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DIFFERENTIAL REPRESENTATIONS OF

VECTOR FIELDS

BY KOJI SHIGA AND TORU TSUJISHITA

In the present paper we are concerned with Lie algebra representations of
<J[(M), where <Jl(M) denotes the Lie algebra of vector fields on a smooth mani-
fold M. It is well-known that the Lie derivatives acting on various tensor
spaces give rise to representations of Jl(M). Another type of representations
of cJί(M) arises from the considerations of the adjoint representation of Jl(M)
on the space of differential operators with a finite order. These examples lead
us to introduce a notion of differential representations of Jl(M}. Specifically,
φ is called a differential representation of Jί(M} on Γ(E\ E being a certain
real vector bundle, if φ is a Lie algebra representation of Jί(M} to Horn (Γ(E\
Γ(E}} with supp^(X)(τCsuρpZp\suppσ. We do not know whether all the
differential representations of Jl(M} arouse geometric interest or not. However,
the differential representations mentioned above have some geometric nature,
which is characterized as connection-type. Here we use the terminology "con-
nection" in a wide sense.

The main result of the present paper can be stated as follows. If on Γ(E)
there exists a differential representation of connection type of <Jί(M\ then we
have

Pont(£)cPONT(M).

Here Pont(E) denotes the subalgebra of H*(M;R) which is generated by tne
Pontrjagin classes j^(z^l) of E, while PONT (M) denotes the ideal of #*(M; R)
which is generated by the Pontrjagin classes of M. This result, of course, in-
volves that there is a topological obstruction to the existence of differential
representation of connection type on Γ(E\ To find this obstruction, we extend
the Chern-Weil theory on characteristic classes so as to be adaptable not only
for the de Rham cohomology ring but also for more general cohomology rings.
Then the theory especially applies to the Losik cohomology ring which yields
a desired topological obstruction. Some analogous results will be also obtained
for the Lie algebra consisting of the vector fields of type (1, 0) on a complex
manifold.

The authors would like to thank K. Masuda and T. Sunada for helpful
suggestions.
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1. Generalities on differenital representations

Throughout the present paper M is assumed to be a smooth manifold with
a countable basis. For any smooth real vector bundle E over M we denote by
Γ(E) the space of the smooth cross-sections of E. Let τ denote the tangent
bundle of M. Γ(τ) is clearly identified with the space of the vector fields over
M, so that Γ(τ) has a natural Lie algebra structure over R. This Lie algebra
is denoted by Jl(λf).

DEFINITION. A Lie algebra representation φ of Jί(M) to Horn (Γ(£), Γ(E})
is called a differential representation of Jί(M) on Γ(E) if it satisfies

supp φ(X)σdsupp

where X^Jl(M) and σ^Γ(E).
In this section we shall briefly summarize some basic facts about the dif-

ferential representations of <Jί(M). Let φ be a differential representation of
JL(M) on Γ(E). Then we can obtain a bilinear map from cJ(M)xΓ(£) to
when we assign φ(X)σ to (X, σ) (X^JL(M), σ

PROPOSITION 1.1. φ gives α bilinear differential map from <Jl(λf)xΓ(E) to
Γ(E} in the following sense :

Let U be a dosed disk with local coordinates (x1, ••-, xn} and let {elt •••, es} be
a local frame of E on U. Then φ is expressed on U in the form

\xMσ"(x)eJ= Σ hmAJ*(x)D«X\χ )DAσ' >(X}eμ ,
μ=l a,l,A,μ,v

where halAv

μ(x) denote smooth functions on U and the indices a and A range over
a finite set of multi-indices', Da and DA denote the partial differentiations as-
sociated to the multi-indices a and A respectively.

This is really obtained as a consequence of a more general statement as
follows.

PROPOSITION 1.2. Let Et (ι=l, 2, 3) be vector bundles over M. Let Φ be a
bilinear map of Γ(E1)χΓ(E2) to Γ(£3) with

SUpp Φ(ξlt ξ 2)CSUpp ξ !

Then Φ is a bilinear differential map from Γ(E1) X Γ(E2) to Γ(E3).

Proposition 1.2 can be regarded as a generalization of the well-known Peetre's
Theorem and the proof is also obtained by a slight modification of the proof
of that theorem found in [4; Chap. 3].

Some examples of differential representations of Jί(M) have been described
in the introduction. Actually, there exists a considerably general procedure of
constructing differential representations of Jί(M) which yields those examples
as special cases (cf . [5 I]). It is a remarkable fact that all such representions
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satisfy an important condition, which is stated in the following definition.
DEFINITION. A differential representation φ of Jί(M) on Γ(E) is said to

have connection-type if

(1.3) φ(XXfσ)=X(f)σ+fφ(X)σ

holds, where X^Jί(M\ /eC°°(M) and σ
We note that there exist non-trivial differential representations of <Jί(M)

which have not connection-type. The examples below give such representations.
EXAMPLE 1. Let Tn be the n-dimensional torus. Take the "parameters"

(xlt •••, *J on Tn induced from the coordinates of Rn. Let E=TnxRs with s^
2. Take any Hi^gl(s R) (ι=l, 2, — , n) such that

H,H,=H,HV ( ι , j = l,2, , n )

and each Hτ is nilpotent. To each multi-index a=(alt •••«„) we assign the
matrix

and write Ha=(hav

μ} (μ,v=l,2,—,s). Note that #"=0 if |α| is sufficiently
large. We can then define a differential representation φ of ^Λ(Tn) on Γ(E} by
setting

μeμ)= Σ hm

μD"X* diσ
veμ.

a,τ,μ,v

EXAMPLE 2. For each multi-index a we take a matrix Ka,^gl(s;R) with
the form

•/ oλ ,o £α\1, K=( } if |α |>0.
0 O/ ^0 0 /

Here / denotes the identity matrix with rank s' (0<s'<s) and Ka denotes^any
(s', s—sO-matrix. Then we can define a differential representation φ of^^Λ(Tn)
on Γ(E), E being the same as in Example 1, by setting

where Ka=(kav

μ), (i) denotes the multi-index (0, •••, 0, 1, 0, •••, 0) and the index
a occurring in the summation ranges over any finite set of multi-indices.

As to the line bundles, however, a straightforward calculation shows

PROPOSITION 1.3. Let E be a line bundle over a connected manifold M. Then
any non-trivial differential representation of <Jl(M) on Γ(E) is of connection-type.

2. Characteristic classes with values in certain cohomology rings

Let V be a real vector bundle or an inductive vector bundle over M. (As
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to the inductive vector bundle, see [5;!].) Assume that we have a cochain
complex

dγ dγ dγ dγ

cv : 0 — >Γ(Λ°V) — >Γ(Λ1V) — > ---- >Γ(ΛPV) — > -

with the multiplicative property

(2.1) dv(

where ω^Γ(ΛpV). We note that Γ(Λ0V)=C°°(M). The cohomology group of
cv is denoted by

which, in view of (2.1), is endowed with a ring structure.
In this section we shall define a characteristic ring of any real vector bundle

as a subalgebra of /f*(<^). First we make a few comments on the cochain
complex &/.

(2.2) supp dF(ω)csuρp ω .

In fact, if we apply (2.1) to f,g^Γ(Λ°V}, we have immediately supp d v ( f )
Csupp/. This, combined with (2.1), yields f(dvώ)=Q for /eΓ(Λ°V) and ωe
Γ(ΛPV) whenever supp fr\ supp ω—φ holds. Hence (2.2) follows.

Let
d d d d

^ : 0 — > Γ(Λ°τ*) — > Γ(Λlτ*) — > ---- > Γ(Λpτ*} — > -

be the de Rham complex of M. Then

PROPOSITION 2.3. There is a homomorphism λ\τ*^V, which induces
homomorphism of 31 to C9. That is, we have a commutative diagram

p-l 5 p

I X*dy

where λ*p denotes the map induced from the bundle map Λpλ: Λpτ*—*ΛpV.

Proof. In view of (2.1) and (2.2), it is not difficult to see that dv\Γ(Λ°V)
is a first order differential operator without constant terms. Let

denote the symbol of this differential operator. Then for any ηx<

induces a linear map from R to Vx. Define the homomorphism λ from τ* to
V by setting
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Then we have

(2.4) λ^(df)=dvf, for /eC°°(M).

Take any ωtΞΓ(Λlτ*} and express locally ω as ΣωMdx1. Then by (2.1) and
(2.4) the following calculation is valid locally :

= Σ

=ΣV(dω

= λ**(dώ) .

But this together with (2.2) yields dvλ^=λ^d throughout M. From (2.1) it
then follows immediately that dvλ*p~1=λ*pd holds for p=Q, 1, 2, •••. This com-
pletes the proof.

The resulting homomorphism of 31 to cy is also denoted by λ.
We shall mention a method of obtaining the multiplicative cochain com-

plexes [5; I]. Let F be a real vector bundle over M. Γ(F) is called a Lie
algebra over M if .Γ(F) admits a Lie algebra structure whose bracket rule
satisfies supp [f , ^]csupp ξ πsupp η (ξ, η^Γ(F}\ Suppose that Γ(F) has a Lie
algebra representation φ on C°°(M) such that

where ξ^Γ(F) and /, £eC°°(M). Let {C*(Γ(F)), d} be the cochain complex
which gives the Lie algebra cohomology of /^(F) associated with the representa-
tion φ. Consider the subcomplex of {C*(jΓ(F)), d} whose ^-cochain space con-
sists of those alternating ^-linear maps L from Γ(F) to C°°(M) which satisfy

supp L(ξlt •••, fp)csupp ξ jΓ\ - - π supp f p

Then it turns out that this subcomplex is canonically isomorphic
to a multiplicative cochain complex

e : 0 — > Γ(Λ\]F}*} -

where we put (/F)*=lim(/*F)*; (/*F)* is the dual bundle of the ^-jet bundle

of F. Besides, a subcomplex of € often provides us with a useful example of
the multiplcative cochain complex. As an example of such Γ(F), we can take
JL(M} or a subalgebra of Jί(M} which gives a foliation of M, or a Lie algebra

over M which has a Lie algebra homomorphism onto Jί(M).
Assume that a multiplicative cochain complex c[?={Γ(Λ*V\ d} be given.

DEFINITION. Let E be a real vector bundle. An jR-linear map

D:
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is called^a ^-connection on E if it satisfies

D(fσ)=dvf®σ+fDj

where /eC°°(M) and σe=Γ(E).
We note that the definition of the usual connection is included as a special

case when we take 3ί as cy. It is easy to see that there are many ^-connec-
tions on E. Suppose that a ^-connections D on E be given. Then, as usual,
we can define the connection matrix θ—(θv

μ) for a local frame elt •••, es on an
open set U: Dev=Σ ΘJ*®eμ (μ, v=l, •••, s) where θf^Γ(Λl V\U). Put

Then the matrix (fl/) gives rise to a global section of Γ(Λ2F®Hom (E, E}),
which we denote by Ω. Ω may be called the ^-curvature of D. Let Ip denote
the space of adjoint invariant homogeneous polynomial functions of degree p
on flϊ(s; JR). If PeP, then P(Ω) gives an element of Γ(Λ2pV}. It is an essential
point for our arguments that the Chern-Weil theory on charactiristic classes
remains true in our situation. Actually we have the following proposition.

PROPOSITION 2.5. i) P(Ω) is a cocycle.
ii) The cohomology class lP(Ω)^^H2p(^~) defined by P(Ω) is independent of

the choice of Q? -connections.

To prove this, we have only to verify that the method used in developing
the Chern-Weil theory in [2] also applies to this case. But the verification is
immediate, since the formal calculus of differential forms used there remains
valid owing to (2.1). Hence the assertion follows.

We say that [P(£?)] is the cy-characteristic class of E associated to P. We
remark that the ^-characteristic class of E coincides with the (real) Pontrjagin
class of E. Set I—^ΣIP. Then / forms an algebra over R. The image of /

p^O

through the map P-»[P(β)] forms a subalgebra of H*(W), which is called the
^-characteristic ring of E and denoted by Pont (E] cμ)m We put Pont(E)—
Pont (E; 51).

It should be noted that these characteristic classes possess a functorial
property with respect to the "coefficient region" cl^. To state this more pre-
cisely, let <=v={Γ(Λ*V), dv} and <W={Γ(Λ*W), dw] be two multiplicative cochain
complexes. Suppose that there exists a homomorphism

K: V — > W

such that Apκ : ΛPV->ΛPW (ρ=Q, 1, 2, -••) induce a homomorphism of q^ to W.
Then we have the homomorphism

On the other hand, for any ^-connection D on E, the composition of maps
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D Λ{g)l
Γ(E) —+ Γ(V®E} —+ Γ(W®E}

induces a ^-connection on E, which is denoted by κ*(D}. Let Ω denote the CV-
curvature of D and κ*(Ω) the <W-curvature of κ*(D). Then we have

Apply (2.6) to the map λ stated in Proposition 2.3. Then we have estab-
lished the following proposition.

PROPOSITION 2.7. Pont (E q^)=λie Pont (E}.

Even in the case where the basic field is the complex number field, the dis-
cussions proceed in parallel with the above. It is, however, relevant to the
customary usage that in this case we adopt the notation Chern (E <3/) instead
of Pont (£; cy). For example, Proposition is replaced by

(2.8) Chern (E cv)=^ Chern (E)

in the complex case.

3. Topological obstructions

We first recall the basic properties of the Losik complex [3], [5]. The
Losik complex J7 is defined to be a multiplicative cochain complex which is Λ

obtained from the Lie algebra Jί(M) and its canonical representation of Jί(M}
on C°°(M), according to the procedure explained in Section 2. Thus we have

d d d d
J7:0 —

The complex J7 canonically includes the de Rham complex Sί as a subcomplex.
The inclusion map &-*£ coincides with the map λ which we have introduced
in Proposition 2.3. The structure of the cohomology ring //*(J7) is completely
determined by M.V. Losik [3] : There is a ring isomorphism

where B(τc] denotes the ί/(n)-bundle over M associated to r®C (n=dimM).
Moreover we have

(3.1) Ker Λ*=PONT (M), where PONT (M) denotes the ideal of H*(M\R)

generated by the Pontrjagin classes pt of M (ι=l, 2, — , [n/4]).
Let E be a real vector bundle over M. Assume that on Γ(E) we have a

differential representation φ of connection type of Jί(M). Then ψ defines an
J7-connection Dψ as follows :
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where ;°° means the jet extension map Γ(τ}-+Γ(Jτ}. Let Ωψ denote the -£'-
curvature of Dφ. Then a direct calculation yields

Ωφ(X9 Y) / ,

whence we have Ωφ—0. In view of Proposition 2.5, this implies

Pont(£;-O=0.

By Proposition 2.7, this can be rewritten as

Hence, referring to (3.1), we have obtained the following theorem.

THEOREM 3.2. // on Γ(E) there is a differential representation of connection-
type of Jl(M), thzn we have

Pont (£)CPONT (M) .

Let M be the underlying topological manifold of M. According to the
topological invariance of rational Pontrjagin classes, PONT (M) is independent
of the differential structures introduced on M. Hence if a vector bundle E
satisfies the condition

Pont (E)ct PONT (M)

then there is no differential representation of connection type of vector fields
on Γ(E), even when we change a differential structure of M. For example, a
Bott generator E on S4n which gives a generator of K(S*n) satisfies this condi-
tion; here, of course, E is regarded as a real bundle.

If we consider the category of the complex vector bundles, in view of (2.8)
the corresponding theorem holds in the following form :

THEOREM 3.3. Let E be a complex vector bundle over M. If on Γ(E} there
is a differential C-linear representation of connection type of <Jlc(M), then we have

Chern (JB)cPONTc (M) ,

where we put Jlc(M)=Jl(M)®C, being identified with Γ(τ®C), and PONTC (M)
denotes the ideal of /f*(M; C) generated by the complex Pontrjagin classes of M.

As to the complex line bundles, we can obtain a more exact result.

THEOREM 3.4. Let E be a complex line bundle over a connected manifold
M. Then in order that we have a non-trivial differential C-linear representation
of Jlc(M) on Γ(E) it is necessary and sufficient that the first complex Chern class
of E vanishes : d(E)=Q.

Proof. Necessity : We first note that Proposition 1.2 holds true for the C-
linear representations of Jlc(M\ Hence if we have a non-trivial differential C.
linear representation φ of Jlc(M} on Γ(E), then φ is necessarily of connection-
type. From Theorem 3.3 it follows that c1(E)=Q.
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Sufficiency: It is known that if cλ(E)=Ot then we can choose as the transi-
tion functions of E locally constant functions on M. (If we identify E with an
element of H1(M, D*), the condition c^)— 0 implies that E is contained in the
image of H\M, C*) through the inclusion map c : C*->£*. Here D* and C*
denote the sheaf of germs of non-zero smooth functions on M and of non-zero
complex numbers, respectively.) Hence the natural representation of <JLC(M} on
C°°(M)<S)C extends to a representation of Jlc(M} on Γ(E), which is clearly non-
trivial. This completes the proof.

Now we wish to obtain analogous theorems for a complex manifold. Let
M be a complex manifold with dimc M— n. Let r0C— TφΓ be the canonical
splitting of r(g)C to the holomorphic and the anti-holomorphic tangent bundles.
Putting c_^9(M)— /\T), we consider it as a Lie subalgebra of Jίc(M). Let E be
a holomorphic vector bundle over M. A differential representation φ of Jld(M)
on Γ(E) is called holomorphic if it satisfies the following two conditions :

(3.5) If X^Jίd(M) and σ^Γ(E) are holomorphic on an open set U of M,
then φ(X}σ is holomorphic on U.

(3.6) If £eC°°(M) is anti-holomorphic on an open set U of M, then φ(gX)—
gφ(X} on U.

A differential representation φ of JL$(M) on Γ(E) is said to have connection-
type if the condition stated in (1.3) holds for X^Jίd(M\ Let CHERN (M) denote
the ideal of //*(M; C) generated by the Chern classes c% of M (ι=l, 2, •••, n).

THEOREM 3.7. // on Γ(E) there is a holomorphic representation of connec-
tion-type of <AQ(M\ then we have

Chern (E)cCHERN (M)

Before entering into the proof, we need information on the cohomology
ring of a certain cochain complex. Let /<?(T) denote the projective vector
bundle Jd(T)=limJd

k(T), where Jd

k(T) is the fc-jet bundle of Γ(T) along the

partial derivatives with respect to d/dz1, •••, d/dzn. Consider the Lie algebra
cohomology of c^9(M) associated with the canonical representation through the
9-differentiation on Γ(ΛqT), where q is a fixed integer. The corresponding
cochain complex contains a subcomplex

(cf. [6]). On the other hand, each Λp(JdT)* is the inductive limit of holomor-
phic vector bundles, whence we can obtain the complex

3
---- > Γ(Λp(JdT)*(g>ΛqT) — > Γ(Λp(JdT)*(g>Λq+1T) — > -

by the use of the 5-oρerators. Thus we have the double complex
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-Γβ={ φ Γ(Λ"(/ar)*<g)Λ«f ), d} (r=0, 1, 2, •••) .
p+q = r

Note that d is given by d=d-\-(—iγd on Γ(Λp(JdT}*®ΛqT). In fact, we have
a ring isomorphism

where B(T) denotes the principal ί/(n)-bundle over M associated with T. Besides,
letting λ \3lc-*-Cd be the canonical inclusion map, we have

(3.8) KerΛ*=CHERN(M),

where 3lc denotes the "complexification" of the de Rham complex.

Proof of Theorem 3.7. Suppose that on Γ(E} we have a holomorphic re-
presentation φ of connection-type of c_>?g(M). Then we define an JΓg-connection
Dφ on E by

Dφ(σ)(jd-Xί)=φ(X1)σ , for ̂

Dφ(σXXJ=Xtσ , for *8

where σ^Γ(E) and ja°° denotes the jet extension map of Γ(T) to Γ(JiΓ). We
note that this is well-defined. In fact, since φ is holomorphic, if jd°°^ι—Jdc°^2
at a point p0, we have φ(X^)σ=φ(X2)σ at £0. Since 9? is holomorphic and has
connection- type, we have 50^=0 for the connection matrix θ~(θaβ} of Dφ with
respect to a holomorphic local frame of E. It is then easy to verify that the
-Γg-curvature of Dφ vanishes. Hence the assertion follows from (2.8) and (3.8).

It is well-known that on a complex torus there are many holomorphic vector
bundles whose Chern classes do not vanish. Theorem 3.3 means that on these
vector bundles there exists no holomorphic representation of connection-type.

Finally, we shall formulate another theorem on a complex manifold which
is closely related to the Dolbeault cohomology. The natural representation of
cJ9(M) on C°°(M) induces a multiplicative cochain complex

3
S) : ---- > Γ(4*(/aT)*) -^ Γ(Λ*+1(/aT)*) — > -

in a canonical way (cf. [6]). The structure of the cohomology ring H*(3)} is
completely determined in [β], which states that we have a ring isomorphism

where δ denotes the sheaf of germs of anti-holomorphic functions on M. The
composition of maps

corresponds to the map λ stated in Proposition 2.3, where π is the projection

and ] the canonical injection. The inclusion map c : C-^b induces the homomor-
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phism

<* : H*(M; C) — > H*(M', δ) .

Then we have

([6]). Let E be a smooth complex vector bundle over M. A differential re-
presentation φ of Jld(M} on Γ(E) is called a partially holomorphic representa-
tion if it satisfies the condition (3.6). Then from the above results we can
deduce the following theorem.

THEOREM 3.9. // on Γ(E] there is a partially holomorphic representation of
connection type of <Jίd(M), then we have

f*(Chern(£))=0.

Note that if E is a holomorphic vector bundle, then it is well-known that
there is a connection of type (1, 0) on E whose curvature consists of (1, 1)-
forms. From this it follows that there is a partially holomorphic representation
of connection type of cJ9(M) on any holomorphic vector bundle.

Finally, we add a remark on foliations. Let M be a smooth manifold.
Assume that we have a splitting of the tangent bundle τ—F^F^ such that
both Γ(F) and Γ(Fl) give foliations of M. This is in some aspect analogous
to the situation that we meet in the complex analytic case where we have the
splitting τ(g)C^T0Γ. In fact, it turns out that a theorem corresponding to
Theorem 3.7 holds for such foliations. Of course, "holomorphic" will be here
replaced by the notion of the vanishing of the partial derivatives in the normal
direction to F. Once this convention is granted, the arguments proceed in
parallel, and a similar theorem will be established. However, we do not further
enter into details.

Added in proof: The statement (3.1) which is asserted in [3] should be
replaced by the following one, which is proved essentially in [7] :

(3.1)' KerΛ*=PONT(M),

where PONT (M) denotes the ideal of H*(M, R) of the classes which are subor-
dinate to the classes (plf •••, ίcn/4]) in the sense of [8]. Here pt is the z-th
Pontrjagin class of M.

Also the ideal CHERN (M) must be defined as the one consisting of the
classes subordinate to (clt •••, cn\ where c% is the z-th Chern class of M.

Accordingly all the symbols PONT (M), CHERN (M) in the paper must be
understood in the above sense.

[8] R. Thorn, Operations en cohomologie reelle, Seminaire H. Cartan, E.N.S.,
1954/55.
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