(Z, W)A(Y, X) + 0(Z)go(Y, S(Wi, Xu))}
ZWX

+ Z {2QW, X)A(Y,Z) + 0(W)go(Z,S(Xu, Yn))}

WXY

=Y {2Q(X, Y)A(Z, W) + 0(X)go(W,S(Yu, Zu))}
XYZ

or
(91) 2R(X,Y,Z,W)—-2R(Z,W,X,Y)
=—4Q(Y,2)A(X, W) +4Q(Y, W)A(X,Z)
—4Q(X, WA(Y,Z) +4Q(X, Z)A(Y, W)
+0(X)[go(Y,S(Zty, Wh)) + 9o(Z,S(Yrr, W) — go(W, S(Yr, Zn))]
+0(Y)[g0(Z, S(Wh, X)) — 9o(W,S(Z, X)) — 90(X, S(Zy, Wh))]
+0(2)go(Y,S(Wy, Xu)) — go(X,S(Wy, Yi)) — go(W,S(Xu, Yu))]
+0W)lgo(Y,S(Xu, Zn)) — 9o(X, S(Yn, Z)) + 9o(Z, S(Xu, Yn))|.
As Vyt is symmetric one has
g0(Y,S(X, 2)) — go(X, S(Y, 2)) = go(S(X, ¥), 2)
for any X,Y,Z e H(M), so that (91) may be written
(92) RX,Y,ZW)=R(Z,W,X,Y)—-2Q(Y,Z)A(X, W)
+2Q(Y, WA(X,Z) - 2Q(X, W)A(Y,Z)
+2Q(X, Z)A(Y, W) + 0(X)go(S(Zry, W), Y)
+0(Y)g0(S(Wh, Z), X) + 0(Z)go(S(Yu, X)), W)
+0(W)go(S(Xu, Yn), Z),

for any X,Y,Z, W e T(M).
The properties (88)—(90) and (92) may be used to compute the full curvature
of a manifold of constant pseudohermitian sectional curvature (the arguments are
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similar to those in the proof of Prop. 1.2 in [17], Vol. I, p. 198). Assume from
now on that M is strictly pseudoconvex and Gy positive definite. Let us set

RI(X7 Ya Z, W) = gH(Xaz)gﬁ(Yv W) - gH(Yv Z)gﬁ(Wa X)

so that

(93) R(X,Y,ZW)=—R(Y,X,Z, W),
(94) R(X,Y,Z,W)=—-R(X,Y,W,Z),
(95) > Ri(X,Y,Z,W)=0.

YZw

Assume from now on that ky = ¢ = const. Let us set L = R — 4¢R; and observe
that

(96) LX,Y,X,Y)=0

for any X,Y € T(M). Indeed, if X, Y are linearly dependent then (96) follows
from the skew symmetry of L in the pairs (X, Y) and (Z, W), respectively. If
X, Y are independent then let ¢ = T.(M) be the 2-plane spanned by {Xi, Y.},
xe M. Then

LX,Y,X,Y) =R(X,Y,X,Y) —4cR|(X,Y,X,Y),
= dkg(a)[| X} Y]* = go(X, Y)?], —4cRi (X, Y, X, Y) =0.
Next (by (96))
0=LX,Y+W, X, Y+W)=L(X,Y,X,W)+L(X,W,X,Y)
1e.
(97) LIX, Y, X,W)=-L(X,W,X,Y)

for any X, Y, W e T(M). As well known (cf. e.g. Prop. 1.1 in [18], Vol. I,
p. 198) the properties (93)—(95) imply as well the symmetry property

(98) Rl(X7 Y7Za W):RI(Z7 W7X7 Y)

Therefore  L(X,Y,Z,W)—L(Z,W,X,Y)=R(X,Y,Z,W)—R(Z,W,X,Y)
hence (by (92))

(99) L(X,Y,Z,W)=L(Z W,X,Y)+2Q(Y, W)A(X, Z)
—2Q(Y,2)A(X, W) +2Q(X, Z)A(Y, W)
—2Q(X, W)A(Y,Z) + 0(X)go(S(Zy, W), Y)
+0(Y)90(S(Wh, Zi), X) + 0(Z)go(S(Yu, Xu), W)
+0(W)go(S(Xu, Yn), Z).

Applying (99) (to interchange the pairs (X, W) and (X,Y)) we get
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LX, W, X,Y)=L(X,Y, X, W)+ 2Q(W,Y)A(X, X)

—2Q(W, X)A(X,Y) = 2Q(X, Y)A(W,X)
+ 0(X)g0(S(Wh, Yur), X) + 0(Y)go(S(Xu, W), X)
+0(W)go(S(Yu, Xu), X)

hence (97) may be written

(100) L(X,Y, X, W)=Q(W,X)A(X,Y)

+QX, VAW, X) —Q(W,Y)A(X,X)

——{0( )90(S(Wr, Y ), X) + 0(Y)go(S(Xn, Wi, X)
+0(W)go(S(Yu, Xu),X)}.
Consequently
LX+Z, Y, X+ZW)=QW,X+2)A(X+Z,Y)
+QX+Z VAW, X +2)
- QW, YVAX+Z,X+2)

1
*igo(x +Z,0X +Z2)S(Wu, Yn)

+0(Y)S(Xu + Zy, Wu) + O0(W)S(Yu, Xu + Zn))
or (using (100) to calculate L(X,Y, X, W) and L(Z,Y,Z,W))
(101)  L(X,Y,Z, W)+ L(Z, Y, X, W)
=QX, V)AW,Z)+ QW,X)A(Z,Y) + Q(W,Z)A(X, Y)
+Q(Z, VAW, X) = 2Q(W, Y)A(X, Z)

— 300X 0Z)S (Wi, Yin) +00)S(Zua, W) +00V)S (Y, Za)

- %90(27 OX)S(Wy, Yu) +0(Y)S(Xu, Wy) + 0(W)S(Yu, Xu)).

On the other hand, by the skew symmetry of L in the first pair of arguments and
by (99) (used to interchange the pairs (Y,Z) and (X, W))

LZ,Y, X, W)= —L(Y,Z,X,W) = —L(X, W, Y,Z)
L2Q(Z, X)A(Y, W) —2Q(Z, W)A(Y, X)
L 20(Y, W)A(Z, X) = 2Q(Y, X)A(Z, W)
—0(Y)go(S(Xe, Wh), Z) — 0(Z)g0(S(Wh, Xu), Y)
—0(X)g (S(ZH, Yu), W) = 0(W)go(S(Yu, Zn), X)



TANAKA-WEBSTER CONNECTION ON SASAKIAN MANIFOLDS 451

so that (101) becomes

(102)  L(X,Y,Z,W)=LX,W,Y,Z)+2Q(X,Z2)A(Y, W)

—Q(W,Z2)A(X,Y) — Q(X, Y)A(Z, W)
+QW, X)A(Z,Y) +Q(Z, Y)A(W, X)

0(X){90(S(Zu, Yu), W) + go(S(Zu, Wu), Y)}
O(Y){90(S(Zu, Wn), X) + go(S(Wu, Xu),Z)}
02 go(SWh, Xu), Y) + go(S(Yu, Xu), W)}

OW)9o(S(Yu, Xu), Z) + 9o(S(Zu, Yu), X)}.

By cyclic permutation of the variables Y, Z, W in (102) we obtain another

identity of the sort

LX,Y,Z,W)=LX,Z,W,Y) = 2Q(X, W)A(Z, Y)

+Q(Y, WA(X,Z) + Q(X,Z)A(W, Y)
—Q(Y, X)A(W,Z) — Q(W,Z)A(Y, X)

S0 (g (S W Zu), V) + (S OV, Yir), 7))

_|_

= N = N =

OY){90(S(Zr, X)), W) + go(SWn, Zn), X)}

HZ){go(SWu, Yu), X) + go(S(Yu, Xu), W)}

OW){90(S(Yu, Xu), Z) + go(S(Zu, Xu), Y)}

which together with (102) leads to

3L(X,Y,Z, W) =

S LX,Y,Z,W) = 2Q(W,Z)A(X,Y)
YZW

+3Q(X, 2)A(Y, W) = 3Q(X, W)A(Y, Z)
+Q(Z, V)AW,X) + Q(Y, W)A(X, Z)

+§9(X)90(S(ZH, Wi),Y) — %9( Y)go(S(Zy, Wu), X)

+ %o(z){zgg(S( Y. Xu), W)

+90(S(Wh,Xu), Y) +9o(S(Wh, Yu), X)}
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_ %9( W) {290(S(Yy, Xnr), Z)

+90(S(Zu, Yu), X) + 9o(S(Zu, Xu), Y)}
or
LIX,Y,Z,W) = Q(Y, W)AX,Z) — Q(Y,Z)A(X, W)
FQX, Z)A(Y, W) — Q(X, W)A(Y, Z)

+%{0(X)90(S(ZH7 Wi), Y) —0(Y)go(S(Zu, Wr), X)

+0(2)g0(S(Ye, Xpr), W) — OW)go(S(Yer, Xir, Z))}
or
(103)  R(X,Y,Z, W) =4c{go(X,Z)go(Y, W) — go(Y, Z)go(X, W)}
+O(Y, W)A(X,Z) — Q(Y, Z)A(X, W)
+O(X, Z)AY, W) — Q(X, W)A(Y, Z)
+90(S(Zu, W), (OAI)(X, Y))
—90(S(Xu, Yu),(OA1)(Z, W))

for any X,Y,Z, W e T(M), where I is the identical transformation and
(OAD)(X,Y)=1{0(X)Y —0(Y)X}. Using (103) one may prove Theorem 5 as
follows. Let Y =T in (103). As R(Z,W)T =0 and S is H(M)-valued we get

(104) 0= 4e{gu(X, 2)00W) ~ au(X, W)OZ)} ~ 300(S(Znr, W), X),

for any X,Z, W e T(M). In particular for Z, W e H(M)
S(Z,w) =0.

Hence S(Zy, Wy) =0 and (104) becomes

{go(X, Z)0(W) — go(X, W)0(Z)} = 0,
for any X, Z, W e T(M). In particular for Z= X € H(M) and W = T one has
¢|X|* =0 hence ¢ =0 and (103) leads to (31). Then 7 =0 yields R=0. To
prove the last statement in Theorem 5 let us assume that M has CR dimension
n>2 (so that the Levi distribution has rank > 3). Assume that R =0 i.e.

QX,2)1(Y)—-QUY,Z)t1(X) = A(X,2)JY — A(Y,Z2)JX

(by (31)). In particular for Z=Y
(105) QX, Y)r(Y) = A(X, Y)JY — A(Y, Y)JX.

Let X e H(M) such that |[X|=1, ¢o(X,Y)=0 and gy(X,JY)=0. Taking
the inner product of (105) with JX gives A(Y,Y) =0, hence 4 =0 (as 4 is
symmetric). Q.e.d.
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