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ON ALMOST CONTACT AFFINE 3-STRUCTURES

BY KENTARO YANO, SANG-SEUP EUM AND U-HANG Ki

The almost quaternion structure has been studied by Ako [10], Bonan [1],
Obata [6, 7] and one of the present authors [10]. The purpose of the present paper is
to study almost contact affine 3-structures [2, 3, 4, 5, 8, 9] induced on hypersurfaces
of an almost quaternion or quaternion manifold.

§1. Hypersurfaces of an almost quaternion manifold.

Let M4n be an almost quaternion manifold, that is, a 4w-dimensional diffe-
rentiable manifold which admits a set of three tensor fields A G, H of type (1, 1)
satisfying

£2=-/, G2=-7, HZ=-I,

G=HF=-Pfϊ, H=ί?G = -GF,

I denoting the identity tensor.
We first prove

LEMMA 1. 1. There exists an almost Hermitian metric g for the almost quaternion
structure &, G, H, that is, a Riemannian metric g satisfying

(1.2)

3(HX,HΫ)=g(X,Ϋ)

for arbitrary vector fields X and Ϋ of M*n.

Proof. Take an arbitrary Riemannian metric a in M471 and put

then we easily see that

since P2=—L We next put
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9(X, Ϋ) = ~b(X, Y) + b(GX, GΫ\

then we see that

g(Pxt

Suppose that a (4^ — l)-dimensional orientable differentiable manifold M4™"1 is
immersed differentiably in M4n by the immersion

i: M^-1 - >M4n

and denote by B the differential of L We denote by C the unit normal to i(M*n~l)
with respect to the Hermitian metric g introduced above. Then the transform
FBX of a vector field BX tangent to i(M*n~l) by P can be expressed as

FBX=BFX+u(X)C,

where F is a tensor field of type (1, 1), u a 1-form, and X an arbitrary vector field
of M4"-1.

Replacing Ϋ by FΫ in

we find

from which, putting X— C, Y=C,

and consequently FC is tangent to i(M*n~1}. Thus we can put

FC=-BU,
U being a vector field of M*n~l.

In this way, we have formulas of the form

( i ) FBX= BFX+ u(X)C, FC=-BU,

(1.3) ( i i) GBX=BGX+v(X)C, GC=-BV,

(iii) HBX=BHX+w(X)C, HC=-BW,

where F, G, H are tensor fields of type (1, 1), U, F, W vector fields and u, v, w 1-
forms of M4"-1.

Applying F to (1. 3) (i) and taking account of (1. 3) (i), we find

(1.4) F2=-/+^(x)t/, woF=0, F£7=0,
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which show that M*n~l admits an almost contact affine structure (F, U, u).
Similarly, we can prove

(1.5) G2=-I+v®V, voG=Q, G7=0, v(V)=l

and

(1.6) H2= -I+w® W, woH=0,

which show that M*n~l admits another affine almost contact structures (G, V, v]
and (H, W, w\

On the other hand, from

GHBX=FBX

and (1. 3), we have

G(BHX+ w(X}C ) - BFX-i- u(X}C,

BGHX+ v(HX)C-w(X)B V=BFX+ u(X)C,

from which

Also, from

GHC=FC

and (1. 3), we have

G(-BW)=-BU,

-BGW-v(W)C=-BU,

from which

GW=U, v(W)=Q.

Thus

(1.7) GH=F+w®V, v°H=u, GW=U, v(W)=Q.

Similarly, we can prove

(1.8) HF=G + u®W, w°F=v, HU=V, w(U)=Q

and

(1.9) FG=H+v®U, uoG=w, FV=W, u(V)=Q.

Also, from
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(GH+HG)BX=Q

and (1. 3), we have

G(BHX+ w(X)C) + H(BGX+ v(X)C) = 0,

BGHX+ v(HX}C - w(X}B F+ BHGX+ w(GX}C - v(X}B W= 0,

from which,

(GH+HG)X=v(X) W+w(X) V

and

Also, from

and (1. 3), we have

from which,

Thus

GBW-HBV=0,

GW+HV=0,

(1. 10)

(1. 11)

=Q, GW+HV=Q,

Similarly, we can prove

HF+FH=w® U+u® W,

=Q, HU+FW=Q,

and

(1. 12)

FV+GU=Q,

A set (F, G, H; U, F, W\ u, v, w) of tensor fields F, G, H of type (1, 1), vector
fields U, F, W and 1-forms u, v, w satisfying (1. 4), (1. 5), (1. 6); (1. 7), (1. 8), (1. 9)
and (1. 10), (1. 11), (1. 12) is called an almost contact aίfine 3-structure. Thus, we
have proved
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THEOREM 1.1. An orientable hypersurface of an almost quaternion manifold
admits an almost contact affine ^-structure.

Equations (1. 4)~(1.12) can also be written as follows

(1.13) GH=F+w®V, HF=G+u®W, FG=H+v®U,

, FH=-G+w®U,

(1.14) v°F=-w, #oG=0, voH=u,

w°F=v, w°G=—u, ιv°H=Q,

FU=0, FV= W, FW= - V,

(1.15) GU=-W, GF-0, GW=U,

HU= V, HV= - U, HW= 0,

«(E7) = 1, u(V)=Q, u(W)=Q,

(1.16) v(U)=Q,

«;(C7)=0,

Suppose that there is given a Hermitian metric g with respect to F, G and H.
In this case, we put

ί(BX, BY)=g(X, Y)

which gives the Riemannian metric induced on the hypersurface i(M*n~l).
From

g(FBX, PBY)=g(BX, BY)=g(X, F),

we find

g(BFX+u(X)C, BFY+u(Y}C) = g(X, 7),

g(FX, FY}+u(X}u(Y}=g(X, Y\

or

g(FX, FY)=g(X, Y)-u(X}u(Y).

We have also

g(BX, FC}=g(BX, -BU)=-g(X, U)
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and on the other hand

β(BX, FC) = g(FBX, F2C)

= g(BFX+u(X)C, -C)

= -«(*),

and consequently

g(X, U) = u(X).

Thus

g(FX, FY)=g(X, Y)-u(X)u(Y\
(1. 17)

g(X, U}=u(X), g(U, U) = l.

Similarly, we have

g(GX,GY)=g(X,Y)-v(X)v(Y),
(1. 18)

g(X, V}=v(X\ g(V, V) = l

and

g(HX, HY)=g(X, Y)-w(X)w(Y\
(1. 19)

g(X, W}=w(X\ g(W, W) = l.

An almost contact affine 3-structure with a Riemannian metric g satisfying
(1. 17), (1. 18) and (1. 19) is called an almost contact metric 3-structure. Thus we
have proved

THEOREM. 1. 2. An orientable hypersurface of an almost quaternion manifold
with a Hermitian metric admits an almost contact metric 3-structure.

Equations

g(X, U) = u(X), g(X, V)=υ(X), g(X, W) = w(X)

and

υ(W)=0, w(U} = ̂  u(V)=0

show that Uy F, W are mutually orthogonal unit vectors.

§2. Hypersurfaces of a quaternion manifold.

Ako and one of the present authors [10] proved following theorems:
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THEOREM A. Let F, G, H define an almost quaternion structure. If two of
six Nijenhuis tensors:

[F, F], [G, G], [H, H], [G, H], [H, F], [F, G]

vanish, then the others vanish too.

If there exists a coordinate system with respect to which components of the
tensor fields F, G, H are all constants, the almost quaternion structure (F, G, H)
is integrable and the almost quaternion structure is called a quaternion structure.

THEOREM B. In order that there exists, in an almost quaternion manifold, a
symmetric affine connection V such that

FF=0, FG-0, W-0,

it is necessary and sufficient that two of Nijenhuis tensors

[F, F], [G, G], [ff, H], [G, H], [H, F], [F, G]

vanish.

THEOREM C. A necessary and sufficient condition that an almost quaternion
structure (F, G, H) be integrable is that two of Nijenhuis tensors

[F, F}, [G, G], [H, ff], [G, ff], [H, F], [/?, G]

vanish and

where R is the curvature tensor of the affine connection V appearing in Theorem B.

We assume in this section that the almost quaternion structure (F, G, H} is
integrable and denote by F the symmetric affine connection with respect to which
F, G, H are covariantly constant.

We now cover M4n by a system of coordinate neighborhoods {U\ xh] and
denote by F^h

ί Gih, Hτ

h components of F, G, H respectively and by 7, the operator
of covariant differentiation with respect to the symmetric affine connection F, then

(2.1)

We represent i(M^n'1) by

(2.2) xh = xh(ya\

{ya} being local coordinates on M*n~l and put Bb

h=dbx
h (db=dldyb) and denote by

Ch components of C used in § 1. Then equations of Gauss and Weingarten are
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VcBb

h

(2.3)

respectively, where hcb and hc

a are the second fundamental tensors with respect to
the affine normal Ch and lc the third fundamental tensor.

We write the first equation of (1. 3) (i) in the form

where Fb

a and ub are components of F and u respectively and differentiate this
covariantly along i(M*n~l). Then we get

b

ehceC
h + (FcUb)Ch + Ub( - hc*Ba

h + /CCΛ) ,

from which

PcFb

a=-hcbU
a+hc

aub,

Pcub=-hceFb

e-lcub,

using the second equation of (1. 3) (i) written in the form

where Ua are components of the vector field U. We differentiate this covariantly
along iζM411"1). Then we get

from which

PcU
a=hc

eFe

a+lcU
a,

Thus, we have

(2.4)
Fc^6 = - kceFb - leU», hc

eUe = hce U*.

Similarly, we can prove

δ

α= -hcb V
a+hcavb, rc V"=hc

eGe«+lc V
a,

(2.5)
ί7cVb=^hceGb

e-lcvb, hc

eve=hecV
e

and

(2. 6)
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= - hceHb

e - lcWb, hc

e We - hce We,

where Gδ

α, Hb

a, Va, Wa, vb, wb are components of G, H, V, W, v, w respectively.
Now, the almost contact structure (F, U, u) is said to be normal if the tensor

[F,F]+du®U

vanishes, where [F, F] is the Nijenhuis tensor formed with F. We compute com-
ponents of this tensor.

Using (2. 4), we have

(2.7)
- (Fc

eh« - hc

eFe« - ίc U")ub - (Fb

ehe

a - hb

eFe" - h Ua)uc.

Similarly, computing components of the tensor

[G,G]+dv®V,

we find

(2.8)
= (Gc

ehe

a-hc

eGea-lc Va)vb-(Gb

ehe«-hb

eGea-lb

We also compute components of the tensor field

[F,G]+du®V+dv®U,

where [F, G] is the Nijenhuis tensor formed with F and G.
Using (2. 4) and (2. 5), we find

[F, G]c&

(2.9) =(GAα-Λ/Ge

α-/eFαM-(G&

eV~VGe

α--4FαK

+ (Fc

ehe

a - hfF" - lc U
a)vb - (Fb

ehe

a - hb

eFe

a - lb U
a)vc.

Suppose that the almost contact affine structures (F, U, u) and (G, F, v) are
both normal, then we have, from (2. 7) and (2. 8),

(2.10) (FΛα-VFe

α-/c^
αK-(FδV-VFe

α-4^^c=0

and

(2. 11) (Gc

ehe

a-hc

eGe

a-lc Va)vb-(Gb

ehe

a-hb

eGe

a-ίb F>β=0

respectively.
Putting c=a in (2. 10) and (2. 11) and summing up, we find

(2. 12) ~(lcUc)ub-Fb

ehe

cuc+lb=Q
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and

(2. 13) - (4 Vc)vb - Gb

ehe

cvc +4=0

respectively.
Transvecting (2. 12) and (2. 13) with Wb and using (1. 15), (1. 16), (2. 4) and

(2. 5), we find

hcbU
cVb+lbW

b=0
and

respectively, from which

(2.14) hcbU
cVb = Q, lbW

b=Q.

Transvecting (2. 12) with Vb and (2. 13) with Ub, we have respectively

(2.15) hcbW
cUb=lcV

c, hcbV
cWb=-lcU

c.

Transvecting (2. 10) and (2. 11) with waW
b, we obtain

(2. 16) hcb V
c Wb = 0, hcb W

c Ub = 0,

from which, using (2. 15),

(2.17) 4£/c = 0, 1CV
C=Q.

Summing up, we have

hcbV
cWb=0, hcbW

cUb=Q, hcbU
cVb=Q,

(2. 18)
4f/δ=0, 4Fδ=0, lbW

b=Q.

Transvecting (2. 10) with Ub and (2. 11) with Vb and using (2. 18), we find

(2. 19) Fc

eAe

α - hfF? -lcU
a=- (hb

eFe

a Ub)uc

and

(2. 20) Gc

eAe

α - hc*Ge

a -lcV
a=- (hb

eGe

a Vb)vc

respectively.

Transvecting (2. 19) and (2. 20) with Wc and using (1. 15), (1. 16) and (2. 18),
we find

-he

aVe-hc

eFe

aWc = 0

and



ALMOST CONTACT AFFINE 3-STRUCTURES 139

respectively, and consequently

VFe

α Ub = + hfGf WcFd« = he* He« Wc

and
hb*Ge

a Vb=- hc

eFe

d WcGd

a = hc

eHe

a Wc

by virtue of (1. 13). Thus we can write (2. 19) and (2. 20) in the form

(2. 21) Fc

ehe

a - hc

eFe

a -lcU
a = ucP

a

and

(2. 22) Gfhf - hceGe

a -lcV
a= vcP

a

respectively, where

Pa=-hb

eFe

aUb=-hb*Ge

a Vb.

Substituting (2. 21) and (2. 22) into (2. 9), we find

(2. 23) [F, G] + du® V+ dυ <g) U= 0.

Conversely, suppose that two almost contact affine structures (F, C7, u) and
(G, F, υ) satisfy (2. 23). Then we have from (2. 9)

(Gc

ehe

a - hc

eGea - lc V
a)ub - (Gb

ehe

a - hb

eGe

a - lb V
a)uc

(2. 24)
+ (Fc

ehe

a - hc

eFe

a - 4 Ua)vb - (Fb

ehe« - hb

eFe

a - lb U
a)vc = 0.

Contracting (2. 24) with respect to a and b and using (1. 14) and (1. 15), we
find

(2. 25) Gc

ehe

aua + Fc*he

ava + (la Va)uc + (la Ua)vc = 0,

from which, transvecting Uc, Vc and Wc respectively, we find

(2.26) hcbW
cUb=laV

a,

(2.27) hcbV
cWb=-laU

a,

(2.28) hcbU
cUb = hcbV

cVb.

Transvecting (2. 24) with Ub and using (1. 15) and (1. 16), we find

Gc

ehe

a-kceGe

a-lcV
a

(2. 29)
= -(heaWe+hb

eGe

aUb+lbU
bVa)uc-(hb

eFe

aUb+lbU^

Transvecting (2. 29) with va and taking account of (2. 27), we find

(2. 30) Gcehe

ava — lc = hba W
b Uavc,
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from which, transvecting with Vc

-ίcV
c=hbaW

bUa.

Comparing (2. 26) with this, we find

(2.31) hcbW
cUb=Q, /CFC=0.

Transvecting again (2. 30) with Wc, we find

(2.32) lcW
c=hcbU

cVb.

Now, transvecting (2. 24) with Vb and using (2. 31), we find

(2. 33) Fc*he«-hc

eFe«—lcU
a= -hb

eVbGe*uc+(he

aWe-

Transvecting (2. 33) with ua and using (2. 31), we find

(2. 34) Fc*he

aua-lc = -hbaV
bWauc

from which, transvecting with Uc,

lcU
c=hcbV

cWb,

and consequently, from (2. 27) and this equation, we have

(2.35) hcbV
cWb=Q, 1CU

C=Q.

Thus we have, from (2. 34),

(2. 36) lc=Fc

ehe

aUa,

from which, transvecting Wc,

ίcWc=_hcbUcVt>t

Thus (2. 32) and this give

(2.37) hcbU
cVb=0, lcWc=Q.

Summing up, we have

δ=0, hcbW
cUb=0, hcbU

cVb=Q,
(2. 38)

1CU
C=0, 4FC=0, 1CW

C=Q.

On the other hand, transvecting (2. 29) with Wc and taking account of (1. 14),
(1. 15) and (2. 38),

he

aUe-hc

eWcGe

a=Q,

from which, transvecting GΛ
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ke

a UeGa

b ~ hc

e WC( -dbe + Ve V
b) = 0,

or

(2.39) he

dUeGd

a+hc«Wc=Q.

Thus, (2. 29) becomes

G eL a lj eΓ* a, 1 T/α _ /, e f f a T T b * ,c rle — tic (jre — tc V — — Hi) Γe (J Vc,

that is,

(2. 40) Gcehea_hceGea_lcVa = βaVc)

βa being a certain vector field.
In the same way, from (2. 33) we can deduce

(2. 41) Ffhf - hc

eFe

a -lcU
a = aauc,

aa being a certain vector field.
Substituting (2. 41) into (2. 7), we find

and substituting (2. 40) into (2. 8), we find

that is, the almost contact affine structures (F, U, u) and (G, F, υ) are both normal.
Thus, we have proved

THEOREM 2. 1. On a hyper surf ace of an almost quaternion manifold, the condition

[F, F]+du® U=0 and [G, G]+dv® F=0

and the condition

[F, G]+du® V+dv® U=Q

are equivalent.
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