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Introduction.

Many papers on the theory of submersion, together with immersions, have
been published in recent years (e.g. [1], [4], [8], [9], [17]). A mapping σ from a
manifold Mn onto a manifold Mm is called a submersion if its differential σ* is of
rank m at any point of Mn, where n is larger than m. It seems, generally speak-
ing, that there are two directions of investigating submersions. One is to discuss
the existence of a submersion in a given manifold and the other is to study a
manifold in which a submersion is assumed to be given a priori. The submer-
sion has also been studied as a fibred space. The concept of a fibred space has
been used, since 1922, in unified field theories and in the theory of projective
connections.

The purpose of the present paper is to study fibred spaces with a projectable
Riemannian metric and a projectable almost complex structure. In §§ 1 and 2
definitions and lemmas are stated in the most general case for the later use. We
discuss in § 3, by use of tensor analysis, the properties of a fibred Riemannian
manifold in detail. The structure equations for a fibred space are prepared in § 4.
In § 5, we assume that M and fibres are both of even dimensional and we in-
troduce in M an almost complex structure. First we assume that each fibre is an
invariant subspace of M and next we treat with more general case. For the case
in which the dimension of a fibre is odd, especially 1-dimensional, see [7], where
an almost contact structure is introduced in M.

§ 1. Preliminaries.

Let M and M be differentiable1 > manifolds of dimension n and m respectively,
where n is larger than m. We assume that there is given a differentiable sub-
mersion σ from M to M, that is, σ is a differentiable mapping from M onto M
whose differential a* is of rank m at each point P of M. Therefore, the complete
inverse image £Fp of PeΛf is an n—m dimensional closed submanifold of M. We
call £FP a fibre over P. Throughout this paper we assume that every fibre is

Received October 13, 1971.
1) Differentiability is always assumed to be of C°°.

482



FIBRED SPACES WITH ALMOST COMPLEX STRUCTURES 483

connected.2) Let 'M be the disjoint union of all £FP, then fM is regulary imbedded
submanifold of M. We call (M, M, 'M, σ) a fibred space over M. A vector in M
is said to be vertical, if it is tangent to 'M. In other words, a vertical vector is a
vector which is tangent to M at a point P and belongs to the kernel of σ* at the
point P. If a (local) vector field is a (local) field of vertical vectors, then it is
called a (local) vertical vector field. Since the rank of σ* is m, there are n~ m
linearly independent vertical vector fields in a neighborhood of every point of
Mf which will be denoted by Cα.

3) Ca define an n— m dimensional distribution:
P->7VF(M) which is completely integrable and therefore the set of all vertical
vector fields of M is a subalgebra of Lie algebra of all vector fields of M. A
complementary subspace T?H(M] of ΓpF(M) in Tp(M) defines an m dimensional
distribution which is called a horizontal distribution or a field of horizontal planes.
We can choose, in a neighborhood of each point P of M, m linearly independent
vector fields Ea^ which span the horizontal planes at P. We fix, from now on, a
field of horizontal planes which can be arbitrarily chosen. Thus n vectors Ea and
Ca form a basis of Tp(M) at each point P of M. The inverse of (Eaj Ca) is denoted

( Ea\ ~ ~
}. Then any tensor T of type (r, s) in M is expressed as

The first and the last terms in the right hand side are called the horizontal part
and the vertical part of T and denoted by TH and T v respectively. The horizontal
part and the vertical part of a tensor field in M can be defined in the same way.
We denote by £Γ ί(M) the space of all tensor fields of type (r, s) in M and put

) = Σr,.£Γί(M). Then we have

(1.1) X=XH+XV for

and

(1.2) ώ = ώH + ωv for

The facts expressed by equations (1. 1) and (1. 2) are called the canonical decom-
position of a vector field X and a 1-form ω respectively. If we define

fH=fv=f for

2) This assumption is indispensable for a geometric object which is projectable (See
below).

3) Greek indices a,β, - run over the range 1, 2, ••-, n-m. Strictly speaking, C«€TJ('M)
and £*C«€ΓJ(M), where ι* is the differential of the imbedding c. 'M-+M. But we shall omit
c* as far as there is no fear of confusion.

4) Latin indices a, b, •••, g run over the range 1,2, ••-, w, while h,i,j, ••• over the range
1,2, ...,«.
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we have

?H®SH, (f (x) SY = f V®S v

for any
A tensor field ^ in M is said to be projectable if it satisfies

(P.I)

for any vertical vector field X, where £% denotes the Lie derivative with respect
to X. If T is a local tensor field defined in some neighborhood V and satisfies
(P.I) in CU, then f is also said to be projectable. It can be shown that the con-
dition (P.I) reduces to £χf*=OJor f e£Π(M), and to (.£??)*=() for ?€£Π(M),
because the distribution P -> Γ|(M) is completely integrable. The set of all pro-
jectable tensor fields is denoted by £P(M) and we put £P£(M) = £P(M) Π 2T(M).

This fact is expressed as follows

LEMMAJ..JL. [14] // Xe£ΓFί(M) and ?€3>}(Λf), fΛβn [X,Ϋ] is vertical. Con-
versely if [X, Ϋ] is vertical for any u¥e£ΓFί(M) and if every fibre is connected, then
f€5>J(Af).

We need following lemmas which give other expressions of (P. 1).

LEMMA 1. 2. [6] <P}(M), the set of all projectable vector fields, is subalgebra
of £Π(M).

The proof is easily given by means of Jacobi identity and Lemma 1. 1.
We shall show in § 4 that [Ca, Ea] is vertical, and thus Ea is projectable.

LEMMA 1.3. [6] Ϋ €^i(M) if and only if ?/€5>°(M) for any

LEMMA 1. 4. [6] If F€ £P5(M), then σ*Ϋ is constant along each fibre.

Lemma 1.4 enables us to define a homomorphism π: <Pί(M)-*£Γί(M) in such a
way that π is the restriction of σ* on £PJ(M), that is, Y=πΫ=σ*Ϋ for ?€£pJ(M).
π is called a projection. Clearly, the kernel of π is £ΓFi(M). Thus ζ£H\(M) is
isomorphic to 3l(M). We define an isomorphism

L: £ΓXM)->S>*XΛf),

which is the inverse of π restricted to <PHJ(M), that is, we define XLs&H\(M) for
in such a way that

(1.3) πXL=X.

LEMMA 1. 5. L is naturally extended to an isomorphism from £Π(M) to 2>Hr

s(M)
as follows:

fL=f°σ
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and

(S®T}L=SL®TL S,

where *σ is the dual mapping of σ*.

Proof. Obviously fL is constant on each fibre and thus fL€
From the definitions of XL and ωL, we see ωL(XL) = (ω(X)}L, thus we have

JCW>L(XL) - Uvθ)L}(XL] - ωLUyXL) = UyωL)H(XL) = 0

for any F€£ΓFJ(M) and any X£<3\(M}. This shows a)L£3>Hl(M). Since any tensor
given by tensor product of projectable tensors are also projectable, the lemma is
proved.

From now on, simplifying the notation, we use σ in place of σ* and *<τ.
The projection π defined by (1.3) is also extendable to a homomorphism:

<PΪ(M)-> £Γί(M) which we call again projection and denote by the same letter π.
The definition of π is as follows: If /€<PJ(M), / is constant on each fibre and
thus there exists a function / in M such that f=fσ. We define

*/=/•

For ώ€£P5(M) we define πω by the following equation:

where X is an arbitrary element of £Π(M). We define π inductively by

for S,
Next we consider the case in which M admits an affine connection Ϋ. If the

vector field FXΫ is projectable for any X,ΫG<£>m

0(M), then V is said to be projec-
table. We define V by

(1.4)

for arbitrary X and Y of £Γi(M).

LEMMA 1. 6. The V defined by (1. 4) is an affine connection in M. If P is
torsionless, so is P.

We call P the induced connection and denote it by π(F).

Proof. It is obvious that PxYs^KM). First we show

and

2)
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for any / and g of £Π(M) and Z of £ΓJ(M). Since V is an affine connection,
we see

and

PfLχL+ffLγLZL = fLFχLZL + gL

Thus we have

Vx(f F) = π(PXL(f Y)L) = π(VXL(fί γLy = fVχ γ+ (Xf) Y

and

which prove that V is an affine connection in M. A similar computation shows

T(X, Y)=πT(XL, YL],

where T and f are, torsion tensors of V and V respectively.

§ 2. Projectable Riemannian metric.

We assume, in this section and in the following, that there is given a projec-
table Riemannian metric g.5) By the definition, g satisfies

for any vertical vector field V. This means

for any two horizontal and at the same time projectable vector fields X and
Ϋ along a fibre with the same projection, where \\x\\^ is the length of X with
respect to g. Without loss of generality, we can assume that g satisfies con-
ditions

(2.1) α(Cβ,EJ=0.

Lie derivatives of g with respect to a vertical vector field V are given as follows:

(2. 2)

where 'g is the metric tensor induced on 'M from g and ι is the injection of 'M
into M, and

5) Reinhart called such a metric a bundle-like metric [10].
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(2. 3) UrtXΫ*, Xv}=-g([V, ΫH], Xv\

On the other hand, g induces a Riemannian metric g in M by means of the
projection π, since g is assumed to be projectable. Thus we have

(2. 4) g(X, Y)z=g(XL, YL\ X,

or

(2. 4)' g(πX, πΫ) = π(g(X, Ϋ )), X,

PROPOSITION 2. 1. Let V be the Riemannian connection with respect to g,
that is,

Pxg=Q and 2f(X9Ϋ)=PzΫ-?γX-[X,Ϋ]=Q.

Then 7 is projectable (see §3) and the induced connection P=π(ί7) is also the
Riemannian connection with respect to the induced metric g=πg.

Proof. We take X, Y and Ze £Π(M) arbitrarily. We have, from the definition,

On the other hand

XL(g( Y, Z))L = XL(g( YL, ZL)) = (

since V is the Riemannian connection. From this equation we have

π(XL(g(Y, Z}}L} = g

Thus we find

Γχflf=0.

The proof of the latter part of the proposition is given in Lemma 1.6. q.e.d.

Let V be the Riemannian connection in M. If we put, for X, Ye£l(M\

(2. 5) VZLYL-(VzYϊ* =Hι(X, Y)

or

(2.5)' VzΫ-(V*zτtf)L=Hl(πX,πΫ) for X,Ϋt£Hl(M\

then Hι(X, Y) is a vector field in M. By a straightforward computation we have
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for vector fields X, Y and Z in M. This shows

from which we have

and the same, ZL being replaced by ZH, holds too. Thus Hι(X, F) is a vertical
vector field in M. On the other hand (PXY)L is horizontal, and consequently

Pz*.YL = (VzY)L+Hι(X, Y)

is the canonical decomposition of the vector field 9χiΎL. Hι(X, Y) defines a
tensor field H of type (1, 2) in M in the following way:

8(X, ?)=fliOr*, πΫ ), X,

(2. 6) ff(X*, Ϋ*) = (?ιπγx)r, X, ?€£ΓJ(Λf),

We must show that (ΫχHΫHY defines a tensor field in M. For that it is sufficient
to show that (VxnYHy is bilinear with respect to X and Ϋ. For p9

we see

Thus we have

which shows that (FxnYHY is bilinear with respect to X and Ϋ.
Thus we can define

ff(x, γ)=(VΣHΫ*γ x, f €£r
The following propositions are well known:

PROPOSITION 2. 2. //"(X, F) is skew-symmetric.

Proof. It is sufficient to show that H(X, Ϋ) is skew-symmetric for X,
because, as we noted above, there are m linearly independent vector fields which
belong to £P^J(M) and any horizontal vector field is a linear combination of these
m vector fields. We have, for any Xs&H\(M) and any Ϋ e£ΓFί(M),

Q=Vg(X, X}=2g(ϊyX , X)=2g(^V+[Vf X], X)

=29(?ZΫ, X)=-2g(V, ?$X)=-2g(V,

Thus we have
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0(X,X)=Q. q.e.d.

From the definition of H(X, Ϋ] and Proposition 2. 2, we get

[X,Ϋ]V=2H(X,Ϋ) for X,ΫeZsi(M).

Thus we have

PROPOSITION 2.3. H(X,Ϋ)=Q if and only if 3H\(M) is a Lie subalgebra of
£Γί(M). Thus the integral submanifold of the horizontal distribution is totally
geodesic.

In the case of Proposition 2.3, that is, when the horizontal distribution is
integrable, M is said to be locally trivial.

We fix, for a while, XsgHl(M) and f €£ΓFJ(M) and let

(2. 7) ΓVX= -Ά(V, Xϊ-LW, X)

be the canonical decomposition. Then we see that

(2. 8) FχV= -#,(?, *)-(Lι(?, *) + [?, *])

is the canonical decomposition, since [F, X] is vertical. Further, if we take
), we have the canonical decomposition

(2.9) ?σV=I*(09Ϋ) + t*('r&Ϋ)9

where '? is the induced connection on 'M from V and c* is the differential of
c. 'M->M. L2(U, V) is symmetric, because £ΓFi(M) is a subalgebra of £ΓJ(M). We
have, by a direct computation,

9(ff(X, Ϋ ), t^)=

and

The four formulas (2. 6)— (2. 9) correspond to the equations of Gauss and Weingarten
for a submanifold and are called the equations of Co-Gauss and Co-Weingarten.

To conclude this section, we consider the Lie derivative of g with respect to
a horizontal vector field. The following formulas, especially (2.12), will be useful
to discuss isometric fibres (cf. Mutό [5]).

(2. 10)

(2. 11) Uzifl(YL, Zv}=-1g(H,(X, F),

and

(2. 12)
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Equations (2.10)~(2.12) will be used, in Corollary 3.1, to obtain a condition
that EaS are Killing vector fields in M.

§ 3. Expressions in terms of local coordinate system.

As a continuation of the preceding section, we discuss in this chapter the
fibred space with projectable Riemannian metric in detail by means of a local
coordinate system. Let (#*) and (xa) be local coordinate systems of M and M re-
spectively. Then the submersion σ: M^M is represented by equations xa—xa(xi)
whose Jacobian matrix 3xa/dxl is of rank m at any point of M. The vertical
vector fields Ca with components C\ satisfy dxa/dxl C*β=0.β> On the other hand,
if we represent by (V) a local coordinate system of £FP, then we have dxa/d'xa

=0, since xa= const, on each fibre. Thus we can choose Ca as vectors with
components Cί

a=dxl/dfxa. We may put E^

a=^xa|^x^, because, for a fixed a, the
transformation law of dxaldxl under the change of a local coordinate system is
just the same as that of a covariant vector in M. We denote by Ei

a the com-
ponents of Ea and by dβ those of Cβ, then we have

£*<&>=&, £'«Cy=0, ESσa=0 and C<*C«β=«.

(Ea9Ca) is a so-called non-holonomic frame. Since we can identify #α with xa, we
may choose a local coordinate system (#*) in M in such a way that each fibre is
expressed by equations xa= const.

The horizontal distribution is defined by Pfaffian equations

which can also be written as

Πa

adxa+d'xa=0

in the natural frame. Thus, the non-holonomic frame has the following com-
ponents with respect to the natural frame.

-(-%)•

We remark that we can choose Ei

a and C/ in such a way that Ei

a=Abag
jiEj

b

and Ciβ=Bβagji&a Thus we have Λα=fri£'δ£*α and B^ = g^C/da. On the other
hand gH

ji=AbaEfEl

a and, by the assumption (j;Cag
H)H=Q, J?CaAba must be zero.

This means that A>α are projectable functions. Thus there exists a Riemannian
metric g in M such that g6α=A>α00 7), where gba are components of g. We denote

6) We shall use, in the sequel, the summation convention.
7) In the sequel, we identify gt>a (resp. rgPa) with Aba (resp. B?a).
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by gba the inverse of gδα, i.e. gbagac=δ% Since £FP is a submanifold of M for each
PeM, djiOβ&a is regarded as the induced metric in 'M which is denoted by 'g.
Let V r be the inverse of 'gα/3, i.e. 'gaig

βr=δr

aι then B?a = fg?"°t.
By a straightforward computation, we have

(3.1) J7<7α£
α=0, £0Cβ=0, XcaEa=-ΠaβaCβ and J7cαC^ /7Λ£α,

where we have put

(3.2) Πa

β

a = daΠaP,

since (dxl/d'xa) are chosen as components of Cα. We also have

(3. 3) Xcβji = Πwα(EfCf + C/£Λ + ( JV0r/DC/CΛ

where Πbβα = ΠJα

fgγβ.

Equations (3.1) and (3.2) give

PROPOSITION 3. 1. Eα commute with Cα if and only if the functions Πa

β are
constant with respect to Ca for all β. Furthermore, Ea commute with each Ca if
and only if Πa

β are projectable functions.

(3. 3) shows that the question whether Ca is a Killing vector field in M is
equivalent to the question whether it is a Killing vector field on £FP when Ca

commutes with any Eb. Thus we have

PROPOSITION 3. 2. In order that Ca is a Killing vector field in M, it is neces-
sary and sufficient that 1) Ca commute with any Eb and 2) Ca is a Killing vector
field on £Fp

We call g an invariant metric, if Xcβa is vertical. Thus we have

PROPOSITION 3. 3. M has an invariant Riemannian metric if and only if Ca

commute with any Eύ (α=l, •• 9n—m).

Now we give formulas for the covariant differentiation with respect to
Riemannian connection in M. From (2. 5)~(2. 9) we may put

(3.4)
-ha»βE^Ef-(lβ\-Πa

a

β}E«σa+laj?E^Cί°+^

where

(3.5)

(3.6)
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and '{/«} are coefficients of the induced Riemannian connection on £FP. The
coefficients {δ

c

α} are given by

(3. 7) {Ju = -E**£*J&f=EfE*J&*

and symmetric with respect to b and a, since Ejc=dxc/dxj and the Riemannian
connection is symmetric.

Now we prove that the Riemannian connection with respect to g^ is projec-
table. The definition of F being projectable is given in § 1 by the equation

for any Fe£TFi(M) and any X,Ϋe&Hl(M). The equation above can be written as

(3.8) J7(7α{δ

cα}=0

in the local coordinate system if we take account of (3.7). Thus we have

LEMMA 3. 1. The Riemannian connection tvith respect to g is projectable if
and only if functions {α

cδ} are all projectable.

On the other hand, we have

(3.9) ^^}=U^Λ})^Jc£S&β+/7ΛA»%+WίA
β^

if we take account of (3.4) and the well-known equations

(cf. [11]). To prove that the right hand side of (3.9) vanishes, we substitute (3.3)
into the equations

and then take account of (3.4). Thus we have

PROPOSITION 3. 4. The Riemannian connection with respect to §ji is projectable.

Thus M has the Riemannian connection which is induced from gjt and there-
fore we can consider structure equations in the fibred space. They are called
equations of Co-Gauss, of Co-Codazzi and of Co-Ricci corresponding to the equa-
tions of Gauss, of Codazzi and of Ricci for a submanifold. We shall give them
in the next section.

We have seen in § 2, that the horizontal distribution is integrable if and only
if hύa

a=Q and in §3, that Ca commute with Eb if and only if ΠbP are constant
with respect to Ca for all β. It might be interesting to show the relation between
hύa

a and Πa

a. Taking account of (3. 1) and (3. 4), we have

(3. 10) fac? = ΠtfΠafβ + /7CΛ αj,
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where [ ] denotes skew-symmetrization and comma denotes partial differentiation.
Thus we have

PROPOSITION 3.5. If Πa

a are constant, then the horizontal distribution is inte-
grable and the integral submanifold is totally geodesic. Conversely, if the horizontal
distribution is integrable, then we can choose a local coordinate system in which
77δ

α=0.

Using Jacobi identity with respect to the triple (C«, Eb, Ea\ we have

(3.11) dAα'=-£iαΛ

where Kbaa

β is the so-called curvature of Πb

a defined by

(3.12) Kbaa

β=^Πa^a-ΠLb

rdlr[Πa]βa+Π^{nΠaJ

r

a.

Thus we have

PROPOSITION 3.6. hba

a are projectable functions if and only if the curvature
of Πb

r vanishes.

When the curvature of Πa

a vanishes, hba

a induce on M (n—m) vector-valued
2-forms which we denote by the same letter h. From this fact and equations
(3.10) and (3.12) we have

PROPOSITION 3.7. If Πa

aβ=Q, then hba

a induce on M vector-valued 2-forms
which are closed.

Jacobi identity for the triple (ECί ED, Ea) shows

(3.13) dίchbal

a+h^Πa,
a

β+Π^Kba,β

a=0,

and these equations give another proof of Proposition 3.7.

Here we consider the case in which the horizontal distribution gives an
isometric correspondence between two neighboring fibres. In this case, fibres are
called isometric fibres by Mutδ [5]. The condition for fibres to be isometric is
given by

(3.14) U7*αff)F=0,

or equivalently by

(3. 15) V. α ~ Πa

7'gβa, r ~ 'Qr.ΠJβ " 'V^da = &

On the other hand, since we have seen, in (2.12) and (3.4), that

(3.16) UχJί7=-Ui«£fCf

and lβa

a are components of the second fundamental tensor on g> with respect to
the normal vector Ea, we have
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PROPOSITION 3.8. [5] If the horizontal distribution gives an isometric cor-
respondence between two neighboring fibres, then any fibre £Fp is a totally geodesic
submanifold of M.

We also have, from this and Proposition 2.3,

THEOREM 3. 1. If M has isometric fibres and the horizontal distribution is
integrable, then M is locally the Riemannian product of £FP and M, where M is
diffeomorphic to M.

Proof. Propositions 2.3 and 3.8 show that M is a local product of two
submanifolds £FP and M which is an integral submanifold of the horizontal dis-
tribution. Since we can choose a local coordinate system in which Πa

a=Q (see
Proposition 3.5), we have

(3.17) dαV=0.

On the other hand, Riemannian metric g is assumed to be projectable, and hence

(3.18) dαg&α=0

holds. (3. 17) and (3. 18) show that M is locally the Riemannian product of £Fp
and the integral submanifold M of the horizontal distribution. Thus M is diffeo-
morphic to M

On the other hand, equations (2. 10)~(2. 12) show that

^ff/i = U*βfc^

from which and Theorem 3. 1 we have

COROLLARY 3. 1. In order that Eds are Killing vector fields in M, it is neces-
sary and sufficient that M is locally the Riemannian product of £Fp and M, where
M is diffeomorphic to M and has a flat metric and £Fp is a totally geodesic sub-
manifold of M.

As we have seen in § 1, hba" are components of vector fields in fM with
respect to index a. By a straightforward computation we have

(3. 19) J^hba

fQβa — — J?Eblβa(L + ^Csjβab ~ IγβbΠ a a ~ lγaΐ)Π a β + IγocaΠb 'β + IγβaΠϊΐa,

from which and Proposition 3. 8 we have

PROPOSITION 3. 9. If M has isometric fibres, then the vector fields h^ in 'M
are Killing vector fields on each £FP for all a and b.

Next we consider the case in which the horizontal distribution defines a con-
formal correspondence between two neighboring fibres (Mutδ [5] called such fibres
similar fibres.) Such a correspondence is defined by the condition

(3.20) UEaQji)V = 2paQji.
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From (3. 16) and (3. 20), we have

(3.21) Iβoa=-Pa,'gβa,

which proves that 'M is a totally umbilical submanif old of M. On the other hand,
the mean curvature vector field has a special meaning for a totally umbilical sub-
manifold. The mean curvature vector field is given by —paQ^Ej when M has
similar fibres. Thus we have, taking account of (3.4),

PROPOSITION 3. 10. If M has similar fibres, each £FP is a totally umbilical
submanif old of M. The normal components of the covariant derivatives along £FP

of the mean curvature vector field vanish if pa are projectable functions for all a
and hb

aapa=0.

Substituting (3. 21) into (3. 19) we have

(3. 22) j:hba

/gβa=(j:EbPa-j:EapbYgβa

and thus

PROPOSITION 3. 11. If M has similar fibres, the vector fields h^a in 'M are
conformal Killing vector fields on £Fp.

COROLLARY 3. 2. If the correspondence between two neighboring fibres defined
by the horizontal distribution is homothetic, the vector field hba

a in 'M are Killing
vector fields on £Fp

§ 4. Structure equations.

First of all, we recall the definition of van der Waerden-Bortolotti covariant
differentiation. It is a kind of differentiation of a object which has various kind
of indices. (For details, see, e.g. [11, Ch. V]). Let us denote the formal tensor
product by^ £Γ = 2W) # <3:H(M}Jb £ΓF(M). Van der Waerden-Bortolotti covariant
derivative ?% with respect to ^€£ΓJ(M) is a derivation in £Γ which has following
properties:

1) pz = Fχf for

2) Pχf = (Pχ?)H for

3) Fjff = (Fjr7y for

F£ is decomposed into V%v and ?%n. V '%v is nothing but van der Waerden-
Bortolotti covariant derivative along a fibre as a submanifold of M which is
familiar to us and is called that of the first kind. 7χH is called that of the
second kind. Each expression in a local coordinate system is given as follows:

If we take a tensor field
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for example, van der Waerden-Bortolotti covariant derivative Fj is defined by

/£ j δ β — d,τj δ β -4- \ ^ lτ m δ β— \ m \τ 3 δ β1<L ija a — Oil Γα a ~T \j \J-τaa — 1 » \l ma a

(4.D

+C ('\
V \r

If we put conventionally

*
J ι

(4.2)

then we have

Van der Waerden-Bortolotti covariant derivative of the first kind Ψa for f is
defined by the covariant derivative along a fibre, i.e., we put Ψ«=C}

aV ,. Then we
have

.*

(4.3)

σt,

β }CΛ
« εJ

β

' β

and
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* * / * ί 7 1 * ί 7w 1 * \w.v -c'r^,2v.v+j, ̂ p. .v-^ z.)^αVj
(4.4)

4-'ί ^ If Λ '-'I

and thus

(4. 5)

The last one is defined along horizontal plane fields which is called van der
Waerden-Bortolotti covariant derivative of the second kind and denoted by Fc. Fc

is defined by Fc=£'ίcFi and thus we have

. .
(J ι\ \c o

(4.6)

If we define, for

(4.7)

then we have

c d i a " c a i d ° '

From (3.4), we have
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«-{ Ct\
[C 0)

»t + { a,
[C 0

(4.9)
a

γ ε

and therefore

(4.10)

We also have from (4. 3) and (4. 6),

(4.11)

and

(4.12)

(4. 11) are nothing but the equations of Gauss and Weingarten for a fibre as a
submanifold of M, where we see that lr"t, and — A4

c

r are respectively the second
and the third fundamental tensors with respect to a normal vector field £&.

On the other hand, if the horizontal distribution is integrable, then equations
(4. 12) are those of Gauss and Weingarten for the integral submanifold M . Thus
— lβac are components of the third fundamental tensors on ΛΪ.

Let us denote curvature tensors defined by §, 'g and g by K., 'K and K respec-
tively. Since each fibre is a submanifold of M, we have equations of Gauss,
Codazzi and Ricci as follows:
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(4. 13) C\σμσλCh

κKkji

h-fKvμλ

κ=-lμλ

alv

κ

a+lvλ

alμ

κ

a (Gauss),

(4.14) C^C'/^£Λ

α^^ (Codazzi)

and

(4. 15) C^C^VE^^ (Ricci).

We also obtain relations between K and K which correspond to three equa-
tions above and are called equations of Co-Gauss, Co-Codazzi and Co-Ricci respec-
tively.

(4. 16) E\E^E\EnaK^ih-K^= -hcb

ahd

a

a+hdb

ahc\+2hdc

ahb

a

a (Co-Gauss),

^
(4.17)

+ hdb

r (ίr

ac - 77/r) (Co-Codazzi)

and

E k

dE^σβCh

aKkji
h =-E k

dΓk(lβ

a

c - Πc

a

- hdb

ahc*β - 2hdc

r/ (Co-Ricci).

The following formula, together with formulas (4. 13)~(4. 18), is useful to
compute the sectional curvature

(4.19)
'ahcaβ - Ublγβa + IγaaΠJβ + ίr

Thus, the sectional curvature K(Caί Ea} with respect to the 2-plane spanned by Ca

and Ea is given by

* π
Ϋalaaa + haahaca + IJal aa — 2/ aa,Πa a

(4. ZO) K(Cα, £La) = ||/^ 1 1 2 1 1 1? 1 1 2 >

where || || denotes the length of a vector.
Taking account of the equation (3.16), we have

THEOREM 4.1. // M has non-positive sectional curvature with respect to the
2-plane spanned by Ca and Ea and has isometric fibres, then the horizontal dis-
tribution is integrable and M is locally the Riemannian product of ζpp and M
which is dίffeomorphic to M.

For the proof of this theorem, see the proof of Theorem 3.1.
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§ 5. Almost complex structures in fibred spaces.

We consider, in this section, an almost complex structure F in M which is
assumed to be projectable. This means, by definition,

(5.1) U>£*)*=0

for any vertical vector field V. First we consider the case in which each fibre
is an invariant submanifold of M. If we denote by Pih the components of P
with respect to a local coordinate system, they are expressed as, using the non
holonomic frame (Ea,Ca\

(5. 2) Pϊ=ffE*JE\+ffCίC\,

where /&α are projectable functions by the assumption (5. 1). We sometimes
identify /6

α with their projections on M By a straightforward computation we
have

(5.3) Λβ/αe=-όg, ///</ = -«,

These equations show that M and 'M have almost complex structures /=(/6

α)
and '/=(.//) respectively. Since each fibre is assumed to be an invariant sub-
manifold of M and there are many results ever obtained about an invariant sub-
manifold of an almost complex space, we discuss here mainly the horizontal
distributions.

If we denote respectively by N(F, £), N(f, /) and N('f, '/) Nijenhuis tensors
formed with F, / and '/, then the relation among those three tensors is as
follows:

PROPOSITION 5. 1. N(F, F) is zero if and only if

1) M/,/)=0, 2) ΛΓ('/,'/)=0, 3) /cβ^β-/r"A/=0,

where Λ/=(J7*//)C'A«, and

4) Oe

cίhed

a+fr%
d0^hea

r=^

where Oe

c$ is the so-called pure operator (cf. [13]) defined by

On the other hand, a straightforward computation shows that if ylα/3

α=0, then

Thus we have

PROPOSITION 5.2. If Λaβ

a=0 and /W^pO, then there exist at most tn(m—ΐ)/2
vertical almost analytic vector fields in £Fp.
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REMARK. We see, in Proposition 5. 1, that hba

a is not zero in general even if
)=Q. In the case in which the almost complex structure is integrable, that

is, N(F, ^)=0, hba

a are analytic vector fields in £FP, if Λαj9

β=0.

We refer here to the condition that Ca or Ea is to be an almost analytic
vector field. The next proposition is a result of a direct computation:

PROPOSITION 5. 3. A necessary and sufficient condition that Ca is an almost
analytic vector field is that

and

2) ft>aΠa

β—fr

βΠb

r are projectable functions.

And a necessary and sufficient condition that Ea is an almost analytic vector field
is that

1) a«Λe=0, 2) V=0

and

3) Ocάhcd

a+fγyύ

dOcae

dhce

r=Q.

Thus, in the case in which Ea's are almost analytic vector fields, N(F, F) vanishes
if and only if N(ff, '/) vanishes.

Now we suppose that M is a Kahlerian manifold which is the most typical
example of complex manifolds. In a Kahlerian manifold we have F/F^^O, from
which and the assumption (5.1) we have

(5.5) FcΛα=0,

where Fc is the operator of covariant differentiation with respect to the connection
induced on M from F,

(5.6)

(5.7)

(5.8) Λ/iα-///rβc+ΛβVc=0,

(5.9) -ffl*βb+fβΊβr

a=Q

and

(5.10) 'JW=0,

where 'Fr is the operator of covariant differentiation with respect to the connec-
tion induced on £FP from V. Equations (5. 6) show that fb

dhcd

a is skew-symmetric
in b and c, but it is also symmetric in b and c by equations (5. 7). Thus we have
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(5.11) hbc

a=0.

We .also have, from equations (5. 8) and (5. 9),

(5.12) V=-2/rV*

from which we have

LEMMA 5.1. M has isometric fibres if and only if Λc/=0.

Taking account of Theorem 3. 1 and Lemma 5. 1 we have

THEOREM 5. 1. In a fibred Kάhlerian space M with a projectable metric and
a projectable almost complex structure, if each fibre is a holomorphic submanifold
of M, then the horizontal distribution is integrable, that is, M is locally trivial.
In this case M is locally the Riemannian product of £FP and M if and only if
ΛCβ

a=Q, where M is diffeomorphic to M. In the latter case we have dcfr

β=Q.

Next we consider the case in which £FP is not an invariant manifold of M.
We assume as before that M has a projectable Riemannian metric and a projec-
table almost complex structure F. We assume, for the present, dim£Fp>dimM,
because we can discuss analogously the case dim£Fp<dimM.

We further assume that FV is horizontal for any F€£ΓFί(M). If there is a
vertical vector field Ϋ such that FΫ is vertical, a certain submanifold of £Fp is
invariant under F and in such a case we do over again the discussion mentioned
above.

Renumbering (£Ί, •• ,£1

m), we can put

FEb, =fb,?Cβ, FCr =f»Έv,

where c=l, 2, ~,m-- r\ b'=m—r—l,~',; r=dim£Fp. Thus F is represented as

(5. 12) Fi*=ffE*E\+fv*E»C\+ff'CtEha,,

where /δ

δ, fv

Λ and fβ

a' satisfy equations,

(5. 13) fa%*=-€ /»/*/."' = -$, /W= -^

and

(5.14) d«ff=Q.

Thus M has a so-called /-structure, / being given by a matrix of rank m— r

0
(5.15)

0 0

with respect to the non-holonomic frame (Ea, E&).
By the definition of normality of /-structure in [3], the normality of /-struc-
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ture given by (5.15) is equivalent to the integrability of the almost complex
structure defined by (5. 12). Thus we have, by a straightforward computation,

THEOREM 5. 2. The f -structure in M given by (5. 15) is normal if and only if
following conditions are satisfied.

2)

3)

4)

5) 36^β/-dc^/-/7»'^^

and

6) f«rW-f* r*rf* a-Me,v =Q.

REMARK. The condition 1) in Theorem 5.2 is nothing but the integrability
condition of the almost complex structure defined by /5

a.
In particular, if M is a Kahlerian fibred space with a projectable Riemannian

metric g and the projectable almost complex structure F defined by (5. 12), then
we get following identities

and

These equations are useful to prove the following:

THEOREM 5. 3. Let M be a fibred Kahlerian space with a projectable Rieman-
nian metric g and the projectable almost complex structure β difined by (5. 12).
We denote by Mi the distribution spanned by E^s and by M2 the distribution
spanned by Ca's and Ea/s. Then Mi and M2 are both involutive distributions and
their integral manifolds Mi and M2 are Kahlerian submanifolds of M which are
totally geodesic and M is the Riemannian product of Mi and M2
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Proof. Since hδt
a=Q, the distribution Mi is integrable and its integral mani-

fold Mi is totally geodesic. Γc/5

δ=0 means that Mi is a Kahlerian submanifold

of M and 5 c/flfj a=0 and dr05ά=0 show that the metric induced on Mi is in-

dependent of xc/ and 'x"y Mz is totally geodesic because lrβa=Q and /zc,a

α=0.

On the other hand, we can suppose 77/=0 and thus, taking account of (3.15)

and /Γ#ι=0, we have ds0r0=0. Thus the metric of M2 is independent of xa and

therefore M is the Riemannian product of Mi and M2.

REMARK. The almost complex structure induced on M2 is given by

/,«

• 0

and the connection which makes invariant the almost complex structure is given

by the last two equations of the equations above.
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