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ON THE ORDER OF A ZERO OF THE THETA FUNCTION

BY TAKAO KATO

1. Introduction. In this paper we shall examine the bounds of the order
of a zero of the theta function attached to a compact Riemann surface with a
non-trivial conformal automorphism.

At first, we shall give an estimate at the vector of Riemann constants,
whose base point is a fixed point of an automorphism. Recently, Farkas [2]
has given an estimate from below and some equality conditions when the genus
is congruent to one modulo the order of the automorphism. In this paper we
shall consider both lower and upper bounds.

Secondly, we shall give an estimate at half periods. Accola [1] has exa-
mined them when the surface has an automorphism of order 2 and Farkas [2]
has also given some estimates. We shall examine them when an automorphism
satisfies a certain condition on its fixed points. Our estimates contain Accola's
one and our proof is a modified one of Farkas'. Furthermore, if the genus of
the orbit surface of the cyclic group generated by an automorphism is one, we
shall give another estimate.

Thirdly, we shall give examples of Riemann surfaces which attain the
bounds of the estimates at the vector of Riemann constants.

Lastly, we shall state closing remarks.
The author expresses his heartiest thanks to Professor M. Ozawa for his

kind encouragement and valuable remarks.

2. Preliminary. In this section we state notations and known results. Let
5 be a compact Riemann surface of genus g (Ξ>2) with a canonical homology
basis alf •••, ag, βlf •••, βg. Let φlf •••, φg be the basis for the space of abelian
differentials of the first kind on S, which are normalized so that φJ = δijπi

J OCi

where δi3 is the Kronecker δ. Let Ω=(ωi3) denote the matrix where ω^ = J Φj-

It is known that Ω is symmetric with negative definite real part. Then the
first order theta function is defined by

θ(z Ω) = Σ exp (2tmz+tmΩm)
m

where the variable z is gxl vector and m runs over all gxl vectors with
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ON THE ORDER OF A ZERO OF THE THETA FUNCTION 391

integer entries. Let φ be the map of 5 into J(S), the Jacobian variety of S,

φ for some fixed point Po in 5 where φ=t(φly •••, φg). The

map φ can be extended to divisors on 5 so that φ(D)—n1φ(P1)+ ••• +nkφ(Pk)
where D—P^1 ••• Pk

nk is a divisor on S. It is known [4] that the zeros of
θ(z; Ω) are well defined on J(β) and the set of the zeros of θ(z; Ω) is exactly
Wg'1+K(P0). Here Wg~1 denotes the image of all positive divisors of degree
^ - 1 on S under φ, and K(P0) is a vector in J(S) which is called the vector of
Riemann constants. It is also known as Riemann's vanishing theorem that
φ(D)+K(P0) is a zero of order i(D). Here D is a positive divisor of degree
g—1 and i(D) denotes the dimension of the space of abelian differentials of the
first kind on S whose divisors are multiples of D.

If D=P0

8~\ then φ(D)=0. Hence K(P0) is always a zero of θ(z; Ω) whose
order is /(/V"1)- Let l(D) denote the dimension of the space of meromorphic
functions on S whose divisors are multiples of D'1. If D is of degree g—1,
then the Riemann-Roch theorem implies that l(D)=i(D).

Let T be a conformal automorphism of 5 with t(>0) fixed points. Let <T>
denote the cyclic group generated by T, and let N be its order. Let 5/<T> be
the surface obtained by identifying the equivalent points on S under the element
of <T> and π the natural projection of S into 5/<T>.

In order to estimate the order of the zero of θ(z; Ω) at K(P), where P is
a fixed point of T, we have only to make a study of l(Pg~ι). By virtue of this
reason we shall state our theorems associated with K(P) in terms of l(Pg~1).
But those theorems can be restated at once in terms of the order of the zero
of θ(z; Ω).

3» The lower bounds. Throughout the following theorems, suppose that
5 is a compact Riemann surface of genus g(^2), T is a conformal automor-
phism of S with fixed points, t denotes the number of those fixed points, P
denotes any one of those fixed points, N is the order of <T>, g is the genus of
S/(T) and that π denotes the projection of S into

THEOREM 1. Let N be prime. If g=k (modΛΓ), (0<k<N), then

(1)

If g=0 (mod TV), then

(2) KP'-^-ff—S.

(Farkas proved for k~l.)

Proof. Let P be π(P), the projection of P. Let / b e a meromorphic func-
tion on S/<T> with pole only at P. There is a meromorphic function / on 5
such that / = / o π. Then the order of pole of / at P is N times of that of /
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at P. It is easy to see that there are at least \_(g— l)/N~]—g+1 linearly inde-
pendent meromorphic functions on S/<T> with pole only at P whose order
^(#—l)/N. Here [s] denotes the integer part of s. If g=k (modN), then
ί(g-l)/N2=(g-k)/N. If g=0 (modN), then l(g-l)/N2=g/N-l. This com-
pletes the proof.

4. The case N—2. In this section we consider the upper bounds of l(P8~λ)
for the case N=2, and give some equality statements. Farkas [2] already
showed that if N=2, k=l, g^2g+l and P is not a Weierstrass point of S/<T>,
then l(Pg~1)=(g— l)/2+l—g. But he made a computational mistake, so this is
not true. For example, let S be the surface defined by ys=x2(x2—I)(x4+1)2 and
let T be the automorphism defined by T(x, y)=(—x, y). We choose as P the
point corresponding to (x, JO=(0,0). Then we have l(P*)=2, while g=5 and g
=2. It is easily seen if we choose a basis of differentials on S so that dx/y,
x(x4+l)dx/y2, xdx/y, x2(x*+l)dx/y2 and x2dx/y. It is also obvious that P is not
a Weierstrass point.

It is known that every zero of Riemann's theta function is of order less
than or equal to (g+l)/2 [4]. Hence, if g=0 and N=2, then equality holds in
Theorem 1. Therefore, we shall only consider the case

THEOREM 2. Suppose that N=2, g=l (mod2) and that g>0. Then

(3) KP'-^-^—S, if £^4S-1,

(4) KP'-^^g+l, if g=*g-3,

(5) KPg-λ)^2g--^-, if g^Ag-5, g = 3 (mod4)

and

(6) / ( P s - 1 ) ^ - - ^ ^ - , if g^4g-5, ^ ^ l ( m o d 4 ) .

Furthermore, if P=π(P) is not a Weierstrass point of S/<T>, then

(7) KP8'x)^g9 if £ = 4 # - 3

and

(8) KP'-^^g-l, if g^Ag-5.

Proof In this and the sequential proofs, we consider meromorphic functions
on S (or S/<T» with no pole but P (or P). For brevity, we call the order of
the pole of such a meromorphic function at P (or P) " the order of the function".

For any positive integer n, there is a function of order n on S/<T> if and
only if there is a function of order 2n on 5. Indeed, let / be a function of
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order 2n on S and let z be a local parameter at P such that T(z)=—z and
f(z) = z'*n+ '.. Put F=f+foT. Then F(z) = 2z~2n+ ... at P and F = FoT.
Hence, there is a function of order n on S/<T>. Only if part is trivial.

By Weierstrass' gap theorem there are exactly n—g linearly independent
functions on 5/<T> of order less than n for every n>2g. If g^Ag—1, then g
—1^2(2g—1). Therefore, there are exactly (g+l)/2—g linearly independent
functions of even order which are not greater than g—1.

Suppose there is a function / of odd order k such that k^g—2. We can
choose a local parameter z at P such that T{z)——z and f(z)=z~k+ •••. Put
F=f-foT. Then F(z)=2z'k+ - a t P and FoT=-F. Therefore, P=0 for
every fixed point of T but P. Hence k^t—1. Since t=2g—4g+ 2, we have g

Therefore, 4£-3^£. Hence,

Before proving the rest of this theorem, we have the following observation:

"// there is a function fx of order k1=t—l=2g—^gJrl, then there is not a
function of order kx+2"

Suppose there is a function f2 of order kx+2. Since F1=f1—f1oT has
exactly kλ simple zeros at all the fixed points of T but P and these fixed points
are also zeros of F2=f2—f2 o T, F=F2/F1 is a function of order 2. Hence, there
is a function of order one on 5/<T>. Since ^>0, this is absurd.

We proceed the rest of the proof. Let £^4£-3. By Clifford's theorem [7]
there are at most [(g+3)/4] linearly independent functions of order less than
or equal to (g-l)/2 on 5/<T>. Hence, there are at most [(#+3)/4] linearly
independent even order functions of order not greater than g—1 on S. By the
same reason as the case of g^£g—l, the possible order of an odd order func-
tion is not less than 2g—4£+l. Let m be the number of linearly independent
odd order functions of order less than g—1. By the observation, we have

if

and
m ^ l , if g=4g-3.

Hence, we have (4), (5) and (6).
If π(P) is not a Weierstrass point of S/<T> and if g^g—3f then there are

at most (g+ϊ)/2—g linearly independent functions of order not greater than
(g—l)/2 on S/(T). The bounds of the number of linearly independent odd
order function is the same as above. Thus we have (7) and (8).

THEOREM 3. Suppose that N=2, g=0 (mod2) and that g>0. Then
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(10) KP'-^^g+l, if #=4£-2,

(11) l(Pg-1)^2g-l--j-, if g^4g-4,

and

(12) /(P*" 1)^2g—\ f-, if i r ^ 4 g -

// P is not a Weierstrass point of S/<T>, then

(13) KP'-^^g, if £=4£-2 or if g = 2g

and

(14) KP'-^^g-l, if

Proof. The tool of the proof is similar to that of the preceding theorem.
Since g—1 is odd, if g^ig then there are exactly g/2—g linearly independent
functions of even order, which is not greater than g—1. Since g— l^k^2g—Ag
+1, we have (9). If g^g— 2, then there are at most C(g+2)/4] linearly inde-
pendent functions of order less than or equal to (g—1)/2 on S/<T>. By the
observation in the preceding proof, we have

g | = 2 g — f - 1 , if
and

m ^ l , if £ = 4 # - 2 .

Thus we have (10), (11) and (12).
If π(P) is not a Weierstrass point of S/(T) and if 2g+2^g^4g-2, then

there are at most g/2—g linearly independent functions of order not greater
than (g—l)/2 on S/<T>. In the case g—2gf while g/2—g=0 there is always a
non-zero constant function. Thus we have (13) and (14).

5. The case N ^ 3 . In this section we shall consider the upper bounds of
KP8'1) for the case iV^3. Farkas [2] showed that if Λί=3, g=l (mod 3) and
£=0 then equality occurs in Theorem 1. We shall prove it without the hypo-
thesis gΞ=l.

THEOREM 4. Let N be a prime number, N^3 and let g=0. If g=k (mod N),
(0<k<N), then

(15) / ( P - ^ ^

If g=0 (modAO, then
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Proof. Assume 0<k<N. Since g=0, there are (g—k)/N linearly indepen-
dent functions on 5 of order N, 2N, ••• ,g—k.

Suppose there is a function / on S of order j such that j^O (mod N), j^g
—1. Choose a local parameter z at P such that T(z) = εz and f(z) = z~J+ ••-
where εN=l and εΦl. Put

Since / o 71(z) = ε-'2-' + — , F(z) = Nz^+ ••• at P. Since F=εjFoT, every fixed
point of T but P is a zero of F. Let JF\ and F2 be functions of order kx and
*a, respectively, such that F1=εkΨ1oT and F 2 = ε V 2 o T . If *!^ft2 (mod AT),
then for each fixed point of T but P the order of the zero of Fx at the point
is different from that of F 2 . If there is a function of order j , then functions
of order j+N, j+2N, ••• also exist.

Let kx<k2 <••• <&#_! be integers such that ^ ^ ^ (modA^) for iφj and that
^i^O (modA/̂ ) for every i and that there exist a function of order k% but of
order kt—N for each i = l , •••, N—l. Then we have

(17) * , + . . . +kM^ m ( m

2

+ 1 ) α - D

2

for each m=l, •••, A/"— 1. Let M be the number of linearly independent func-
tions of order less than g but of order N, 2N, •••, ^—^. Then we have

(18) NM^ max te-
m

where m runs from 1 to A/—1. Combining with (17) and (18) we have

(19) NMtίkJψ-{8-

If (N-ΐ)/2^k, then we have

(20) NM^ max {(^-

Since (&+l)iV-36+l^(&-l)(ΛΓ+l) for fe^(ΛΓ+l)/2, we have

(21)

Since Z(P*-1)=(^-fe)/iV+l+M, we have (15).
If ^ = 0 (mod A7 )̂, then we can use the preceding discussion for k=N. Thus

we have (16).
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COROLLARY 1. Let N be a prime number, iV^3 and let g=Q. If g=l or
g=2 (modΛΓ), then

(22) /(p.-i)^J^L(.^*_+i), (* = 1, 2).

COROLLARY 2. L#/ N be a prime number so that N+l is a multiple of 4.
Let g=Q. If g=l, 2,3 or 4 (mod N), then

(23) KPβ'1)^^ψ^(-g^-+l)9 (* = 1, ,4).

COROLLARY 3. Lef N=3 and g=Q. If g==l or 2 (mod 3), then

(24) /(P*-1) = - ^ - + l , (* = 1, 2).

If g=Q (mod 3), /Aen

(25) /CP*-i) = - | - .

(For the case ^ = 1 was already obtained by Farkas).

Next, we shall consider the case £>0. Suppose g=k (mod N), (0<k<N).
If g^2Ng-2N+k, then by Clifford's theorem there are at most [(g—*)/2ΛΓ]+l
linearly independent functions of order less than or equal to g—1, so that each
one of whose order is divisible by N. If π(P) is not a Weierstrass point, then'
the number of such functions is (g—k)/N+l—g. If g>2Ng—2N+k, then the
number of such functions is always (g—k)/N-\-l—g.

Let kλ<k2< ••• <kN-! be integers such that k^k^moάN) for iφj and that
ki^Q (mod N) for each i and that there exists a function of order kτ but of
order kt—sN for each z=l, •••, N—l and each s—1, 2, •••. Then the same reason
as in the proof of Theorem 4 implies

Put

(26) i4 = (^+Λ^--l)+. + ( ^ + i V - m ) - ( ^ + . . - + έ m ) - ( m - * + l ) , if m>k

and

(27) i4 = ( ^ + Λ / ' - l ) + - + ( ^ + i V - m ) - ( * 1 + - + * 1 I ι ) , if m<k.

Put Λ)= max A, where m runs from 1 to N—l.
m

If k^n=l(g+N)/tl^N-2, then

(28) Λ,^
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If n<k, then

(29) Ao g n(g+N)—n(n

2

+1) t.

If n^N-1, then

(30) A0£(N-l)(g+N)—(N-£>N t-N+k

By a similar way of the observation in the proof of Theorem 2, we can
observe that if g—l—k^N then there are at most ί(g— 1—kt)/N~] linearly in-
dependent functions of order less than or equal to g—1, so that each one of
whose order is congruent to kt.

Put

(31) B = n(g+N)- rc(rc+l) f+min{0, * - n - l } , if n^N-2

and

(32) B = N2g-N-g+k, if n^N-1.

Let Bo be the number of linearly independent functions of order less than
g, each one of which is not a multiple of N. Put n'=min {n, N—l}. If B—nfN
^N, then BO^B/N3-1. If ^-(n'-lJiV-^+iV-l-feO^iV, then B0^LB/N^
- 2 . If 5-(n /-2)A^-(^ + A ^ - l + ^ + A ^ - 2 - ^ 1 - ^ 2 ) ^ ^ then β o^[β/ΛΓ]-3 and
so on. Since

we shall consider the equation

(33) B-s(g+N)+ f ~ ( n + l

When (33) has a real solution, let Sj denote the least one. When (33) has no
real solution, let s1=N-l. Put

(34) 50 = min {N-l, max {0, [sj}} .

Then we have

Put k=N. Then the preceding discussion can be applied when ^ Ξ O (mod N).
But if t=2, then it is necessary a trivial modification in the first part of this
discussion.

Summing up, we have
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THEOREM 5. Let N be a prime number, Λfe3 and let g>0. If g=k(moά N),
(0<k<N), then

(35) KP'

Here B is defined by (31) and (32) and

(36)

if g^2Ng—2N+k and π(P) is a Weierstrass point, and

(37) C = -£^-+l-g, otherwise.

If g=Q (moάN) and t>2, then (35) holds if B and C are defined by k=N. If
g=0 (mod N) and t—2, then

(38) KP

where B is defined by k=N.

6. Estimates at half periods. In this section we shall give an estimate at
a^half period of /(S).

Let Plf — ,Pt be the fixed points of T. Assume that N, the order of T, is
prime. Let z% be an arbitrary local parameter at P% (i=l, —, t). There is an
εt such that T(zι)=εizt-\- ••• at P% where e ^ = l , ε ^ l . Such an εt is independent
of the choice of zt. Consider the following condition:

(A) e = e1 = e 2= — = e ί _ 1 .

Then we have

THEOREM 6. Let N be prime. Assume that T satisfies the condition (A).
If g=k (moάN), (0<k<N), then θ(z; Ω) vanishes to order at least

(39) -^-+l-g

at the 4* half periods of J(S).

If g=0 (moάN), then θ(z\ Ω) vanishes tor order at least

(40) fr

at the 4* half periods of J(S).

To prove this theorem we need two lemmas.

LEMMA 1 (Lewittes [4], Rauch and Farkas [6]). Let Δ be a positive divisor
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of degree 2g—2. Then Δ is the divisor of a differential if and only if φ(Δ)+
2K(P0)~0 on J(S). Therefore, if D is a positive divisor of degree g—1 such that
D2 is the divisor of a differential, then φ(D)+K(P0) is a half period of J(S).

LEMMA 2. // T satisfies the condition (A), then there is a differential ω on
S such that ω o T=εω.

Proof. Let Hj be the space of abelian differentials of the first kind such
that θ o T=εJθ for each θ in H3 O'=0,1, — , N—ΐ). Let ns be the dimension of

N-l

Hj. By Lewittes [3] nQ=g, the genus of S/<Γ> and Σ nj=g. Assuming the
J = 0

condition (A) and applying Lewittes' method, we can see that if njφO, then

Since 2g—2=N(2g—2)+(N-ϊ)t and f>0, we have 2g>Ng. Therefore, we
have

(N-2)(2g-2)-N±\j-ί)t+N-2
Σ n,£ jj* (N(

Hence, nxΦ0. Thus HxΦφ.

Proof of Theorem 6. Suppose that g=k, (0<k<N) and that g^L Let ω
be a differential on 5 such that ωoT=εω. The existence of such an ω is
guaranteed by Lemma 2. Then the divisor of ω is of the form

(41) PS&PS*" - Pt_/t-lNptrtN+2k-2JJi ... JCN_Ό #

Here rlf r2, •••, rt.1 are non-negative integers, rt is an integer ^ — 1, Δ is a

divisor of degree 2{g-k)/N~J^rι and Δt = T\Δ). Put Pi=π(P%), i=l, —, t.

Let φ be the canonical map of S/(T} into /(5/<T». We may choose Pt as the

base point of φ. Consider the 4̂  equations

(42) φ(X) =-\-φ{P^P^ -. /V/"J).

Here X is a positive divisor of degree (g—k)/N, Δ—π{Δ) and (l/2)φ(-) denotes
a point a of 7(5/<T» such that #( )==2α. The number of such α's is 4*. By
the Jacobi inversion problem, each equation is solved with (g—k)/N—g free
points. Let D be the solution of one of (42).

By AbeΓs theorem,
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is the divisor of a function / on S/<T>. There is a function f on S such that
f=fo π. The divisor of / is

where D is a divisor such that π(D)=D. Since (41) is the divisor of a differen-
tial, D2D1

2 ••• D\N.ΌPt

2k-2 is also the divisor of a differential. Therefore, by
Lemma 1 φ{DDx ••• A Λ Γ - D Λ ^ H ^ C Λ ) is a half period of /(S). Since D is solved
with (g—k)/N—g free point,

Hence by Riemann's vanishing theorem and Lemma 1 we have (39). Putting
k=N we have (40) at once.

Suppose £=0. Let ω be a differential on S such that ωoT=εω. Such an
ω is of the form (41). Since g=0, there is a differential ωf such that the divisor
of ωf is Pt

28~2. Therefore, K{Pt) is a half period of J(S). Hence, by Theorem
1 we have (39) and (40).

COROLLARY. (Accola [1]). Let N=2.

If g is odd, then θ(z; Ω) vanishes to order at least

(43) γ

at the 4* half periods of J(S).

If g is even, then θ(z; Ω) vanishes to order at least

(44) -&--g

at the i8 half periods of J(S).

Proof. Since N—2t the condition (A) is always satisfied by ε= — 1.
For g=l, we have another estimate which is better than Theorem 6 when

t is large enough.
THEOREM 7. Assume that g=l, Λ/^3 and that T satisfies the condition (A).

Then θ(z\ Ω) vanishes at a half period of J(S) to order at least

(45) i + _ ^ + L ( £ _ i ) , : / g=ι ( m o d N)

and

(46) 1 +



ON THE ORDER OF A ZERO OF THE THETA FUNCTION 401

To prove this theorem we need a lemma which is a counterpart of Lemma
2. Let Hj be the same as in the proof of Lemma 2. Let n: be the dimension
of Hj. Then we have

LEMMA 3. Assume g=l. If T satisfies the condition (A), then tijφO for all
, 1 , ,ΛΓ-1.

Proof. Put

for ; = 1,

If n}ΦQ, then Πj — nij by Lewittes' method [3]. By the condition (A),
(mod N). Hence,

£

Since ί^2 and 2g—2=(N— ϊ)t, we have mjΦO for all ; = 1 , — , N—l. It is obvious
N-l

that n o = l and Σ n*=g. Hence, we obtain that ΠjΦQ for all 7 = 0 , 1 , •••, N—l.
J = 0

Proof of Theorem 7. Assume g=l (mod N). By the Riemann-Hurwitz rela-
tion we have /=0 (modΛO Let ω be a differential on S such that ωoT = ω.
Since g=l, the divisor of ω is of the form P1

N~1P2

N~1 ••• Pt

N~\ Since N is a
prime number (^3), Â —1 is even. Put

N-l N-l N-l

D = P1 2 P2 2 . . . p ί 2 #

If φ is a differential in Hv then the divisor of ψ is of the form P1

3~ιP2ι

3~1'~
PS^ΔΔi—Δw.u, where J is a divisor of degree 2{g-l){N-j)/N{N-l) and Δx

=Tι(Δ). In this case nj=2(g-l)(N-j)/N(N-l). For every φ in Hj(j=(N+ϊ)/2,
~, N—l), the divisor of ^ is a multiple of /λ Hence, we have

Therefore, we have (45).
Assume g^l (mod N). By the same reasoning there is a differential ™ on

S whose divisor is of the form P^-ψ/'1 ••• Pt

N~\ Put again

iV-l N-l N-l

= Pλ 2 P 2 ~ . . . p t 2

If 0 is a differential in //;, then the divisor of ψ is of the form P1

3~1P2

3~1~
Pt-i~1PtctjΔΔ1 ••• J(iv-i) where O^α^Λ^—2 and Δ is a divisor of degree
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Let H/ be the subspace of H, such that every divisor of a differential in
H/ is a multiple of D. Since α, ^0, the dimension of H/ is at least Πj—l if
j=(N+ΐ)/2, - , Λί-1. Hence, we have

This completes the proof of Theorem 7.

7. Examples. In this section we show several examples in order to see
that some of the estimates obtained cannot be improved. As is shown by
Farkas, in certain cases equality holds in Theorem 1. In fact, the cases N=2,
g^Ag and N=3, g=0 are such cases. There are consequences of Theorem 2,
Theorem 3 and Corollary 3 to Theorem 4.

While equality does not always hold in other cases, we shall show an ex-
ample which attains the lower bound.

EXAMPLE 1. Let S be defined by

(47) / = (x-βfl)(x-fl,./->π\x-fljy,

where aJy j=0, •••, N— 1 are complex numbers which are different from each other.
Let T be an automorphism of S defined by T(x,y)=(x, e2rΛ/Ny). If P is the point
corresponding to (x, y)=(a0, 0), then

(48) /(/*-!) = _ £ ^ L + l β

This relates to (1) for k=l, g=0.
Indeed, we can choose as a basis for the space of abelian differentials on S,

(49) y^M

where m=l, - , iV-1 if i=0, - , (N-5)/2 and ro=l, - , (ΛΓ-l)/2 if i=(ΛΓ-3)/2.
Hence, we have i(PmN-™*)=(N-l)/2. Since g=(N-ϊ)(N-2)/2, we have (48).

The next two examples have respect to Theorem 4.

EXAMPLE 2. Let S be defined by

(50) /=ΠM

w;/z0Γ£ α,, i = 0 , •••, iV—1 αr^ complex numbers which are different from each other.
Suppose T(x,y)=(x,e2πi/Ny). If P is the point corresponding to (x, y)=(a0, 0), then

(51)
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This shows that Theorem 4 gives the sharp bound for k=l.
Indeed, as a basis for differentials we can choose

(x-ao)
ndx

where n=0, •••, N-3 and ro=l, - , N-2-n. Therefore, we have χ(pw-»/*) =
(N2-l)/S. Since g=(N-ΐ)(N-2)/2, we have (51).

For kΦl, the author fails to give an example which attains the upper bound
in (15) or (16). It is, however, shown that the estimate is not improved in the
following sense.

"For each k, (N+ϊ)/4, the factor of the first term of (15), cannot be im-
proved ".

This is shown in the following example. It seems to the author that this
example gives the least upper bounds for that estimate.

EXAMPLE 3. Let S be defined by

mN-2k+l

(53) yir = (x-a0)**-1 Π (*-α,)

where m(^2) is an integer, k>0 and aj(j=0, •••, πiN— 2&+1) are complex numbers
which are different form each other. Let T be an automorphism of S such that
T(x,y)=(x, e2Ki/Ny). If P is a point which corresponds to (x, y)—{aQ> 0) then

(54) KP''1)= N2~l m+K(N, k),

where K(N, k) is a constant which depends only on N and k. Since

g=(m(N-l)/2-k)N+k,

it is easily seen that (iV+l)/4 cannot be improved if we take an m large enough.

Indeed, as a basis for differentials we choose

(55) {x-pTdx t

where n and s are integers such that

(56) ms-n-2^0,

(57) iV

and

(58)

Considering an inequality
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(59) N

we can see that the number of pairs of n and s which satisfy (56), (58) and (59)
is equal to /(P*"1). Thus we have (54).

The remaining examples have respect to Theorem 2 and Theorem 3.

EXAMPLE 4. Let S be defined by

(60) yη = x\x2-l)\x2+iY.

Suppose T(x,y)=(-x,y). If P is (x, y)=(0, 0), then π(P) is not a Weierstrass
point of S/<T> and Z(P ίr"1)=3. Since g=9 and g=3, this example relates to (7).

Indeed, choose as a basis for differentials

(61) x 2(x 2—l) 2(x 2+l)ύfx x(x2—ϊ)dx dx

x\x

x\x

f

2-\)dx
f

9

+ ΐ)dx

x\x2-
9

x\x2

mx

y*

2 +
t
\)d

' y '

•2+ί)dx

x x2dx

' f

xdx

f

Then we find that the gap sequence at P is {1, 2, 3, 4, 5, 6, 9,11,13}. Thus we
have l(Pg~1)=3. That π(P) is not a Weierstrass point is seen by the facts that
5/<T> is defined by Y7=X\X-iγ(X+l)2 and that T^X, y)==((*+l)/(3X-l),
2Y/0--3X)) is the hyperelliptic involution of S/<T>.

On the other hand if P is a point which corresponds to one of (x, y)~
(oo, oo) then the gap sequence at P is {1,2,3,4,5,6,7, odd, odd}. Therefore,
we have /(P*"1)=2.

EXAMPLE 5. Let S be defined by

(62) y7 = x%x4-l).

Suppose T(x,y) = (—x,—y). If P is (x,y) = (0,0) or one of (x, y) = (oo, oo), then
π(P) is a Weierstrass point on 5/<T> and Z(P^"1)=4. This relates to (4).

(63)

Indeed, choose as a basis for differentials

dx xdx x2dx xdx x2dx x2dx xzdx x3dx x*dx
yi f y4 f yβ > yZ > ^y5 9 y* 9 y& 9 y5

Then we find that the gap sequence at P is {1, 2, 3, 5, 6, 9,10,13,17}. Thus
we have l(P8~1)=4. That π(P) is a Weierstrass point can be seen as the pre-
ceding example.

EXAMPLE 6. Let S be defined by
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(64) y

6 = x4-4x10+3x12.

Suppose T(x, y)=(—x, y). If P is one of the points corresponding to (x, y)=(0, 0),
then π{P) is a Weierstrass point of S/(T} and l(P8-λ)=L Since g=ll and g=A,
this relates to (5).

Indeed, choose as a basis for differentials

dx xdx (x2+x*)dx (xz+x5)dx x2dx (x4+x6)dx
y ' y2 ' y3 > y4 > y2 ' y4

(x*+xΊ)dx (x6+x8)dx (x6-x2+y')dx (x7-x3+xy*)dx
y5 > y5 f y4 f y5 >

(x8-x*+x2y3)dx
f

Then we find that the gap sequence at P is {1, 2, 3, 4, 5, 7, 8,11,13,14,17}. Thus
we have l(P8~λ)=L Since the gap sequence at π(P) is {1,2,4,7}, π(P) is a
Weierstrass point.

EXAMPLE 7. Let S be defined by

(66) y* = xtf-ΐ).

Suppose TO, y)=(-x, -y). Then S/<T> is of genus 2. // P is (x, y)=(0, 0), then
π(P) is a Weierstrass point of 5/<T> and l{P8~l)=Z. This relates to (10).

Indeed, S/(T> is defined by Y5=X\X2-1) and /(P^1) is obtained by (51).

EXAMPLE 8. Let S be defined by

(67) y5 = x\x2-l)(x2+l)2.

Suppose T(x,y) = (—x,y). If P is (x, y) = (0,0), then π(P) is not a Weierstrass
point of S/(T) and l(P8-1)=2. This relates to (13).

(68)

Indeed, choose as a basis for differentials

dx xdx x2dx xBdx x2dx x*dx
y2 > y* ' y4 > y2 > y4

Then we find that the gap sequence at P is {1,2,3,4,7,9}. That π(P) is not
a Weierstrass point is induced by that S/<T> is defined by Yδ=X2(X-l)(X+l)2.

8. Remarks.

1) If S admits an automorphism T of prime order such that S/(T} is of
genus zero, then S can be defined by an equation of the form
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(69) yιr=Π(x-aι)"*t
t = l

where N is the order of T, at>0 (i=l, — , t), Σ ^ ^ O (mod N). In (69), T is

represented such as T(x, y)=(x, ey), where ε is a primitive N-th root of the
unity. For each i, let ζt be a local parameter at (au 0) and let βt be a solution
of aiβi = l (modN). Then we have

(70) T(ζt) = εί3ίζι+ —

Suppose further that T satisfies the condition (A) in Section 6. Then the above
argument tells us that S is represented as

t-i

for a suitable integer k.

Thus, by Example 2 and Example 3, we obtain better estimates than (39)
and (40) for g=0.

2) When does an ^-valued function on 5/<7Ί> lift to a single valued func-
tion on 5? In general, it seems a difficult question. Unfortunately, the author
cannot prove Theorem 6 without the condition (A). If g=0, Theorem 6 is not
true if the condition (A) fails. ys=(x3—l)(x3+l)2 is a counterexample, which is
shown by Farkas [2]. For g>0, the author does not know whether Theorem
6 is true or not if the condition (A) fails. The author has no idea to resolve
some ambiguity in lifting of an N-valued function on 5/<T>, if the condition
(A) is not assumed.

3) In Theorem 7, if t^N, it is clear that the estimates (45) and (46) are
better than (39) and (40) in Theorem 6. If N=3 and k=0, then (45) is (g-l)/3
+ 1 which is better than (39). If N=3 and k=0, then (46) is g/3 which is better
than (40).

4) For g=l, N=2 and g*=5 or g^7, Theorem 6 (or Corollary) is best pos-
sible. Indeed, Martens [5] showed that if £=5 or gΞ>7 and if there is a zero
of θ{z\ Ω) of order greater than (g—1)/2, then 5 is hyperelliptic. But, if £>3,
a surface cannot be both hyperelliptic and elliptic-hyperelliptic (Farkas [2]).
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