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CONJUGATE CLASSES OF ORISPHERICAL SUBALGEBRAS
IN REAL SEMISIMPLE LIE ALGEBRAS

By SHIGEYA MARUYAMA

Introduction.

Let g be a real semisimple Lie algebra and let ¢ be a Lie group whose Lie
algebra is g. Let g(#)=exp (¢X) be a one-parameter subgroup in & generated by
X in g. We define an orispherical subgroup & relative to X (or ¢(#) as follows.

DEFINITION.
.,.%:{ze G, Ll_lgl g(z‘)zg(—t):e}.
% is a connected closed subgroup of ¢ [5], and its Lie algebras is equal to
a={Zeg; lim etadxzzo}.

This Lie algebra is called an orispherical subalgebra relative to X. I.M. Gel'fand
and M.I. Graev [2] showed that these subgroups play an important role in the
theory of group representations. Moreover, in the theory of unitary representations
in homogeneous spaces with discrete stationary subgroups, Gel'’fand and Pyatetskii-
Shapiro [4] gave an effective process for isolating the discrete spectrum from the
continuous spectrum. This process was the method of orispheres, the orbit of
orispherical subgroups. In connection with this, the same authors [3] remarked
and used the fact that, in the case of SL(#, R), there exist as many conjugate
orispherical subgroups as there are representations of # in the form of a sum of
positive summands n==F;+ks+---+k;.

In this note we wish to show that there is a one to one correspondence be-
tween conjugate classes of orispherical subalgebras and the set of faces of a Weyl
chamber of (g, ), where f is a maximal compactly imbedded subalgebra of g. (for
the definitions, see below). Our method and results are somewhat similar to the
case of Cartan subalgebras, but are more simple. We shall use frequently notations
and results appeared in [6].
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CONJUGATE CLASSES OF ORISPHERICAL SUBALGEBRAS 19

§1. Definition of orispherical subalgebras.

DEFINITION. A subalgebra 3 of a real semisimple Lie algebra ¢ is called an
ovispherical subalgebva relative to an element X of g, if 3 is the set of all Zeg for
which

lim exp (¢ ad X)Z=0.
t—o0

As is well known, X can be decomposed into a unique sum X=H-N, where
H, Neg satisfy the following conditions: (i) [H, N]1=0; (ii) ad H is semisimple and
all of its eigenvalues are real; (iii) ad N has only pure imaginary eigenvalues. In
this situation, we can assert

ProrosiTION 1. 1. The orispherical subalgebra 3 relative to X is equal to the
ovispherical subalgebra velative to H. 3 is the divect sum of all eigenspaces in g of
ad H corresponding negative eigenvalues.

Proof. Let ¢ be the complexification of g. ad X, ad H, ad N can be considered
as complex linear transformations on g°. Let a, -, a, be different eigenvalues of
ad H, and let g, -+, g, be the corresponding eigenspaces of ad H in g°. g; is invariant
under ad X. We put g;()={Yeg; (ad X—2)?Y=0 for some p=1,2,---}. There are
only a finite number of Z's, say A, ---, 4%, for which g:(2)={0}. Then the subspaces
0i(2®), i=1, -, 7; j=1,---,m;, are linearly independent, and ¢°=3 q;(2%). In g:(2?),
we can choose a basis such that ad X has the form

25 *
5 =IPE+T.
0 2

From the conditions on eigenvalues of ad H, ad N, we have 2’=a;+/—1b;, where
@, bi; are real. For any Yeg(X), exp (fad X)Y=e*" exp (¢T)Y. Since the matrix
components of exp (¢7") are polynomials in #, exp(fad X)Y converges to 0 (¢—c0),
if and only if @;<0, i.e., if and only if exp (¢ad H)Y converges to 0. For any Zeg
we have Z=)2,,, Z,,€3:0%). exp(tad X)Z= 7 exp(tad X)Z,, (exp(tad H)Z
=Y exp(tad H)Z,;) converges to 0 ({—oo) if and only if all exp(tad X)Z,
(exp (tad H)Z,;) converges to 0. This proves the first part.
If Zeg, then Z=73, Z, where Z;egNg:. Zej3if and only if exp (¢ ad H)Z,=e'%2Z,—0
(t—o0). Hence Z,=0 if and only if ¢;<0. This proves the second part.

Now, H belongs to some Cartan subalgebra § of g, since ad H is semisimple.
Let §*, % be subalgebras of Y defined by

+={YeY; all eigenvalues of ad Y are pure imaginary},

§~={Yel; all eigenvalues of ad ¥ are real},

then Hel.
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As is known (see for example [6]), for any Cartan subalgebra %) of g, there
exists a Cartan decomposition of g=f+p such that §=cyp, jrct.

Now we take a new Cartan subalgebras as follows. Let m be a maximal
abelian subalgebra of p, containing /. Maximal abelian subalgebra §, in g containing
m is a Cartan subalgebra of g. We have fy=8h,Np=m>3H.

Let %¢ be the complexification of %, in the complexification g¢ of g. We denote
by 4 the root system of non zero roots of ¢¢ with respect to §¢. We have the
root decomposition of g¢ as follows:

=0+ 2 Ga-
a€d

For any aed, a(H) is real. Eigenvalues of ad /I are the numbers a(H) as «
runs through 4 with the right multiplicity. Hence the eigenspace ¢; of ad #,
belonging to the eigenvalue a., iS @i=Xaw=a; 8 DBeing a, real, g;Ng is the
eigenspace in ¢ of ad A.

Hence, the orispherical subalgebra 3 relative to H is given by

a=< X ga>ng: 2 (@ng).
a(H)<0 a;<0
Thus we have

ProrositioN 1. 2. Amny orispherical subalgebra is given as follows. We decom-
pose ¢ into a Cartan decomposition g=%+p. Choose any element Hep. adH is
semisimple. (In a suitable basis of b, ad [ is symmetric.) Let m be a maximal
abelian subspace of p containing H. A maximal abelian subalgebra ) of g containing

m is a Cartan subgigebra of ¢. Denote by ¢° 0 the complexifications of g, 1) re-
spectively, and let the voot decomposition of o° with respect to §° be

¢’ =0"+2 g
a€d

s=( X ga>ng
a(H)<0

is an ovispherical subalgebra velative to H.

Then

§2. Canonical form of orispherical subalgebas.
In the followings, we consider the adjoint group G of g frequently.

ProrosiTION 2.1. Let H and H’ be two elements of g, and let ad H, (or ad H”)
be semisimple whose eigenvalues are all real. Assume that theve exists a geG such
that H'=gH. Denote by 3,3 the orispherical subalgebras relative to H, H' resp.
Then we have 3 =g;.

Proof is obvious.
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Let g=%+po be a Certan decompositition. In what follows, we fix this Cartan
decomposition. Consider another Cartan decomposition g=¥+p and let Hep. It is
well known that there exists a geG such that

gt=%,, 9h="Ds.
Then gH=H’ep,. By Props. 1.2 and 2.1, we have

ProrosSITION 2. 2. Any orispherical subalgebra is conjugate undev the adjoint
group G to an orispherical algebra relative to an element in po, where g=%,+4b, is a
fixed Cartan decomposition.

Now we consider two maximal abelian subspaces m, m’ in po. It is known [6],
then, that m and m’/ are conjugate under the group G. More precisely, let K, be
the analytic subgroup of G generated by the subalgebra f,. Then there exists a
keK, such that km=m’ (of course kfy=%, Ap,=p,). From these facts, we can deduce

the following

ProrosiTiON 2. 3. Let g=¥%+po be a fixed Cartan decomposition and let m, be
a fixed maximal abelian subspace of po. Then any ovispherical subalgebra is conju-
gate under the gorup G to an orispherical subalgebra relative to an element in m,.

Now we fix a Cartan subalgebra % of g, which contains m,. 4 be the root
system of g° with respect to §§. Root decomposition

¢°=H+2 g«
a€d
is also fixed. Denote by 4, the subset of all ac4 whose restrictions to m, are not

identically 0. Let Hem, Then a(H)<0, acd, implies a€d,. By prop. 1.2, the
orispherical subalgebra relative to H is

(1) a=< 2 g«)ng.
a(H)<0
a€do

For later use, we give a necessary and sufficient condition for an element Z
to be contained in 3. For this purpose, we consider the conjugation ¢ of ¢° with
respect to g, and define for any ae4, o’(H)=a(cH), Hel. It is obvious that a’e 4,
if wed,. Let X, be any element in g..

ProposiTION 2. 4.

3= 2 R(XatoXo)+ (qugw;i(x,,—axa).

a(H)<0 )
a€dy a€dy

Heve sum is not necessarily divect.

Proof. Any element Z of
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a:( 2 ga>ng
a(H)<0
a€dy

can be written

Z= Y t.Xa
a(H)<L0
a€dy

This element belongs to 3 if and only if Z=0¢Z. Hence

z=Yzren=Lt ¥ xA70X)
2 2 a(gg((}

= Z 7a(Xa+UXa)+ Z saN/jl (Xa—GXa)

where t,=7:++/—1 Sa.
Since o«’(H)=a(H) for Hem,, the converse assertion is also evident.

From this proposition, we get

ProrosiTiON 2.5. Let Hy, H; be in mo. The two orispherical subalgebras relative
to H, and H, coincide when and only when o(H:)<0 is equivalent to a(H,)<0 for
all CYGA().

Proof. The “when” part is trivial. Let 3 be orispherical subalgebra relative to
Hem, Another part of this proposition will follow if we show that (H)<0 is
equivalent to Ty=X;+0X; and S;=n/—1(X,—0Xp)e3 for fed,. If B(H)<O, then T,
Ss€3 by prop. 2. 4. Conversely let Ty, Spe3. Both of these elements are eigenvectors
of ad H belonging to the eigenvalue f(H). Either of the two elements is not zero.
By the definition of 3, exp (tad H)Ty=e"* T, (exp (t ad H)S;=e*#S;)—0. Hence
B(H)<0.

§3. Canonical form of orispherical subalgebras (continued).

Let fo, po, 1o, o be the same as in § 2. It is classical that o Npo=ute=0, Ho NE=0;.
Let ¢% % be the complexifications of g, §) resp. 4 be the root system of ¢° with
respect to §. We have a root decomposition of g°=h+ Y sesg.. Killing form of ¢°
will be denoted by B(, ). B(,) is non-degenerate on 0§Sx¥%. Hence we have
elements H,, acd such that B(H,, H)=a(H) hold for all HebS. Then as is known,
a(Hg) are real for all a, fed and H*=3 s RH.Dm,, where R denote the field of
real numbers.

In the vector space §* over R, we select a basis Xj, -+, X, such that Xj, ---, X,
(m<m) is a basis of m,. By this basis, we introduce the lexicographic ordering of
4 as follows. For an aed, «>0 means by definition that the first nonzero component
of (a(Xy), -+, a(Xy)) is positive. For a, fed, «>p is equivalent to a—p>0. By this
ordering, 4 is a linearly ordered set.
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Let 4% be the set of all positive roots in this order. We denote by P the subset
of all aed* such that « is not identically zero on m,. Then we have an Iwasawa
decomposition of g:

g="Fo-+-mo-+11o, o= (Z] ga> ng.
a€EP

Let K, be the analytic subgroup of adjoint group G of g, generated by f,. We
set

N={k€Ko; kmo:mo}-

Then for any keN, restriction ¢(k) of % to m, is a linear transformation on ti,.
We denote the totality of ¢(k) by W, ie.

W={g(k); keN}.

W is the Weyl group of G/K.

Each root aeP defines a hyperplane z,={Hem,; a(H)=0} in the vector space .
These hyperplanes divide the space m, into finitely many connected components,
called Weyl chambers. It is well known that each ¢(k)e W permutes the Weyl
chambers, and W acts simply transitively on the set of Weyl chambers of m.

The restriction of Killing form B( , ) to meXm, is positive definite. With
respect to this bilinear form, we consider the orthogonal reflection s. of m, in the
hyperplane z.. Then, the Weyl group W is generated by reflections s., acP. On
these facts stated above, the reader may refer to, for example [1].

Now, consider the following subset:

(1) Co={Hemo; a(H)<0 for all acP}.

We assert that C, is not empty, and hence C, is a Weyl chamber.

In fact, let us assume that P contains & roots ai, as, -, ax, Whose order is
ay<ax<+-<ax. Then we can find an element Xem, for which all & (X)>0. This
can be seen by induction on & If k=1, a:i(X;)>0 for some i=1, -, m. (Xi, -, Xm
is the basis of m,, with respect to which 4, is ordered.) Assume that we can find
an X=Xm,xX, for which a;(X), -+, ax-1(X)>0. We may assume azx(X;)>0. By
the definition of ordering, ai(Xy), -+, ax-1(X:)=0. If we increase xi, ai(X), -+, az_1(X)
remain positive. For sufficiently large =i, ax(X) becomes positive. Thus Cy3 —X.

Now let Hem, Then there is a Weyl chamber C of m, for which HeC, where
C denotes the closure of C. On the other hand, for some element ¢(k) of W, we
have 2C=C,, ke NCcG. Then kH=H’eC,. Thus we have

ProrosiTION 3. 1. Any orispherical subalgebra is conjygate under the group G
to a subalgebva which is relative to an element IT in Ci, where C, is the Weyl

chamber given by (1).
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In what follows, we consider, for a Weyl chamber C, the set of all faces of
various dimensions of C in the sense of algebraic topology.

For each element HeC, we can find a face B(H) of C, which contains H. If
HeC,, we put B(H)=C,. We denote by B(C,) the set of all B(H), HeC,.

We remark that if HeC,, a(H)<0 occurs only for aeP.

Thus orispherical subalgebra 3 relative to H is

(2) =( 25 N

a(H)<0
a€P
by (1), §2. It is obvious, that if B(H.)=B(H,), Hy, H;€C,, then the two orispherical
subalgebras relative to A, and H; are equal. Conversely, if i, H,€C,, and if the

two orispherical subalgebras relative to H,, H, are equal, then prop. 2.5 and the
above remark imply B(H:,)=B(H;). Hence we have

PROPOSITION 3. 2. Let Hy, H.eCo. Then the two orispherical subalgebras rela-
tive to H, and H; are equal if and only if B(H,)=B(Hy).

Now consider the orispherical subalgebra 3 given by (2). In particular, if HeC,
then 3 is equal to n,:

No= <Z ga> ng'
a€P
Of course n, is a maximal dimensional orispherical subalgebra.
PROPOSITION 3. 3. 3 is an ideal in n,, i.e., [, 3]S3 Also, [mo, 313 Aolds.
Proof. By prop. 2.4, 3 and n, are given by
1= 2 R(XetoX)+ X Ra/—1(X.—0Xo),
u(:é)P<0 a(ﬁ)}so

- (Xa€00)
fty= é R(Xo+0Xo)+ Z;.PSRM —1(X,—0X,)

where sums are not necessarily to be direct. Let a, feP. If a(H)<0 then
(a+pB)(H)<O0 since HeC,. Moreover if 8eP, 8¢ P. These facts combining with

[Ta'Xa + faO'Xa, 77,9Xﬁ+ 7—]190'Xﬁ]
= Tﬂnﬁ[Xﬂr Xﬂ] 'l_;d;];-a[Xﬂ’ Xﬂ] + Tﬂ?]ﬂ[Xm oXﬂ] + fa’?ﬂo'[Xm O'Xﬂ],
[Xn) Xﬂ] € ga—l-ﬂr [Xa’ GXﬁ] €Q0a +af

where g..p may be 0, imply the first part. Similarly for the second part.
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§4. Conjugacy under the Weyl group.

We now prove the following

PropoSITION 4. 1. Let Hy and H, be in Co, and let 31 and 3. be the orvispherical
subalgebras velative to H, and H, vesp. Then 3, and 32 ave conjugate under the adjoint
group G, if and only if there exists an element s of the Weyl group W of G/K,,
for which sH,eCo and B(H,)=B(sHy).

For the proof of this proposition, we now appeal to the following theorem
stated in [6].

THEOREM. Let g be a real senmusimple Lie algebra and G the adjoint group of
a. Suppose two subalgebras ni, ne of g generate tovoidal groups N,, N, respectively
in G. If there exists a compact subgroup L in G, such that

(1) [y, nlt for all leL

({ is the Lie algebra of L), then there exists an element [, in L satisfying following
two conditions:

1) Every element of [\Ns' commutes with each element of Ny;

2)  [lony, n2]=0.

Since in the followings, this theorem plays an essential role, we reproduce the
proof of it.

Proof. First, we prove that for any Xen;, Yen,, there exists an /, in L such
that [/X, Y]=0.

As f()=B(X,Y) is a continuous function on L, attains its maximal value
at some point /, in L. We define the function g¢(#) of real variable ¢ as
g@®)=B(exp (tad 2)[,X, Y) for any Z in [. Then ¢() attains its maximum at ¢=0.
So we have

(2) 0=¢'(0)=B(Z, hX), Y)=B(Z, [LX, Y].

The relations (1), (2) and the fact that B is negative definite on I, prove the equality
[leX, Y]1=0. Now, there exists an X, in n; (i=1,2) such that one parameter sub-
group {expad X, —oo<t<co} is everywhere dense in N;.

For such X; and X,, we can apply the first part of this proof. There exists
an element /, in L satisfying [[,X,, X»]=0. Consequently, for any two real numbers
s and ¢, exp(ad (it X1))=Il(expad (¢X1));* and exp(ad(sX:) commute with each
other. This proves 1), and 2) is a direct consequence of 1).

Proof of prop. 4.1. Suppose that 33=93,, where geG. According to Iwasawa
decomposition G=K,A,N,, where K, Ay, Ny are analytic subgroups in G generated
by subalgebras ¥, m,, n, respectively, we decompose ¢ into g=kan, keK, acA,,
neN,.
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By prop. 3. 3, we have ang.=3,. Hence k3=3;.

Now, consider the compact real form g,=%-+/—1p,, and let G, be the adjoint
group of gy.

We can regard both G and G, as subgroups of adjoint group G° of ¢°. Then
we have Ky=GNG,.

If we put

L={le Ko; j1=31},

then L is a closed subgroup of K, and hence L is a compact subgroup of G.
The Lie algebra of L is given by

[={Xek: [X, a1]=3}.

toroidal subgroups in G,. This can be proved as follows.

Let ¢ be the conjugation of ¢° with respect to g. The restriction ¢’ of ¢ to gu
is an involutive automorphism of g,. Then ¢’X=—X for Xeg, means Xea/—1p,.
Let 7 be the automorphism of G, whose differential dr is identical with ¢’.

We denote by N, the analytic subgroup generated by mn, in G,. Then the
closure N, of N, is compact, connected and abelian. For each k€N, c(h)=h"1 It
follows that z(4)=#hA"" for each heN, Hence the Lie algebra n, of N, has the
property that for each Hen/ o/ H=—H. This implies n;Cx/—1p,. Then o/ —1n/Cp,
and kmocA/—1n!, myCa/—1u,. By maximality of m, we have kmo=~/—1nl,
mo=a/—11} ie. nj=n, This proves that N, is compact, connected and abelian.

Next we prove

[y, ]t for all leL.
In fact, we have
[[fny, 12l 3:]=[[lRemo, o), 31]
=[[lkmo, 3:], mo]-+[lkms, [0, 31]].
The first term of the last expression is equal to
[L[femo, 7%31], mo] = [L[/emmio, 311, mo]
=[/[kmy, k32], mo]=[lR[my, 32], 1mo]
C [lR30, mo] =31, Mol =131, Mo] C 1.
The second term is contained in
[k, 31]=L{Fmo, I3 ]=1[fms, 3]
={[kmo, kel =1k[mo, 32] ClRga=51=31.
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We can now apply the above theorem [6], and we have an element /,e L such that
[Zony, 12]=0,
ic.
[Loferng, mo] =0.
Since lokmoCPy, and m, being maximal abelian, we have
Lokmo=m,.

If we put s=¢(lk) where ¢ is the restriction to my, then s is an element of Weyl
group W, and we have

Ste=lokga=1log1=31.

This last relation implies that two elements sHx(=[kH;) and H, are related to the
same orispherical subalgebra. Then by prop. 2. 4, a(sH,)<0 is equivalent to a(H;)<0
for any a€d,. By the fact that —ae4d, if a€d,, we see also that a(sH,;)>0 is equiva-
lent to a(H;)>0 for any aed,. It follows consequently that a(sH:)=0 is equivent to
a(H))=0 for any aed,. These three relations imply sH.e€Co, and by prop. 3.2 we
have B(sH.)=B(H,).

Converse assertion of prop. 4.1 can be proved as follows. If Hy, siH:eC, and if
B(H))=B(sH,), then by prop. 3.2 3=k, where 3 is the orispherical subalgebra
relative to H;, and k€K, is such that s=¢(k). Hence 3 and 3 are conjugate under
the group G.

Thus, all of our assertions are proved.

Now we need the following

LEMMA. Let Cy be the Weyl chamger of m, defined as above, and let HeC,.
If theve exists an se W for which sHeC,, then sH=H.

Proof. If HeC,, then sHesC,. Thus CoNsCe3sH. If we suppose sCyxC,, then
we have CoNsCo=¢ since sC, is also a Weyl chamber. Hence we have sC,=C,.
This implies s=¢ and sH=H.

If HeCy—C,, then sHesCy—sC,. Of course, sHeCo—C,. Thus, B(sH), the face
of C, containing sH, is a common face to C, and sC,.

Now, it is obvious that we can find a sequence of Weyl chambers C,, C,, -+, Cp
=sC, which satisfy the following conditions:

(1) C._: and C, have a common face, say B; of dimension dim m,—1;

(2) The face B; lies on a hyperplane r., in which B(sH) is contained.

By (1) and (2), we have s.,C,=C;,; and hence sCo=Sup+5,,Co Where s,, means
the reflection of m, in the hyperplane z., This implies s=Su.ySe;. By (2), Sa;sH
=sH for all i. Then H=s"'SH=S,,SapsH=5I1.

Combining prop. 4.1 with the above lemma, we get the following
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TueOREM 4. 2. Let Hy, Hy€Co and let 31,3 be orispherical subalgebras relative
to H,, H, respectively. Then 31 and 3, ave conjugate under the adjoint group of ¢, if
and only if B(H)=B(H>).

Thus we can conclude

THEOREM 4. 3. Therve is a one to one correspondence between comjugate classes
of orispherical subalgebras and faces of a Weyl chamber C, (including C, itself).
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