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A COEFFICIENT INEQUALITY FOR CERTAIN
MEROMORPHIC UNIVALENT FUNCTIONS

By YosHiHisa KuBoTA

1. Let 2, denote the class of functions g(z) univalent in |z|>1, regular
apart from a simple pole at the point at infinity and having the expansion at
that point

(1) g(2)=z+nzz)lbn2‘".

Garabedian and Schiffer [1] obtained the sharp estimate |b;| <(1+2¢7¢)/2 and
at the same time they remarked that if all the coefficients b, of g(2) are real
then b;=1/2. Further Jenkins [5] proved that if b,=0 for j<n then |b;ul|=

(n+1)"'"[1+2exp {—(2n+4)/n}] and that if b,=0 for j=<(n—1)/2 then |b,|=
2/(n+1).

In this paper we shall be concerned with the coefficient b; and we shall
prove

THEOREM. If all the coefficients b, of g(z) are real, then
1 4
b=+ =57

with equality holding only for the function Z(z) which satisfies the algebraic
equation
12\ 6 6 1, a2 L
(wtyy) =(Frqgetyaiee),  w=ia).
The expansion of g(z) at the pownt at wnfinity begins

4 o 16 s 1 4 N 5
a3 2 g (gt )7

Our proof is due to Jenkins’ General Coefficient Theorem.

2. Firstly we give several lemmas which will be used later on.

LEMMA A. Let Qw)dw*=a(w*+ B,w*+ Bw’+ Bsw+B,)dw? be a quadratic dif-
ferential on the w-sphere and let
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g D=z+ D by z"
n=1

be a function of class X, which maps |z|>1 onto a domain D admissible with
respect to Q(w)dw®. Let g(z) be a function of class X, having the expansion at
the point at infinity

g(2)=z+§1 buz®
where b,=0bF. Then
Ra{bs— b+ B(by—bF)+(Bo+30F)(bs—bF)
+(Bs+2p:bf +2bF)(b,— b¥)+(b,—b)*} <0.
In the case b;=b¥, j=1, 2 equality occurs only for g(z)=g*(z).

Proof. Let ¢(w) be the inverse of g*(2) defined in D. Then we apply the
General Coefficient Theorem in its extended form [6] with R the w-sphere,
Q(2)dz* being a(w'+ B,w*+ B,w+ B,w+B,)dw?, the admissible domain D and the
admissible function g(¢(w)). The function g(¢(w)) has the expansion at the
point at infinity

w4 X a,w™"
n=2

where
a,=b,—b¥,

a3=b3—b§k ’
a,=b,—bf-+2b¥(b,—b¥),
1y by— b+ 35 (by— b+ 263 (by— bY)

Hence we have the desired inequality. The equality statement follows at once
from the general equality conditions in the General Coefficient Theorem.

LEMMA B. Let g(2) be a function of class X, having the expansion (1) at
the point at winfinity. Then

1 1
b5—|—b1b3+b§—|——3—b§ é—g—.
Proof. Let Gu(w) be the p-th Faber polynomial which is defined by
Gl g()=2"+ 2 buwz™.
Then Grunsky’s inequality [2] has the form

m m .
| 2 vhuxpx,| S Zvlxl®.
2v=1 v=1
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Putting m=3, x,=x,=0 and x;=1 we have the desired inequality.
The following lemma is a simple consequence of the area theorem.

LEMMA C. Let g(2) be a function of class X, having the expansion (1) at
the point at infinity. Then

16,4316y *+5]bs[*=1.

3. Next we give certain functions which play the role of extremal func-
tions.

LEMMA 1. Let Q*w; X)dw? be the quadratic differential (w*—2Xw?+ X?)dw?,
(0=X=<4). Let Y be a real number satisfying the condition

(2) 2Y—X+2z20, 6Y—X*"42=0.

Then there 1s a function g*(z; X, Y)e2, which satisfies the algebraic equation

3) w—3Xw=z*—(6Y +3)z—(6Y+3)z"'+2z*

and which maps |z|>1 onto a domain admassible with respect to Q*(w ; X)dw?.
The expansion of g*(z; X, Y) at the pownt at infinity begins

X2V D)z (2XY —4Y 4 X—6Y 2+ (20X, V))z "+ -
where

(X, Y):——%—prsxyz—%Yﬁ+10XY—28Y2+3X~18Y—%.

Proof. There are three end domains &f, &F, & in the trajectory structure
of Q*w; X)dw* on the upper half w-plane. For a suitable choice of deter-
mination the function

C= j (w— X)dw

maps &F, &F, &F respectively onto an upper half-plane, a lower half-plane and
an upper half-plane, the points X2, — X'* corresponding to the points —2X*%%/3,
2X%*?%/3 respectively.

On the other hand there are three end domains &, &,, &, in the trajectory
structure of the quadratic differential

7 %(z—1)%(z+ I)Z(Z_eiﬁ)Z(z+ei0)2(z_ e-iﬁ)Z(Z_l_e—w)zdzz, 0<6< %

on the domain |z|>1, Jz>0. For a suitable choice of determination the func-
tion

4 {=[ 2 =Dz 1))z ")z ") (e ¥)dz

maps &, &,, & respectively onto an upper half-plane, a lower half-plane and
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an upper half-plane, the points 1, ¢, —e %, —1 corresponding to the points
—(12 cos 20+4)/3, —16 cos®@/3, 16 cos®d/3, (12 cos 26+4)/3 respectively.
If X and 60 satisfy the condition

(5) 4 cos 20+—§—§ —g—)(‘°‘/2§—13i cos’d,

then we can combine the above two functions to obtain a function which maps
the domain |z|>1, 3z>0 into the upper half w-plane. We put Y =cos 26.
Then the condition (5) is equivalent to the condition (2). By reflection this
function extends to a function g*(z; X, Y) which maps [z|>1 onto a domain
admissible with respect to Q*(w; X)dw®. The function g*(z; X, Y) satisfies the
algebraic equation (3). Inserting

w=2z+by+b,27 40,272+ byz - b,z - bz -

in (3) we have

bo—:‘oy
b=X—2Y—1,
b,=0,

(6) :
by=2XY —4Y?*+ X—6Y—2,
b,=0,

b=+ O(X, V).

This completes the proof of Lemma 1.

Let D, denote the domain in the XY-plane defined by X>0, 2Y—X+2>0
and 32Y—4X+11<0. We can verify that if (X, Y)eD, then X and Y satisfy
the condition (2) and that ®, is mapped by (6) onto the closed domain in the
b,b;-plane defined by b,+b—b,<0 and 12b,—4b}—b,+5=0.

LEMMA 2. On D,

1
OX, VIS5

Equality occurs only for X=3/7, Y=—3/7.

Proof, The points which satisfy @,=®@,=0 are the following four points

3 _8) (0,—L), (BEY5, SLENE) (345 S1-w5)

These points are not contained in 9, except the point (3/7, —3/7). At the
point (3/7, —3/7) we have @=1/147, @z x <0, P%y— P x xPyy<0. On the other hand
we have on the boundary of ®,
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000, V)= v+ ogye18y-Al <o, —1<y<—1L,
1 1 7
and
1 11\ _ 15 yo 87 75
O(X, g X—33) =51 X'+ 56 X"+ 1001 X
3025 7
~izogg <00 0=X=g.

Hence we have the desired result.

LEMMA 3. Let O(w; X)dw® be the quadratic differential (w4 Xw?)dw?,
(0=X=4). Let Y be a real number satisfying the condition

7 Y4+1=0, 12Y 4+ X?**4-4<0.
Then there 1s a function §(z; X, Y)e2, which satisfies the algebraic equation
(8) W+ X)P={z*—(6Y+3)z—(6Y+3)z7* +2z7%}*

and which maps |z|>1 onto a domain admissible with respect to Q(w; X)dw?.
The expansion of §(z; X, Y) at the point at wnfinity begins

o= (4 X+2Y+1) 7 — (G- X+ XY +4Y 4L X+6Y +2)

(AT, 7)) 2o o

where
VX, Y):~T16—X3—%X2Y—4XY2——431Ya—-g—xz—SXY—zsyz
3 11
—3-x-18Y—-3

~Proof. There are three end domains &, 52, &, in the trajectory structure
of Q(w; X)dw? on the upper half w-plane. For a suitable choice of determina-
tion the function

C=[w(w+ Xy dw
maps 51, 6’~2, &, respectively onto an upper half-plane, a lower half-plane and an
upper half-plane, the positive real axis corresponding to the half-infinite seg-
ment =0, X*2/3<RL<co. If X and O satisfy the condition
4 1 v
9) 4 cos 20-{——3— = ~TX ,

then we can combine this function with (4) to obtain a function which maps
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the domain |z|>1, J2>0 into the upper half w-plane. We put Y'=cos 26. Then
the condition (9) is equivalent to the condition (7). By reflection this function
extends to a function 2(z; X, Y) which maps |z|>1 onto a domain admissible
with respect to @(w; X)dw®., The function Z(z; X, Y) satisfies the algebraic
equation (8). Inserting

w=2z+by+b,z7 '+ b,z 2+ bz + bz bz -
in (8) we have

by=0,
by=— - X—2V—1
1— 2 ’
(10) b2=0,
bsz—%Xz—XY-4Y2——%——X~6Y—2,
b4:0 ’

b5=—§—+wx, Y).

This completes the proof of Lemma 3.

Let ®, denote the domain in the XY-plane defined by X>0, Y+1>0,
12Y+ X+4<0 and 36Y+7X+8<0. We can verify that if (X,Y)e®, then X
and Y satisfy the condition (7) and that ®, is mapped by (10) onto the closed
domain in the b,b;-plane defined by b,+03—0,=0, 2b,+b}—1=0, 8b,+53b}+98b,+45
=0 and 8b,+5b3+6b,+5=0.

LEMMA 4. On D,

4
(X, V)< 5057

Equality occurs only for X=12/13, Y=—15/26.

Proof. The points which satisfy ¥ ;=% ;=0 are the following four points
12 15 1 243 25
50— ) (0 —g) (1) (55 ).

These points are not contained in ®, except the point (12/13, —15/26). At the
point (12/13, —15/26) we have ¥'=4/507, ¥ xx<0, T%r—¥ xx¥yy<0. On the
other hand we have on the boundary of 9,

Uf(o,Y):———‘i?—?~Ys—28Y2~18Y——13L§O, ~12¥s—1,
VX, —1)=—%—X*+——§—Xz——%—X——é—<0, 0=X<4,
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1 1y 13 7 1
V(X —j5 X—5)=— g X' g X'+ X

23
—ﬁ—<0 0=XxXz1
and
527 1775 640
V(X ——5 X5 )= Toas X'~ X o X

1975
— 187 <0, 1=X=4.

Hence we have the desired result.

4. Now we prove the following theorem which includes as a special case
the theorem stated in §1.

THEOREM. Let g(z) be a function of class X, having the expansion at the
point at infinity
g(2)=z+ i} b,z™"
n=1
where b, and b, are real.

If b,=0, then

L

with equality holding only for the function g ( 7 ,—%). The expansion of
this function at the point at infinity begins

2 5 __ 1 1 -
gty (gt o)
If b,<0, then
Rb, <— ! + _4
b= 507
with equality holding only for the function g( ; 13 =, —— ——) The expansion of

this function at the point at infinity begins

Z= 143 "’+T69_Z'3+( )T

Proof. Firstly we consider the case b,=0. We divide this case into several
subcases.
Case 1. Rb,=0. By Lemma B we have

Rbs <R{ by+-byby-+ b+ _bs}<__

Case 2. (4b3+b,—5)/12<%b,<0. In this case there is a point (X,, Y,) in D,
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such that
b,=X,—2Y,—1,

Rb,=2X,Y,—4Y i+ X,—6Y,—2.
We apply Lemma A with
Q(w)dw*=(w*—2X,w*+ X3)dw?,

g¥(2)=g*(z; X, Yy).
Then we have

B {beHi( X, —6Y,— 3, + 1) S +B(X,, Vo).
Hence by using Lemma 2 we obtain

Mby <+ g7
Case 3. Hb,=(4b+b,—5)/12. By Lemma C we have

2
s b3 g -

— —7%7(48b§+24b§+27b%’—30b1+11)+%-

Put P(x)=48x*+24x*+27x*—30x+11. It is very easy to prove that P’(x) is
monotone increasing for 0=<x=<1 and P’(0)<0, P/(1/3)>0. Let A be the root of
P/(x)=0, 0<2<1/3. Construct N(x)=4P(x)—xP’(x). Then N(x) is monotone
decreasing for 0=x=1/3 and N(1/3)>0. Hence N(x)>0 for 0=x<1/3. Especially
N(2)>0 which implies that P(1)>0. Therefore P(x)>0 for 0=<x=<1. Hence by
the above inequality we have Rb;<1/3.

Thus we obtain that if 5,=0 then

Rbs=— 3 1 147

If equality occurs, then b,=0 and, by Lemma 2, ,=2/7. Hence by Lemma A
— .3 3
we have g(z):g*(z, 7 7 )
Next we consider the case b,=0. We also divide this case into several

subcases.
Case 1. %b,=—(b1—1)/2. By Lemma C we have

2
T
3 LY, 1 1
=——55(li—3) +45 <5
This implies that Rb,<1/3.
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Case 2. max{—bi+b,, —(5bi+6b,+5)/8, —(53b1+98b,+45)/8} =%b, < —(bi—1)/2.
In this case there is a point (X, Y,) in ©, such that

blz—-%— X,—2Y,—1,

Rby=—— Xi—X,Y,~ 4V}~ X,—67,~2.

We apply Lemma A with
Qw)dw*=(w*+ X,w?)dw*
g*(z):g'(z; Xo, Yo).
Then we have

9 {by—i( X, 67, 3)3bo+ B} ST+ T(X,, V).

Hence by using Lemma 4 we have
4
8= 3 507
_Case 3. (403+b,—5)/12<Rb,<—b}+0b,. In this case there is a point (X, Y,)
in 9, such that

Rb, <

—2Y,—1,

Rb,=2X,Y,—4Yi+ X,—6Y,—2.
Hence we have

bS5+ g7

Case 4. —5/16=<b,<0 and Rb,<(4b}+b,—5)/12. By Lemma C we have

1311 51 1
Ibol* s g =5 | gy | sl
= 720 —a-(48bi+-24b14-276}— 30b1+11)+_$_< % .

This implies that Rb,<1/3.
Case 5. —2/3<b,<—5/16 and Rb,<max {—bi+b,, —(5b}+60,4-5)/8}. In this
case b;<-—5/16, Rb;=<—2/5. Hence by Lemma C we have

1 3 4 1 25 1
s’ =5—5 55 ~5 556 <9

This implies that Rb;<1/3.
Case 6. b;<—2/3 and Rb;<—(53b?4-98b,+45)/8. By Lemma C we have

L e

5 5 9 9 -
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This implies that Rb;=<1/3.
Thus we have that if 5,<0 then

1 4

If equality occurs, then b,=0 and, by Lemma 4, b,=—4/13. Hence by Lemma

12 15

A we have g(z)5§<z; 137 ~ 96 )
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