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SOME EXTREMAL PROPERTIES IN THE UNIT BALL
OF VON NEUMANN ALGEBRAS

By Hisasar Cuopa, YoicHr KijiMA AND YosHIOMI NAKAGAMI

This paper is prepared to investigate some extremal properties in the unit ball
of von Neumann algebras. Throughout this paper, by extremal point we mean the
extremal point of the unit ball of the algebra considered. Theorem 1 is characteri-
zations of extremal points. Theorems 2 and 6 are characterizations of finite von
Neumann algebras. Theorem 3 gives a sufficient condition for a von Neumann
algebra to be finite. Theorem 4 treats the extremal points of a von Neumann
algebra which is induced into or reduced to the invariant subspace of the algebra
or its commutant. Theorem 5 gives a necessary and sufficient condition for a
von Neumann algebra to be a properly infinite factor. Theorems 6 and 7 treat the
extremal points which appear in the tensor products. Theorems 1 and 2 are
specializations of the results obtained by Kadison [2], Sakai [4], and Miles [3].

1. Notations and definitions. Let © be a complex Hilbert space and £($) be
the full operator algebra on it. Let % and B be von Neumann algebras, and C the
von Neumann algebra of all scalar multiples of the identity operator. For a pro-
jection £ in A or A’ the set {Tr:TeW} forms a von Neumann algebra Az where
Tx is a restriction of ET to the range of E. For convenience, we shall denote by
A, the unit ball of A, Ae the set of extremal elements of A;, AP the set of projections
in A and A the set of partially isometric operators in A. The operators 1 and 1lg
stand for the identity of % and e, where G is a projection belonging to the center
of A. Furthermore, denote by A the set of isometric operators in A, by A™ the
set of A with A*e and A" the set of unitary operators in A. For E and Fe¥p,
E~F if and only if there is Ae¥N with A*A=F and AA*=F, and E<F if
and only if there is AeW with A*A=F and AA*<F. Let Re (z,v) be the real
part of the inner product (z,y) for vectors x and y. Let AXPB be the product von
Neumann algebra of % and B, and AXB be the product operator in AXB with
AeW and BeB. Let AR DB be the tensor product of A and B, and A° @B denotes
the set of tensor products A® B of all the pairs Aee and Be®Be.

2. The following theorem due to Kadison plays an important role in this
paper and the independent proof will be given.

THEOREM 1. The following conditions® are equivalent:
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1) Kadison has proved the mutual equivalence of (1) and (3) for C*-algebra [2].
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1) Ae¥s

(2) AeWrt and there exists a central projection G of W such that GEA*A and
1-G=AA*; and

(3) AeWr agnd (1—AA¥AA— A*A)={0}.

Proof. (1) implies (2): It is obvious that Ax0 for AeAe. Suppose that an
operator Aee is not partially isometric. Then there is a vector z€® in the carrier
of A such that ||Az||<||z|. Let A=U|A| be the polar decomposition of A and let
P be the projection onto the subspace of § spanned by {7z:7eNUNA’}. Then P is
a central projection of . Using these operators, put V=A1—P)+ UP and
W=AQ1—P)+@2A—U)P. Then Ve, and WeN,. Since ||Az||<|lz|]| and ze U*U$H

|APz||=|| Azl <[|l||= ||Uz||=|| UPx||

and so APxUP, then VxW. But A=AQ—P)+AP=(V+W)/2, so this contradicts
the assumption that AeNe. Thus AeAr. Let E=1—A*A and F=1—AA* and
apply the theorem of comparability [1] to these £ and F, then there exists a
central projection G of A such that EG<FG and F1-G)<E1—-G). If EG=0,
then B*B=FEG and BB*=FG for some non zero Be¥r. Define A* and A~ by
At=A+B, then A=(A*"+A7)/2 and A*e,. This contradicts AeWe and hence
EG=0. Similarly F(1—G)=0. Therefore (1—E)G=G and (1-F)(1—G)=1-—G,
that is G=E1—-FE=A*A and 1-G=1—-F=AA*.

(2) implies (3): By the condition (2), 1—A*A<1—G and 1—-AA*=G, then
1—AA¥T(A—A*A)=1—AA*GT(1—G)(1—A*A)=0 for every Tel.

(3) implies (1): If an operator A given in (3) is not in e, then there are two
different operators S* and S~ in %, such that A=(S*+S~)/2. For every ze9

S+ —Szl*=2(|S "2+ ISzl — I(S *+S)=||*
=2(/1S*2|[*+|IS ~z|[) —4l| Az]l*,

so that for xe A*AH S+x=S"2,? hence Str=(S*x+Sx)/2=Ax and for ye(1—A*A)D
(S*+S-)y=2Ay, hence S*y=—S"y. Define B=S*(1—A*A). Then St=A+B and
so Bx0. For every xcA*A9H and ye(1—A*A)D

llll*+llyll*=llz+vl*= IS “(z+)I*=[I(A£ B)(z-+y)II*
=||Az+ By|*=||Az||’£2 Re (A, By)+||Byll".

Hence ||y||*—||By|2=+2Re (Az, By) for every ze A*A9 and ye(1—A*A)H. There-
fore (Ax, By)=0. Thus BHY9C(1—AA*)H and so 1—AA¥)B(1—A*A)=x0, which is
contrary to (3). Q.E.D.

ReEMARK 1.1. In Theorem 1, (2) follows directly from (3) without assuming

2) It 1s easily seen that Aic9e and Yi*cAYe by the parallelogram law,
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the partial isometry of the operator. Taking Ae¥ with (1—AA¥AA—A*A)={0},
then

0=A*1—AANA(1—A*A)=(A*— A*AA*)(A— AA*A)=(A— AA*A)*(A— AA*A)
and so A=AA*A, therefore
AA*=(AA¥)*=(AA*)? and A*A=(A*Ay*=(A*A)?

hence AeWr. Let G be the projection onto the subspace {Tx:7TeAUA’ and
re(1—A*A)H}Lt. Then G is central and 1—A*A=<1-G, so G=A*A. But
1—AA¥N1—A*A)={0} and so (1—AA¥)(1—G)=0. Thus 1—AA*=G.

ReMARK 1.2. (1) follows directly from (2). Suppose now that the condition
(2) holds. If A=(B+C)/2 with Be¥, and Ce¥,;, then for each re®

I(B—C)z|[>=2(]| Bz||*+|Cal ") —[|(B+C)l*=2(|| Bz|[*+||Cxx]|*) — 4]| A|*

and so for xe A*A9H, Bxr=Cx=Ax. Since G=A*A, BG=CG=AG. Since
A*=(B*+C%*)/2, by repeating the similar argument, B*(1—G)=C*(1—G)=A*1—-G),
so that B1—G)=C(1—G)=A0—G). Thus A=B=C and so Ae¥e.

THEOREM 2. The following conditions are equivalent.
Q) A is finite; and
(2) We=Uv.

Proof. (1) implies (2): Being stated above® that €vcWe, it is sufficient to
show the converse inclusion. Suppose AeNe, then by Theorem 1, both A*A and
AA* are projections with A*A~AA*. Since U is finite, 1—A*A~1—AA* and so
there is a partially isometric operator Be such that 1—A*A=B*B and 1—AA*
=BB*. Let A*=A+B, then A*eW,. Since AeWe, A=A*=A-, therefore B=0.
Thus A*A=AA*=1, that is, AeA".

(2) implies (1): If AeW with A*A=1, then AeN'. Hence AeW° and so AA*=1.
Thus according to the algebric characterization of a finite von Neumann algebra
[1], % is finite.

REMARK 2.1. In the last theorem that (1) implies (2) is obtained somewhat
different methods. If Ae°, then AeA* and 1—AA¥)N(A— A*A)={0}. Since N is finite,
B*B=1—A*A and BB*=1—AA* for some Ber!, hence 0=(1—AA*)B(1—A*A)
=BB*BB*B=B, therefore A*A=AA*=1, which implies AeMN"

THEOREM 3. (1) If AeWe. then A*A~AA*~1; and
(2) If the converse of (1) holds, then N is finite.

Proof. (1) Suppose Ae¥e, then there is a central projection G with G=A*A
and 1-G=AA*, and hence
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G=A*AG=(AG*(AG)~(AG)AG)*=AA*G
and 1-G=AA*(1—G). Thus
1=G+(1—-G)~AA*GH+AA*(1—-G)=AA*.

(2) If A is not finite, then there is a projection AeWA with A=x1 and A~1.
Define A* and A~ by A*=A+(1—A). Then A=(A*+A7)/2, therefore A¢A° and
A*A~AA*~1.

It follows immediately from the last theorem that (1) implies (2) in Theorem 2.

ReMARK 3.1. An alternative proof of (1) in Theorem 3. In the case where
A*A=1 or AA*=1, by Theorem 1, A*A~AA*~1. Therefore it suffices to prove
(1) in the case where A*A=x1 and AA*x1. Let E=1—A*A and F=1—AA*. By
Theorem 1, £ and F' are projections with EF=0, so that F<1—FE=A*A. Define
F=F and Fp.,=A"FA*" for n=1,2,3,---. Then F,eW* such that F,=A*A,
Fo~Fp and FoFp=0 for n,m=1,2,3,--- and nxm. Put Foy=F\4+F,+Fs+---, then
Fy is also a projection with Fy=A*A and A*A—Fy~1~F, Thus

A*A=(A*A—Fo)+Fo~(1—Fo)+Fo=1-
LEMMA. For any Ee%? or AP, U)p=Ur):.

Proof. 1t is clear that (W))zCAk);, so that it suffices to show the converse
inclusion. 1) If EeW and B=Agpe(Az), with AeN, then |[FAE|=1. Let
C=FAE+(1—FE). Then Ce¥, and Czx=Az=B. Hence Ur),CcMN)e. 1ii) Let £ be
a projection in A’ and G its central carrier. Since Az and e are isomorphic, for
any B in (Ag);, there exists an element C of (Mg); such that Czx=B. But since
GeUNW)*cWp, by i) there is AeW; with Ag=C. Hence Ar=(Ag)r=Cr=2B, which
implies Nz):<Q)z.

TuroreM 4. (1) For any EeU? or AP, Ag)eC (A)z;

2) for any EeWr, N)gCWg)e. In particular, for any EeUP?, UA)r=Wr)e,
which may be denoted by W, and

(3) for any Ec(UNA)P, g X U_z=e.

Proof. (1) For a projection £ in A or W/, let ¢ be a linear mapping A—Ax
of A onto Az. Then ¢ is weakly continuous and ¢(2,)=(Ug), by Lemma. Now,
suppose Be(Ug)® and put ¢ }(B)={AeW; p(A)=B}. Then by the continuity of
o, o~ (B) is a weakly closed and convex set in the weakly compact unit sphere ¥;.
Hence by the Krein-Milman’s theorem there exists an extremal point A in ¢~*(B)
and this A is also an extremal point of ;. Because, if A is not extremal in %,
then different operators A; and A, in %A, exist and A=(A,+ A,)/2, while
(p(A)+¢(A)/2=p(A)=B. Hence ¢p(A:)=¢(A;)=B follows from the extremality of
Band so A;, A:€¢7Y(B), which is impossible since A is extremal in ¢ *(B). Conse-
quently Be(¥°)g, thus Uz)°C (N°)e.

(2) If Aee, then there is a central projection G such that G=A*A and
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1-G=AA*. Hence for every EeW, GE=FEA*AE=(AEY*(AE) and 1—GE
=FAA*E=(AE)(AE)*. Since Gr is a central projection of €z, AzeNg)e. Thus
Az Ar)e.

(3) If AeAy and BeWU;_p, then there exist central projections F of Az and G
of ;_g such that F=A*A, 1-F=AA*, G=B*B and 1-G=BB*. Then FXG is
also a central projection of %,

FXG=A*AXB*B=(AXB)*(AXB),
A1—F)X(1—G)=AA*X BB*=(AXB)(AX B)*
and
FXG+(1—-F)x(1-G)=1.

Therefore Ax BeNe. Thus AL xAs_ze. Conversely, if AeWe, then there is a
central projection G such that G=A*A and 1-G=AA*. Hence for any central
projection E of %A

GE=A*AE=(AE)*(AE), (1-GE=AA*E=(AE)AE)*,
GA—-E)=A*A1—-E)=(A1—-E)N*A(1—E))
and
1-G)(A—-E)=AA*(1—E)=(AQ—-ENAQ—E))*
Thus AzeAy and Ai_zeWs_z.

CoROLLARY. For any EeWr, e XWe_z. The equality holds if and only if
EeAn’.

REMARK 4.1. In (2) of Theorem 4 the inclusion does not necessarily hold for
EeN. Because, in the most case, Az=0 or Az¢Ax)* even if Aeq. Such a
concrete example can be given as follows: let A=L(H) where D is of two dimension.
Let

10 01y
E_(O O)e‘)l and A—<1 0>ezu.

Then 0=Aze( %)z, but 0¢Az)e. Thus Ur)°FE®Q)k.

From the last theorem, e X Be=AXB)° follows immediately. In general, the
fact that Ae=W YU A"* whenever U is a factor has been proved by Kadison [2]. And
also, combining Theorem 1 and (3) of Theorem 4, in the case of general von
Neumann algebra U, Ae=U AL UAH) X W _¢UAiZs) where the union run through all
the central projections G of A.® In particular, in the case where U is properly

3) Miles has previously shown this fact [3].
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infinite, the former relation will be sufficient for % to be a factor.

THEOREM 5. Let W be properly infinite. Then the following conditions are
equivalent:

1) Uis a factor; and

(2) Ae=WuA™.

Proof. (1) implies (2): Since WUA'cWYe, it suffices to show the converse
inclusion. If Ae%e, then there is a central projection G such that G=A*A and
1-G=AA*. Since % is a factor, G=0 or G=1. Hence either A*A=1 or AA*=1.
Thus Ae y A&,

(2) implies (1): If A is not a factor, then a central projection G of A exists
with 0<G<1. Since A is properly infinite, G and 1—G is not finite. Hence
there exist A and B such that AeAy with AA*x1 and Be_¢ with B*B=x1.
Therefore by Theorem 4, A X BeWL XWAs_g=A°, (AX B)*(AXB)=A*AXB*B=1 and
(AXB)AXB)*=AA*xX BB*x1. Thus AXB¢W UNA®. Consequently Ay W Ne.

THEOREM 6. The following conditions are equivalent:

) WA is finite;

2) NRBeCARB)e for any B; and

3) ARLUD)CUARLD))® for any © of infinite dimension.

Proof. () implies (2): If AeWe and BeBe, then A is a unitary operator and
there is a central projection G with G=B*B and 1-G=BB*. Hence 1QG is
also a central projection, 1QRQG=1RB*B=A*AQ B*B=(AQB)*(AR B),
1®(1-G)=1RQBB*=AA*@®BB*=(AQB)(ARXB)* and 1G+1RX1A-G)=1.
Thus AQ Be( AR B)e.

(2) implies (3) is obvious.

) implies (1): If A is not finite and $ is infinite dimensional, then there exist
A and B such that Ae¥e with AA*x1 and Be¥($)* with B*Bx1. Now define
Ctand C~ by C*=AQB+(1—AA*Y)Q®1—B*B). Then

CH*C+*=A*AQ B*B+(1-AA*)Q®(1—B*B)

and so C*e(A®L®)): with C*xC-. But ARYB=(C*+C7)/2, hence ARRB
¢ AR L))"

THEOREM 7. The following conditions are equivalent:
L A=C;

2) ARB=ARB)° for any B; and

B) ARLD)=UARLD))° for two dimensional D.

Proof. (1) implies (2): If Be(CRB)° such that B=1Q B, with B;eB, then
there exists a central projection G of C®®B such that G=1® G, with G,€(BNTB)r,
G=B*B and 1-G=BB*. Since 0=A whenever 0=1® A, there exists G, in BNY’
such that G;=B¥B, and 1-G=B,B¥. Thus B;e®Be, ie. (CRB)rcCRB°. The
converse inclusion is also similar,
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(2) implies (3) is obvious.
(3) implies (1): If Aec(UR L®D))°, then it may be expressed in the form

A Asw .
=( ), AW (1,7=1,2).
Asr A

However, since A*@ 2(D)°=ARL(D))>, A must be expressed by a suitable operator
UeN° and a matrix e=(a;;)€(9)° in the tensor product

anU  a..U
U®a=( )
@ U anU

Now, suppose that A=C, then a projection E with 0<E<1 exists in A. Define B
by

E 1-F
B )
1-F E

Then B*B=BB*=1 and so Be(U® L(H))°, which is a contradiction to E¢N°.

The authors are indebted to Professor M. Nakamura, Professor H. Umegaki
and the members of their seminars.
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