ON THE EQUIVALENCE OF LOCAL HOLOMORPHY
AND LOCAL HOLOMORPHIC CONVEXITY IN
TWO-DIMENSIONAL NORMAL COMPLEX SPACES

By Joir KajiwaAra

A subdomain (or an open subset) X’ of a complex space X is called a subdomain
(an open subset) of holomorphy of X of a holomorphic function f in X', or shortly
a subdomain (an open subset) of holomorphy of X, if f can not be analytically
continued in any boundary point of X’ relative to X. A subdomain X’ of a com-
plex space X is called a subdomain of local holomorphy (a locally holomorphically
convex subdomain) if there exists a neighbourhood U for any boundary point of X’
relative to X such that UNX’ is an open subset of holomorphy (a holomorphically
convex open subset) of X. In the present paper we shall prove that a subdomain
X’ of a two-dimensional normal complex space X is a subdomain of local holomorphy
of X if and only if it is a locally holomorphically convex subdomain of X.

§1. Application of Weyl’s theorem.

Let K be a subset of a complex space Y. We shall denote by K the set of all
xeY satisfying the following condition:

[f(@)] és%g(f(y)l

for all holomorphic functions f in Y.

K is called the envelope of holomorphy of K with respect to Y. If the envelope
of holomorphy of any compact subset of a complex space Y is compact, Y is called
holomorphically convex.

Lemma 1. Let K be a subset of a complex space Y with KEY and 4= {z,, x.,
e, s} be a finite subset of Y—K. Then there exists a holomorphic function f in
Y satisfying the following condition:

sup| f ()| <1<inf| f(®)I.
yeK YE4
Proof. For any 7=1, 2, ---, s, there exists a holomorphic function /, in Y satis-
fying the following condition:
sup | ()| <1/s<2<| fi(z;)|
YEK

* Recerved March 24, 1965.
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for any j=1, 2, ---, s. If we put
F(y)= Zi (fi)*
=

for any positive integer a, F is a holomorphic function in Y with
sup |F(y)| <1.
YyeEK

Making use of Weyl [6] we shall prove that
[F)l>1 (=1,2,-,5)
for a suitable choice of «. We put
Fila)=rrexp@rn/—104) (=0, 0 is real)

for j, k=1, 2, --, s. There exists a positive integer p such that each pf; is either

an integer or an irrational number. There exists a subset {6;, 0, -+, 0.} of
{05 7, k=1, 2, ---, s} satisfying the following conditions:

1) plafi+afe+--+uwabs)=0 (mod 1) implies a;=az=---=a,=0 for integers
aq, A, -+ and ag.

(2) There exist integers a;9'®, @, @'®, ... and a,%® such that
PO=pla; PO+, 00,4 a0 ®0,) (mod 1)

for any j, k=1,2, -, s.
Since {(apb., apbs, -+, apls); a=0, +1, +2, ---} is everywhere dense mod 1 from
Weyl [6], there exists a positive integer «’ such that

0<|a’pln|<1/B (mod 1)
for m=1, 2, ---, @ where B=63|an"®| (m=1, 2, ---, a; j, k=1,2,---,s). Then we have
0=<|a’pfu|<1/6  (mod 1)
for j, k=1, 2, ---, s. Hence we have
cos (2ra’pll i) >1/2
for j, k=1, 2, -, s. This means that
Re (F(xe)>1

for k=1, 2, ---, s and a=a’p. Therefore we have a desired function # in Y.

§2. Analytic ramified covering.

Let = be a proper nowhere degenerating holomorphic mapping of a normal
complex space X onto a normal complex space Y satisfying the following condition:
There exists an analytic set B in Y such that ¢ is a locally biholomorphic
mapping of X—z~Y(B) onto Y—B and r~(B) separates X nowhere.
Then (X, 7) is called an analytic ramified covering over Y. A point x of X is called
to lie over a point y of Y if «(x)=y. If Y is connected, there exists a positive integer
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s such that just s points xy, &, -+ and x; of X—7~(B) lie over a point ¥ of Y—B. s 18
called the number of ramification of (X, c). If ¢ is a locally biholomorphic mapping
of X onto Y, (X, ) is called unramified. Let ¢ be a holomorphic mapping of a
normal complex space X in a normal complex space Y such that for a suitable
neighbourhood U of any point of X (U, ¢) is an analytic ramified covering over
o(U). Then (X, ¢) is called a ramified domain over Y. If each (U, ¢) is unramified
(X, ¢) is called an wunramified domain over Y.

Let (X, 7) be an analytic ramified covering over a connected normal complex
space Y and s be the number of ramification of (X, r). Let f be a holomorphic
function in X. We put

Fu(y)= 21 () f(x;,) -+ f(,,)

for all mutually distinct jj, 72, -+, jn=1, 2, -, s m=1, 2, ---, s) where &, &5, --- and
xs are points over ye Y—B. Each F, is a single-valued holomorphic function in
Y—B and is bounded in a neighbourhood of each point of B. Since Y is normal,
each F,, can be analytically continued in Y. The analytic continuation, which is
denoted by the same symbol Fi, of F, in Y is called the m-th symmeltric function
of f with rvespect to (X, 7).

LEMMA 2. Let (X, ©) be an analytic ramified covering over a normal complex
space Y. If F is a holomorphic function in a subdomain D of Y such that F can
not be analytically continued in a boundary point y, of D, f=Fer can not be ana-
Iytically continued in any point over ¥,.

Proof. Suppose that f can be analytically continued in a neighbourhood U’ of
a point x, over y,. There exists a connected neighbourhood Uc U’ and TV of x,
and y, respectively such that U is a connected component of z=*(V). Let s be the
number of ramification of (U, 7z) and F; be the first symmetric function of the
analytic continuation of f in U with respect to (U, 7). Then Fi/s is an analytic
continuation of F in V. This is a contradiction. Therefore f can not be analy-
tically continued in any point over ¥,.

LEMMA 3. Let (X, 7) be an analytic vamified covering over a sepavable normal
complex space Y. Let D be a subdomain of Y and D, be a connected component
of ©=Y(D). If D, is a subdomain of holomorbhy of a holomorphic function f in Ds,
D is a subdomain of holomordhy of a linear combination of symmetric functions
Fy, Foyand Fs of f with respect to (D, t) whose number of ramification is denoted by s.

Proof. At first f is a solution of the equation
A=w+Fi(z(x))w* '+ +Fs(z(x)) =0
in D,. If all F,’s can be analytically continued in a neighbourhood U of y,€dD
with UnE=¢ where E is the zero-surface of the discriminant of 4, f can be
analytically continued in a connected component U; of «~*(U) with UyND;#¢. Let
Yo be a point of 9D with a neighbourhood U’ such that U'NnED>U’NJD. If all

Fys can be analytically continued in a neighbourhood U of y,€dD with UnEDU
NoD, f can be analytically continued to a function which is bounded and holo-
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morphic in U;—z~Y(E) where U, is a connected component of =1(U) with U, N D:+¢.
Since X is normal, f can be analytically continued in U,.

Since Y is separable, there exists a countable subset d={xy; k=1,2, 3, ---} of
D satisfying the following conditions:

Each x: is either a point of dD—FE or has a neighbourhood U with UnE>U
NoD even if all F’s are analytically continuable in xx. 4 is dense in dD.

From the above argument, one of F,’s can not be analytically continued in
for any k. Let Cj be the set of all s-pls (a1, as, -+, @;s) of complex numbers such that

01F1+¢2F2+"'+618FS

can be analytically continued in xx C§ is a proper subspace of C* and is nowhere
dense in C* for any k. Hence there exists (by, b, -+, bs)eCs— Us=,Ci. Then

F=bF1+b: o+ +bsFs

can not be analytically continued in any point of 4. Therefore D is a subdomain
of holomorphy of F.

Lemma 4. Let (X, 7) be an analytic vamified covering over a normal complex
space Y. Let D be a subdomain of Y and D, be a connected component of ==(D).
Then D is holomorphically convex if and only if D, is holomorphically convex.

Proof. Suppose that D, is holomorphically convex. Let K be a compact subset
of D. We put
Ki="Y(K)NnD,.
Since D, is holomorphically convex, the envelope K, of holomorphy of K; with

respect to D, is compact. Let v, be a point of D—z(K,). We put d=z"Yy,)N D;.
From Lemma 1 there exists a holomorphic function f in D; such that

sup | f(x)| <1< inf | f(@)].
ZEK1 x€d

Let s be the number of ramification of (D, 7). Then the s-th symmetric {function
F of f with respect to (D, 7) satisfies

sup [Fs(w)| <1< [Es(yo)]-
yeK

Therefore the envelope of holomorphy of K with respect to D is contained in a
compact subset (K of D. Hence D is holomorphycally convex.

Conversely suppose that D is holomorphically convex. Let K, be a compact
subset. We put K=7(K;). The envelope K of holomorphy of the compact set K
with respect to D is compact. Let &, be a point of D,—z~%(K). There exists a
holomorphic function F in D such that

sup [F)| <|F(z(xz0))|.
yeK

Then f=Fot satisfies
sup | @) <] f(@0)]-
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The enveloBe of holomorphy of K; with respect to D, is contained in a compact
subset z~%(K) of D;. Hence D is holomorphically convex.

ProrosiTiON 1. Let (X, 7) be an analytic ramified covering over a normal com-
plex space Y such that X is a Stein manifold. Then Y is a Stein space and for
a subdomain D of 'Y the following assertions are equivalent:

1) D is holomorphically convex.

@) D is a subdomain of holomorphy of Y.

(3) There exists a holomorphic function F in D for any boundary point y, of
D such that f can not be analytically continued in ¥,.

4) D is a subdomain of local holomorphy of Y.

(5) For any boundary point yo of D there exists a neighbourhood U of y, such
that UND satisfies the condition in (3).

Proof. If D is holomorphically convex, it is a subdomain of holomorphy from
Cartan-Thullen [2]. It is easy to see that (2) implies (3) and (4), which imply (5).
Hence it suffices to prove that (5) implies (1). Let D be a subdomain of Y such
that there exists a neighbourhood U for any boundary point y, of D satisfying the
following conditions:

For any boundary point ¥ of UND there exists a holomorphic function F in
UNnD which can not be analytically continued in y. <~}(U) is a holomorphically
convex local coordinate neighbourhood of each point of z=!(y,).

From Lemma 2 «~(U)Nz~(D) posesses the same property as UN D does. Hence
Y(U)Nz"YD) is an open set of holomorphy. From Docquier-Grauert [3] ==(D) is
holomorphically convex. From Lemma 4 D is holomorphically convex.

Let X be a Stein manifold with a finite group of automorphisms. We shall
denote by Y=X]/G the factor space of X by the equivalence relation defined by G.
Y is a Hausdorff space. From Cartan [1] there exists a complex structure in ¥V
such that a continuous function F in a subdomain D of Y is holomorphic in D if
and only if Fer is holomorphic in a connected component of «=(D) and that the
canonical mapping ¢ of X onto Y is holomorphic. r is a nowhere degenerating
proper mapping of X onto Y satisfying the following condition:

There exists an analytic set B in Y such that ¢ is a locally biholomorphic
mapping of X—z=*(B) onto Y—B and ~(B) separates X nowhere.

Even if Y is not normal, we can prove Lemmas 1, 2 and 4 for this mapping
r making use of the properties of the complex structure of Y cited above. Hence
Proposition 1 is valid for this Y.

Let n, p1, ps, -+, P and p are positive integers such that pi, ps, -~ and p, are
coprime. Then

Y={y=(z, w); uwP=2Pz" ... z8n}

is a normal analytic set in the space C**' of (#+1) complex variables z=(z;, 25 ---
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z») and w. If we put p(¥)=z for yeV, (Y, ¢) is an analytic ramified covering over
C* and is called the Riemann’s domain of the function X/zPz0 --- z8=. If we put

z]=tg (j=1) 2; Sty n)) w=t{ht§h tgn

for t=(, 2, -+, tn)€C", then t(¥)=(z, w) is a proper holomorphic mapping of C* onto
Y. We put o=exp (2z/—1/p). We denote by G the finite group of automorphisms

(ty, tay -+, tn) — (0"'t1, @0y, -+, O"Ly)
for all integers vy, vy, --- and v, with

vipi+vepet---Funpn=0 (mod p).
Then we have Y=C»/G. Hence we have

CorOLLARY OF ProrosiTiON 1. For a subdomain D of the Riemann's domain
of the function R/zPz0" - 287 the five assertions in Proposition 1 are equivalent
where Py, pa, -+ and pn are coprime.

Let Y be a pure two-dimensional normal complex space. If ¥, is a uniformizable
point of YV, there exists a biholomorphic mapping of a neighbourhood U in C%. If
%o iS not a uniformizable point of Y, there exists a biholomorphic mapping of a
neighbourhood U of v, in the Riemann’s domain of the function &/z2:*~¢ from
Jung [5] and Grauert-Remmert [4]. Therefore the five assertions in Proposition 1
are equivalent for a subdomain of U from Corollary of Proposition 1. Roughly
speaking, any two-dimensional normal complex space has a neighbourhood for any
point of it where the Levi problem is affirmatively solved. Thus we have

ProposiTiON 2. A subdomain of a pure two-dimensional normal complex space
Y is a subdomain of local holomorphy of Y if and only if it is a locally holomor-
Dphically convex subdomain of Y.

§4. Sequence of holomorphic functions which converges uniformly to 0.

If we put
Fn(@)=2"/n,

then {fa.; n=1,2,3, -} is a sequence of holomorphic functions in the complex plane
C which converges uniformly to 0 in D and any subsequence of which does not
converge pointwise in any domain D’ with D’22D where D={z; |z|<1}. We shall
give a necessary and sufficient condition for the existence of such a sequence.

ProprosITION 3. A subdomain D of a separable complex space Y coincides with a
connected component of the open kernel of its envelope b of holomorphy with respect
to Y if and only if there exists a sequence {fa; n=1,2, 3, ---} of holomorphic func-
tions fu in Y satisfying the following conditions:

Q) {fu; n=1,2,3, -} converges uniformly to 0 in D in the strict sense.

) Any subsequence of {fn; n=1,2,3, ---} does not converge pointwise in any
subdomain D’ of Y with D'2D.
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Proof. Suppose that D is a connected component of the open kernel of D.
Since Y is separable, there exists a sequence {x,; n=1,2, 3, ---} of points x, of
Y—D such that any point of ¥—D is its accumulation point. From Lemma 1 there

exists a holomorphic function f, in Y such that

sup | fa@<1n<n<|falzwm)]  (m=12, -, n)

for n=1, 2, 3, ---. Obviously {f»} satisfies the conditions (1) and (2) in our Proposition.
Conversely suppose that {f,; #n=1,2, 3, ---} is such a sequence. There exists
a positive integer #, such that

sup | fu(y)| =1
yeD

for n>m,. Let D’ be a connected component of [J containg D. Then we have

sup | f»(¥)| =1
yeD’

for n>n,. Therefore {f»} is a normal sequence in D’. Hence we have D’=D.
It is easy to prove

COROLLARY OF PROPOSITION 3. Let D be a bounded domain in the complex
plane C. Then there exists a sequence of polynomials satisfying the conditiozzs n
Proposition 3 if and only if C—D is connected and D is the open kernel of D.

A subdomain D of a complex space Y is called kolomorphically convex with
respect to Y if the intersection K(Y) of D and the envelope of holomorphy of any
compact subset K of D with respect to Y is a compact subset of D.

ProrosiTiON 4. If a subdomain D of a separable complex space Y is holomor-
DPhically convex with respect to Y, there exists a sequence {f»; n=1,2,3, -} of
holomorphic functions fn in Y satisfying the following conditions:

A {fw n=1,2,3, ---} converges uniformly to 0 in any compact subset of D.

@) Amny subsequence of {fn; n=1,2, 3, ---} does not converge uniformly in a
compact subset of any subdomain D' of Y with D’'=2D.

Conversely if theve exists such a sequence {f., n=1,2,3, -} for a subdomain
D of an unramified domain (Y, ¢) over C?, D is holomorphically convex with respect

to Y.

Proof. If D is a holomorphically convex subdomain with respect to a separable
complex space Y, there exists a sequence {K,; n=1,2, 3, ---} of compact subsets
K, of D satisfying the following conditions:

Ko=Ru(Y), KnCKnpi (n=1,2,3,-) and D= U K.
n=1

There exists a countable subset {y.; »=1, 2, 3, ---} of D which is dence in 0D as
Y is separable. Let {Un,m; m=1,2,3, -} be a filtre of neighbourhoods of ¥,
satsfying the following conditions for any 7:

{Unym; m=1,2,3, ---} converges to ¥n, Uny ms1C Un,m (m=1,2,3, --),
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U UnymA DCED—Kn.
n=1

Let zp, m€ Uy, m N(D—Kp) (n=1,2, ---, m). From Lamma 1 there exists a holomor-
phic function f in Y such that

Sup [ fa@)l <Lfm<m<| fu(zn, m)l - (=1, 2, -, m).

{fm; m=1, 2,3, ---} satisfies the conditions (1) and (2) in our Proposition.

Conversely suppose that {f.; m=1, 2, 3, ---} is such a sequence for a subdomain
D of an unramified domain (Y, ¢) over C?. Let K be a compact subset of D. We
put

p=inf (min [{;—v,l)
1sjsp
for {edD and yeK. There exists a positive integer m, such that

Sup | fe(@)|=1

for m>m,. Let
D,={y; |{;—vy;| >, for all LedD, yeD}.

Suppose that 3’€K(Y)—D, for some r<p. From Cartan-Thullen [2] we have
sup | fm(¥)| =1
yeU

for m>m, and U={y; |y;—vyj[<p; 7=1, 2, .-, p}. Hence {fm; m=1,2,3, -} isa
normal sequence in U. But this is a contradiction. Therefore we have

K(Y)cD,.

Since K(Y) is bounded, it is a compact subset of D. Hence D is holomorphically
convex with respect to Y.

CoROLLARY OF PROPOSITION 4. Let D be a domain in the complex plane C.
Then there exists a sequence of polynomials satisfying the conditions in Proposition
4 if and only if D is simply connected.
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