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Introduction.

Many papers on the theory of submersion, together with immersions, have
been published in recent years (e.g. [1], [4], [8], [9], [17]). A mapping ¢ from a
manifold M" onto a manifold M™ is called a submersion if its differential gy is of
rank s at any point of 1\2", where # is larger than m. It seems, generally speak-
ing, that there are two directions of investigating submersions. One is to discuss
the existence of a submersion in a given manifold and the other is to study a
manifold in which a submersion is assumed to be given a priori. The submer-
sion has also been studied as a fibred space. The concept of a fibred space has
been used, since 1922, in unified field theories and in the theory of projective
connections.

The purpose of the present paper is to study fibred spaces with a projectable
Riemannian metric and a projectable almost complex structure. In §§1 and 2
definitions and lemmas are stated in the most general case for the later use. We
discuss in §3, by use of tensor analysis, the properties of a fibred Riemannian
manifold in detail. The structure equations for a fibred space are prepared in §4.
In §5 we assume that M and fibres are both of even dimensional and we in-
troduce in M an almost complex structure. First we assume that each fibre is an
invariant subspace of M and next we treat with more general case. For the case
in which the dimension of a fibre is odd, especially 1-dimensional, see [7], Where
an almost contact structure is introduced in M.

§1. Preliminaries.

Let M and M be differentiable® manifolds of dimension # and respectively,
where » is larger than m. We assume that there is given a differentiable sub-
mersion ¢ from M to M, that is, ¢ is a differentiable mapping from M onto M
whose differential ¢4 is of rank m at each point P of M. Therefore, the complete
inverse image &, of PeM is an n—m dimensional closed submanifold of M. We
call &y a fibre over P. Throughout this paper we assume that every fibre is
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1) Differentiability 1s always assumed to be of C=,
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connected.® Let ‘M be the disjoint union of all &5, then M is regulary imbedded
submanifold of M. We call (M, M, "M, o) a fibred space over M. A vector in M
is said to be wvertical, if it 1s tangent to M. In other words, a vertical vector is a
vector which is tangent to A at a point P and belongs to the kernel of oy at the
point P. If a (local) vector field is a (local) field of vertical vectors, then it is
called a (local) wvertical wvector field. Since the rank of ¢, is m, there are n—m
linearly independent vertical vector fields in a neighborhood of every point of
M, which will be denoted by C.» C, define an n—m dimensional distribution:
P—»Tf,”(ﬂ) which is completely integrable and therefore the set of all vertical
vector fields of M is a subalgebra of Lie algebra of all vector fields of M. A
complementary subspace T3Z(M) of TJ(I\Z) in T3(M) defines an m dimensional
distribution which is called a Aorizontal distvibution or a field of hovizontal planes.
We can choose, in a neighborhood of each point P of M, m linearly independent
vector fields E,» which span the horizontal planes at P. We fix, from now on, a
field of horizontal planes which can be arbitrarily chosen. Thus » vectors E, and
C. form a basis of T3(M) at each point P of M. The inverse of (E,, C,) is denoted

@ A
by (Zé“> Then any tensor T of type (7,s) in M is expressed as

T= Tar“asbl“'brE‘M@. . '®E%®Ebl®' . ®Ebr + Talm%ﬁl“‘ﬁrE%@ .
RE*RCps,®-®Cpy+ Taga? 7CIR) -+ QCQEy, @+ R Ey,
F T #COR-RC®Cp, R+ RC,

The first and the last terms in the right hand side are called the #kovizontal part
and the vertical part of T and denoted by 7% and 77 respectively. The horizontal
part and the vertical part of a tensor field in M can be defined in the same way.
We denote by g §(M) the space of all tensor fields of type (7, s) in M and put
g(l\?[)=2m 9_7:(1\7[). Then we have

(1.1) X=Xa+Xv for XeqyM)
and
(1.2) d=al+a”  for @eTYM).

The facts expressed by equatlons (1.1) and (1.2) are called the canonical decom-
position of a vector field X and a 1-form & respectively. If we define

Ja=fr=j for Fegii),

2) This assumption 1s indispensable for a geometric object which 1s projectable (See
below).

3) Greek indices a, §, -+ run over the range 1,2, ---,z—m. Strictly speaking, C.eT{('M)
and :*C,,eT“)(IVI ), where ¢, 1s the differential of the imbedding ¢: 'M—}1. But we shall omit
¢« as far as there 1s no fear of confusion.

4) Latin indices a,b, -, g run over the range 1,2, -, m, while %4,i,, --- over the range
1,2, n.
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we have
T8e=Teglz, (TRSy=TrSs"
for any T, Seg(M).
A tensor field 7° in M is said to be projectable if it satisfies
(P.1) (LeT7E=0

for any vertical vector field X, where Lz denotes the Lie derivative with respect
to X. If T is a local tensor field defined in some neighborhood ¢/ and satisfies
(P.1) in qJ, then T is also said to be projectable. It can be shown that the con-
dition (P.1) reduces to _L£zT#=0 for Tequd), and to (L£7)Z=0 for Yegi),
because the distribution P — T}f(M) is completely 1ntegrable The set of all pro-
jectable tensor fields is denoted by P(M) and we put PrM)= @(M)n g r(M)

This fact is expressed as follows

Lemma 1.1 (14] If Xeg"iM) and ¥ePM), then (X,Y] is vertical. Con-
versely zf [)1 Y] is vertical for any Xegm (M) and if every fibre is connected, then
¥ e Py ).

We need following lemmas which give other expressions of (P.1).

LEMMA 1.2. [6] @3(1\7), the set of all projectable vector fields, is subalgebra
of TYI).

The proof is easily given by means of Jacobi identity and Lemma 1.1.
We shall show in §4 that [C,, E,] is vertical, and thus E, is projectable.

LemMa 1.3. [6] Ve@yM) if and only if ¥Fe PXM) for any fePyM).
LemMa 1.4. [6] If YePYM), then o.¥ is constant along each fibre.

Lemma 1.4 enables us to define a homomorphlsrn n gP‘,(M)—>9' (M) in such a
way that = is the restriction of ¢4 on _CPO(M), that is, Y=r¥= a*Y for Ye®} (M)
z is called a projection. Clearly, the kernel of = is gViM). Thus PH} (M) is
isomorphic to T¥M). We define an isomorphism

L. M)—PEYM),

which is the inverse of z restricted to PHYM), that is, we define XZe PH} (M) for
XegY M) in such a way that

(1.3) X=X

LemMma 1.5. L is naturally extended to an isomorphism from J5M) to SP”Z(M)
as follows:

fE=fos  fegyM)
wt=*¢w weTYM)
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and
SQT)=S*QT* S Teq(M),
where *a is the dual mapping of ox.

Proof. Obviously fZ is constant on each fibre and thus fZe 538(1\7I)=5PH3(M ).
From the definitions of XZ and w%, we see w%(XL)=(w(X))L, thus we have

Lo (XP)=(Lyo (X)) —o"(LrX")=(Lro")H(XF)=0

for any Veg Vz(A(NI) and any XeJM). This shows wLGQDHQ(IVI). Since any tensor
given by tensor product of projectable tensors are also projectable, the lemma is
proved.

From now on, simplifying the notation, we use ¢ in place of o4 and *o.

The projection = defined by (1.3) is also extendable to a homomorphism:
@;(ﬂ)—»gg(M) which we call again projection and denote by the same letter .
The definition of = is as follows: If f GEZ-’S(M), 7 is constant on each fibre and
thus there exists a function f in M such that f=fs. We define

nf =f.
For @ePi(M) we define z& by the following equation:
(rd)(X)=a(X*),
where X is an arbitrary element of J¥M). We define = inductively by
@)= @ T

for §,7~“e5_7>(117f).

Next we consider the case in which M admits an affine connection F. If the
vector field PV is projectable for any X, ¥e@Hi(M), then 7 is said to be projec-
table. We define V by

(1. 4) Py Y=n(fxYV'E)
for arbitrary X and Y of gyM).

LemMA 1.6. The V defined by (1.4) is an affine comnmection in M. If ¥ is
torsionless, so is V.

We call 7 the induced connection and denote it by =(7).
Proof. 1t is obvious that FxYegyM). First we show
D x(fY)=XNY+fIxY

and
2) Vixsgy X=fVxZ+qVyZ
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for any f and ¢ of g¥M) and Z of J¥M). Since F is an affine connection,
we see

Pxi(fEY E)=fLl xt Y P+ (XLfL)Y L
and
VirxLogiytZ = fLf y1Z L4+ gLl y1Z L.
Thus we have
Vi(fY)=aWxe(f Y)E) =a(l x2(fLY 1)) = fUx Y +(Xf)Y
and
VixigrZ=all GxsgrrZ ) =a(fLF x1ZL 4 gLl y1Z L)
| =fVxZ+9VyZ,
which prove that F is an affine connection in M. A similar computation shows
T(X, Y)=z1(X%, VE),

where T and T are torsion tensors of V and F respectively.

§2. Projectable Riemannian metric.

We assume, in this section and in the following, that there is given a projec-
table Riemannian metric §.» By the definition, § satisfies

L% =0
for any vertical vector field ¥. This means
Xl =17 115

f~or any two horizontal and at the same time projectable vector fields X and
Y along a fibre with the same projection, where ||#||3 is the length of X with

respect to §. Without loss of generality, we can assume that § satisfies con-
ditions

2.1 §(C., Eg)=0.
Lie derivatives of § with respect to a vertical vector field ¥ are given as follows:
(2.2) (LyDE=0,  (Lyd)"e=_L¥9g,

where ‘g is the metric tensor induced on ‘M from § and ¢ is the injection of /M
into M, and

5) Reinhart called such a metric a bundle-like metric [10].
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2.3) (Lr)(VH, X)=—o(1V, 7], X7).

On the other hand, § induces a Riemannian metric ¢ in M by means of the

projection x, since § is assumed to be projectable. Thus we have

2.4) o X, Y)E=§(X5, YE), X, YeT¥M),
or
2.4y 9= X, )=z X, 7)), X Vexmi.

PropoSITION 2.1. Let F be the Riemannian connection with respect to §,
that is,

Peg=0 and 27X V)=Fz¥-F,X-[X Y1=0.

Then V is projectable (see §3) and the induced conmection V==z() is also the
Riemannian connection with respect to the induced metric g=ng.

Proof. We take X, Y and Ze g¥(M) arbitrarily. We have, from the definition,
X(g(Y, 2))=a(XHg(Y, 2))").
On the other hand
XYY, Z)F=XUG(Y ", Z0) = x2d)(Y ¥, ZE)+§F x Y 5, Z9)+§(Y 5,V x2Z ")
= xt Y5 Z)+§(YE, Vx1Z7),
since ¥ is the Riemannian connection. From this equation we have
(XX (Y, Z2)") =g x2 Y ), Z)+9(Y, z(V xZ %))
=g(PxY, Z)+9(Y, VxZ)=Xg(Y, Z)—(Vxg)(Y, Z).
Thus we find
Vxg=0.
The proof of the latter part of the proposition is given in Lemma 1.6. q.e.d.

Let 7 be the Riemannian connection in M. If we put, for X, Yegi(M),

(2.5) PrrYE—(PyY)e=H(X,Y)
or
2.5y P — gV )e=H\aX,z¥) for X, Vepmh),

then H,\(X,Y) is a vector field in M. By a straightforward computation we have

G xr YL, ZD)=g(FxY, Z)o0
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for vector fields X, Y and Z in M. This shows
JPx2YE—(PxY)E, Z£)=0,
from which we have
IH(X, Y), Z)=0

and the same, Z being replaced by ZZ, holds too. Thus Hy(X,Y) is a vertical
vector field in M. On the other hand (FxY)%* is horizontal, and consequently

VerYi=FxY):+H(X, Y)

is the canonNical decomposition ~of the vector field FxzYZ. H(X,Y) defines a
tensor field H of type (1,2) in M in the following way:

HX,¥)=HxX, P, X, Yepmyii),
2.6) HXa, Vi)=(FeulHy, X, Veqin,

HX, Yn=HX",7)=0, X, Vegid).

We must show that (VXH?H)V defines a tensor field in M. For that it is sufficient

~

to show that (PgaVH)” is bilinear with respect to X and Y. For 6, T€d S(M)
we see

VeV )= p(X 7)Y E + gelan?®,
Thus we have
(P, gu(zY 1) = r(Pen¥ 27,

which shows that (Fga?#)” is bilinear with respect to X and ¥.
Thus we can define

HX, V)=Fee¥ry X, Veay.
The following propositions are well known:
ProposiTioN 2.2. H (Xv , }N’) is skew-symmetric.

Proof. It is sufficient to show that HX, V) is skew-symmetric for X, ¥ e@uy(A),
because, as we noted above, there are m linearly independent vector fields which
belong to PZiM) and any horizontal vector field is a Iir~1ear combination of these
m vector fields. We have, for any Xe P#YM) and any VegV{M),
0=VaX, X)=20 X, X)=207:V +1V, X1, %)

~ o~

=257V, X)=—20(V, P X)=-20(V, (X, X).

Thus we have
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AZX, X)=o. qed.
From the definition of ﬁ()'(v', ¥) and Proposition 2.2, we get
(X, P1r=2X,7) for X, Vequ).
Thus we have

?ROPOSITION 2.3. ﬁ()?, V=0 if and only if T HYM) is a Lie subalgebra of
TiM). Thus the integral submanifold of the horizontal distribution is totally
geodesic.

In the case of Proposition 2.3, that is, when the horizontal distribution is
integrable, M is said to be locallyNtrivial. N
We fix, for a while, Xe @#4M) and Veg"i(M) and let

@7 v, X=-m¥, X)-L(F, %)
be the canonical decomposition. Then we see that
2.8 PxV=—HWV, X)— LV, X)+1V, X)

is the canonical decomposition, since [V, X] is vertical. Further, if we take
Ueg Vi(M), we have the canonical decomposition

2.9) 7,V = L0, )+ (' 75V),

where 'V is the induced connection on ‘M frorg f and ¢ is the differential of
¢ '"M—M. LyU,V) is symmetric, because g7iM) is a subalgebra of TiM). We
have, by a direct computation,

JHX V), =3, X), V), Ve
and
LV, X), 0)=4(X, LV, ).

The four formulas (2. 6)~(2.9) correspond to the equations of Gauss and Weingarten
for a submanifold and are called the equations of Co-Gauss and Co-Weingarten.

To conclude this section, we consider the Lie derivative of § with respect to
a horizontal vector field. The following formulas, especially (2.12), will be useful
to discuss isometric fibres (cf. Mutd [5]).

(2.10) (Lxtd)(YL, ZD)=(Lx9)Y, Z)o0,
@.11) (Lxeg)(YE ZV)=—20(H\(X, Y), 27), Zeg¥M).
and

(2.12) (Lxd) ¥V, Z27)=—2§(X, L¥ 7, Z7)).
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Equations (2.10)~(2.12) will be used, in Corollary 3.1, to obtain a condition
that E,’s are Killing vector fields in M.

§ 3. Expressions in terms of local coordinate system.

As a continuation of the preceding section, we discuss in this chapter the
fibred space with projectable Riemannian metric in detail by means of a local
coordinate system. Let (&%) and (z%) be local coordinate systems of M and M re-
spectively. Then the submersion o: M—M is represented by equations z”=x%")
whose Jacobian matrix 9x°/6z* is of rank m at any point of M. The vertical
vector fields C. with components C¢, satisfy 62%/6z* Ci,=0.2 On the other hand,
if we represent by (‘") a local coordinate system of &, then we have 9z%d'z"
=0, since z*=const. on each fibre. Thus we can choose C, as vectors with
components Ci,=0d%*/0’z". We may put E,*=0z%/0%*, because, for a fixed «, the
transformation law of 0x%/0z* under the change of a local coordinate system is
just the same as that of a covariant vector in M. We denote by E‘%, the com-
ponents of E, and by Ci# those of C# then we have

EiEP=0d,, EWCf=0, E!C,=0 and C#C=0;

(E,4, C,) is a so-called non-holonomic frame. Slnce we can identify %* with 2% we
may choose a local coordinate system (&%) in M in such a way that each ﬁbre is

expressed by equations z”=const.
The horizontal distribution is defined by Pfaffian equations

0*=C;*dz*=0
which can also be written as
I1,0dz*+d'z*=0

in the natural frame. Thus, the non-holonomic frame has the following com-
ponents with respect to the natural frame.

0 5
C"=<6z>’ E”z(—;Yz)’

C'=(I3,05), E*=(53,0).

We remark that we can choose E?, and Ci# in such a way that Ei,=A,.07E;
and C/#=B*§;C?,.. Thus we have Ay=§;E%E% and B**=§/"C;C;*. On the other
hand §#;;=AwnEPES" and, by the assumption (L¢,§%)%=0, L, Ase must be zero.
This means that A, are projectable functions. Thus there exists a Riemannian
metric ¢ in M such that gy=Aseo0”, Where ¢,, are components of g. We denote

6) We shall use, in the sequel, the summation convention.
7) In the sequel, we identify gos (resp. 'gf*) with Aps (resp. B#).
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by ¢°* the inverse of gsq, i.€. ¢*%gac=0% Since Fp is a submanifold of M for each
PeM, §;:CCi. is regarded as the induced metric in ‘M which is denoted by ’g.
Let ’gf" be the inverse of ’g.4, i.€. 'gas’g?" =0, then Be=’gfo,,

By a straightforward computation, we have

B.1) Lo =0, LoCo=0, LoFE.=—1I4.C, and Lo CP=I1E",
where we have put

(3.2) P =03.11F,

since (0%/0’x") are chosen as components of C,. We also have

3.3) Lo 05i=Ipsa(EFC#+CLED)+(L,'9,6)C, CH,

where Hbga:Hbra/g“g.
Equations (3.1) and (3.2) give

ProrositTioN 3.1. E. commute with C, if and only if the functions Il.f are
constant with respect to C. for all . Furthermore, E, commute with each C. if
and only if 112 are projectable functions.

(3.3) shows that the question whether C, is a Killing vector field in M is
equivalent to the question whether it is a Killing vector field on &, when C,
commutes with any £,. Thus we have

ProrosiTioN 3.2. In order that C, is a Killing vector field in A7I, it is neces-
sary and sufficient that 1) C, commute with any E» and 2) C, is a Killing vector
field on Fs.

We call § an invariant metric, if Lo §;; is vertical. Thus we have

PROPOSITION 3.3. M has an invariant Riemannian metric if and only if C,
commute with any Ey (a=1, -, n—m).

Now we give formulas for the covariant differentiation with respect to
Riemannian connection in M. From (2.5)~(2.9) we may put

ViEn={}EE =y o E1Ci" + han’ E"Cly— 1PyCICyE,
ZE]"‘ = — {acb}E,,anb + }lbca(EjbCia 4 EJ’C,“) —lpachﬁCia,

(3.4) ViCls = — Rl EHE " — (g — 1) E"Cla+ L E3Cit +'{, ") Ci Clay
PCF = —hat BAEP+(lPa— P EC, "+ LA EPCE " (FJCICY",

where

3.5) hay® =Hy"E1,E4%Cy’ = Hi"ClL EWEn™ 97 geq,

(3.6) 12s=La;"C1,CisEm? = Lyji™C1 E4Crl g™ g,
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and ‘{,%,} are coefficients of the induced Riemannian connection on F,. The
coefficients {;°,} are given by

G.7 (s} = —EWEWES =E EioiEy

and symmetric with respect to & and e, since E,"=0x°0%/ and the Riemannian
connection is symmetric.

Now we prove that the Riemannian connection with respect to §;; is projec-
table. The definition of / being projectable is given in §1 by the equation

(Lola¥ =0
for any Veq Vg(M) and any )?,?GQH},(]VI). The equation above can be written as
3.8) Lo {o°a}=0
in the local coordinate system if we take account of (3.7). Thus we have

LemMA 3.1. The Riemannian connection with respect to § is projectable if
and only if functions {53} arve all projectable.

On the other hand, we have
3.9) Lo f"0}=(Lo JFNEWEGER +11f ol +IT1f 1",
if we take account of (3.4) and the well-known equations
LGV o= LY =Py )
(cf. [11]). To prove that the right hand side of (3.9) vanishes, we substitute (3.3)
into the equations

1 - ..
Lo fiM= > G (P (Lo dw)+ Vi Lo ) — V(Lo F0)}

and then take account of (3.4). Thus we have
ProposITION 3.4. The Riemannian connection with vespect to §;; is projectable.

Thus M has the Riemannian connection which is induced from §;; and there-
fore we can consider structure equations in the fibred space. They are called
equations of Co-Gauss, of Co-Codazzi and of Co-Ricci corresponding to the equa-
tions of Gauss, of Codazzi and of Ricci for a submanifold. We shall give them
in the next section.

We have seen in §2, that the horizontal distribution is integrable if and only
if 7,,"=0 and in §3, that C, commute with E; if and only if II,# are constant
with respect to C, for all g. It might be interesting to show the relation between
hye” and I1,%. Taking account of (3.1) and (3.4), we have

(3. 10) hbaa = H[bﬁﬂa]aﬁ + tha’ aly
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where [ ] denotes skew-symmetrization and comma denotes partial differentiation.
Thus we have

ProposiTioN 3.5. If 11,5 are constant, then the horvizontal distribution is inte-
grable and the integral submanifold is totally geodesic. Conversely, if the horizontal

distvibution is integrable, then we can choose a local coordinate system in which
7,7 =0.

Using Jacobi identity with respect to the triple (C., Es, E,), We have
(3.11) Oaltva® = — Kpad’,
where Kpq.f is the so-called curvature of I7,* defined by
(3.12) Koot =00 ofa— I 070, I o o+ I P 1 1 o o
Thus we have

PROPOSITION 3.6. /7™ are projectable functions if and only if the curvature
of Il vanishes.

When the curvature of I7,° vanishes, /4, induce on M (n—m) vector-valued
2-forms which we denote by the same letter 4. From this fact and equations
(3.10) and (3.12) we have

ProposiTioN 3.7. If 11,%=0, then hy" induce on M vector-valued 2-forms
which are closed.

Jacobi identity for the triple (E., Ej, E,) shows
(3. 13) a[chba]a"‘h[cbﬁna.]aﬁ'l'H[cﬁKba]ﬂazor
and these equations give another proof of Proposition 3.7.

Here we consider the case in which the horizontal distribution gives an
isometric correspondence between two neighboring fibres. In this case, fibres are
called isometric fibres by Mutdo [5]. The condition for fibres to be isometric is
given by

(3.14) (L0 =0,
or equivalently by
3.15) "Gpaa— 0" Gpar—"Gralld s—"9p,11a"«=0.
On the other hand, since we have seen, in (2.12) and (3.4), that
(3.16) (L2,0) = —2seaCHCE

and /,,* are components of the second fundamental tensor on & with respect to
the normal vector E,, we have
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ProrosiTioN 3.8. [5] If the horizontal distribution gives an isometric cor-
vespondence betwgen two neighboring fibres, then any fibve Fp is a totally geodesic
submanifold of M.

We also have, from this and Proposition 2.3,

THEOREM 3. 1; If M has isometric fibres and the horizontal distributimz is
integrable, then M is locally the Riemannian product of F» and M, where M is
diffeomorphic to M.

Proof. Propositions 2.3 and 3.8 show that M is a local product of two
submanifolds &, and M which is an integral submanifold of the horizontal dis-
tribution. Since we can choose a local coordinate system in which 77,°=0 (see
Proposition 3.5), we have

3.17) 04’ gp=0.
On the other hand, Riemannian metric § is assumed to be projectable, and hence
(3.18) 0agra=0

holds. (3.17) and (3.18) show that M is locally the Riemannian proguct of F»p
and the integral submanifold A7 of the horizontal distribution. Thus M is diffeo-
morphic to M.
On the other hand, equations (2.10)~(2.12) show that
LE,05:=(LE90)ELEDL+2h00s(CHFE +CFE,*) —20520sC#C",
from which and Theorem 3.1 we have

CoRrROLLARY 3.1. In order that E,'s are Killing vector fields in M, it is neces-
sary and sufficient that M is locally the Riemannian product of Fp and M, where
M is diffeomorphic to M and has a flat metvic and Fy is a totally geodesic sub-
manifold of M.

As we have seen in §1, A,,* are components of vector fields in ‘M with
respect to index a. By a straightforward computation we have

(3.19) Ly 9sa=—LEfsecat Ledpad—ligodl " o~ Ll " g+ Lyaally 541 pa 1y o
from which and Proposition 3.8 we have

ProrosiTiON 3.9. If M has isometric fibves, then the vector fields hy," in "M
are Killing vector fields on each Fy for all a and b.

Next we consider the case in which the horizontal distribution defines a con-
formal correspondence between two neighboring fibres (Mutd [5] called such fibres
similar fibres.) Such a correspondence is defined by the condition

(3.20) (L537) =2p4d jir
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From (3.16) and (3.20), we have
(3. 21) lﬁaa= —Pa,gﬁa,

which proves that M is a totally umbilical submanifold of M. On the other hand,
the mean curvature vector field has a special meaning for a totally umbilical sub-
manifold. The mean curvature vector field is given by —p.g®E;* when M has
similar fibres. Thus we have, taking account of (3.4),

PROPOSITION~3. 10. If M has similar fibres, each Fe is a totally umbilical
submanifold of M. The normal components of the covariant derivatives along Fe
of the mean curvature vector field vanish if p, are projectable functions for all a
and iy 0,=0.

Substituting (3.21) into (3.19) we have
(3' 22) Ihba’gﬂa = (IEbpa._IEapII)’gﬁa
and thus

ProrosiTiON 3.11. If M has similar fibres, the wvector fields hy” in 'M are
conformal Killing vector fields on Fp.

COROLLARY 3.2. If the correspondence between two neighboring fibres defined
by the horizontal distvibution is homothetic, the vector field hy.” in 'M are Killing
vector fields on Fs.

§4. Structure equations.

First of all, we recall the definition of van der Waerden-Bortolotti covariant
differentiation. It is a kind of differentiation of a object which has various kind
of indices. (For detalls see, e.g. (11, Ch. V). Let us denote the formal tensor
product by I=9 (M)# SIH(M) g "(M) Van der Waerden-Bortolotti covariant
derivative Py # with respect to XegyM) is a derivation in ¢ which has following
properties:

1) Pl =Pt for Teq i,
2) Pel=@A  for Tega@D,
3) Pef=(Fed)Y  for Teg?(il).

7 ¢ is decomposed into ﬁ w and I’; $H. Vs v is nothing but van der Waerden-
Bortolotti covariant derivative along a fibre as a submamfold of M which is
familiar to us and is called that of the first kind. Ve ¢u is called that of the
second kind. Each expression in a local coordinate system is given as follows:

If we take a tensor field

=Tkt =T SESERCICS,
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*
for example, van der Waerden-Bortolotti covariant derivative V; is defined by

;ﬂ*ﬂijabaﬁ = ai‘ﬂa”a" + ] ]f‘zmabaﬁ_ { " .}Y’k‘m]abaﬂ
I m I i

(4‘ 1) +Elc<{ b }ik‘i"aeap_[ ¢ }%i‘iebaﬂ>
c e c a

+Cr ({ B ]T—{ : ]:hfazﬁ).
T e 7 a

If we put conventionally

h

i;thb= athb-I- [] ;

) a R
PR

h a
;jE’aza’E‘a"{j i}Eha+{c blE’cE"b’
@.2)

P i — 5 iJl_/{s}i7
?ci. ajca+{j Jo— ¢ Jeser,

B a,ci—{jl i}cl“+'{r"‘e}c;c,’,
then we have
Pt =F o0 HECERCCY
+T 02 P B E4C o Cla - By (P E*)CCla o+ En®EXy (P Co)Cls + EASERCEV Ch).

Van der Waerden-Bortolotti covariant derivative of the first kind I’7ka for T is
defined by the covariant derivative along a fibre, i.e., we put V,=C%/F,. Then we
have

3

B Ery= Cl,0,Em + {j i}E%Cf,,,

h

ﬁaEza = CjaajE'),a - {j i}Ehacja}

(4.3)

B.Ch= Cl.0,Ct+ {j l}aﬁca—'{ae ﬂ}ca,

?ac,.ﬁ=caajc,~ﬂ—{ K .}clﬂcu'{ p }c
ji a e

and
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;rj*-‘ijabaﬁ = Cl <asz‘7a a {l] }sz o ﬂ— {lm ~}7’Emjabaﬂ>
]

“4.4)
+ { ‘B }sza,b f— ‘! ¢ ]’7>':z"7tlbs'g
I T a
and thus
Clrﬁz Tiopkt= (‘; 77*1# L) ERERC Chy
4.5) Lfa”aﬁ{(V Eh“)E’“sz”C‘,g+Ena(V E*)CyCl

B E*(F Co)Ct+ B ERCEV Ct).
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The last one is defined along horizontal plane fields which is called van der

Waerden- Bortolotu covar1ant derivative of the second kind and denoted by Vc.

is defined by Vc- ch and thus we have

P Eiy= E1.9;E% + { !

b )
N DI . %
; k}E E" 16‘ a}E by

a

P ES= E1,E* —{ " .}chEna+ {
J i cb

o
(4.6)

;ccia= E"cajcia'l'{jz

Yo
I}E fo
" ) /
V= E"cajcia - {] Z} E1.Cr.
If we define, for T

. .
PoT ot =E <31Tﬂa” f— { lmi}ijabas‘l‘ { l]m}Tl"‘a”aﬁ>

+{ b } ijadaﬂ { d }T'L"dbaﬁ’
cd c

4.7

then we have
EW Tkt = T Bt EHCCl
+ T2 P En®) EBCCl+ Ea®(P E*)CClp
+ B3 ER (P £+ ErtERCeV ().

From (3.4), we have

c
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ﬁjE-,,a = ;qu,a'— {Cab } chEib)

PEr =P Emy + c" b}EfEha,
4.9)
A a * '3 ’ a i7ak]
JCi =Vfci - r E}CJ G,
pcry =B crgt| € }c;c'z
r B

and therefore
VB2 = X EPC f+ EPCE) —1C £CF,
VB =t EroC, —1L8CC  + ha CME,
“10 V1t = — hay ESER+ (I a— I o*) E,2Cd + [4CLER,
7 10y = — e B — (5 a— I )Mo E 4 L MG
We also have from (4.3) and (4.6),
P ES=n® Ep—1,,°C¥,
P Ery= — I Er—1,5,Ch,

(4.11) *
V.Cr=L%Ep,
V Chs=1,0E™,
and
k3
4 cE'I,a = hcaaciay
;cE hb = hcbﬁchﬂ;
(4.12)

v Ci*=ha"EL+ (" —I1.")C,
;cchp = — hcprh'b - (lﬁac'— Hcaﬁ)chn-

(4.11) are nothing but the equations of Gauss and Weingarten for a fibre as a
submanifold of M, where we see that l,"» and —#%,°, are respectively the second
and the third fundamental tensors with respect to a normal vector field FE.

On the other hand, if the horizontal distribution is integrable, then equations
(4.12) are those of Gauss and Weingarten for the integral submanifold #. Thus
—Iy4e are components of the third fundamental tensors on H7.

Let us denote curvature tensors defined by g, ’g and g by K , 'K and K respec-
tively. Since each fibre is a submanifold of A71, we have equations of Gauss,
Codazzi and Ricci as follows:
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(4.13) C*,CI,CHCH K jit =" Ko = — L, 0+ 1,0, (Gauss),
4.14) CvC7 ,,Ctthak kit ="V 0 ="V 00— 1,00+ 1,50, (Codazzi)
and

(4.15) C*CI,E HWE R, gt = =0 0, % Bt — B Pt — L s 1™ (Ricci).

We also obtain relations between K and K which correspond to three equa-
tions above and are called equations of Co-Gauss, Co-Codazzi and Co-Ricci respec-
tively.

(4.16) E*EI,EiEy* R jit — Kio® = — hes oo+ has he’e+ 2hac i (Co-Gauss),
4 E&EIE %Cnaf? kit = ; ahey” — ; han” +2had" L, s — hey” (4, 5a— 114%,)

4.17) a4 o115 (Co-Codazzi)

and

EkdchCianakkjih =— Ekdﬁlc(lﬂac — )+ E1 V(L a—114%)
=W a— ") e — 11" )+ (U e — 117 6) (4, a— 114",)
+he s — has ey —2has” { r“ ﬁ} (Co-Ricci).
The following formula, together with formulas (4.13)~(4.18), is useful to
compute the sectional curvature
CkgEJbCiaEha.Kkjin =— ﬁﬁhbaa — ;blﬁaa
(4.19)
+ hbcahcaﬁ - larblrﬁa + lraanbrﬁ + lrﬂa”bra-

Thus, the sectional curvature K(C,, E,) with respect to the 2-plane spanned by C,
and E, is given by

%
e Vll aaa+hacahaca+laralraa_21raanara
4.20 K(C., EJ)= ,
(*.20 (Co Ea) IC.FIE?
where || || denotes the length of a vector.

Taking account of the equation (3.16), we have

THEOREM 4.1. If M has non-positive sectional curvatuve with vespect to the
2-plane spanned by C, and Eo. and has isometric fibres, then the horizontal dis-
tribution is integrable and M is locally the Riemannian product of Fp and M
which is diffeomorphic to M.

For the proof of this theorem, see the proof of Theorem 3.1.
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§5. Almost complex structures in fibred spaces.

We consider, in this section, an almost complex structure F in M which is
assumed to be projectable. This means, by definition,

(5.1) (LpFryHE =0

for any vertical vector field V. First we consider the case in which each fibre
is an invariant submanifold of M. If we denote by Fi* the components of F
with respect to a local coordinate system, they are expressed as, using the non-
holonomic frame (E,, C,),

(5.2) Br=f2EYEry+ fCHC,,

where f,* are projectable functions by the assumption (5.1). We sometimes
identify f3* with their projections on M. By a straightforward computation we
have

(5.3) ol f==0  fifd =—0

These equations show that M and ’M have almost complex structures f=(f%)
and ‘f=(fs") respectively. Since each fibre is assumed to be an invariant sub-
manifold of M and there are many results ever obtained about an invariant sub-
manifold of an almost complex space, we discuss here mainly the horizontal

distributions.
If we denote respectively by N(ﬁ, ﬁ‘), N(f, f) and N(’f,’f) Nijenhuis tensors
formed with F, f and ’f, then the relation among those three tensors is as

follows:

ProposiTioN 5.1. N, ) is zero if and only if

1) NS NH=0, 2) NAH=0, 3 fe'das™—f, ey’ =0,
where Aog"=(L Eaﬁ‘ MCICE, and

4) Ofhed” +1, 110 hed” =0,
where O is the so-called pure operator (cf. [13]) defined by

1
£ = 5 O —£f).

On the other hand, a straightforward computation shows that if /4,,"=0, then

L "'baf p= 0.

Thus we have

PROPOSITION 5.2. If Aas*=0 and hsa">0, then there exist at most m(m—1)/2
vertical almost analytic vector fields in Fp.



FIBRED SPACES WITH ALMOST COMPLEX STRUCTURES 501

ReEMARK. We see, in Proposition 5.1, that /%,* is not zero in general even if
N(F, F)=0. In the case in which the almost complex structure is integrable, that
is, N(F, F)=0, h," are analytic vector fields in o, if Aap®=0.

We refer here to the condition that C, or E, is to be an almost analytic
vector field. The next proposition is a result of a direct computation:

ProposiTION 5.3. A mecessary and sufficient condition that C, is an almost
analytic vector field is that

1) aafﬁTZO
and

2) il —fAI arve projectable functions.

And a necessary and sufficient condition that Eq is an almost analytic vector field
is that

1) 8./+°=0, 2) AaﬁaZO
and
3) O&hed”+1"11°03h =0.

Thus, in the case in which E,'s are almost analytic vector fields, N(F, F) vanishes
if and only if NUf,’f) vanishes.

Now we suppose that M is a Kihlerian manifold which is the most typical
example of complex manifolds. In a Kihlerian manifold we have F;F;,=0, from
which and the assumption (5.1) we have

(5.5) Vefs*=0,

where P, is the operator of covariant differentiation with respect to the connection
induced on M from 7,

(5.6) Fo¥hed" —f 5 her® =0,
(6.7 Solhed" —fehoa” =0,
(5.8) A" =S e+ 1,157 e =0,
(5.9 —folag® + S5 lar" =0
and

(5.10) 'V, =0,

where 'V, is the operator of covariant differentiation with respect to the connec-
tion induced on &, from /. Equations (5.6) show that f3%.¢" is skew-symmetric
in b and ¢, but it is also symmetric in b and ¢ by equations (5.7). Thus we have
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(5.11) hoe*=0.

We also have, from equations (5.8) and (5.9),

(5.12) Aeg™==21"lg¢,

from which we have
LEMMA 5.1. M has isometric fibres if and only if Ae"=0.
Taking account of Theorem 3.1 and Lemma 5.1 we have

THEOREM 5.1. In a fibved Kdihlerian space M with a projectable metric and
a projectable almost complex structure, if each fibve is a holomorphic submanifold
of M, then the horizontal distribution is integrable, that is, M is locally trivial.
In this case M is locally the Riemannian product of Fp and M if and only if
Aes” =0, where M is diffeomorphic to M. In the latter case we have d.f,f=0.

Next we consider the case in which &, is not an invariant manifold of M.
We assume as before that A/ has a projectable Riemannian metric and a projec-
table almost complex structure F. We assume, for the present, dim Fp>dim M,
because we can discuss analogously the case dim Fp<dim M.

We further assume that FV is horizontal for any Veq ".‘,(1\71). If there is a
vertical vector field ¥V such that FV is vertical, a certain submanifold of Fp is
invariant under F and in such a case we do over again the discussion mentioned
above.

Renumbering (E, -+, En), We can put

FE=ffE:, FE,=f,/C;, FC,=fYE,,
where ¢=1,2, -, m—7; ¥ =m—r—1, -,; r=dim Fp. Thus F is represented as
(5.12) Fr=f2E Er+fo tEY Cly+ 3 CEE Y,

where f3%, f»® and f,* satisfy equations,

(5.13) =08  fo'f==08  [i¥fu'=—0}

and

(5.14) 0.S352=0.

Thus M has a so-called f-structure, f being given by a matrix of rank m—r
20

(5.15)
0 0

with respect to the non-holonomic frame (E,, Ej).
By the definition of normality of f-structure in [3], the normality of f-struc-
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ture given by (5.15) is equivalent to the integrability of the almost complex
structure defined by (5.12). Thus we have, by a straightforward computation,

THEOREM 5.2. The f-structure in M given by (5.15) is normal if and only if
following conditions are satisfied.

D) f0afs" —f1°0af " —fe™(0: /1 — 05 %) =0,

2) fslhes"+felhar"=0,

3) Owf=0,

4 Oefo*— I3, fo 0+ o " +2f han” =0,

5) Oy fer' —0cr for" — I 5P0p for” + 11 o#0s for" — fof Il o/ g+ ferP I 7 g =0
and

6) fo'0,fv" —fo' 0, fo" —2hen”=0.

ReMARK. The condition 1) in Theorem 5.2 is nothing but the integrability
condition of the almost complex structure defined by f3°.

In particular, if M is a Kihlerian fibred space with a projectable Riemannian
metric § and the projectable almost complex structure F defined by (5.12), then
we get following identities

Vef5?=0,  0uf3®=0,  0cgsa=0,  he"=0,
00y =0,  heg"=0,  [,2=0,
So'he™ i1 hernt =0,
Seol® + 10" =0,
0cfo"— 110, fo"+fo' I =0,
Vo fo* = Fort o — %) =0
and
VoS +F ol =0.
These equations are useful to prove the following:

THEOREM 5.3. Let M be a fibred Kihlerian space with a projectable Rieman-
nian metric § and the projectable almost complex structure F difined by (5.12).
We denote by M, the distribution spanned by Ej's and by M, the distribution
spanned by C.'s and Ea/s Then MI and M, are both involutive distributions and
their integral mamfolds M, and M, are Kihlerian submamfolds of M which are
totally geodesic and M is the Riemannian product of M, and M,.
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Proof. Since hg"=0, the distribution M, is integrable and its integral mani-
fold M, is totally geodesic. F;f;*=0 means that A, is a Kihlerian submanifold
of M and 9eg5a=0 and 0,057z=0 show that the metric induced on M, is in-
dependent of x* and ’‘z° M, is totally geodesic because Lpa=0 and A..;*=0.

On the other hand, we can suppose //."=0 and thus, taking account of (3.15)
and /=0, we have 0,9,,=0. Thus the metric of M is independent of z* and
therefore M is the Riemannian product of M, and M,.

Remark. The almost complex structure induced on M, is given by

fbra 0
and the connection which makes invariant the almost complex structure is given
by the last two equations of the equations above.
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