ON THE EQUIVALENCE OF LOCAL HOLOMORPHY AND LOCAL HOLOMORPHIC CONVEXITY IN TWO-DIMENSIONAL NORMAL COMPLEX SPACES

By Joji Kajiwara

A subdomain (or an open subset) X' of a complex space X is called a *subdomain* (an *open subset*) of holomorphy of X of a holomorphic function f in X', or shortly a *subdomain* (an *open subset*) of holomorphy of X, if f can not be analytically continued in any boundary point of X' relative to X. A subdomain X' of a complex space X is called a *subdomain* of local holomorphy (a locally holomorphically convex subdomain) if there exists a neighbourhood U for any boundary point of X' relative to X such that $U \cap X'$ is an open subset of holomorphy (a holomorphically convex open subset) of X. In the present paper we shall prove that a subdomain X' of a two-dimensional normal complex space X is a subdomain of local holomorphy of X if and only if it is a locally holomorphically convex subdomain of X.

§1. Application of Weyl's theorem.

Let K be a subset of a complex space Y. We shall denote by \tilde{K} the set of all $x \in Y$ satisfying the following condition:

$$|f(x)| \le \sup_{y \in K} |f(y)|$$

for all holomorphic functions f in Y.

 \tilde{K} is called the *envelope of holomorphy of* K with respect to Y. If the envelope of holomorphy of any compact subset of a complex space Y is compact, Y is called *holomorphically convex*.

Lemma 1. Let K be a subset of a complex space Y with $\widetilde{K} \subseteq Y$ and $A = \{x_1, x_2, \dots, x_s\}$ be a finite subset of $Y - \widetilde{K}$. Then there exists a holomorphic function f in Y satisfying the following condition:

$$\sup_{y\in K}|f(y)|<1<\inf_{y\in A}|f(y)|.$$

Proof. For any $j=1, 2, \dots, s$, there exists a holomorphic function f_j in Y satisfying the following condition:

$$\sup_{y \in K} |f_j(y)| < 1/s < 2 < |f_j(x_j)|$$

^{*} Received March 24, 1965.

for any $j=1, 2, \dots, s$. If we put

$$F(y) = \sum_{j=1}^{s} (f_j(y))^{\alpha}$$

for any positive integer α , F is a holomorphic function in Y with

$$\sup_{y\in K}|F(y)|<1.$$

Making use of Weyl [6] we shall prove that

$$|F(x_j)| > 1$$
 $(j=1, 2, \dots, s)$

for a suitable choice of α . We put

$$f_j(x_k) = r_{jk} \exp(2\pi \sqrt{-1}\theta_{jk})$$
 $(r_{jk} \ge 0, \theta_{jk} \text{ is real})$

for $j, k=1, 2, \dots, s$. There exists a positive integer p such that each $p\theta_{jk}$ is either an integer or an irrational number. There exists a subset $\{\theta_1, \theta_2, \dots, \theta_a\}$ of $\{\theta_{jk}; j, k=1, 2, \dots, s\}$ satisfying the following conditions:

- (1) $p(\alpha_1\theta_1 + \alpha_2\theta_2 + \dots + \alpha_n\theta_n) \equiv 0 \pmod{1}$ implies $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$ for integers $\alpha_1, \alpha_2, \dots$ and α_n .
 - (2) There exist integers $\alpha_1^{(j,k)}$, $\alpha_2^{(j,k)}$, ... and $\alpha_a^{(j,k)}$ such that

$$p\theta_{jk} \equiv p(\alpha_1^{(j,k)}\theta_1 + \alpha_2^{(j,k)}\theta_2 + \dots + \alpha_a^{(j,k)}\theta_a) \pmod{1}$$

for any $j, k=1, 2, \dots, s$.

Since $\{(\alpha p\theta_1, \alpha p\theta_2, \dots, \alpha p\theta_a); \alpha=0, \pm 1, \pm 2, \dots\}$ is everywhere dense mod 1 from Weyl [6], there exists a positive integer α' such that

$$0 < |\alpha' p \theta_m| < 1/B \pmod{1}$$

for $m=1, 2, \dots, a$ where $B=6\sum |\alpha_m^{(j,k)}|$ $(m=1, 2, \dots, a; j, k=1, 2, \dots, s)$. Then we have

$$0 \le |\alpha' p\theta_{ik}| < 1/6 \pmod{1}$$

for $j, k=1, 2, \dots, s$. Hence we have

$$\cos(2\pi\alpha'p\theta_{ik})>1/2$$

for $j, k=1, 2, \dots, s$. This means that

$$\operatorname{Re}(F(x_k)) > 1$$

for $k=1, 2, \dots, s$ and $\alpha=\alpha'p$. Therefore we have a desired function F in Y.

§ 2. Analytic ramified covering.

Let τ be a proper nowhere degenerating holomorphic mapping of a normal complex space X onto a normal complex space Y satisfying the following condition:

There exists an analytic set B in Y such that τ is a locally biholomorphic mapping of $X-\tau^{-1}(B)$ onto Y-B and $\tau^{-1}(B)$ separates X nowhere.

Then (X, τ) is called an *analytic ramified covering over* Y. A point x of X is called to *lie over a point* y of Y if $\tau(x) = y$. If Y is connected, there exists a positive integer

s such that just s points x_1, x_2, \cdots and x_s of $X-\tau^{-1}(B)$ lie over a point y of Y-B. s is called the *number of ramification of* (X, τ) . If τ is a locally biholomorphic mapping of X onto Y, (X, τ) is called *unramified*. Let φ be a holomorphic mapping of a normal complex space X in a normal complex space Y such that for a suitable neighbourhood U of any point of $X(U, \varphi)$ is an analytic ramified covering over $\varphi(U)$. Then (X, φ) is called a *ramified domain over* Y. If each (U, φ) is unramified (X, φ) is called an *unramified domain over* Y.

Let (X, τ) be an analytic ramified covering over a connected normal complex space Y and s be the number of ramification of (X, τ) . Let f be a holomorphic function in X. We put

$$F_m(y) = \sum f(x_{j_1}) f(x_{j_2}) \cdots f(x_{j_m})$$

for all mutually distinct $j_1, j_2, \dots, j_m=1, 2, \dots, s$ $(m=1, 2, \dots, s)$ where x_1, x_2, \dots and x_s are points over $y \in Y - B$. Each F_m is a single-valued holomorphic function in Y - B and is bounded in a neighbourhood of each point of B. Since Y is normal, each F_m can be analytically continued in Y. The analytic continuation, which is denoted by the same symbol F_m , of F_m in Y is called the m-th symmetric function of f with respect to (X, τ) .

Lemma 2. Let (X, τ) be an analytic ramified covering over a normal complex space Y. If F is a holomorphic function in a subdomain D of Y such that F can not be analytically continued in a boundary point y_0 of D, $f=F\circ \tau$ can not be analytically continued in any point over y_0 .

Proof. Suppose that f can be analytically continued in a neighbourhood U' of a point x_0 over y_0 . There exists a connected neighbourhood $U \subset U'$ and V of x_0 and y_0 respectively such that U is a connected component of $\tau^{-1}(V)$. Let s be the number of ramification of (U, τ) and F_1 be the first symmetric function of the analytic continuation of f in U with respect to (U, τ) . Then F_1/s is an analytic continuation of F in V. This is a contradiction. Therefore f can not be analytically continued in any point over y_0 .

Lemma 3. Let (X, τ) be an analytic ramified covering over a separable normal complex space Y. Let D be a subdomain of Y and D_1 be a connected component of $\tau^{-1}(D)$. If D_1 is a subdomain of holomorphy of a holomorphic function f in D_1 , D is a subdomain of holomorphy of a linear combination of symmetric functions F_1, F_2, \cdots and F_s of f with respect to (D_1, τ) whose number of ramification is denoted by s.

Proof. At first f is a solution of the equation

$$\Lambda = w^s + F_1(\tau(x))w^{s-1} + \dots + F_s(\tau(x)) = 0$$

in D_1 . If all F_j 's can be analytically continued in a neighbourhood U of $y_0 \in \partial D$ with $U \cap E = \phi$ where E is the zero-surface of the discriminant of Λ , f can be analytically continued in a connected component U_1 of $\tau^{-1}(U)$ with $U_1 \cap D_1 \neq \phi$. Let y_0 be a point of ∂D with a neighbourhood U' such that $U' \cap E \supset U' \cap \partial D$. If all F_j 's can be analytically continued in a neighbourhood U of $y_0 \in \partial D$ with $U \cap E \supset U \cap \partial D$, f can be analytically continued to a function which is bounded and holo-

morphic in $U_1-\tau^{-1}(E)$ where U_1 is a connected component of $\tau^{-1}(U)$ with $U_1 \cap D_1 \neq \phi$. Since X is normal, f can be analytically continued in U_1 .

Since Y is separable, there exists a countable subset $\Delta = \{x_k; k=1, 2, 3, \dots\}$ of D satisfying the following conditions:

Each x_k is either a point of $\partial D - E$ or has a neighbourhood U with $U \cap E \supset U$ $\cap \partial D$ even if all F's are analytically continuable in x_k . Δ is dense in ∂D .

From the above argument, one of F_j 's can not be analytically continued in x_k for any k. Let C_k^s be the set of all s-pls (a_1, a_2, \dots, a_s) of complex numbers such that

$$a_1F_1+a_2F_2+\cdots+a_sF_s$$

can be analytically continued in x_k . C_k^s is a proper subspace of C^s and is nowhere dense in C^s for any k. Hence there exists $(b_1, b_2, \dots, b_s) \in C^s - \bigcup_{k=1}^{\infty} C_k^s$. Then

$$F = b_1 F_1 + b_2 F_2 + \dots + b_s F_s$$

can not be analytically continued in any point of Δ . Therefore D is a subdomain of holomorphy of F.

Lemma 4. Let (X, τ) be an analytic ramified covering over a normal complex space Y. Let D be a subdomain of Y and D_1 be a connected component of $\tau^{-1}(D)$. Then D is holomorphically convex if and only if D_1 is holomorphically convex.

Proof. Suppose that D_1 is holomorphically convex. Let K be a compact subset of D. We put

$$K_1 = \tau^{-1}(K) \cap D_1$$
.

Since D_1 is holomorphically convex, the envelope \widetilde{K}_1 of holomorphy of K_1 with respect to D_1 is compact. Let y_0 be a point of $D-\tau(\widetilde{K}_1)$. We put $\Delta=\tau^{-1}(y_0)\cap D_1$. From Lemma 1 there exists a holomorphic function f in D_1 such that

$$\sup_{x \in K_1} |f(x)| < 1 < \inf_{x \in A} |f(x)|.$$

Let s be the number of ramification of (D_1, τ) . Then the s-th symmetric function F_s of f with respect to (D_1, τ) satisfies

$$\sup_{y \in K} |F_s(y)| < 1 < |F_s(y_0)|.$$

Therefore the envelope of holomorphy of K with respect to D is contained in a compact subset $\tau(\tilde{K}_1)$ of D. Hence D is holomorphycally convex.

Conversely suppose that D is holomorphically convex. Let K_1 be a compact subset. We put $K=\tau(K_1)$. The envelope \tilde{K} of holomorphy of the compact set K with respect to D is compact. Let x_0 be a point of $D_1-\tau^{-1}(\tilde{K})$. There exists a holomorphic function F in D such that

$$\sup_{y\in K}|F(y)|<|F(\tau(x_0))|.$$

Then $f = F \circ \tau$ satisfies

$$\sup_{x \in K_1} |f(x)| < |f(x_0)|.$$

The envelope of holomorphy of K_1 with respect to D_1 is contained in a compact subset $\tau^{-1}(\tilde{K})$ of D_1 . Hence D is holomorphically convex.

§3 Riemann's domain of the function $\sqrt[p]{z_1^{p_1}z_2^{p_2}\cdots z_n^{p_n}}$.

PROPOSITION 1. Let (X, τ) be an analytic ramified covering over a normal complex space Y such that X is a Stein manifold. Then Y is a Stein space and for a subdomain D of Y the following assertions are equivalent:

- (1) D is holomorphically convex.
- (2) D is a subdomain of holomorphy of Y.
- (3) There exists a holomorphic function F in D for any boundary point y_0 of D such that f can not be analytically continued in y_0 .
 - (4) D is a subdomain of local holomorphy of Y.
- (5) For any boundary point y_0 of D there exists a neighbourhood U of y_0 such that $U \cap D$ satisfies the condition in (3).

Proof. If D is holomorphically convex, it is a subdomain of holomorphy from Cartan-Thullen [2]. It is easy to see that (2) implies (3) and (4), which imply (5). Hence it suffices to prove that (5) implies (1). Let D be a subdomain of Y such that there exists a neighbourhood U for any boundary point y_0 of D satisfying the following conditions:

For any boundary point y of $U \cap D$ there exists a holomorphic function F in $U \cap D$ which can not be analytically continued in y. $\tau^{-1}(U)$ is a holomorphically convex local coordinate neighbourhood of each point of $\tau^{-1}(y_0)$.

From Lemma 2 $\tau^{-1}(U) \cap \tau^{-1}(D)$ posesses the same property as $U \cap D$ does. Hence $\tau^{-1}(U) \cap \tau^{-1}(D)$ is an open set of holomorphy. From Docquier-Grauert [3] $\tau^{-1}(D)$ is holomorphically convex.

Let X be a Stein manifold with a finite group of automorphisms. We shall denote by Y=X/G the factor space of X by the equivalence relation defined by G. Y is a Hausdorff space. From Cartan [1] there exists a complex structure in Y such that a continuous function F in a subdomain D of Y is holomorphic in D if and only if $F \circ \tau$ is holomorphic in a connected component of $\tau^{-1}(D)$ and that the canonical mapping τ of X onto Y is holomorphic. τ is a nowhere degenerating proper mapping of X onto Y satisfying the following condition:

There exists an analytic set B in Y such that τ is a locally biholomorphic mapping of $X-\tau^{-1}(B)$ onto Y-B and $\tau^{-1}(B)$ separates X nowhere.

Even if Y is not normal, we can prove Lemmas 1, 2 and 4 for this mapping τ making use of the properties of the complex structure of Y cited above. Hence Proposition 1 is valid for this Y.

Let n, p_1, p_2, \dots, p_n and p are positive integers such that p_1, p_2, \dots and p_n are coprime. Then

$$Y = \{y = (z, w); w^p = z_1^{p_1} z_2^{p_2} \cdots z_n^{p_n}\}$$

is a normal analytic set in the space C^{n+1} of (n+1) complex variables $z=(z_1, z_2, \cdots, z_n)$

 z_n) and w. If we put $\varphi(y)=z$ for $y \in Y$, (Y, φ) is an analytic ramified covering over C^n and is called the *Riemann's domain of the function* $\sqrt[p]{z_1^{p_1}z_2^{p_2}\cdots z_n^{p_n}}$. If we put

$$z_j = t_j^p (j=1, 2, \dots, n), w = t_1^{p_1} t_2^{p_2} \dots t_n^{p_n}$$

for $t=(t_1, t_2, \dots, t_n) \in C^n$, then $\tau(t)=(z, w)$ is a proper holomorphic mapping of C^n onto Y. We put $\omega=\exp(2\pi\sqrt{-1}/p)$. We denote by G the finite group of automorphisms

$$(t_1, t_2, \dots, t_n) \rightarrow (\omega^{\nu_1} t_1, \omega^{\nu_2} t_2, \dots, \omega^{\nu_n} t_n)$$

for all integers ν_1, ν_2, \cdots and ν_n with

$$\nu_1 p_1 + \nu_2 p_2 + \dots + \nu_n p_n \equiv 0 \pmod{p}$$
.

Then we have $Y=C^n/G$. Hence we have

COROLLARY OF PROPOSITION 1. For a subdomain D of the Riemann's domain of the function $\sqrt[p]{z_1^{p_1}z_2^{p_2}\cdots z_n^{p_n}}$ the five assertions in Proposition 1 are equivalent where p_1, p_2, \cdots and p_n are coprime.

Let Y be a pure two-dimensional normal complex space. If y_0 is a uniformizable point of Y, there exists a biholomorphic mapping of a neighbourhood U in C^2 . If y_0 is not a uniformizable point of Y, there exists a biholomorphic mapping of a neighbourhood U of y_0 in the Riemann's domain of the function $\sqrt[p]{z_1 z_2^{p-q}}$ from Jung [5] and Grauert-Remmert [4]. Therefore the five assertions in Proposition 1 are equivalent for a subdomain of U from Corollary of Proposition 1. Roughly speaking, any two-dimensional normal complex space has a neighbourhood for any point of it where the Levi problem is affirmatively solved. Thus we have

Proposition 2. A subdomain of a pure two-dimensional normal complex space Y is a subdomain of local holomorphy of Y if and only if it is a locally holomorphically convex subdomain of Y.

§ 4. Sequence of holomorphic functions which converges uniformly to 0.

If we put

$$f_n(z) = z^n/n$$

then $\{f_n; n=1, 2, 3, \cdots\}$ is a sequence of holomorphic functions in the complex plane C which converges uniformly to 0 in \overline{D} and any subsequence of which does not converge pointwise in any domain D' with $D' \supseteq D$ where $D = \{z; |z| < 1\}$. We shall give a necessary and sufficient condition for the existence of such a sequence.

PROPOSITION 3. A subdomain D of a separable complex space Y coincides with a connected component of the open kernel of its envelope \tilde{D} of holomorphy with respect to Y if and only if there exists a sequence $\{f_n; n=1, 2, 3, \cdots\}$ of holomorphic functions f_n in Y satisfying the following conditions:

- (1) $\{f_n; n=1, 2, 3, \cdots\}$ converges uniformly to 0 in \overline{D} in the strict sense.
- (2) Any subsequence of $\{f_n; n=1, 2, 3, \cdots\}$ does not converge pointwise in any subdomain D' of Y with $D' \supseteq D$.

Proof. Suppose that D is a connected component of the open kernel of \tilde{D} . Since Y is separable, there exists a sequence $\{x_n; n=1, 2, 3, \cdots\}$ of points x_n of $Y-\tilde{D}$ such that any point of $Y-\tilde{D}$ is its accumulation point. From Lemma 1 there exists a holomorphic function f_n in Y such that

$$\sup_{y \in \Omega} |f_n(y)| < 1/n < n < |f_n(x_m)| \qquad (m=1, 2, \dots, n)$$

for $n=1, 2, 3, \cdots$. Obviously $\{f_n\}$ satisfies the conditions (1) and (2) in our Proposition. Conversely suppose that $\{f_n; n=1, 2, 3, \cdots\}$ is such a sequence. There exists a positive integer n_0 such that

$$\sup_{y\in D}|f_n(y)|\leq 1$$

for $n > n_0$. Let D' be a connected component of \widetilde{D} containg D. Then we have

$$\sup_{y\in D'}|f_n(y)|\!\leq\!1$$

for $n > n_0$. Therefore $\{f_n\}$ is a normal sequence in D'. Hence we have D' = D. It is easy to prove

Corollary of Proposition 3. Let D be a bounded domain in the complex plane C. Then there exists a sequence of polynomials satisfying the conditions in Proposition 3 if and only if $C-\overline{D}$ is connected and D is the open kernel of \overline{D} .

A subdomain D of a complex space Y is called *holomorphically convex with* respect to Y if the intersection $\tilde{K}(Y)$ of D and the envelope of holomorphy of any compact subset K of D with respect to Y is a compact subset of D.

PROPOSITION 4. If a subdomain D of a separable complex space Y is holomorphically convex with respect to Y, there exists a sequence $\{f_n; n=1, 2, 3, \cdots\}$ of holomorphic functions f_n in Y satisfying the following conditions:

- (1) $\{f_n; n=1, 2, 3, \dots\}$ converges uniformly to 0 in any compact subset of D.
- (2) Any subsequence of $\{f_n; n=1, 2, 3, \cdots\}$ does not converge uniformly in a compact subset of any subdomain D' of Y with $D' \supseteq D$.

Conversely if there exists such a sequence $\{f_n; n=1, 2, 3, \dots\}$ for a subdomain D of an unramified domain (Y, φ) over C^p , D is holomorphically convex with respect to Y.

Proof. If D is a holomorphically convex subdomain with respect to a separable complex space Y, there exists a sequence $\{K_n; n=1, 2, 3, \cdots\}$ of compact subsets K_n of D satisfying the following conditions:

$$K_n = \widetilde{K}_n(Y)$$
, $K_n \subset K_{n+1}$ $(n=1, 2, 3, \cdots)$ and $D = \bigcup_{n=1}^{\infty} K_n$.

There exists a countable subset $\{y_n; n=1, 2, 3, \dots\}$ of ∂D which is dence in ∂D as Y is separable. Let $\{U_n, m; m=1, 2, 3, \dots\}$ be a filtre of neighbourhoods of y_n satsfying the following conditions for any n:

$$\{U_n, m; m=1, 2, 3, \cdots\}$$
 converges to $y_n, U_n, m+1 \subset U_n, m \ (m=1, 2, 3, \cdots),$

$$\bigcup_{n=1}^{m} U_n, \, {}_{m} \cap D \subset D - K_m.$$

Let $x_n, m \in U_n, m \cap (D-K_m)$ $(n=1, 2, \dots, m)$. From Lamma 1 there exists a holomorphic function f_m in Y such that

$$\sup_{y \in K_m} |f_m(y)| < 1/m < m < |f_m(x_n, m)| \quad (n=1, 2, \dots, m).$$

 $\{f_m; m=1, 2, 3, \cdots\}$ satisfies the conditions (1) and (2) in our Proposition.

Conversely suppose that $\{f_m; m=1, 2, 3, \cdots\}$ is such a sequence for a subdomain D of an unramified domain (Y, φ) over C^p . Let K be a compact subset of D. We put

$$\rho = \inf \left(\min_{1 \le j \le p} |\zeta_j - y_j| \right)$$

for $\zeta \in \partial D$ and $y \in K$. There exists a positive integer m_0 such that

$$\sup_{y \in K} |f_m(y)| \leq 1$$

for $m > m_0$. Let

$$D_r = \{y; |\zeta_i - y_i| > r, \text{ for all } \zeta \in \partial D, y \in D\}.$$

Suppose that $y' \in \tilde{K}(Y) - D_r$ for some $r < \rho$. From Cartan-Thullen [2] we have

$$\sup_{y\in U}|f_m(y)|\!\leq\!1$$

for $m > m_0$ and $U = \{y; |y_j - y_j'| < \rho; j = 1, 2, \dots, p\}$. Hence $\{f_m; m = 1, 2, 3, \dots\}$ is a normal sequence in U. But this is a contradiction. Therefore we have

$$\tilde{K}(Y)\subset \bar{D}_{\varrho}$$
.

Since K(Y) is bounded, it is a compact subset of D. Hence D is holomorphically convex with respect to Y.

Corollary of Proposition 4. Let D be a domain in the complex plane C. Then there exists a sequence of polynomials satisfying the conditions in Proposition 4 if and only if D is simply connected.

References

- CARTAN, H., Seminaire; Théorie des fonction de plusieurs variables (1953/54).
 CARTAN, H., UND P. THULLEN, Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen; Regularitäts- und Konvergenzbereiche. Math. Ann. 106 (1932), 617-655.
 DOCQUIER, F., UND H. GRAUERT, Levisches Problem und Rungescher Satz für Teilgebiete Strippeler Mannifolitieren.
- Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140 (1960), 94-123.
- [4] GRAUERT, H., UND R. REMMERT, Komplexe Räume. Math. Ann. 136 (1958), 245-
- Einführung in die Theorie der algebraischen Funktionen zweier Veränderlichen. Akad. Verlag, Berlin (1951).
- [6] WEYL, H., Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77 (1916), 313-352.

College of General Education, Nagoya University.