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Introduction.

It is well known that Liebmann [7] and Suss [15] proved that a compact convex
hypersurface with constant mean curvature in a Euclidean space is a sphere. The
tool used in the proof of this theorem is an integral formula containing the first
mean curvature of the hypersurface. The position vector and the support function
play an important role in the proof. In his paper [5], Hsiung has established an
integral formula expressing the relation between the y-th mean curvature and the
( -f l)-st mean curvature of a compact hypersurface in a Euclidean space, which is
a generalization of that of Suss. By applying the integral formula, Hsiung proved
a theorem which gives a sufficient condition for a compact hypersurface in a
Euclidean space to be a sphere. This generalizes the theorem of Liebmann and
Siiss. The study in this line has been carried out by Amur [2], Reilly [10], Shahin
[13], Yano and Tani [17] and others.

On the other hand, Simons [14] has recently done an important and suggestive
contribution to the study of minimal submanifolds in a Riemannian manifold, in
which he has given a formula for the Laplacian of the square of the norm of the
second fundamental form of the submanifold. Under the stimulus of the Simons'
study, Car mo, do Chern and Kobayashi [3], and Nomizu and Smyth [9], using the
similar formula to that of Simons, have obtained some theorems on a compact
minimal submanifold or a complete hypersurface with constant mean curvature in
a Riemannian manifold of constant curvature.

The purpose of this paper is to generalize, by applying a formula of Simons'
type to a compact hypersurface with constant scalar curvature in a Riemannain
manifold of constant curvature, the theorem of Liebmann and Siiss from the
different point of view. We prove that a compact hypersurface of non-negative
curvature and with constant scalar curvature in a Euclidean space is a sphere.

In § 1, we state preliminaries and in § 2 we obtain the main theorem (Theorem
2.3) stating a compact hypersurface M with constant scalar curvature in a simply
connected space form Mn+1(c) is totally umbilic or has exactly two distinct and
constant principal curvatures under suitable conditions. Making use of this pro-
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perty, we prove some theorems for compact hypersurfaces in Mn+1(c). In § 3, we
treat with compact convex hypersurfaces in a Euclidean space.

1. Preliminaries.

Let M be an (^+l)-dimensional Riemannian manifold of constant curvature
c. Let M be an ?z(i^2)-dimensional connected Riemannian manifold and let φ:
M-+M be an isometric immersion of M into M. As far as we are concerned
with the local calculation, we may regard φ as an isometric imbedding. For
simplicity, we say that M is a hypersurface immersed in M, and we identify a
point p of M with the point φ(p) of M. Throughout the paper, the differen-
tiability classes of manifolds, immersions and tensor fields are assumed to be of
class C00.

By gji, Rica11 and Hμ we denote components of the Riemannian metric tensor,
the Riemannian curvature tensor and the second fundamental tensor of M, respec-
tively. Then the equation of Gauss for the hypersurface M is given by

(1. 1) Rkjίh = c(gichQjί - QkiQjh) + HkhHji - HkiHjh,

and that of Codazzi by

(1.2)

where V denotes the operator of covariant differentiation with respect to the
induced Riemannian connection of M We define the function / on M by

(1.3) /=#,,</'*=#/,

which is globally defined on M up to the sign. Transvecting equation (1. 1) with
gkh, we get

(1. 4) Rji^cfa

where RJt are components of the Ricci tensor. We denote by R the scalar curva-
ture of M. That is to say, we put

Transvecting equation (1. 4) with gji and remembering the definition (1. 3) of /,
we obtain

(1. 5) R=cn(n-ΐ)+f -HίiII'i.

Now, applying the Ricci identity to Hjt and taking account of equation (1. 2)
of Codazzi, we have

where Fk=gk%. Substituting (1.1) and (1.2) into the relation above, we obtain
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where Δ~VrV
r is the differential operator of Laplace and Beltrami. This leads to

the equation

ff'Mff^ff^P^+ί^

which is due to Chern, do Carmo and Kobayashi [3]. Making use of the principal
curvatures ki, k2, ~,kn of M, we get

ΉV-WiH^ Σ
ι<3

This implies that

(1. 6) H»ΔHii=HW,VJ+ Σ
*<;

The equation (1.6) has been obtained by Nomizu and Smyth [9]. By a simple
computation, equation (1.6) is rewritten as follows:

(1. 7) ά(P^*}-VίH*ft = VJΪtf*Έί»--fJ*+ Σ
* t<7

where f^ = V^f and fl=

2. Hypersurf aces with constant scalar curvature.

We assume in this section that M is a hypersurface with constant scalar
curvature R in M. We shall investigate the sign of the right hand side of (1.7).
First of all, we consider the first term and the second term of the right hand
side of equation (1.7). By calculating the square of the norm of fPicHji
we get

From (1. 5) it follows that

and, moreover we find

because the scalar curvature R is constant. Eliminating HjiHjί and H^'Ψkfίji from
these equations, we obtain

(2.1) ||/F^-/^

We now define a domain D in M as follows: D is the set of points x in M such
that
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Making use of (2. 1), we can prove the following lemma, which gives a sufficient
condition for the algebraic sum of the first and the second terms of the right
hand side in (1.7) to be non-negative.

LEMMA 2. 1. Let M be a hyper surf ace with constant scalar curvature R in M.
If R^cn(n—\\ then the domain D is empty.

Proof. We suppose that D is not empty. By means of the definition of the
domain D, it follows from (2.1) that

on D.

Since the scalar curvature R is equal to or greater than cn(n— 1), the inequality
above shows that R=cn(n—l) or f% vanishes identically on D. We consider first
the case in which the scalar curvature is equal to cn(n— 1). The left hand side
of (2. 1) being equal to or greater than zero, we get

This means that / vanishes on D. Since the domain D is open, we obtain

Λ=0 on D.

This shows that R—cn(n—V} implies that /»=0 on D. When Λ=0 on D, the
scalar function FkHjiΫ

kHjί—flf
ί is equal to or greater than zero on D. Thus the

domain D must be empty, which proves the Lemma.

For each point x in M, let XlfXzt ,Xn be an orthonormal frame of the
tangent space Mx such that any X3 is an eigenvector of the second fundamental
tensor corresponding to an eigenvalue kj. Then, by remembering equation (1.1)
of Gauss, the sectional curvature K(Xlt Xj) of the plane section spanned by Xt

and Xj is given by

(2.2) K(X^Xi)=cΛ-kik3.

Taking account of this relation and remembering the right hand side of equation
(1.7), we see that if M is of non-negative curvature and with constant scalar
curvature R^cn(n—l), then the right hand side is non-negative. Thus we can
prove the following.

LEMMA 2.2. Let M be a compact orientable hypersurface of non-negative
curvature and with constant scalar curvature R in M. If R^cn(n—V), then there
exist at most two distinct principal curvatures, say λ and μ, such that

(2.3) c+λμ=Q.

Proof. Following Lemma 2.1, the assumption R^cn(n—~L) implies that the
domain D is empty. This shows that
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ytfiptHH-fJ^Q on M

On the other hand, by virtue of the Green's theorem and equation (1. 7), we obtain

dM being the volume element of M. Thus, ΨkHjίF
lcH^-flf

ί and c+kikj being
both non-negative, we find

(2.4)

and

(2.5)

for any indices / and j at each point in M. Equation (2. 5) shows that for distinct
principal curvatures kι and k3 we have

This means that the number of distinct principal curvatures at each point is at
most two, and they satisfy (2. 3).

We prove now the following main theorem.

THEOREM 2.3. Let M be a complete and simply connected Riemannian (n+T)-
manifold of constant curvature c, and let M be a connected compact Riemannian
n-manifold. Let φ be an isometric immersion of M into M. Suppose that M is of
non-negative curvature and with constant scalar curvature R. If R^cn(n—l), then
(My φ) is totally umbilic or there exist exactly two distinct and constant principal
curvatures.

Proof. Taking account of equations (2.1) and (2.4), and the assumption
—\\ we see easily that the equation

holds. We consider the case in which R is different from cn(n— 1) and the case
in which R=cn(n—l\ separately.

In the first case, / is constant. Accordingly, by a theorem of Nomizu and
Smyth [9], the assertion of Theorem 2. 3 is true.

In the other case, it follows from (1. 5) that

Using principal curvatures, we can rewrite this equation as

(2.6) Σkikj=Q.
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Also, by the assumption that the sectional curvature is non -negative, we see that
the scalar curvature R is non-negative and so is the constant curvature c.

Suppose that c is equal to zero, that is to say, the ambient space M is an
(^+l)-dimensional Euclidean space En+1. We get by (2.6) and the assumption
that the hypersurface is of non-negative curvature

kikj=0 for any distinct indices i and j.

This implies that the type number t(x) at each point x in M is equal to 0
or 1. Since M is compact, it is seen that there exists a point in M at which
all principal curvatures of M are positive or negative. This contradicts the fact
that the type number is equal to 0 or 1. Thus the constant curvature c must be
positive.

Next, suppose that there exists a non-umbilic point p in M, at which we
have two distinct principal curvatures λ($) and μ(p). Then, by means of (2.3),
they satisfy c+λ(p)μ(p)=Q. Hence one is positive and the other is negative.
Under this situation, there exists a maximal connected open set U consisting of
non-umbilic points, which contains p. At each point in £7, (M, φ) has exactly
two distinct principal curvatures with constant multiplicities k and n— k, respec-
tively. Then equation (2.6) is equivalent to

(2.7) «*ΞΪL

Taking account of (2.3) and (2.7), we see that λ and μ are constant on £7. This
shows that λ is different from μ at the boundary point of £7 and therefore, by
the definition of £7, the closure U of U should be contained in £7. Thus £7 is
closed. Since M is connected, £7 is M itself. This completes the proof.

In the case in which the ambient space is Euclidean, we have, as a direct
consequence of Theorem 2.3, the following

THEOREM 2. 4. Let M be a connected compact Riemannian n-manifold of non-
negative curvature and let φ be an isometric immersion of M into En+1. If the
scalar curvature R of M is constant, then M is isometric to a sphere Sn and φ is
an imbedding.

It is seen (for the detail, see [8] or [9]) that model forms of hypersurfaces
with constant scalar curvature in a sphere Sn+1(c) are given as follows: the great
sphere, the small sphere as a totally umbilic hypersurface, and the product space
S*(ci)XSw-V2), where l/d+l/c2=l/c and IgA^n-l. By a theorem of Nomizu
and Smyth [9], we find

THEOREM 2. 5. Let M be a connected compact Riemannian n-manifold of non-
negative curvature and with constant scalar curvature R, and let φ be an isometric
immersion of M into Sn+1(c). If Rl^cn(n—\\ then φ(M) is isometric to one of the
following spaces:
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(1) the great sphere, and φ is an imbedding',
(2) the small sphere, and φ is an imbedding',
(3) Sk(cι}xSn-k(c2\ where Ild+l/c^l/c. Except for k=l or n-l, φ is an

imbedding.

The following result is trivial, because of the property of principal curvatures.

COROLLARY 2. 6. Let M be a connected compact Riemannian n-manifold of
non-negative curvature and with constant scalar curvature. If, for an isometric
immersion φ: M^Sn+1(c\ φ(M) is a certain hemisphere, open or closed, in Sn+1(c),
then M is isometric to Sn and φ is an imbedding.

We treat with the case in which the ambient space is a hyperbolic space
Hn+1(c"). As is already known [6], [8], models of hypersurfaces with constant
scalar curvature in Hn+1(c) are listed up as follows: a sphere Sn, a hyperbolic
space Hn, a flat space Fn as a totally umbilic hypersurface, and Sk(c1}xHn-JC(c2),
where l/ci + l/c2 = 1/c and l^k^n-l.

Let M be a compact hypersurface of non-negative curvature and with con-
stant scalar curvature immersed in Hn+1(c). Then we set

R-cn(n-l)>0.

This shows that M satisfies the assumption of Theorem 2. 3, and therefore M is
totally umbilic or M has exactly two distinct and constant principal curvatures.
By a similar method to that used in [6] and [8], it is seen that M is isometric to
one of model hypersurfaces stated above. Taking account of the fact that M is
compact, we see that M must be isometric to a sphere. Thus we find

THEOREM 2. 7. Let M be a connected compact Riemannian n-manifold of non-
negative curvature and with constant scalar curvature, and let φ be an isometric
immersion of M into Hn+l(c}. Then M is isometric to a sphere and φ is an
imbedding.

3. Convex hypersurfaces in En+1.

Let M be a complete hypersurface of non-negative curvature immersed in
En+1. Since it is easily seen that any two principal curvatures ki and k3 satisfy
kikj^O, we may assume that

(3.1) *i^*2^-*«^0

at each point in M, without loss of generality. We put

(3.2)
J

( 5 ) being binomial coefficients, H, is called the j th mean curvature of M. This
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shows that any mean curvature H} is non-negative. We see also that the follow-
ing relation between the /-th and the (y+l)-st mean curvatures is true:

(3.3) HiHt-H,^'3^"-3-^ Σ (^-kJ'V î
ΎlΎl. ι\<iz

*<"<ij+i

We now assume that the s-th mean curvature Hs is constant for a fixed s.
The following two lemmas concern with this case.

LEMMA 3.1. If there exists a point p such that Hi(p}=§ for an index i such
that l^i^s, then HS=Q.

Proof. By the definition (3.2) of Ht, we get

This implies that kι(p)k2(p)—ki(p)=Q. It follows from this result and (3.1) that

Thus it is easily seen that H8(p)=0t from which we have

fli=0 on M,

because the 5-th mean curvature Hs is constant.

LEMMA 3.2. If HS=Q, then the type number t(x) at each point x in M is less
than s.

Proof. Under the assumption and (3.3) for j=s, we see that Hs+ι is non-
positive. Since, in general, any mean curvature is non-negative, we get

ft+1=0 on M.

It follows inductively from (3.3) that

Hs=Hs+1 = -=Hn=0 on M.

By the definition, the condition Hn=Q on M is equivalent to &ι&2 &n=0 on M,
and therefore kn must vanish identically on M. This means that

and we get kn-1=0. Repeating the discussion similar to that used in the above,
we obtain

ks=ks+1 = '=kn=Q on M.
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This implies that the assertion of the lemma is true.
Now, we consider first the case HS=Q. As a direct consequence of Lemma

3.2, the relative nullity v(x) of the immersion φ of M into En+1 at each point x
in M is equal to or greater than n—s+1. Thus it follows from a theorem of P.
Hartman [4] the following is proved:

THEOREM 3.3. Let M be a complete Riemannian n-manifold of non-negative
curvature and let φ be an isometric immersion of M into En+1. If HS=Q on M,
then φ(M] is (n—s+V)-cylindrical and is not (n—s-[-^-cylindrical.

We consider a hypersurface M imbedded in En+1. A support function is by
definition the oriented distance from a fixed point in En+1 to the hyperplane Hx

in En+1 tangent to M at each point x in M. The following theorem is proved
by Hsiung [5]: For a compact orientable hypersurface M imbedded in En+1, sup-
pose that a support function is of the same sign. If Hj>0 for y=l, 2, •••, s and Hs

is constant, then M is isometric to Sn. Let M be a convex hypersurface imbedded
in En+1, which is not divided into two parts by Hx in En+1 tangent to M at each
point x in M. Then the second fundamental form is semi-definite and therefore
all of principal curvatures are non-positive or non-negative and a support func-
tion is of the same sign. Under this situation, since Lemma 3.1 implies that an
i-th mean curvature Hi for any i=l, 2, •••,$—1 is positive provided that Hs>0, we
can prove the following theorem using Lemma 3.2 and the theorem of Hsiung.

THEOREM 3.4. Let M be a compact convex hypersurface imbedded in En+1.
If the s-th mean curvature Hs is constant, then M is isometric to Sn.

By a theorem of R. Sacksteder [12] and Theorem 3.4, we find

COROLLARY 3.5. Let M be a compact Riemannian n-manifold of non-negative
curvature and let φ be an isometric immersion of M into En+1. If Hs is constant,
then M is isometric to Sn and φ is an imbedding.

REMARK. We consider a strictly convex hypersurface M in En+ί, that is to
say, a hypersurface which is convex and each point x is the only one point lying
on the hyperplane Hx. Then all the principal curvatures are positive or negative.
This means, by virtue of the equality (3.3), that the following theorem holds:
Let M be a compact strictly convex hypersurface in En+1. If Hs is constant, then
M is isometric to Sn. (See Yano [16], p. 86, Theorem 2.2). Theorem 3.4 is a
slight generalization of this result.

REMARK. Aleksandrov [1] has proved the following theorem: Let M be a
compact Riemannian n-manifold and let φ be an isometric imbedding of M into
Sn+1, En+1 or Hn+1. Suppose that φ(M) is contained in a closed hemi-sphere, pro-
vided that the ambient space is a sphere. If a given function F of principal
curvatures kι,k2, ~ ,kn of class C1 is constant on M and dFldkj>Q for any index,
j, then M is isometric to Sn. It is to be regretted that the authors could not
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understand the proof. The condition that the s-th mean curvature H8 is constant
on a compact strictly convex hypersurface in En+1 is satisfied if the assumption
of Aleksandrov is satisfied. Though, as is already mentioned, Theorem 3.4 is a
slight generalization of a compact strictly convex case, we note that the assump-
tion of convexity is not mentioned in the theorem of Aleksandrov.

REMARK. The following relation between the second mean curvature Hz and
the scalar curvature R holds:

This means that Corollary 3. 5 is a generalization of Theorem 2. 4.
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