ON ALMOST CONTACT AFFINE 3-STRUCTURES

By Kentaro Yano, Sang-Seup Eum and U-Hang Ki

The almost quaternion structure has been studied by Ako [10], Bonan [1], Obata [6, 7] and one of the present authors [10]. The purpose of the present paper is to study almost contact affine 3 -structures [2, 3, 4, 5, 8, 9] induced on hypersurfaces of an almost quaternion or quaternion manifold.

§ 1. Hypersurfaces of an almost quaternion manifold.

Let $M^{4 n}$ be an almost quaternion manifold, that is, a $4 n$-dimensional differentiable manifold which admits a set of three tensor fields $\widetilde{F}, \tilde{G}, \widetilde{H}$ of type (1, 1) satisfying

$$
\tilde{F}^{2}=-I, \quad \tilde{G}^{2}=-I, \quad \tilde{H}^{2}=-I
$$

$$
\begin{equation*}
\tilde{F}=\tilde{G} \tilde{H}=-\tilde{H} \tilde{G}, \quad \tilde{G}=\tilde{H} \tilde{F}=-\hat{F} \tilde{H}, \quad \tilde{H}=\tilde{F} \tilde{G}=-\tilde{G} \tilde{F} \tag{1.1}
\end{equation*}
$$

I denoting the identity tensor.
We first prove
Lemma 1. 1. There exists an almost Hermitian metric \tilde{g} for the almost quaternion structure $\tilde{E}, \tilde{G}, \tilde{H}$, that is, a Riemannian metric \tilde{g} satisfying

$$
\begin{align*}
& \tilde{g}(\tilde{F} \tilde{X}, \tilde{F} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y}), \\
& \tilde{g}(\tilde{G} \tilde{X}, \tilde{G} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y}), \tag{1.2}\\
& \tilde{g}(\tilde{H} \tilde{X}, \tilde{H} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y})
\end{align*}
$$

for arbitrary vector fields \tilde{X} and \tilde{Y} of $M^{4 n}$.
Proof. Take an arbitrary Riemannian metric \tilde{a} in $M^{4 n}$ and put

$$
\tilde{b}(\tilde{X}, \tilde{Y})=\tilde{a}(\tilde{X}, \tilde{Y})+\tilde{a}(\tilde{F} \tilde{X}, \tilde{F} \tilde{Y}),
$$

then we easily see that

$$
\tilde{b}(\tilde{F} \tilde{X}, \tilde{F} \tilde{Y})=\tilde{b}(\tilde{X}, \tilde{Y})
$$

since $\tilde{F}^{2}=-I$. We next put

Received February 3, 1972.

$$
\tilde{g}(\tilde{X}, \tilde{Y})=\tilde{b}(\tilde{X}, \tilde{Y})+\tilde{b}(\tilde{G} \tilde{X}, \tilde{G} \tilde{Y})
$$

then we see that

$$
\begin{aligned}
& \tilde{g}(\tilde{F} \tilde{X}, \tilde{F} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y}), \\
& \tilde{g}(\tilde{G} \tilde{X}, \tilde{G} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y}), \\
& \tilde{g}(\tilde{H} \tilde{X}, \tilde{H} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y}) .
\end{aligned}
$$

Suppose that a ($4 n-1$)-dimensional orientable differentiable manifold $M^{4 n-1}$ is immersed differentiably in $M^{4 n}$ by the immersion

$$
i: M^{4 n-1} \longrightarrow M^{4 n}
$$

and denote by B the differential of i. We denote by C the unit normal to $i\left(M^{4 n-1}\right)$ with respect to the Hermitian metric \tilde{g} introduced above. Then the transform $\tilde{F} B X$ of a vector field $B X$ tangent to $i\left(M^{4 n-1}\right)$ by \tilde{F} can be expressed as

$$
\tilde{F} B X=B F X+u(X) C,
$$

where F is a tensor field of type (1,1), u a 1-form, and X an arbitrary vector field of $M^{4 n-1}$.

Replacing \tilde{Y} by $\tilde{F} \tilde{Y}$ in

$$
\tilde{g}(\tilde{F} \tilde{X}, \tilde{F} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y}),
$$

we find

$$
\tilde{g}(\tilde{F} \tilde{X}, \tilde{Y})=-\tilde{g}(\tilde{X}, \tilde{F} \tilde{Y}),
$$

from which, putting $\tilde{X}=C, \tilde{Y}=C$,

$$
\tilde{g}(\tilde{F} C, C)=-\tilde{g}(C, \tilde{F} C)=0,
$$

and consequently $\widetilde{F} C$ is tangent to $i\left(M^{4 n-1}\right)$. Thus we can put

$$
\tilde{F} C=-B U,
$$

U being a vector field of $M^{4 n-1}$.
In this way, we have formulas of the form
(i) $\quad \tilde{F} B X=B F X+u(X) C, \quad \tilde{F} C=-B U$,
(ii) $\quad \tilde{G} B X=B G X+v(X) C, \quad \tilde{G} C=-B V$,
(iii) $\tilde{H} B X=B H X+w(X) C, \quad \tilde{H} C=-B W$,
where F, G, H are tensor fields of type $(1,1), U, V, W$ vector fields and $u, v, w 1$ forms of $M^{4 n-1}$.

Applying \tilde{F} to (1.3) (i) and takıng account of (1.3) (i), we find

$$
\begin{equation*}
F^{2}=-I+u \otimes U, \quad u \circ F=0, \quad F U=0, \quad u(U)=1, \tag{1.4}
\end{equation*}
$$

which show that $M^{4 n-1}$ admits an almost contact affine structure (F, U, u).
Similarly, we can prove

$$
\begin{equation*}
G^{2}=-I+v \otimes V, \quad v \circ G=0, \quad G V=0, \quad v(V)=1 \tag{1.5}
\end{equation*}
$$

and
(1. 6) $\quad H^{2}=-I+w \otimes W, \quad w \circ H=0, \quad H W=0, \quad w(W)=1$,
which show that $M^{4 n-1}$ admits another affine almost contact structures (G, V, v) and (H, W, w).

On the other hand, from

$$
\tilde{G} \tilde{H} B X=\tilde{F} B X
$$

and (1.3), we have

$$
\begin{aligned}
\tilde{G}(B H X+w(X) C) & =B F X+u(X) C, \\
B G H X+v(H X) C-w(X) B V & =B F X+u(X) C,
\end{aligned}
$$

from which

$$
G H=F+w \otimes V, \quad v \circ H=u .
$$

Also, from

$$
\tilde{G} \tilde{H} C=\tilde{F} C
$$

and (1.3), we have

$$
\begin{aligned}
\tilde{G}(-B W) & =-B U, \\
-B G W-v(W) C & =-B U,
\end{aligned}
$$

from which

$$
G W=U, \quad v(W)=0 .
$$

Thus

$$
\begin{equation*}
G H=F+w \otimes V, \quad v \circ H=u, \quad G W=U, \quad v(W)=0 . \tag{1.7}
\end{equation*}
$$

Similarly, we can prove

$$
\begin{equation*}
H F=G+u \otimes W, \quad w \circ F=v, \quad H U=V, \quad w(U)=0 \tag{1.8}
\end{equation*}
$$

and
(1.9) $\quad F G=H+v \otimes U, \quad u \circ G=w, \quad F V=W, \quad u(V)=0$.

Also, from

$$
(\tilde{G} \tilde{H}+\tilde{H} \tilde{G}) B X=0
$$

and (1.3), we have

$$
\begin{gathered}
\tilde{G}(B H X+w(X) C)+\widetilde{H}(B G X+v(X) C)=0, \\
B G H X+v(H X) C-w(X) B V+B H G X+w(G X) C-v(X) B W=0,
\end{gathered}
$$

from which,

$$
(G H+H G) X=v(X) W+w(X) V
$$

and

$$
v(H X)+w(G X)=0 .
$$

Also, from

$$
(\tilde{G} \tilde{H}+\tilde{H} \tilde{G}) C=0
$$

and (1.3), we have

$$
\begin{gathered}
-\tilde{G} B W-\tilde{H} B V=0, \\
B G W+v(W) C+B H V+w(V) C=0,
\end{gathered}
$$

from which,

$$
G W+H V=0, \quad v(W)+w(V)=0
$$

Thus

$$
G H+H G=v \otimes W+w \otimes V,
$$

$$
\begin{equation*}
v \circ H+w \circ G=0, \quad G W+H V=0, \quad v(W)+w(V)=0 . \tag{1.10}
\end{equation*}
$$

Similarly, we can prove

$$
H F+F H=w \otimes U+u \otimes W
$$

$$
\begin{equation*}
w \circ F+u \circ H=0, \quad H U+F W=0, \quad w(U)+u(W)=0 \tag{1.11}
\end{equation*}
$$

and

$$
F G+G F=u \otimes V+v \otimes U,
$$

$$
\begin{equation*}
u \circ G+v \circ F=0, \quad F V+G U=0, \quad u(V)+v(U)=0 . \tag{1.12}
\end{equation*}
$$

A set $(F, G, H ; U, V, W ; u, v, w)$ of tensor fields F, G, H of type (1, 1), vector fields U, V, W and 1 -forms u, v, w satisfying (1.4), (1.5), (1.6); (1.7), (1.8), (1.9) and (1.10), (1.11), (1.12) is called an almost contact affine 3 -structure. Thus, we have proved

Theorem 1.1. An orientable hypersurface of an almost quaternion manifold admits an almost contact affine 3 -structure.

Equations (1.4)~(1.12) can also be written as follows

$$
\begin{array}{ccc}
F^{2}=-I+u \otimes U, & G^{2}=-I+v \otimes V, & H^{2}=-I+w \otimes W, \\
G H=F+w \otimes V, & H F=G+u \otimes W, & F G=H+v \otimes U, \tag{1.13}\\
H G=-F+v \otimes W, & F H=-G+w \otimes U, & G F=-H+u \otimes V, \\
u \circ F=0, & u \circ G=w, & u \circ H=-v,
\end{array}
$$

$$
\begin{equation*}
v \circ F=-w, \quad v \circ G=0, \quad v \circ H=u \tag{1.14}
\end{equation*}
$$

$$
w \circ F=v, \quad w \circ G=-u, \quad w \circ H=0
$$

$$
F U=0, \quad F V=W, \quad F W=-V
$$

$$
\begin{equation*}
G U=-W, \quad G V=0, \quad G W=U, \tag{1.15}
\end{equation*}
$$

$$
H U=V, \quad H V=-U, \quad H W=0
$$

$$
u(U)=1, \quad u(V)=0, \quad u(W)=0
$$

$$
\begin{equation*}
v(U)=0, \quad v(V)=1, \quad v(W)=0 \tag{1.16}
\end{equation*}
$$

$$
w(U)=0, \quad w(V)=0, \quad w(W)=1
$$

Suppose that there is given a Hermitian metric \tilde{g} with respect to \tilde{F}, \tilde{G} and \tilde{H}. In this case, we put

$$
\tilde{g}(B X, B Y)=g(X, Y)
$$

which gives the Riemannian metric induced on the hypersurface $i\left(M^{4 n-1}\right)$.
From

$$
\tilde{g}(\tilde{F} B X, \tilde{F} B Y)=\tilde{g}(B X, B Y)=g(X, Y),
$$

we find

$$
\begin{aligned}
& \tilde{g}(B F X+u(X) C, B F Y+u(Y) C)=g(X, Y), \\
& g(F X, F Y)+u(X) u(Y)=g(X, Y),
\end{aligned}
$$

or

$$
g(F X, F Y)=g(X, Y)-u(X) u(Y)
$$

We have also

$$
\tilde{g}(B X, \tilde{F} C)=\tilde{g}(B X,-B U)=-g(X, U)
$$

and on the other hand

$$
\begin{aligned}
\tilde{g}(B X, \tilde{F} C) & =\tilde{g}\left(\tilde{F} B X, \tilde{F}^{2} C\right) \\
& =\tilde{g}(B F X+u(X) C,-C) \\
& =-u(X),
\end{aligned}
$$

and consequently

$$
g(X, U)=u(X)
$$

Thus
(1. 17)

$$
\begin{aligned}
& g(F X, F Y)=g(X, Y)-u(X) u(Y), \\
& g(X, U)=u(X), \quad g(U, U)=1 .
\end{aligned}
$$

Similarly, we have
(1. 18)

$$
\begin{aligned}
& g(G X, G Y)=g(X, Y)-v(X) v(Y), \\
& g(X, V)=v(X), \quad g(V, V)=1
\end{aligned}
$$

and

$$
\begin{equation*}
g(H X, H Y)=g(X, Y)-w(X) w(Y) \tag{1.19}
\end{equation*}
$$

$$
g(X, W)=w(X), \quad g(W, W)=1
$$

An almost contact affine 3 -structure with a Riemannian metric g satisfying (1.17), (1.18) and (1.19) is called an almost contact metric 3 -structure. Thus we have proved

Theorem. 1.2. An orientable hypersurface of an almost quaternion manifold with a Hermitian metric admits an almost contact metric 3 -structure.

Equations

$$
g(X, U)=u(X), \quad g(X, V)=v(X), \quad g(X, W)=w(X)
$$

and

$$
v(W)=0, \quad w(U)=0, \quad u(V)=0
$$

show that U, V, W are mutually orthogonal unit vectors.

§ 2. Hypersurfaces of a quaternion manifold.

Ako and one of the present authors [10] proved following theorems:

Theorem A. Let $\tilde{F}, \tilde{G}, \tilde{H}$ define an almost quaternion structure. If two of six Nijenhuis tensors:

$$
[\widetilde{F}, \tilde{F}],[\tilde{G}, \tilde{G}],[\widetilde{H}, \widetilde{H}],[\tilde{G}, \widetilde{H}],[\widetilde{H}, \tilde{F}],[\tilde{F}, \tilde{G}]
$$

vanish, then the others vanish too.
If there exists a coordinate system with respect to which components of the tensor fields $\tilde{F}, \tilde{G}, \tilde{H}$ are all constants, the almost quaternion structure $(\tilde{F}, \tilde{G}, \tilde{H})$ is integrable and the almost quaternion structure is called a quaternion structure.

Theorem B. In order that there exists, in an almost quaternion manifold, a symmetric affine connection $\tilde{\nabla}$ such that

$$
\tilde{V} \tilde{F}=0, \quad \tilde{V} \tilde{G}=0, \quad \tilde{V} \tilde{H}=0,
$$

it is necessary and sufficient that two of Nijenhuis tensors

$$
[\tilde{F}, \tilde{F}],[\tilde{G}, \tilde{G}],[\tilde{H}, \tilde{H}],[\tilde{G}, \tilde{H}],[\tilde{H}, \tilde{F}],[\tilde{F}, \tilde{G}]
$$

vanish.
Theorem ${ }^{\text {C. }}$ A necessary and sufficient condition that an almost quaternion structure $(\tilde{F}, \tilde{G}, \widetilde{H})$ be integrable is that two of Nijenhuis tensors

$$
[\tilde{F}, \tilde{F}],[G, \tilde{G}],[\tilde{H}, \tilde{H}],[\tilde{G}, \tilde{H}],[\tilde{H}, \tilde{F}],[\tilde{F}, \tilde{G}]
$$

vanish and

$$
\tilde{R}=0
$$

where \tilde{R} is the curvature tensor of the affine connection $\tilde{\nabla}$ appearing in Theorem B.
We assume in this section that the almost quaternion structure $(\tilde{F}, \tilde{G}, \tilde{H})$ is integrable and denote by $\tilde{\tilde{V}}$ the symmetric affine connection with respect to which $\widetilde{F}, \widetilde{G}, \widetilde{H}$ are covariantly constant.

We now cover $M^{4 n}$ by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$ and denote by $\widetilde{F}_{2}{ }^{h}, \tilde{G}_{i}{ }^{h}, \widetilde{H}_{2}{ }^{h}$ components of $\tilde{F}, \tilde{G}, \widetilde{H}$ respectively and by \tilde{V}_{3} the operator of covariant differentiation with respect to the symmetric affine connection \tilde{V}, then

$$
\begin{equation*}
\tilde{V}_{j} \tilde{F}_{2}{ }^{h}=0, \quad \tilde{V}_{j} \tilde{G}_{i}^{h}=0, \quad \tilde{V}_{j} \tilde{H}_{2}^{h}=0 . \tag{2.1}
\end{equation*}
$$

We represent $i\left(M^{4 n-1}\right)$ by

$$
\begin{equation*}
x^{h}=x^{h}\left(y^{a}\right), \tag{2.2}
\end{equation*}
$$

$\left\{y^{a}\right\}$ being local coordinates on $M^{4 n-1}$ and put $B_{b}{ }^{h}=\partial_{b} x^{h}\left(\partial_{b}=\partial / \partial y^{b}\right)$ and denote by C^{h} components of C used in $\S 1$. Then equations of Gauss and Weingarten are

$$
\nabla_{c} B_{b}^{h}=h_{c b} C^{h}
$$

$$
\begin{equation*}
\nabla_{c} C^{h}=-h_{c}^{a} B_{a}{ }^{h}+l_{c} C^{h} \tag{2.3}
\end{equation*}
$$

respectively, where $h_{c b}$ and $h_{c}{ }^{a}$ are the second fundamental tensors with respect to the affine normal C^{h} and l_{c} the third fundamental tensor.

We write the first equation of (1.3) (i) in the form

$$
\tilde{F}_{i}^{h} B_{b}^{i}=F_{b}^{a} B_{a}^{h}+u_{b} C^{h}
$$

where $F_{b}{ }^{a}$ and u_{b} are components of F and u respectively and differentiate this covariantly along $i\left(M^{4 n-1}\right)$. Then we get

$$
\tilde{F}_{\imath}{ }^{h}\left(h_{c b} C^{i}\right)=\left(\nabla_{c} F_{b}^{a}\right) B_{a}{ }^{h}+F_{b}^{e} h_{c e} C^{h}+\left(\nabla_{c} u_{b}\right) C^{h}+u_{b}\left(-h_{c}{ }^{a} B_{a}{ }^{h}+l_{c} C^{h}\right),
$$

from which

$$
\begin{aligned}
\nabla_{c} F_{b}^{a} & =-h_{c b} U^{a}+h_{c}^{a} u_{b}, \\
\nabla_{c} u_{b} & =-h_{c e} F_{b}^{e}-l_{c} u_{b}
\end{aligned}
$$

using the second equation of (1.3) (i) written in the form

$$
\tilde{F}_{i}{ }^{h} C^{i}=-U^{a} B_{a}{ }^{h}
$$

where U^{a} are components of the vector field U. We differentiate this covariantly along $i\left(M^{4 n-1}\right)$. Then we get

$$
\tilde{F}_{i}^{h}\left(-h_{c}{ }^{a} B_{a}{ }^{2}+l_{c} C^{i}\right)=-\left(\nabla_{c} U^{a}\right) B_{a}^{h}-U^{e} h_{c e} C^{h}
$$

from which

$$
\nabla_{c} U^{a}=h_{c}^{e} F_{e}^{a}+l_{c} U^{a}, \quad h_{c}^{e} u_{e}=h_{c e} U^{e} .
$$

Thus, we have

$$
\nabla_{c} F_{b}{ }^{a}=-h_{c b} U^{a}+h_{c}{ }^{a} u_{b}, \quad \nabla_{c} U^{a}=h_{c}^{e} F_{e}{ }^{a}+l_{c} U^{a},
$$

$$
\begin{equation*}
\nabla_{c} u_{b}=-h_{c e} F_{b}^{e}-l_{c} u_{b}, \quad h_{c}^{e} u_{e}=h_{c e} U^{e} . \tag{2.4}
\end{equation*}
$$

Similarly, we can prove

$$
\nabla_{c} G_{b}^{a}=-h_{c b} V^{a}+h_{c}^{a} v_{b}, \quad \nabla_{c} V^{a}=h_{c}^{e} G_{e}^{a}+l_{c} V^{a}
$$

$$
\begin{equation*}
\nabla_{c} v_{b}=-h_{c e} G_{b}^{e}-l_{c} v_{b}, \quad \quad h_{c}^{e} v_{e}=h_{e c} V^{e} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{c} H_{b}^{a}=-h_{c b} W^{a}+h_{c}^{a} w_{b}, \quad \nabla_{c} W^{a}=h_{c}^{e} H_{e}^{a}+l_{c} W^{a} \tag{2.6}
\end{equation*}
$$

$$
\nabla_{c} w_{b}=-h_{c e} H_{b}{ }^{e}-l_{c} w_{b}, \quad h_{c}{ }^{e} w_{e}=h_{c e} W^{e},
$$

where $G_{b}{ }^{a}, H_{b}{ }^{a}, V^{a}, W^{a}, v_{b}, w_{b}$ are components of G, H, V, W, v, w respectively.
Now, the almost contact structure (F, U, u) is said to be normal if the tensor

$$
[F, F]+d u \otimes U
$$

vanishes, where $[F, F]$ is the Nijenhuis tensor formed with F. We compute components of this tensor.

Using (2.4), we have

$$
\begin{align*}
& {[F, F]_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) U^{a} } \tag{2.7}\\
= & \left(F_{c}^{e} e_{e}{ }^{a}-h_{c}^{e} F_{e}{ }^{a}-l_{c} U^{a}\right) u_{b}-\left(F_{b}^{e} h_{e}{ }^{a}-h_{b}^{e} F_{e}{ }^{a}-l_{b} U^{a}\right) u_{c} .
\end{align*}
$$

Similarly, computing components of the tensor

$$
[G, G]+d v \otimes V,
$$

we find

$$
\begin{align*}
& {[G, G]_{c b}{ }^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) V^{a} } \\
= & \left(G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}^{e} G_{e}{ }^{a}-l_{c} V^{a}\right) v_{b}-\left(G_{b}{ }^{e} h_{e}{ }^{a}-h_{b}^{e} G_{e}{ }^{a}-l_{b} V^{a}\right) v_{c} .
\end{align*}
$$

We also compute components of the tensor field

$$
[F, G]+d u \otimes V+d v \otimes U
$$

where $[F, G]$ is the Nijenhuis tensor formed with F and G.
Using (2.4) and (2.5), we find

$$
\begin{align*}
& {[F, G]_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) V^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) U^{a} } \\
= & \left(G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}^{e} G_{e}{ }^{a}-l_{c} V^{a}\right) u_{b}-\left(G_{b}{ }^{e} h_{e}{ }^{a}-h_{b}{ }^{e} G_{e}{ }^{a}-l_{b} V^{a}\right) u_{c} \tag{2.9}\\
& +\left(F_{c}^{e} h_{e}{ }^{a}-h_{c}^{e} F_{e}{ }^{a}-l_{c} U^{a}\right) v_{b}-\left(F_{b}^{e} h_{e}{ }^{a}-h_{b}{ }^{e} F_{e}{ }^{a}-l_{b} U^{a}\right) v_{c} .
\end{align*}
$$

Suppose that the almost contact affine structures (F, U, u) and (G, V, v) are both normal, then we have, from (2.7) and (2.8),

$$
\begin{equation*}
\left(F_{e}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} F_{e}{ }^{a}-l_{c} U^{a}\right) u_{b}-\left(F_{b}{ }^{e} h_{e}{ }^{a}-h_{b}{ }^{e} F_{e}{ }^{a}-l_{b} U^{a}\right) u_{c}=0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} G_{e}{ }^{a}-l_{c} V^{a}\right) v_{b}-\left(G_{b}{ }^{e} h_{e}{ }^{a}-h_{b}{ }^{e} G_{e}{ }^{a}-l_{b} V^{a}\right) v_{c}=0 \tag{2.11}
\end{equation*}
$$

respectively.
Putting $c=a$ in (2.10) and (2.11) and summing up, we find

$$
\begin{equation*}
-\left(l_{c} U^{c}\right) u_{b}-F_{b}{ }^{e} h_{e}{ }^{c} u_{c}+l_{b}=0 \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left(l_{c} V^{c}\right) v_{b}-G_{b}{ }^{e} h_{e}{ }^{c} v_{c}+l_{b}=0 \tag{2.13}
\end{equation*}
$$

respectively.
Transvecting (2.12) and (2.13) with W^{b} and using (1.15), (1.16), (2.4) and (2. 5), we find

$$
h_{c b} U^{c} V^{b}+l_{b} W^{b}=0
$$

and

$$
-h_{c b} U^{c} V^{b}+l_{b} W^{b}=0
$$

respectively, from which

$$
\begin{equation*}
h_{c b} U^{c} V^{b}=0, \quad l_{b} W^{b}=0 . \tag{2.14}
\end{equation*}
$$

Transvecting (2.12) with V^{b} and (2.13) with U^{b}, we have respectively

$$
\begin{equation*}
h_{c b} W^{c} U^{b}=l_{c} V^{c}, \quad h_{c b} V^{c} W^{b}=-l_{c} U^{c} . \tag{2.15}
\end{equation*}
$$

Transvecting (2.10) and (2.11) with $w_{a} W^{b}$, we obtain

$$
\begin{equation*}
h_{c b} V^{c} W^{b}=0, \quad h_{c b} W^{c} U^{b}=0, \tag{2.16}
\end{equation*}
$$

from which, using (2.15),

$$
\begin{equation*}
l_{c} U^{c}=0, \quad l_{c} V^{c}=0 \tag{2.17}
\end{equation*}
$$

Summing up, we have

$$
\begin{align*}
& h_{c b} V^{c} W^{b}=0, \quad h_{c b} W^{c} U^{b}=0, \quad h_{c b} U^{c} V^{b}=0, \\
& l_{b} U^{b}=0, \quad l_{b} V^{b}=0, \quad l_{b} W^{b}=0 . \tag{2.18}
\end{align*}
$$

Transvecting (2.10) with U^{b} and (2.11) with V^{b} and using (2.18), we find

$$
\begin{equation*}
F_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} F_{e}{ }^{a}-l_{c} U^{a}=-\left(h_{b}{ }^{e} F_{e}{ }^{a} U^{b}\right) u_{c} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} G_{e}{ }^{a}-l_{c} V^{a}=-\left(h_{b}{ }^{e} G_{e}{ }^{a} V^{b}\right) v_{c} \tag{2.20}
\end{equation*}
$$

respectively.
Transvecting (2.19) and (2.20) with W^{c} and using (1.15), (1.16) and (2.18), we find

$$
-h_{e}{ }^{a} V^{e}-h_{c}{ }^{e} F_{e}{ }^{a} W^{c}=0
$$

and

$$
h_{e}{ }^{a} U^{e}-h_{c}{ }^{e} G_{e}{ }^{a} W^{c}=0
$$

respectively, and consequently

$$
h_{b}{ }^{e} F_{e}{ }^{a} U^{b}=+h_{c}{ }^{e} G_{e}{ }^{d} W^{c} F_{d}{ }^{a}=h_{c}{ }^{e} H_{e}{ }^{a} W^{c}
$$

and

$$
h_{b}{ }^{e} G_{e}{ }^{a} V^{b}=-h_{c}{ }^{e} F_{e}{ }^{a} W^{c} G_{d}{ }^{a}=h_{c}{ }^{e} H_{e}{ }^{a} W^{c}
$$

by virtue of (1.13). Thus we can write (2.19) and (2.20) in the form

$$
\begin{equation*}
F_{c}^{e} h_{e}{ }^{a}-h_{c}^{e} F_{e}{ }^{a}-l_{c} U^{a}=u_{c} P^{a} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} G_{e}{ }^{a}-l_{c} V^{a}=v_{c} P^{a} \tag{2.22}
\end{equation*}
$$

respectively, where

$$
P^{a}=-h_{b}^{e} F_{e}{ }^{a} U^{b}=-h_{b}^{e} G_{e}{ }^{a} V^{b} .
$$

Substituting (2.21) and (2.22) into (2.9), we find

$$
\begin{equation*}
[F, G]+d u \otimes V+d v \otimes U=0 . \tag{2.23}
\end{equation*}
$$

Conversely, suppose that two almost contact affine structures (F, U, u) and (G, V, v) satisfy (2.23). Then we have from (2.9)

$$
\left(G_{c}{ }^{e} h_{e} h^{a}-h_{c}{ }^{e} G_{e}{ }^{a}-l_{c} V^{a}\right) u_{b}-\left(G_{b}{ }^{e} h_{e}{ }^{a}-h_{b}{ }^{e} G_{e}{ }^{a}-l_{b} V^{a}\right) u_{c}
$$

$$
\begin{equation*}
+\left(F_{c}{ }^{e} h_{e}{ }^{a}-h_{c}^{e} F_{e}{ }^{a}-l_{c} U^{a}\right) v_{b}-\left(F_{b}{ }^{e} h_{e}{ }^{a}-h_{b}{ }^{e} F_{e}{ }^{a}-l_{b} U^{a}\right) v_{c}=0 \tag{2.24}
\end{equation*}
$$

Contracting (2.24) with respect to a and b and using (1.14) and (1.15), we find

$$
\begin{equation*}
G_{c}{ }^{e} e_{e}{ }^{a} u_{a}+F_{c}{ }^{e} h_{e}{ }^{a} v_{a}+\left(l_{a} V^{a}\right) u_{c}+\left(l_{a} U^{a}\right) v_{c}=0, \tag{2.25}
\end{equation*}
$$

from which, transvecting U^{c}, V^{c} and W^{c} respectively, we find

$$
\begin{align*}
h_{c b} W^{c} U^{b} & =l_{a} V^{a}, \tag{2.26}\\
h_{c b} V^{c} W^{b} & =-l_{a} U^{a}, \tag{2.27}\\
h_{c b} U^{c} U^{b} & =h_{c b} V^{c} V^{b} .
\end{align*}
$$

Transvecting (2.24) with U^{b} and using (1.15) and (1.16), we find

$$
\begin{align*}
& G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }_{c}^{e} G_{e}{ }^{a}-l_{c} V^{a} \\
& =-\left(h_{e}{ }^{a} W^{e}+h_{b}{ }^{e} G_{e}{ }^{a} U^{b}+l_{b} U^{b} V^{a}\right) u_{c}-\left(h_{b}{ }^{e} F_{e}{ }^{a} U^{b}+l_{b} U^{b} U^{a}\right) v_{c} . \tag{2.29}
\end{align*}
$$

Transvecting (2.29) with v_{a} and taking account of (2.27), we find (2. 30)

$$
G_{c}{ }^{e} e_{e}{ }^{a} v_{a}-l_{c}=h_{b a} W^{b} U^{a} v_{c},
$$

from which, transvecting with V^{c}

$$
-l_{c} V^{c}=h_{b a} W^{b} U^{a} .
$$

Comparing (2.26) with this, we find

$$
\begin{equation*}
h_{c b} W^{c} U^{b}=0, \quad l_{c} V^{c}=0 \tag{2.31}
\end{equation*}
$$

Transvecting again (2.30) with W^{c}, we find

$$
\begin{equation*}
l_{c} W^{c}=h_{c b} U^{c} V^{b} . \tag{2.32}
\end{equation*}
$$

Now, transvecting (2.24) with V^{b} and using (2.31), we find

$$
\begin{equation*}
F_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} F_{e}{ }^{a}-l_{c} U^{a}=-h_{b}^{e} V^{b} G_{e}{ }^{a} u_{c}+\left(h_{e}{ }^{a} W^{e}-h_{b}^{e} V^{b} F_{e}^{a}\right) v_{c} . \tag{2.33}
\end{equation*}
$$

Transvecting (2.33) with u_{a} and using (2.31), we find

$$
\begin{equation*}
F_{c}{ }^{e} h_{e}{ }_{e}^{a} u_{a}-l_{c}=-h_{b a} V^{b} W^{a} u_{c} \tag{2.34}
\end{equation*}
$$

from which, transvecting with U^{c},

$$
l_{c} U^{c}=h_{c b} V^{c} W^{b},
$$

and consequently, from (2.27) and this equation, we have

$$
\begin{equation*}
h_{c b} V^{c} W^{b}=0, \quad l_{c} U^{c}=0 \tag{2.35}
\end{equation*}
$$

Thus we have, from (2. 34),

$$
\begin{equation*}
l_{c}=F_{c}{ }^{e} h_{e}{ }^{a} u_{a}, \tag{2.36}
\end{equation*}
$$

from which, transvecting W^{c},

$$
l_{c} W^{c}=-h_{c b} U^{c} V^{b} .
$$

Thus (2. 32) and this give

$$
\begin{equation*}
h_{c b} U^{c} V^{b}=0, \quad l_{c} W^{c}=0 . \tag{2.37}
\end{equation*}
$$

Summing up, we have

$$
\begin{align*}
& h_{c b} V^{c} W^{b}=0, \quad h_{c b} W^{c} U^{b}=0, \quad h_{c b} U^{c} V^{b}=0, \\
& l_{c} U^{c}=0, \quad l_{c} V^{c}=0, \quad l_{c} W^{c}=0 . \tag{2.38}
\end{align*}
$$

On the other hand, transvecting (2.29) with W^{c} and taking account of (1.14), (1.15) and (2.38),

$$
h_{e}{ }^{a} U^{e}-h_{c}^{e} W^{c} G_{e}{ }^{a}=0,
$$

from which, transvecting $G_{a}{ }^{b}$,

$$
h_{e}^{a} U^{e} G_{a}{ }^{b}-h_{c}^{e} W^{c}\left(-\delta_{e}^{b}+v_{e} V^{b}\right)=0,
$$

or

$$
\begin{equation*}
h_{e}^{d} U^{e} G_{d}^{a}+h_{c}{ }^{a} W^{c}=0 \tag{2.39}
\end{equation*}
$$

Thus, (2.29) becomes

$$
G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} G_{e}{ }^{a}-l_{c} V^{a}=-h_{b}{ }^{e} F_{e}{ }^{a} U^{b} v_{c},
$$

that is,

$$
\begin{equation*}
G_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} G_{e}{ }^{a}-l_{c} V^{a}=\beta^{a} v_{c}, \tag{2.40}
\end{equation*}
$$

β^{a} being a certain vector field.
In the same way, from (2.33) we can deduce

$$
\begin{equation*}
F_{c}{ }^{e} h_{e}{ }^{a}-h_{c}{ }^{e} F_{e}{ }^{a}-l_{c} U^{a}=\alpha^{a} u_{c}, \tag{2.41}
\end{equation*}
$$

α^{a} being a certain vector field.
Substituting (2.41) into (2.7), we find

$$
[F, F]+d u \otimes U=0
$$

and substituting (2.40) into (2.8), we find

$$
[G, G]+d v \otimes V=0
$$

that is, the almost contact affine structures (F, U, u) and (G, V, v) are both normal. Thus, we have proved

Theorem 2.1. On a hypersurface of an almost quaternion manifold, the condition

$$
[F, F]+d u \otimes U=0 \quad \text { and } \quad[G, G]+d v \otimes V=0
$$

and the condition

$$
[F, G]+d u \otimes V+d v \otimes U=0
$$

are equivalent.

Bibliography

[1] Bonan, E., Sur les G-structures de type quaternionien. Cahiers de Topol. et Géom. Diff. 9 (1967), 389-461.
[2] Ishihara, S., and M. Konishi, Fibred Riemannian spaces with Sasakıan 3-structure. Differential Geometry, in honor of Kentaro Yano, Kinokunıya, Tokyo (1972), 179-194.
[3] Kashifada, T., A note on a Riemannian space with Sasakıan 3-structure. Nat. Scı. Rep. Ochanomızu Univ. 22 (1971), 1-2.
[4] Kuo, Y. Y., On almost contact 3-structure. Tôhoku Math. J. 22 (1970), 325-332.
[5] Kuo, Y. Y., and S. Tachibana, On the distribution appeared in contact 3 structure. Taita J. Math. 2 (1970), 17-24.
[6] Obata, M., Affine connections on manıfolds with almost complex, quaternion or Hermitian structure. Jap. J. Math. 26 (1956), 43-77
[7] Оbata, M., Affine connections in a quaternion manifold and transformations preserving the structure. J. Math. Soc. Japan 9 (1957), 404-416.
[8] Sasaki, S., On spherıcal space forms with normal contact metric 3-structure. To appear.
[9] Tachibana, S., and W N. Yu, On a Riemannian space admitting more than one Sasakıan structures. Tôhoku Math. J. 22 (1970), 536-540.
[10] Yano, K., and M. Ako, Integrability conditions for almost quaternion structures. Hokkaido Math. J. 1 (1972), 63-86.

Tokyo Institute of Technology, Sung Kyun Kwan University, and Kyungpook University.

