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§1. Preliminaries and Notations.

1. Let {K;}?-, and {H,, H,};2,~ be an infinite number of circles external to
one another in the extended complex plane (N?:{z; |z| S0}, where {H,, Hi}L
tend to only a finite point Q for ¢—co. Let B be a domain bounded by these
circles. Without loss of generality we may assume that these circles are con-
tained in some closed disc Dy={z; |z|=p,}.

Let {T,}?-, be the elliptic transformations with period 2 corresponding to
{K;}?_,, each of which transforms the outside of K, onto the inside of itself.
Let {T.};2p+1 be the system of hyperbolic or loxodromic transformations, each 7T,
of which transforms the outside of H; onto the inside of H,. Then the system
S={T,, T;'}=, (T;=T;, 1=1<)p) generates an infinitely generated discontinuous
group denoted by G and we call @ the generator system of G, where T;! denotes
the inverse of T..

The purpose of this paper is to investigate the singular set E of G. Take
a positive integer ¢ (>p) and consider a subset Sy={T;}2_\J{T,, T;"}%py (N=
2g—p) of @. Then ®y generates a finitely generated subgroup Gy of G. If we
denote by By a domain bounded by {K;}2,\J{H,, H{}L . (N=2g—p), it is well
known that By coincides with a fundamental domain of Gy. We gave some
results with respect to the singular set £y of Gy by using the relations between
Ey and the computing functions on Gy ([1]). We shall get G from Gy for N—co.
It is natural to try whether we can extend the results for Gy to ones for G.
Unfortunately, we can not extend those in the same way, for the behavior of
the accumulation of the circles to Q gives the complicated difficulty. Therefore
we must impose some restrictions with respect to the accumulation of circles and
henceforth we shall consider only such groups.

2. Denote by r(H) the radius of a circle He{H,, H;},1 and assume that
there exists some positive constant K independent of H such that it holds

(H)

=K,
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where I(H)=inf|z—{| and the infimum is taken for all points z€ H and for all
points  on any circle from {H,, Hi};Z,.i—{H}.

Defining the product ST in G by ST(2)=S(7T(z)), we can write any element
U of G in the form

U=T1,n Tz,zTu (szE@ (l§]§n); T{fl-q-lr'&TZj) .

We call the positive integer n the grade of U and for simplicity we use the
notation S¢,, to clarify the grade of U.

Since we can let the generator T; (€®) correspond to the boundary circle
H,, we shall denote by Cr; and Cr;1 the circles H, and H;, and further by Dr,
and DT;1 the closed discs bounded by Cr, and CT;l, respectively. Then it is
obvious that Cr,=T(Cr;).

Consider the image Si,,(By) by any element S¢;,,=T,, -** T, Ty (€Gy). It is
easily seen that S¢,,(By) is bounded by an outer boundary circle S<,,)(CT1—11) and
(N—1) inner boundary circles Sc,y(Cr;) (T;#75}, T;€8y). We shall call such
inner boundary circles the circles of grade n. It is obvious that the number of
all circles of grade n for Gy is equal to N(IN—1)". Circles {K;}?; and {H,, H{}%&p4,
which bounds By, are of grade 0. The circles of grade n with respect to G can
be defined in the same way.

Now let us impose a restriction with respect to the accumulation of circles
for G. Consider the circle Cyr;: |z—a(T,)|=rr, of radius rr, with center a(T,)
for any T, (€@®). Take some boundary circle Cr, (T;#T,) of B and denote the
distance from a(T,) to Cr, by p,(T,), that is,

1.1) 0;(T)= inf |z—a(T,)|.
zECT]
It is obvious that p,(T,)>r(T,) and from the property (A)
r(T,) K
2 Ty =TT

We assume that there exists a positive constant K;(«) depending only on
some positive number a (0<a<2) satisfying

®) W(T,, )= 3 (SH0) S Kitao,

where >’ denotes the sum with respect to all 7, (#7,). Then we can deter-

T;c@®

mine the unique number «, (=0) such that
(1.3) a,=inf {a; K,(a)<+oo} .

We note that «, is always equal to 0 for Gy.

From now we shall call such discontinuous group with these properties (A)
and (B) the Kleinian group with properties (A) and (B) and denote it by G(K, «,),
which has the generator system (K, «,). For brevity we also denote it by
G*(a,) with &*(«,). We can easily give the examples of such groups G*(a,), for
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example, by fuchsian groups with an infinite number of generators.

3. Consider two arbitrary transformations 7 and S of G. We assume that
S#T-'. Denote by Is, I and Isr the isometric circles of S, T and ST, respec-
tively. Let Rs, Ry and Rsr be radii of Is, Iy and Isr, respectively. As to these
values, the relation

Rs-R
(L4 Rst= 1) —510)]
holds.

Let Se=T., " TyyToy (T,;€By) be any element of Gy and assume that
T1#T for a fixed element T (€®y) and take any point z€Dy. If we put

Sae)=-ZEL (ad—be=1),

we obtain easily

dS(n)(‘Z) _,u__< RS(n) >"l
iz |\ Te=sdter)  O<e<d,
where S, denotes the inverse (Se,,) '=T;!--T.;! of S, Here we note that
ZEDT and Sal)(OO)EDT;I iDT.
Forming the sum of (N—1)" terms with respect to all Su, (€Gy) such that
w#T and T,,#T;},, 1=j=n—1), we had the function

j+1
R Yz

1.5 XD (2)= <~—4—~§(") >,

(15) W@= 3 TS

and called X#;™(z) the p-dimensional computing function of order » on 7 and
there exist N computing functions X#;™(2) corresponding to the choice of T
from Gy ([1]). The domain of definition of X¥;™(2) is Dy.

Since each term in the sum X%;7(z) is positive, X#;7(z) has necessarily the
unique limit containing the infinity for any z€D;, if N tends to the infinity.
Thus we can define the function

. . . Rse Lo _@M__ >/!
(1.6) Alvlg.}o H0(2)=1lim X <IZ—S<—7,1>(OO)|> Hs(,§:e0<|2—s(_nl)(00)! ,

N—oo S(m)€GN

and we shall call it the p-dimensional limiting computing function of order n on
T and denote it by X#.7(z). Using the relation (1.4), we obtain

o Rs #
XL:D(S, (c0))= M)
n,N ( (m)( )> S(n)E&GN RS(m) ’

1.7)
AP (Sefoo)=_ 3 (Fgaem ),

(n)EG= Scm)
where S¢yScny=Swm+m>-
Now let us give the following definition.
DEFINITION. Let {X{#:P(2)} (n=1, 2, ---) be the sequence of the p-dimensional
limiting computing functions on 7®. If it holds
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(1.8) lim XD (2)=0 (or co0)

n—oo

for some element 7 of & and some point ze Dy, we call G the p-convergent (or
divergent) type. If it holds

(1.9 0< lHm X#iP(2)<lim X#iP(2) < co

n—oo n—oo

for some T (@) and some point z€Dr, we call G the p-finite type. We have
already given these concepts for X% (z) in the former paper ([1]).

4. In the former paper [1] we obtained the following important proposition
with respect to Ey.

PROPOSITION 1. The following three propositions are equivalent to one another:
(1) The sequence {X¥i™™(2)} (n=1,2, --+) on some fixed T* (€@y) diverges (or
converges to zero) at some singular pownt z,& ENDrps, that s,

(1.10) lim 1T (zg)=00 (or 0) for some zy& ENDyrs.

(2) It holds for any T (€®y)
(1.11) lim X3P (z)=c0 (or 0)

n—oo

uniformly on Dr.
(3) i /J/Z(EN):OO (07 O)-
Now we consider a linear transformation

_az+fB e
S(z)= Py o ad—Pr=1

and a circle C: |z—z,|=7. Then we have the following proposition ([5]).

PROPOSITION 2. If S'(oc0)=—0/y lies outside C, the radius v’ of the umage
C’' of C by S 1s equal to

1 /
112 T T

where p denotes the distance |S™'(c0)—z,].

Proof. Put f=arg {(z—z,)/(S™*(e0)—2z,)} (z€C). Then we have

1 (].4d5(= _ 1 |dz|
r'=—or) | dz ldz|=—_ STrekoTe
_ 1 jz"‘ rdf 1 "
Ty ) pP=2ercosO+rT T I[P (0'—rY)

q.e.d.

Now let us seek for the relation between radii of circles of grade n and the
radius of the isometric circle.
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Let Sqy=T,, = T,Ty, (T.;€8*(,)) be any element of G*(a,). An infinite
number of circles of grade n corresponding to S¢, are the circles Sm(CTj)
(T;#T, ) bounded by the circle S<,,)(CT 1) Since the pole of S, that is, Sz5(c0)

=T} T73(o0) is contained in Cr;1, it holds for any T, (#T7})
(1.13) |Say(e0)—a(T )| >o(T)),

where a(T,) and p(T,) are defined in No. 2. Hence we see from Proposition 2
that the radius of the circle S¢,,(Cr,) of grade n is smaller than

nT))

(1.14) W * RQS(VD .
Since 7(T,)/o(T)<K/(K+1) by (1.2), we have
T T,
(1.15) W%W S<n)_(K+1) r((T >)2 R;zs(n).

Take a positive number g (0<p<4) such that a,<p/2 and denote by

P2 rs(n,(T) the sum of radii of circles Sc,(Cr;) of grade n for all T, (+7Ty)
;&
by any element S.,=G*(a,), we obtain easily from the property (B) and (1.15)

the following proposition.

PROPOSITION 3. It holds for any element Sq, (€G*(ay))

(1.16) 2 (rsea(T )5 <K(GHao), f)(Rsew)”

T j£6*(ag)
where K(G*(a,), p) is a constant depending only on G*(a,) and p.

§2. Local property of the limiting computing function.

5. The main purpose of this paper is to extend Proposition 1 for a Kleinian
group G*(a,) with properties (A) and (B). For this purpose we shall give the
following Lemma which is also the extension of Lemma 1 in [1].

LEMMA 1. Let G*(a,) be a Kleinian group with properties (A) and (B).

(i) There exist positive constants K,(G*(a,), ) and Ky(G*(a,), p) depending
only on G*(a,) and p (>2a,) such that it holds
2.1 K (G*(ay), m)Xt(2) S Xta(2) < Ko(GH(ao), )X (20)

for any element Te®*(a,) and any points z and z,= Dy, (ii) There exists a posi-
tive constant Ky(G*(a,), T*, p) depending only on G*(a,), T* and p (>2a,) such
that it holds for any elements T and T* (€& a,); T*+T') and any points z
(eDy) and z* (€ Dys)

(2.2) XD = K(GHay), T*, s (z%) .

Remark. In the finite case, Ky(G*(«,), T*, 1) can be replaced by a constant
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Ky(Gy, ). In this case we could show in [1] that the p-divergence (or con-
vergence) type of Gy is the uniform property in Dr and Dr: with respect to the
sequence {X#i™(2)} and {X#;™(z%)} (n=1, 2, ---) for different elements T and T*
(e@y), that is, for example, we can take a common order N, for any positive
number M such that

X#(2)>M and X (z¥)>M for n>N,.

But in our case, we can no more take such common order N, for the g-con-
vergence type and this means that N, depends not only on G*(a,) and p but
also each element of &*(«,).

Proof of (1). Say=T,, - T, (T,}#T) be any element of grade n in G*(a,)
and take any two points z and z,=D;. Denote the closed disc Dy of radius 77
with center @ by Dr: |z—a|=r;. Let us denote by [ the distance between Dy
and Dr;1. Since Sgi(c0) is contained in Dr-i, we get easily the following esti-
mation :
¥

< R / R >#:l 2,—S (o)
[z2—S(e0)] 7/ [2o—S&h(e0)] | z—S@h(0)
_< |zo—a |+ |a—S5h(0)] >“<< 2rp+142rr7! >"
T\ [Se(eo)—al—la—z] /] =\ reti-rr :

(2.3)

Hence from the property (A) we have

< 2rr+142rr;;! >
l

2.4) UK+ =K,(GHay), ).

Thus we obtain from (2.3) and (2.4)

RS s Rs #
2.5 (————_‘ﬂ——> <K, (G* <~—_@*——> .
@5 F=Sae) ) EXLCH@), i\ Tz =i
Forming the sum with respect to all S¢,y=T,, - T., (T';;'#T), we have an in-
equality of the right hand side in (i). Since (2.5) is symmetric with respect to
any pair of points z and z, contained in Dy, we have
K ((G¥ay), mX#iT(2,) S X#E7(2) = Ky(GH(a), )X (2,) -

Proof of (ii). Take any element Sgi1y=SumT*=T,, -+ T,,T* of grade n+1

such that T*+T"! and T,,#7** (T, T,,, T*=®&*(a,)). Since

Ids(n+1)<z) %:(l dSwy(z*) x’ dT*(2)
dz dz* dz

)T, =T,

we have from the definition of the computing function (1.5)

< RS(n+1) >ﬂ
Sttt ap\ |2— San(c0)]

(2.6)

P S
Snryse e\ | TH(2)—Sw(0)] |z—T*"*(o0)| / *



SINGULAR SETS OF SOME KLEINIAN GROURS 491

Since all circles {K;}2, and {H,, Hi}i,« are contained in a closed disc D,=
{z; [z| =p,}, it holds |z—T* }(c0)|<2p,. Hence we have

R # Ry \# R s
2.7 < Sn+1) ) 2( T ) < Sy > .
@D S(n+1)§G"(ao) | z—Sa1(o0)] =\ 2p, S(n)GEG*(ao) [T*(2)—San(e0) ]

Thus from (2.7) we have for any elements T and T* (€®*(a,); T#T*Y)
HER(DZKA(CH@0), T*, pIg™ (@)

g.e.d.
6. By using Lemma 1 we have the following theorem.

THEOREM 1. Let G*a,) be a Klewman group with properties (A) and (B). If
G*(ay) is the p-divergent (or convergent) type, then 1t holds
lim X" (2)=o00 (or 0)

n—oo

for any T* (€®*(a,)) and any point z& Drs.

Proof. From the assumption we have
2.8 lim XD (zy)=00 (or 0)

for some element T (€®&*(a,)) and some point z,€ Dr.

We divide the proof of this theorem into two cases of p-divergent and -
convergent types. At first let us prove the case of p-divergent type. There
exists from (ii) of Lemma 1 and (2.8) some positive Ny=N,(T, M) depending only
on T and arbitrarily large number M such that it holds for any T* (€®*(a,))
and any n>N,

(2.9) XD (2%) > Ky(G¥ay), T, )M .
Hence it is easily seen from (i) of Lemma 1 that
(2.10) lim X#5Z2(z*)=00

uniformly on Dy . Since T is a fixed element and 7* is any element of &*(ay),
we note from (2.9) that the uniform convergence in (2.10) is independent of T*.

Next we shall prove the case of y-convergent type. In this case there exists
from (ii) of Lemma 1 and (2.8) some positive integer Ny=DN,(T, ¢) depending only
on T and arbitrarily small ¢ such that it holds for any 7* (€®&*(«,)) and any
n>N,

(2.11) e> Ky(G¥(aw), T*, m)Xid™(2%) .
Hence also it is easily seen from (i) of Lemma 1 that

(2.12) lim X#iT(z*)=0
uniformly on Dz.. But we find from (2.11) that the uniform convergence in (2.12)
holds for each Dy« only. q.e.d.
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7. By using Theorem 1 we have the following theorem.

THEOREM 2. Let G*(a,) be a Kleinian groups with properties (A) and (B).
If G*(a,) is the p-divergent type, then it holds M, (E)=co.

Proof. Take an arbitrarily large number M (>1). Then from Theorem 1
there exists a positive integer Ny=N,(M) depending only on M such that it holds
X¢i7(z2)>M for any n, N>N, Hence from the result in [1], it holds for the
singular set Ey of the subgroup Gy of G

My/z(EN):OO .
Since EDEy, we have M,,(Ey)=oco. q.e.d.

8. In the finite case, we obtained the result that it holds M,,(Ey)=0, if

lim X#;™(z)=0. But in our case, it is not clear lim X { 3/ (rsu(T )}
n—voo neoo S(p)EG*(ag) T ;€8 (ag)

=0 implies M,,(E)=0. Hence we shall prove the following lemma.

LEMMA 2. Let G*(a,) be a Kleinian group with properties (A) and (B). If
i / #/2) — 3 =
7121” sm)e%:@(o){Tje%)(ao)(rs‘"’(T N2}=0, then it holds M,,(E)=0.

Remark. This lemma holds also for a Kleinian group which has no pro-
perties (A) and (B).

Proof. Denote by Ds,(T,) the closed disc bounded by Si)(Cr;), where Semy
=T, T, (T,;€8%a,)) is any element of grade n of G¥(a,) and T;#7T7;. Then

for the proof it suffices to prove that we can take U U Dg,T,) as
S(EGKay) TjEG ag)

a covering of E. Let {e,}3= (¢,>0) be the sequence of numbers such that it
holds ki}) (ex)**<e for any >0 and p/2>a, and consider the images S¢,(Q) of

Q by all S, (€G*(a,)). Describe a circle of radius ¢, with center @ and denote
by D(Q, &) the closed disc bounded by this circle. Then there exist an infinite
number of circles of grade 0 contained in D(Q, ¢,) completely. Hence there are
only a finite number of closed discs which are not contained in D(Q, &,). Some
of them have common parts with D(Q, ¢,), that is, they are not contained com-
pletely in D(Q, &,).

Denote these closed discs, for brevity, by

(2.13) Dr,, Dr,, -, Drp, ,

where they are bounded by circles of grade 0, that is, the boundary circles of
B. The images T,(Q) (1=:1<m,) (T;=®*(a,)) are contained in these discs Dr,
(1=i<m,), respectively. Take ¢, (1=1<m,) from {e;}%= and describe circles of
radii e, (1=:1=<m,) with centers T4(Q) (1=<:<m,) and denote the closed discs
bounded by these circles by D(T:(Q), ¢,) (1515 my).

Consider all closed discs bounded by circles of grade 1 and extract the
closed discs which are not contained in D(T(Q), ¢,) (1=<1<m,) from these ones
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in the same manner as the case of grade 0. Then there are a finite number of
such closed discs. We denote them for brevity by

1 @, - (o)
(2.14) DS§23’ Ds(m’ ’ DSé’)“ .

The images S&(Q) (1=i<m,) are contained in Ds@ (1gism,). Take epgs
(1=i<m,) from {e,}3= and describe circles of radii en.+, (1=i=<m,;) with centers
SB(Q) (1<i<m,) and denote by D(SR(Q), emes.) (1=i=<m,) the closed discs
bounded by these circles. We get a finite number of closed discs, denoted by
Dsgg (1<i=<m,) briefly, which are not contained in D(S5B, ey,+,) 1=<i=<m,) in the

above sense. Then
m m my1
(U Dsg}UD(@, e)V{ U DITQ), V1 U DISH@Q), empr)}

is a covering of E.
Continuing this procedure n-times, we can reach to the closed discs of
grade n. Then we have as a covering of E
My, mo Mp—1
{ }=Jle<i> 1D, e°)u{z\={ D(THQ), &)}V -+ U{ Y D(SE(Q), emgtmyttmp_gra)} -

(n+1)

Denoting by Ts@, the radius of Dsggﬂ) bounded by circle of grade n, we obtain

that the sum of radii to the power p/2 of the above closed discs is equal to
Moy, n Mg—1

(2.15) % (rs@ (e + 20 ( 2 (Emgrsmp-p)™™) 5
=1 n k=2 1=1

which is less than
(2.16) 3 (D s TVt

Sy G () Tji@ g
From the arbitrariness of ¢, it holds
(2.17) MF/Z(E)%im > X (rsaT).

—oo S()€G () T j€8*(ap)

Thus we could prove this lemma completely. g.e.d.

9. Now we shall give the following Lemma due to A.F. Beardon ([3]) and
H. Takahashi ([4]).

LEMMA 3. If M (ENDp)+M,(END,-)=0 for some element of G*(a),
then it holds M,,/Z(E)=0. If My/Z(E)>0 (or =o0), then it holds Mg/z(Ef\DT)>0
(or =o0) for any T (eG*(ay)).

Proof. Denote by Ext Dy and Int Dy the exterior and interior of Dy, respec-
tively. Since the singular set E is invariant under the mapping 7(2) for any T
(eG*(ay)), then ENExt Dy is mapped onto ENnInt Dr—1 by T-Y(2). We assumed
in No. 1 that the circles {K;}?., and {H,, H{};{Z,x are contained in some closed
disc Dy={z; |z|=p,}. Hence it is obvious that
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Ec \J D.CD,,

Te®*(ay)

where \J Dy is the closure of U Dry.

TEG*(ag) TEG (ay)

Take arbitrary two points 2z, and 2z, in D(T"?, po)=T""(Do)N Int Dp-: such
that the line segment z,2z, is contained in D(T7%, p,). Since 7(z) is holomorphic in
D(T"', p,), we have from the mean value theorem on the holomorphic function
the Lipschitz condition

(2.18) | T(z2)—T(2,)| <K|2,— 2],

where K=K(T, p,) is a constant depending only on T and p,. It is obvious that
T(z,) (1=1, 2) are contained in Ext Dr.
From the assumption M,,(D,-1NE)=0 there exist a finite number of closed

discs U, (1=1, ---, n) satisfying the following conditions :
@) DypnEC \_Jl U.CDyp T (D),
(ii) él(r(Ul))”’2<s for any small ¢ (>0),

where 7(U,) denotes the radius of U,. It is obvious that knj U, and knj T(U,) are
1=1 1=1
the covering of D,-1N\E and ENExt Dy, respectively. Then we have from (2.18)

(2.19) 3 ((TUN <K B (U= <Kre,

From the arbitrariness of ¢, it holds that M,,(ENExt Dr)=0 from the above
condition (ii) and (2.19).

In the same manner as the above it holds that M, (ENExt D;-1)=0 under
the assumption M,,,(END;-1)=0.

Further we can conclude that it follows from (2.19) that M,,(END)>0 (or
=o0) for any T (€G*(a,)) under the assumption M,,(E)>0 (or =o0) q.e.d.

By using Lemmas 2 and 3 we shall prove the following theorem.

THEOREM 3. Let G¥a,) be a Kleinian group with properties (A) and (B). If
G*(ay) 1s the p-convergent type, then it holds M,,(E)=0.

Proof. From the assumption, it holds lim X{¥:7(z,)=0 for some T (€®&*(a,))

and some point z,&Dr. Then it is easily seen from Lemma 1 that

(2.20) lim X#:79(2)=0
for any T* (€8*(«a,)) and any point z&€ Dy..

For an arbitrarily fixed element T* (€®*(«,)) we consider all closed discs
DsT) (j=1, 2, --+) of grade n for Dr NE, where Su,=T,, -+ T\, (T;#7T;}) has
the form T*Sc,_»,. Then we have from from (2.17) of Lemma 2
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(2.21) MuylEnDro= 3 (3 TsalT)"),

(MEFH(ag) T ;@ (ay)
for all radii 75, (T,) (Sc»&G*(a)) of such closed discs Ds,(T;). We have from
Proposition 3 the following inequality :

(2.22) 2 (2 (rsey(T)*)=K(GHay), 2N P Bsaw)s Sar=T*Sau-1, -

S(n)eG*(ay) TjE@*(ao) = G*(,

. ¥ .
Since ng‘(",zRSal):(Rsali_l)p—l)f‘, it holds

> (VS(r;)(Tj))”/z)

S(n)€G*(ag) TjeG*(ag)

(2.23) =K(GX(ao), )(Rp-1)' 3 (Risiioyge-1)/(Rps-1)"

(n)EGF*(ag)
=K(GH(ay), )Ry X (T *7(00)) .

Hence from (2.20), (2.21), (2.23) and Lemma 2, we have M,,(ENDr)=0. Thus
it implies from Lemma 3 that M,,(E)=0. g.e.d.

10. Next we want to show that M,,(E)=co is equivalent to the proposition
that G*(«a,) is the p-divergent type. For this purpose it suffices to prove the
converse of Theorem 2.

THEOREM 4. Let G¥a,) be a Klewman group with properties (A) and (B). If
M, o(E)=o00, then it holds lim X (2)=co for any element T (€®&*(a,)) and any

point zeDy. Hence G*(a,) 1s the p-divergent type.

Proof. We shall easily see from Lemma 3 that M,,(ENDr)=oco for any
element T=®*(a,). Hence we have from Lemma 2

(2.24) lim > (> )(rs(n>(T,))”’2)=°°, Saw=TSen-1 .

n—ee S(n) =G¥ag) T j&@*(ay

Then from (1.16) of Proposition 3 we have

3 (sl T SKGH a0, ), 3 (R’

SnyeG*(ay) T je@*(ay) )= G
=K(G* (@), 1)(Rp-0) A5 (T (00))
Since T is any element of &*(a,), it holds from (2.24), (2.25) and Lemma 1

(2.25)

lim X{#iP(z)=oc0

n—oo

for any element T (€8*(«,)) and any point z€ Dr. q.e.d.

11. Now the Hausdorff dimension d(E) of the singular set E of G*(«a,) is
defined in the following :

d(E)=sup {-; JW{AT(E):OO}Zinf {—éi : M_,Z,_(E)zo}.
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In the former paper [2], we had the result that the Hausdorff dimension in-
creases strictly according to increment of the number of boundary circles of
the fundamental domain. From this result, if we denote the Hausdorff dimen-
sion of Ey by py/2, it is obvious that py/2<py+:1/2< --+ and Ilvim Unl2=po/2=

d(E). In the finite case, we had in [1] the following result: 0<Muy/,(Ey)<oco.
But in our case we can presently show only half of this result.

THEOREM 5. Let d(E)=p,/2 be the Hausdorff dimension of the singular set
E of G¥ay). If po/2>a,, then 1t holds that M,,(E)<co.

Proof. Assume that M, (E)=co. Then it is easily seen from Theorem 4
that G*(a,) is the p,-divergent type, that is, lim X% 7(z,)=oco for some element

T* (€8*(a,)) and some point zy=Dy.. Then from Lemma 1 it holds lim X2 ()

n—oo

=oo for any element 7' (€@®) and any point zDy. Hence there exists the posi-
tive integer N, depending only on any large number M (>1) such that it holds

X, (@) >M

for any element T (€@®y,) and any point z€Dy. Since X{#%,7(z) is a continuous
function of g for the fixed number n, N, and z€ Dy, we can take a small num-
ber 0 (>0) such that it holds

Xt () > M .

Then we find that M, .s(Exy)=00 for Ey, and hence Mu+a.(E)=co. This
contradicts that g,/2 is the Hausdorff dimension of E. Thus it holds that
M;to/z(E)< ., q.e.d.

Problem. Let G*(a,) be a Kleinian group with properties (A) and (B).
1. Does it hold that lim X#.7(2)=0 for any element T (€®&*(a,)) and any point

z€ Dy, if My,(E)=0? If it is true, then G*(a,) is the g-convergent type and
from Theorem 3 M,,(E)=0 is equivalent to the proposition that G*(«,) is the
p-convergent type. 2. Let d(E)=g,/2 be the Hausdorff dimension of the singular
set E of G¥*(a,). Does it hold 0< M, (E) for u,/2>a,? If so, is G*(a,) the g,-

finite type, that is, 0<lim X% D(2)<lim X% 7(2) < oo for some element T (€&*(a,))

and some point zeDr? In the finite case Gy is the py-finite type. 3. Does it
always hold g,/2=a, for G*(a,)?
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