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ON ALMOST CONTACT AFFINE 3-STRUCTURES

By KeENTARO YANO, SaNG-SEuP Eum anp U-Hang Ki

The almost quaternion structure has been studied by Ako [10], Bonan [1],
Obata [6, 7] and one of the present authors [10]. The purpose of the present paper is
to study almost contact affine 3-structures [2, 3, 4, 5, 8, 9] induced on hypersurfaces
of an almost quaternion or quaternion manifold.

§1. Hypersurfaces of an almost quaternion manifold.

Let M* be an almost quaternion manifold, that is, a 4n- dimensional diffe-
rentiable manifold which admits a set of three tensor fields F, G H of type (1, 1)
satisfying

Fe=—1 G=—-1 H=-I
1.1) o L L
F=GH=-HG, G=HF=-FH, H=FG=-GF,

I denoting the identity tensor.
We first prove

LemMma 1. 1. There exists an almost Hermitian metric § for the almost quaternion

structure E, G, H, that is, a Riemannian metric § satisfying
WFX, FY)=4X,7),

L2 iGX, G=aX, P,
g X, AN)=§(X, ¥

for arbitrary vector fields X and ¥ of M*.
Proof. Take an arbitrary Riemannian metric & in M** and put
X, V=aX, V)+aF X, FY),
then we easily see that

WEX, Fh=bZX, 1)

since F2=—1. We next put
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i(X, V)=bZX, V)+b(GX, GT),

then we see that

JHX, Y )=3(X, 7).
Suppose that a (4n—1)-dimensional orientable differentiable manifold M**~* is
immersed differentiably in A/** by the immersion
i: M4n—1 )M4n

and denote by B the differential of ;. We denote by C the unit normal to (M)
with respect to the Hermitian metric § introduced above. Then the transform
FBX of a vector field BX tangent to {(M* ') by F can be expressed as

FBX=BFX+u(X)C,

where F is a tensor field of type (1, 1), # a 1-form, and X an arbitrary vector field
of M1, R
Replacing Y by FY in

we find

from which, putting X=C, ¥=C,
a(Fc, ©)=—a(C, FOy=0,
and consequently FC is tangent to i(M**-?). Thus we can put
Fc=-BU,

U being a vector field of M1,
In this way, we have formulas of the form

(i) FBX=BFX+u(X)C, Fc=-BU,
(1.3) (ii) GBX=BGX+v(X)C, GC=—BYV,
(iii) ABX=BHX+w(X)C, HC=-BW,

where F, G, H are tensor fields of type (1, 1), U, V, W vector fields and #, », w 1-
forms of M1,
Applying F to (1.3) (i) and taking account of (1.3) (i), we find

€. 4) FP=—I+u®U, wF=0, FU=0, w(U)=1,
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which show that AM**-1 admits an almost contact affine structure (F, U, u).
Similarly, we can prove

(1. 5) Gr=—I+v®V, oG =0, GV=0, y(V)=1
and
(1. 6) Hi=—I+w®@ W, woH=0, HW=0, w(W)=1,

which show that M*"—! admits another affine almost contact structures (G, V, v)
and (H, W, w).
On the other hand, from

and (1. 3), we have
G(BHX+w(X)C)=BFX+uX)C,
BGHX+v(HX)C—w(X)BV=BFX+u(X)C,
from which
GH=F+w®YV, voH=u.
Also, from
GHc=Fc
and (1. 3), we have
G(—BW)=—BU,
—BGW—v(W)C=—-BU,

from which
GW=U, ov(W)=0.
Thus
.7 GH=F+w®YV, voH=u, GW=U, v(W)=0.

Similarly, we can prove

(1. 8) HF=G+u® W, woF=v, HU=YV, w(U)=0
and
1.9) FG=H+v® U, uoG=uw, FV=W, u(V)=0.

Also, from
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(GH+HG)BX=0
and (1. 3), we have
G(BHX+uw(X)C)+H(BGX+v(X)C)=0,
BGHX+v(HX)C—w(X)BV +BHGX+w(GX)C—v(X)BW=0,
from which,

(GH+HG) X=v(X)W+w(X)V
and
v(HX)+w(GX)=0.

Also, from
GH+HG)C=0
and (1. 3), we have
—GBW-HBV=0,
BGW+v(W)C+BHV+w(V)C=0,

from which,
GW+HV=0, v(W)+w(V)=0.
Thus
GH+HG=vQ W+w® V,
(1. 10)

voH+w-G =0, GW+HV=0, o(W)+w(V)=0.
Similarly, we can prove

HF+FH=wQ U+u® W,

1. 11)
woF+uoH=0, HU+FW=0, w(U)+u(W)=0
and
FG+GF=u@ V+vQ U,
(1. 12)

uoG+voF=0, FV+GU=0, w(V)+o(U)=0.

A set (F,G,H, U, V, W; u,v,w) of tensor fields F, G, H of type (1, 1), vector
fields U, V, W and 1-forms u, », w satisfying (1.4), (1.5), (1. 6); (1.7), (1.8), (1. 9)
and (1. 10), (1.11), (1. 12) is called an almost contact affine 3-structure. Thus, we
have proved
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THEOREM 1. 1. An orvientable hypersurface of an almost quaternion manifold
admits an almost contact affine 3-structure.

Equations (1. 4)~(1. 12) can also be written as follows
Fr=—14+u®U, G=—-I+v® 7T, H=—-I+w@ W,
(1.13) GH=F+w®7, HF=G+u@ W, FG=H+vQU,
HG=-F+v®W, FH=-G+w®U, GF=—H+u®YV,

uoF'=0, uoG=uw, uoH=—u,
(1. 14) voF'=—uw, voG =0, voH=u,
woF=v, woG=—u, woH=0,
FU=0, FV=W, FW=-7,
(1. 15) GU=-W, GV=0, GW=U,
HU=V, HV=-10, HW=0,
w(U)=1, w(V)=0, u(W)=0,
(1. 16) o(U)=0, u(V)=1, o(W)=0,
w(U)=0, w(V)=0, w(W)=1.

Suppose that there is given a Hermitian metric § with respect to £, G and H.
In this case, we put

§(BX, BY)=¢(X, Y)

which gives the Riemannian metric induced on the hypersurface i(M**-Y),
From

#(FBX, FBY)=§(BX, BY)=¢(X, Y),
we find
§(BFX4+u(X)C, BFY+u(Y)C)=¢(X, Y),
g(FX, FY)+u(X)u(Y)=9(X, Y),
or
9(FX, FY)=¢(X, Y)—w(X)u(Y).
We have also

§(BX, FC)=3(BX, —BU)=—¢(X, U)
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and on the other hand
4(BX, FC)=3(FBX, F*C)
=§(BFX+u(X)C, —C)

=—u(X),
and consequently
9(X, U)=u(X).
Thus
9FX, FY)=9(X, Y)—u(X)u(Y),
1.17)

9(X, U)=u(X), ¢(U, U)=1.
Similarly, we have

9(GX, GY)=g¢(X, Y)—o(X)(Y),

(1. 18)

9 X, V)=v(X), oV, V)=1
and

9(HX, HY )=¢(X, Y¥)—w(X)uw(Y),
(1.19)

9(X, W)=w(X), oW, W)=L

An almost contact affine 3-structure with a Riemannian metric ¢ satisfying
(1.17), (1.18) and (1. 19) is called an almost contact metric 3-structure. Thus we
have proved

THEOREM. 1. 2. An orientable hypersurface of an almost quaternion manifold
with a Hermitian metric admits an almost contact metric 3-structure.

Equations
9(X, =u(X), oX, V)=v(X), oX, W)=w(X)
and
v(W)=0, w(U)=0, «(V)=0

show that U, V, W are mutually orthogonal unit vectors.

§2. Hypersurfaces of a quaternion manifold.

Ako and one of the present authors [10] proved following theorems:
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THEOREM A. Let F i 5, A define an almost quatermon structuve. If two of
six Nijenhuis tensors:

IF, F), (G, G), (A, A, 1G, M1, 1A, F), [F, G
vanish, then the others vanish too.

If there exists a coordinate system with respect to which components of the
tensor fields F , G, H are all constants, the almost quaternion structure (F, G, H)
is integrable and the almost quaternion structure is called a quaternion structure.

THEOREM B. In orvder that theve exists, in an almost quaternion manifold, a
symmetric affine connection V such that

FF=0, PG=0, FH=0,
it is necessary and sufficient that two of Nijenhuis tensors
(£, B, (G, G, 1A, /@), 16, A), 14, F), 1F, G
vanish.

THEOREM C. A mecessary and sufficient condition that an almost quaternion
structure (F, G )24 ) be integrable is that two of Nijenhuis tensors

F, B, 16,6\, 1A, @), G, M, (A, B, [F, G
vanish and
R=0,
where R is the curvature tensor of the affine connection ¥ appearing in Theorem B.

We assume in this section that the almost quaternion structure (1'7‘ G, H) is
1ntegrab1e and denote by  the symmetric affine connection with respect to which
F, G, H are covariantly constant.

We now cover M*" by a system 0~f coordinate neighborhoods {U; z"} and
denote by F.», G, H.» components of F, G, bai respectively and by 7, the operator
of covariant differentiation with respect to the symmetric affine connection #, then

(2 1) 7jﬁzh:0, Vjéihzo, 17,-1-71":0.
We represent (M) by
(2 2) xh th(ya,)’

{y®} being local coordinates on M**~! and put B,*=0d,2" (0,=0/dy®) and denote by
C* components of C used in §1. Then equations of Gauss and Weingarten are
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VeBy" =heC*,
@.3)
V.Ch= —he@ Byt +1C"

respectively, where %, and 4.® are the second fundamental tensors with respect to
the affine normal C* and /. the third fundamental tensor.
We write the first equation of (1. 3) (i) in the form

FaByi=F »*Ba" 4+ uC",
where F,* and #, are components of F and # respectively and differentiate this
covariantly along i(M**-!). Then we get

Fr(heC8) = (FoFy®) Ba® + FiheeC" ++ (Fitho)C* + o — he® Bo® +1.CP),

from which

Vo Fot=—he U+ hus,

Vetty = — hee Fy* — L othy,
using the second equation of (1.3) (i) written in the form

FpCi=—U°B,",
where U® are components of the vector field U. We differentiate this covariantly
along i(M*-*). Then we get
FEM(—h2By+1C)=—(F.U"Ba"— UheCt,
from which
PU=hlFLe+1.U%  hlue=heU"
Thus, we have

Vcha=—‘hcha+hcaub, VcUa=llceFea+lcUa',
@. 4)
Vethy= — hee Fo® —Lctts, hltte=he U°.

Similarly, we can prove

VeGo*= —hep V4 + he0s, P Ve=h'Ge+1. Ve,
(2. 5)
chb = hcche - lcvb, hceve = hec Ve

and

VeHy*=—has W+ ho*ws, VW =hH+I W,
(2. 6)
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Vew, = —hceI{be—lcwb; hWe=hic, we,

where G2, Hy*, V*, W*, vy, wy are components of G, H, V, W, v, w respectively.
Now, the almost contact structure (F, U, ») is said to be normal if the tensor

[F, Fl+du@ U

vanishes, where [F, F] is the Nijenhuis tensor formed with F. We compute com-
ponents of this tensor.
Using (2. 4), we have

[F, Fleo®+Vets— Vore) U®
2.7
= (Fcehea - hceFea - lc U“)ub - (Fbekea. - hbeFea _ lb U“)uc.

Similarly, computing components of the tensor
[G, G]+dvR V,
we find

(G, Glev®+ (Vs —Po0e) V'
(2. 8)
=(Ghe® —hl’Ge®—le VO — (Go°he® — 1y’ Go® — I V)0...

We also compute components of the tensor field
[F, Gl+du®@ V+dv® U,

where [F, G] is the Nijenhuis tensor formed with F and G.
Using (2. 4) and (2. 5), we find

[F, Gles®+ (Peths — Vythe) Vo + (Perp— Vove) U
2.9 =(G’he®— hetG "~ 1. V)t — (Gl — Mp°Ge® — 1 V) u,,
+ (Fethe — et Fo® — 1. U0y — (Fythe® — by Fo — L U %)o,..

Suppose that the almost contact affine structures (F, U, #) and (G, V, v) are
both normal, then we have, from (2. 7) and (2. 8),

(2.10) (Fefhe®—het ot — 1. Uty — (Fothe® — 1y Fo* — L U ). =0
and

(2.11) (Gethe® — ht G — e Vs — (Go®he® — hy? G — 1 V*)v.=0
respectively.

Putting c=a in (2.10) and (2. 11) and summing up, we find
2. 12) ~ (e Uup— Fothlrus+1,=0
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and
(2.13) — (VO —Gothtve+1,=0

respectively.
Transvecting (2.12) and (2.13) with W? and using (1.15), (1.16), (2. 4) and
(2. 5), we find

b Ut VO+ L, Wo=0
and
—hap U Vo+ [, Wo=0

respectively, from which
(2.14) hoUeVe=0,  [L,Wo=0.
Transvecting (2.12) with V? and (2. 13) with U? we have respectively
(2. 15) heoWeU?=0 Ve,  haVeWe=—-[U"
Transvecting (2. 10) and (2. 11) with w, W?, we obtain
(2.16) hey VEW?=0,  haWeU*=0,
from which, using (2. 15),
2.17) U=0, [ Ve=0.
Summing up, we have

by VW?=0,  haWeU'=0,  haUV?=0,
(2. 18)
LU =0, L V=0, L,W?=0.

Transvecting (2. 10) with U? and (2. 11) with V? and using (2. 18), we find

2.19) Feeh—hfFt— 1. U= — (I FU)u,
and

(2.20) Gl —h'Go®— 1 Vo= —(h*G,* Vv,
respectively.

Transvecting (2.19) and (2. 20) with W¢ and using (1.15), (1. 16) and (2. 18),
we find

—hl2Ve—hoF2We=0
and
hlU—htGAWe=0
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respectively, and consequently

hbeFea. Ub_: _I_hceGed Wcha = cef[ga Wc
and
hbeGem Vb [ hcngd Wcha = hceHea Wc

by virtue of (1.13). Thus we can write (2.19) and (2. 20) in the form

(2. 21) Feht—hetF*—1.U%=u.P*
and
(2. 22) Gl —hetG2—1.Ve=v.P®

respectively, where
Pl= -t F U= —I*GA V0.
Substituting (2. 21) and (2. 22) into (2. 9), we find
(2.23) [F, Gl+du® V+dv® U=0.

Conversely, suppose that two almost contact affine structures (F, U, #) and
(G, V, v) satisfy (2.23). Then we have from (2. 9)

(Gehe® — et Go® — 1 V Yty — (Gohe® —~ o G — by V *)the
(2. 24)
F(Fth®—hlt Fo® — L. Uvy— (Fythe® — ho? Fo* — L, U %), =0.

Contracting (2. 24) with respect to @ and b and using (1.14) and (1. 15), we
find

(2. 25) Gethe®tha+ Fethte®va+ (o V@) tte+ (L U0, =0,

from which, transvecting U¢, V¢ and W° respectively, we find

(2. 26) haWeU=1[,V?,
(2. 27) hey VWe=—1, Ua,’
(2. 28) heao U UP=he, VEVO.

Transvecting (2. 24) with U? and using (1. 15) and (1. 16), we find

Gcekea - hceGea' - lc Va
(2. 29)
==k We+1’G LU+ L U V)t — (I F 2 U+ L, U U %o,
Transvecting (2. 29) with », and taking account of (2. 27), we find

(2- 30) Gelheva— .= Noa WP Uy,
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from which, transvecting with V°
—lVe=huWoU".
Comparing (2. 26) with this, we find
(2.31) heo WeU®=0, [, V°=0.
Transvecting again (2. 30) with W¢, we find
(2. 32) eWe=ha UV,
Now, transvecting (2. 24) with V? and using (2. 31), we find
(2.33) Feehlt —ht Pt — 1. U= =t VoGt + (hem W — ket VOF )0,
Transvecting (2. 33) with %, and using (2. 31), we find
(2. 34) Fehluo—le=—hoo VO W,
from which, transvecting with U,
LU=ha VeW?,
and consequently, from (2. 27) and this equation, we have
(2. 35) hey VEW?=0, L U°=0.
Thus we have, from (2. 34),
(2. 36) le=F*h u,,
from which, transvecting W¢,
We=—=haUcV?.
Thus (2. 32) and this give
(2.37) haUV?=0, [ W°=0.
Summing up, we have

hcb Vc szoy ka Wc Ub:Oy hcb UC Vb=0’

(2. 38)
L,U*=0, 1,Ve=0, L,We=0.

On the other hand, transvecting (2. 29) with W* and taking account of (1. 14),
(1. 15) and (2. 38),

hlU—hefWG,2=0,

from which, transvecting G.?,
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UG —ht We(—83+v. V?)=0,

hlUG +h*We=0.

Thus, (2.29) becomes

that is,

(2. 40)

Gcehea. . hceGeu — lc Va N hbeFea Ubvc,

Gcehea - hceGeal - lc Va = ,Ba'vcy

B* being a certain vector field.
In the same way, from (2. 33) we can deduce

(2. 41)

Feh —hlF— 1. U=au.,

a® being a certain vector field.
Substituting (2. 41) into (2. 7), we find

[F, F1+du® U=0

and substituting (2. 40) into (2. 8), we find

[G, G]+dv® V=0,

that is, the almost contact affine structures (F, U, #) and (G, V, v) are both normal.
Thus, we have proved

THEOREM 2.1. On a hypersurface of an almost quaternion manifold, the condition

[F, Fl4+de®@ U=0  and [G, Gl+dv® V=0

and the condition

[F, Gl+du@ V+dv @ U=0

are equivalent.
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