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§ 1. Preliminaries and Notations.

1. Let {Kj}*=l and {Hlt #ί}Γ=p+ι be an infinite number of circles external to
one another in the extended complex plane C— {z\ |z|^oo}, where {Hl} 7/-}?=3,+1

tend to only a finite point Q for q-*oo. Let B be a domain bounded by these
circles. Without loss of generality we may assume that these circles are con-
tained in some closed disc D0= [ z ; \z\^p0}.

Let {Tj}^=l be the elliptic transformations with period 2 corresponding to
{Kj}*=l, each of which transforms the outside of K3 onto the inside of itself.
Let {Tj£=p+1 be the system of hyperbolic or loxodromic transformations, each T%

of which transforms the outside of H( onto the inside of Hτ. Then the system
®—{7\, T^}^Lι (Ti=Tϊ1

9 l^i^p) generates an infinitely generated discontinuous
group denoted by G and we call (S the generator system of G, where T"1 denotes
the inverse of Tτ.

The purpose of this paper is to investigate the singular set E of G. Take
a positive integer q (>p) and consider a subset ®^={Ti/}5=i^/{Tl, T"1}?^^ (ΛΓ—
2q—p) of ©. Then ®N generates a finitely generated subgroup GN of G. If we
denote by BN a domain bounded by {Kj}*=1V{H» Hi}«=p+i (N=2q—p), it is well
known that BN coincides with a fundamental domain of GN. We gave some
results with respect to the singular set EN of GN by using the relations between
EN and the computing functions on GN ([!]). We shall get G from GN for N-*oo.
It is natural to try whether we can extend the results for G^ to ones for G.
Unfortunately, we can not extend those in the same way, for the behavior of
the accumulation of the circles to Q gives the complicated difficulty. Therefore
we must impose some restrictions with respect to the accumulation of circles and
henceforth we shall consider only such groups.

2. Denote by r(H) the radius of a circle //"e {Hlt Hί}™=p+ί and assume that
there exists some positive constant K independent of H such that it holds

Received Jan. 26, 1974.

485



486 TOHRU AKAZA AND EIICHI SAKAI

where l(H)=Ίnf\z—ζ\ and the infimum is taken for all points z^H and for all
points ζ on any circle from {Hlt Hί}?=p+1—{H}.

Defining the product ST in G by ST(z)— S(T(z)), we can write any element
U of G in the form

£7=Ttn - Tl2Tn (

We call the positive integer n the grade of [7 and for simplicity we use the
notation S(n) to clarify the grade of U.

Since we can let the generator T* (e®) correspond to the boundary circle
HI, we shall denote by CTi and CΓ-ι the circles Hτ and #£, and further by DTi

and Dτ-ι the closed discs bounded by CTi and CΓ-ι, respectively. Then it is

obvious that CTi=Ti(Cτ-ι).

Consider the image S^(BN) by any element S^=Tln ••• Tl2Tn (eG#). It is
easily seen that S^(BN) is bounded by an outer boundary circle S(n)(CΓ-ι) and

C/V-1) inner boundary circles S^(CTj) (Tj^T~\ TJ<Ξ@N). We shall call such
inner boundary circles the circles of grade n. It is obvious that the number of
all circles of grade n for G^ is equal to N(N—ΐ)n. Circles {#,}?=! and {Ht, #<}?=*+!,
which bounds BN, are of grade 0. The circles of grade n with respect to G can
be defined in the same way.

Now let us impose a restriction with respect to the accumulation of circles
for G. Consider the circle CTi : \z—a(Tt)\=rTl of radius rTί with center α(Tt)
for any Tt (e®). Take some boundary circle CTj (Tj^=Tl) of B and denote the
distance from α(TJ to CTj by /0/TJ, that is,

(1.1) ^(Tt)=inf |*-α(Tt)l.
z€ECΓj

It is obvious that ^-(TJ>r(TJ and from the property (A)

Π 2 ) KTt) < K
(l'Z) pj(TJ - K+l

We assume that there exists a positive constant /£Ί(α) depending only on
some positive number a (Q<a<2) satisfying

(B) W(T31 «)= Σ' (
T e V

where Σx denotes the sum with respect to all T% (ΦTΊ\ Then we can deter-
Γitβ

mine the unique number a0 (^0) such that

(1.3) α0^inf {α; ^(αX+oo} .

We note that α0 is always equal to 0 for GN.
From now we shall call such discontinuous group with these properties (A)

and (B) the Kleinian group with properties (A) and (B) and denote it by G(K, αoX
which has the generator system ®(K, α0). For brevity we also denote it by
G*(α0) with ®*(α0) We can easily give the examples of such groups G*(α0), for
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example, by fuchsian groups with an infinite number of generators.

3. Consider two arbitrary transformations T and S of G. We assume that
SΦT'1. Denote by Is, IT and ISτ the isometric circles of 5, T and ST, respec-
tively. Let Rs, RT and Rsτ be radii of Is, IT and Isτ, respectively. As to these
values, the relation

a λ\ D RS' RT
A) Ksτ~ |T(oo)-S-i(oo)|

holds.
Let SCn)=Tln — Tt2Ttl (Tve®^) be any element of GN and assume that

for a fixed element T (e®#) and take any point z^DT. If we put

we obtain easily

Rs
dz

where S^ denotes the inverse (S^))"1—T"1 ••• T^1 of S(n). Here we note that

*1

Forming the sum of (N—ΐ)n terms with respect to all S(n) (^GN) such that
and Tτj^T~}+1 (l^j^n-1), we had the function

and called %^Γ)(2r) the //-dimensional computing function of order n on T and
there exist TV computing functions %^Γ)(^r) corresponding to the choice of T
from ®jr ([!]). The domain of definition of ΊL\Kkτ\z) is Dτ.

Since each term in the sum %^Γ)(^) is positive, %^Γ)(^) has necessarily the
unique limit containing the infinity for any z^DT, if TV tends to the infinity.
Thus we can define the function

1iτn Ί(μ' T)( ' 7\— lίπm ί£N (z)— ii
τ

and we shall call it the //-dimensional limiting computing function of order n on
T and denote it by X&^O). Using the relation (1.4), we obtain

where 5(n)S(m)=S(n+m).
Now let us give the following definition.
DEFINITION. Let {^^r)(^)} (rc=l, 2, ••-) be the sequence of the //-dimensional

limiting computing functions on Te®. If it holds
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(1.8) lim %^Γ)(z)=0 (or oo)
71— >oo

for some element T of © and some point z<=DT, we call G the /^-convergent (or
divergent) type. If it holds

(1.9) 0< lim Z&iΓ)(*)^fim I(£LT\z)<™
n— »oo n— »oo

for some T (e©) and some point z^DT, we call G the μ-finite type. We have
already given these concepts for XfeirΓ)(z) in the former paper ([!]).

4. In the former paper [1] we obtained the following important proposition
with respect to EN.

PROPOSITION 1. The following three propositions are equivalent to one another:
(1) The sequence {%^Γ*}(^)} (n=l, 2, — ) on some fixed T* (e®^) diverges (or
converges to zero) at some singular point zQ^Ec\DT*, that is,

(1.10) lim%^Γ)(z0)=oo (or 0) for some

(2) //" ΛoWs /or αnj; T

(1.11) lim ̂ ^(^=00 (or 0)

uniformly on Dτ.

(3) M^2(£^)=oo (or 0).

Now we consider a linear transformation

and a circle C: \z—z0\=r. Then we have the following proposition ([5]).

PROPOSITION 2. // S~1(oo)=—δ/γ lies outside C, the radius rr of the image
C' of C by S is equal to

(1.12) -̂  (^2-r2) '

where p denotes the distance IS'^oo)— z0\.

Proof. Put Θ=arg{(z-z0)/(S-\oo)-z0)} (zeC). Then we have

_l_r
r ~ 2π Jc

*L
7

\dz- l f -| f l U 2πJc

\dz\

1 r

q. e. d.

Now let us seek for the relation between radii of circles of grade n and the
radius of the isometric circle.
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Let S<n>=rtn »7\2T t l (Tve®*(α0)) be any element of G*(α0). An infinite
number of circles of grade n corresponding to S(n) are the circles 5Cn)(CΓp
(TjΦTϊf) bounded by the circle 5(n)(CΓ-ι). Since the pole of SCw), that is, S^)(oo)

=7Y1

1 •• T~7J(oo) is contained in CΓ-ι, it holds for any T3 (^T"1)

(1.13) \SU(<χ>)-a(T,)\>p(TJ,

where a(T3) and p(T3) are defined in No. 2. Hence we see from Proposition 2
that the radius of the circle 5Cn)(CΓ..) of grade n is smaller than

r(T )
(1.14) 7(T,)2-V^'^

Since r(T3)/p(T^K/(K+ΐ) by (1.2), we have

(1-15) ~W^<Γ^~^=(^+1)7(T;Γ^'

Take a positive number μ (0<μ<4) such that aQ<μ/2 and denote by
Σ' rs^(Tj) the sum of radii of circles 5(n)(CΓ/) of grade n for all T3 (ΦT~$

ΓyGφ'Ctto)

by any element SCw)eG*(α0), we obtain easily from the property (B) and (1.15)
the following proposition.

PROPOSITION 3. It holds for any element 5Cn) (eG*(α0))

(1.16) Σ' (r*(n)(T;))^ < K(G*(a,\ μ)(R8^
μ >

ΓyeΞ®*(α0)

7Γ(G*(α0), //) z's α constant depending only on G*(α0)

§ 2. Local property of the limiting computing function.

5. The main purpose of this paper is to extend Proposition 1 for a Kleinian
group G*(α:0) with properties (A) and (B). For this purpose we shall give the
following Lemma which is also the extension of Lemma 1 in [1].

LEMMA 1. Let G*(<x0) be a Kleinian group with properties (A) and (B).
(i) There exist positive constants K1(Gήί(a0)ί μ) and K2(G^(aQ}, μ) depending

only on G*(α0) and μ (>2α0) such that it holds

(2.1) Xι(G*(«o), ^)^Γ)(z0)^n^Γ)(z)^^2(G*(α0), μ)V% P(zύ

for any element Te(S*(#0) and any points z and z^DT. (ii) There exists a posi-
tive constant Ks(G*(a0), T*, μ) depending only on G*(α0), T* and μ (>2α0) such
that it holds for any elements T and T* (<Ξ@*(O:O); T*ΦT~1) and any points z
(eDΓ) and z*

(2.2) χ^5

Remark. In the finite case, /Γ8(G*(α0), 71*, j") can be replaced by a constant
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KS(GN, μ). In this case we could show in [1] that the ^-divergence (or con-
vergence) type of GN is the uniform property in Dτ and Dτ* with respect to the
sequence K^T)(^} and {^Γ*}(**)} (n=l, 2, •••) for different elements T and T*
(e®#), that is, for example, we can take a common order N0 for any positive
number M such that

and for

But in our case, we can no more take such common order -/V0 for the //-con-
vergence type and this means that N0 depends not only on G*(tf0)

 and μ but
also each element of ®*(α0)

Proof of (i). SCn)=7\n - Ttl (T-'^T) be any element of grade n in G*(α0)
and take any two points z and z0^DT. Denote the closed disc Dτ of radius rτ

with center a by Dτ: \z— a\^rτ. Let us denote by / the distance between Dτ

and Dτ-ι. Since

mation:

(2.3)

Rs

is contained in Dτ-ιf we get easily the following esti-

Rs
z— 5(^(00)

2rΓ+/+2rΓi-ι

Hence from the property (A) we have

(2.4)

Thus we obtain from (2.3) and (2.4)

(2.5)
* — 5(rί)(θθ)|

Forming the sum with respect to all SCn)=Tln •«• Ttl (T~^ΦT\ we have an in-
equality of the right hand side in (i). Since (2.5) is symmetric with respect to
any pair of points z and z0 contained in Dτ, we have

Proof of (ii). Take any element SCn+1)— S(n)T*=T,n •«• TnT* of grade n+1
such that T*ΦT-1 and T^^T*'1 (T, Tu, T*e@*(α0)). Since

μ
2 — X

we have from the definition of the computing function (1.5)

(2.6) ^ ( g*»+"
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Since all circles {̂  }J=ι and {Hτ, Hί}?=p+i are contained in a closed disc DQ=
{*', \z\^p0}, it holds \z-T*-\oo)\ £2pι. Hence we have

(2.7)

Thus from (2.7) we have for any elements T and T* (e@*(α0)

^£(*)^#8(G*(αo), T*, μ)W.ir>(z*) .
q. e. d.

6. By using Lemma 1 we have the following theorem.

THEOREM 1. Let G*(α0) be a Klemian group with properties (A) and (B). //
G*(α0) is the μ-divergent (or convergent) type, then it holds

Iim%ί/ϊi5p*)(z)=oo (or 0)
π— »°°

/or any T* (e®*(α:0)) αnύί αnj point z^DT,.

Proof. From the assumption we have

(2.8) lim%feτ)0?o)-°o (or 0)

for some element T (e®*(α0)) and some point
We divide the proof of this theorem into two cases of //-divergent and μ-

convergent types. At first let us prove the case of μ-divergent type. There
exists from (ii) of Lemma 1 and (2.8) some positive NQ=Nύ(T, M) depending only
on T and arbitrarily large number M such that it holds for any T* (e®*(«0))
and any n>N0

(2.9) X&iS'C**) > K3(G*(aQ\ T, μ)M .

Hence it is easily seen from (i) of Lemma 1 that

(2.10) lim*&i^(**)=°°
n— >°°

uniformly on Dτ . Since T is a fixed element and T* is any element of ®*(α0),
we note from (2.9) that the uniform convergence in (2.10) is independent of T*.

Next we shall prove the case of //-convergent type. In this case there exists
from (ii) of Lemma 1 and (2.8) some positive integer jY0— 7V0(T, ε) depending only
on T and arbitrarily small ε such that it holds for any T* (e@*(α0)) and any
n>N0

(2.11) ε>#3(G*(α0), T*,

Hence also it is easily seen from (i) of Lemma 1 that

(2.12) limIfeΓΛ)(^*)-0
n— "o0

uniformly on Dτ*. But we find from (2.11) that the uniform convergence in (2.12)
holds for each Dτ* only. q. e. d.
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7. By using Theorem 1 we have the following theorem.

THEOREM 2. Let G*(α0) be a Kleinian groups with properties (A) and (B).
// G*(α0) is the μ-divergent type, then it holds Mμ/2(E)=oo.

Proof. Take an arbitrarily large number M (>1). Then from Theorem 1
there exists a positive integer N0=N0(M) depending only on M such that it holds
^KiΓ(z)>M for any n, N>NQ. Hence from the result in [1], it holds for the
singular set EN of the subgroup GN of G

Mμ/2(EN}=oo .

Since E^>EN, we have Mμ/2(EN)=oo. q. e. d.

8. In the finite case, we obtained the result that it holds Mμ/z(EN)=Q, if
lim X%άτ\z}=0. But in our case, it is not clear lim Σ { Σ' (^^(T,))^2}
n^oo n+-o° S(n)eG*(α0) rye<r(ar0)

—0 implies Mμ/2(E)=0. Hence we shall prove the following lemma.

LEMMA 2. Let G*(α0) be a Kleinian group with properties (A) and (B). //
lim Σ { Σ7 (r5(n)(T,)r8}=0, then it holds Mμ/2(E}=0.
-

Remark. This lemma holds also for a Kleinian group which has no pro-
perties (A) and (B).

Proof. Denote by DS^(T3) the closed disc bounded by SCn)(CΓ/), where 5Cn)

=Ttn - Ttl (Ttye®*(α0)) is any element of grade n of G*(α0) and TjΦT$. Then
for the proof it suffices to prove that we can take U U Ds,nJTj) as

* *

a covering of E. Let {ε*}£=o (ε*>0) be the sequence of numbers such that it

holds Σ(ejfe)A ί / 2<ε for any ε>0 and μ/2>a0 and consider the images SCn)(<3) of
fc=0

Q by all SCn) (eG*(α0)). Describe a circle of radius ε0 with center Q and denote
by D(Q, e0) the closed disc bounded by this circle. Then there exist an infinite
number of circles of grade 0 contained in D(Q, e0) completely. Hence there are
only a finite number of closed discs which are not contained in D(Q, ε0). Some
of them have common parts with D(Q, ε0), that is, they are not contained com-
pletely in D(Q, 60).

Denote these closed discs, for brevity, by

(2.13) Dτ19Dτ2,-,Dτnΰ,

where they are bounded by circles of grade 0, that is, the boundary circles of
B. The images T<(Q) (I^z^m0) (T, e ®*(α0)) are contained in these discs DTt

(l<a'<Ξm0), respectively. Take εz (I^z^m0) from {ε^}^=0 and describe circles of
radii εt (I^z^m0) with centers Tt(Q) (l^^^m0) and denote the closed discs
bounded by these circles by D(Tt(Q), εj (I^z^m0).

Consider all closed discs bounded by circles of grade 1 and extract the

closed discs which are not contained in D(Ti(Q), εj (I^z^m0) from these ones
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in the same manner as the case of grade 0. Then there are a finite number of
such closed discs. We denote them for brevity by

\ / (2)' (2)' ' (2)

The images S^(Q) (l^i^mj are contained in Dsw> (l^^^ι) Take εmo+l

(l^z^mj) from {εk}^=0 and describe circles of radii εmo+l (l^i^mj with centers
5(8(0) (l^i^tfii) and denote by D(S$(Q\ emo+0 (l^i^mj the closed discs
bounded by these circles. We get a finite number of closed discs, denoted by
DS™ (1^^ 2̂) briefly, which are not contained in D(S$, εmo+l) (l^i^wO in the

above sense. Then

7712 7710 W l

\ \_J J-J stt} j v-'.L/\Cy, ε0)Vy I V_y *-^\ * i \^c/» ^ t J ^ ^ i -̂̂  \^ (2)\.*τ ) ) ^wiπ+t/J
1=1 (3) t=ι 1=1

is a covering of E.
Continuing this procedure n-times, we can reach to the closed discs of

grade n. Then we have as a covering of E
ffiji fϊiQ f^n—1

Denoting by rsa^ the radius of Ds[»+tt bounded by circle of grade n, we obtain

that the sum of radii to the power μ/2 of the above closed discs is equal to
mn n mk-l

(2.15) Σ (r5«) (μ/2+ε0

μ/2+ Σ ( Σ (ε7
1 = 1 (rz) k=2 ι = l

which is less than

(2.16) fl(βj (^Σ7 (r5cn)C

From the arbitrariness of ε, it holds

(2.17) Mμ/z(E)^\ims Σ ( Σ/ (^(n)(T,r2).

Thus we could prove this lemma completely. q. e. d.

9. Now we shall give the following Lemma due to A. F. Beardon ([3]) and
H. Takahashi ([4]).

LEMMA 3. // Mμ/2(Er\Dτ)+Mμ/2(Er\Dτ-ι)=Q for some element of G*(tf0)r
then it holds Mμ/2(E)=0. If Mμ/2(E)>0 (or =oo\ then it holds Mμl2(Er\Dτ)>b
(or =00) for any T (e®*(α0)).

Proof. Denote by Ext Dτ and Int Dτ the exterior and interior of Dτ, respec-
tively. Since the singular set E is invariant under the mapping T(z) for any T
(e®*(α0)), then Er\ExtDT is mapped onto Er\lntDτ-ι by T~\z). We assumed
in No. 1 that the circles {Kj}*^ and {Hτ, H'L}?=P+1 are contained in some closed
disc DQ={Z; |2Ί^^0}. Hence it is obvious that
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U
re<B*(«o>

where U Dτ is the closure of U Dτ.
Γ<Ξ(S*(α0) Γe<r(α0)

Take arbitrary two points zλ and z2 in D(T~\ ρ0)= T"1(D0)Π Int Dτ~ι such
that the line segment zλz2 is contained in D(T~\ ρQ). Since T(z) is holomorphic in
jD(T-1, ^Q), we have from the mean value theorem on the holomorphic function
the Lipschitz condition

(2.18) \T(zl)-T(zt)\<K\zί-zt\,

where K=K(T, ρ0) is a constant depending only on T and p0. It is obvious that
T(zJ (i=l, 2) are contained in Ext Dτ.

From the assumption Mμί2(Dτ-ιΓ\E}—ΰ there exist a finite number of closed
discs Ul (i—l, ••• ,ri) satisfying the following conditions:

(i) Dτ-lΓ\Ec: \J
1 = 1

(ii) ΣWC/O^^ε for any small ε (>0),

n n
where r(Uτ) denotes the radius of Ul. It is obvious that U Uτ and U T(Ut) are

t=l 1=1

the covering of Dτ-ιC\E and Er\Έ,xtDτ, respectively. Then we have from (2.18)

(2.19) Σ (r(T(UTW
/2^(Kr/z Σ

From the arbitrariness of ε, it holds that Mμ/2(Er\Ext Dτ}=0 from the above
condition (ii) and (2.19).

In the same manner as the above it holds that Mμ/2(Er\Ext Dτ-ι)=Q under
the assumption Mμ/2(Er\Dτ-ι)=Q.

Further we can conclude that it follows from (2.19) that Mμ/2(Ef^Dτ^>0 (or
~oo) for any T (e®*(α0)) under the assumption Mμ/2(E)>Q (or =00) q. e. d.

By using Lemmas 2 and 3 we shall prove the following theorem.

THEOREM 3. Let G*(α0) be a Kleinian group with properties (A) and (B). //
G*(α0) is the μ-convergent type, then it holds Mμ/2(E)=Q.

Proof. From the assumption, it holds lim %^oi,7F)(2r0)=0 for some T (e®*(α0))

and some point zQ^DT. Then it is easily seen from Lemma 1 that

(2.20) lim χ^<i3Γ+)(2r)=0

for any T* (e®*(«0)) and any point
For an arbitrarily fixed element T* (e®*(«0)) we consider all closed discs

AsoΛT1,) 0=1, 2, -0 of grade n for DτΓ\E, where S,n,=Tln - Tn (TjΦTJ) has
the form T*S(n_1). Then we have from from (2.17) of Lemma 2
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(2.21) M^(Er\DT^ Σ ( Σ' ( (̂n)(

for all radii rs<n£Γ3) (S(n)eG*(α0)) of such closed discs D8^(Tj). We have from
Proposition 3 the following inequality:

(2.22) S(^a^Σ^(rsaT^r^K(G*(ao), μϊ^Σ^tfs^r, S(.,=T*S(n.1).

Since /?fi.,=/?S5)=(Λβ-ι_1)Γ.-ιy, it holds

Σ ( x^/ (v ' fir ^^Λ^/2^^ 2jA vSdn^ i j)) )

(2.23) ^#(G*(α0), μ)(Rτ*-ιY Σ^

=/f(G*(α0),

Hence from (2.20), (2.21), (2.23) and Lemma 2, we have M/l/2(£n^r*)=0. Thus
it implies from Lemma 3 that Mμ/2(E)= 0. q. e. d.

10. Next we want to show that Mμ/2(E)=oo is equivalent to the proposition
that G*(α0) is the ^-divergent type. For this purpose it suffices to prove the
converse of Theorem 2.

THEOREM 4. Let G*(α0) be a Kleiman group with properties (A) and (B). //
Mμ/ι(E)=<χ>, then it holds lim %&Γ)(>ε)— °o for any element T (e®*(α0)) α^ύί any

n-*o°

z^DT. Hence G*(a0) zs ίΛe μ-diυergent type.

Proof. We shall easily see from Lemma 3 that Mμ/2(Er\Dτ)= oo for any
element T<Ξ©*(α0). Hence we have from Lemma 2

(2.24) lim Σ ( Σx (
n-oo S(n),^G*(α0) Γ^fcβ*(α0)

Then from (1.16) of Proposition 3 we have

( Σ7 (r^(n)(Qn;

Since T is any element of ®*(α0), it holds from (2.24), (2.25) and Lemma 1

lim%&LΓ)(*)=oo
n— »oo

for any element T (e®*(α0)) and any point z<=DT. q. e. d.

11. Now the Hausdorff dimension d(E} of the singular set E of G*(α0) is
defined in the following :

M^_(E)=oo}=mf {-^- ΛίJL(£)=θ} .
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In the former paper [2], we had the result that the Hausdorff dimension in-
creases strictly according to increment of the number of boundary circles of
the fundamental domain. From this result, if we denote the Hausdorff dimen-
sion of EN by μN/2t it is obvious that μN/2<μN+1/2< ••• and lim μN/2=μ0/2=

d(E). In the finite case, we had in [1] the following result: 0<MμN/2(EN)<oo.

But in our case we can presently show only half of this result.

THEOREM 5. Let d(E)=μ0/2 be the Hausdorff dimension of the singular set
E of G*(α0) If μ0/2>a0, then it holds that Mμo/2(E)<π>.

Proof. Assume that Mμo/2(E)—oo. Then it is easily seen from Theorem 4

that G*(α0) is the μ0 -divergent type, that is, lim %^;Z }(z0)— °° for some element

T* (e<3*(α0)) and some point z^Ώτ*. Then from Lemma 1 it holds lim %o:Γ)(*)
n— < °°

= 00 for any element T (e®) and any point z^DT. Hence there exists the posi-
tive integer N0 depending only on any large number M (>1) such that it holds

Xtfίf *>(*)> M

for any element T (e@#0) and any point z^DT. Since X(£N^(Z) is a continuous
function of μ for the fixed number n, N0 and z^DT, we can take a small num-
ber δ (>0) such that it holds

Then we find that MiftQ+S)/2(ENo)=oo for ENo, and hence M(/lo+3)/2(E)=oo. This
contradicts that μ0/2 is the Hausdorff dimension of E. Thus it holds that
Mμo/2(E)<oo. q.e. d.

Problem. Let G*(α0) be a Kleinian group with properties (A) and (B).
1. Does it hold that lim %fer)(2r)=0 for any element T (e®*(α0)) and any point

n— »oo

z<=DT, if Mμ/2(E)=Q? If it is true, then G*(α0) is the /^-convergent type and
from Theorem 3 Mμ/2(E)=Q is equivalent to the proposition that G*(α0) is the
μ-convergent type. 2. Let d(E)=μ0/2 be the Hausdorff dimension of the singular
set E of G*(α0) Does it hold 0<MμQ/2(E) for μ0/2>a0? If so, is G*(α0) the μ0-

finite type, that is, 0<lim %fe;Γ)(>)^Πϊn %fe;Γ)(>)<oo for some element T (e=®*(α0))

and some point z<=DT? In the finite case G# is the ^-finite type. 3. Does it
always hold μ0/2^a0 for G*(α0)?
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